JP5587120B2 - 内視鏡用光源装置 - Google Patents

内視鏡用光源装置 Download PDF

Info

Publication number
JP5587120B2
JP5587120B2 JP2010222055A JP2010222055A JP5587120B2 JP 5587120 B2 JP5587120 B2 JP 5587120B2 JP 2010222055 A JP2010222055 A JP 2010222055A JP 2010222055 A JP2010222055 A JP 2010222055A JP 5587120 B2 JP5587120 B2 JP 5587120B2
Authority
JP
Japan
Prior art keywords
light
light source
endoscope
incident
white
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010222055A
Other languages
English (en)
Other versions
JP2012075562A (ja
Inventor
黒田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010222055A priority Critical patent/JP5587120B2/ja
Priority to CN201110302015.XA priority patent/CN102440750B/zh
Priority to US13/248,703 priority patent/US8764644B2/en
Publication of JP2012075562A publication Critical patent/JP2012075562A/ja
Application granted granted Critical
Publication of JP5587120B2 publication Critical patent/JP5587120B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope

Description

本発明は、内視鏡診断において、内視鏡により、特定の狭い波長帯域光を生体の粘膜組織に照射し、所望の深さの組織情報を得る特殊光観察と、可視光を照射する通常観察との両方の観察を可能にする内視鏡用光源装置に関する。
従来、内視鏡診断においては、内視鏡の光源装置からの白色照明光等の可視光をライトガイドにより導光し、このライトガイドで導光された可視光を内視鏡挿入部の先端の照明窓から出射して検査対象部位を照明し、検査対象部位を観察する通常観察を行う内視鏡装置が用いられている。
これに対して、近年、内視鏡診断においては、上記のような白色照明光による通常観察に加えて、白色照明光(白色光)より狭い特定の波長帯域の光(以下、狭帯域光ともいう)を体腔壁の粘膜組織等の生体組織に照射し、生体組織の所望の深さの組織情報を得る、特殊光観察を行うことができる内視鏡装置が活用されている。
このような内視鏡装置では、例えば粘膜層あるいは粘膜下層に発生する新生血管の微細構造、病変部の強調等、通常の観察像では得られない生体情報を簡単に可視化できる。例えば、観察対象が癌病変部である場合、青色の狭帯域光を粘膜組織に照射すると組織表層の微細血管や微細構造の状態がより詳細に観察できるため、病変部をより正確に診断することができる。
特殊光観察においては、上記のような狭帯域光を用いた狭帯域光観察の他に、体腔壁に励起光を照射し、生体組織を励起することにより発生する自家蛍光の強度の違いを利用して、癌病変部の早期発見を可能にする蛍光観察を行う内視鏡装置も活用されている。
上記のような特殊光観察を行う内視鏡装置に用いられる内視鏡用光源装置が、特許文献1及び2に開示されている。
特許文献1及び2に開示される内視鏡用光源装置は、可視光である白色照明光(以下、単に白色光ともいう)を発する白色光源と、他方、紫外域側の短波長の光である励起光を発する励起光源としての半導体レーザとを有し、白色光源から白色光を入射させるライトガイドまでの光路は、直線的に配置され、他方、励起光の光路は、白色光の光路に対して垂直に交差するように配置され、この二つの光路を光路合成素子であるダイクロイックミラーで合成する。
この例では、ダイクロイックミラーは、特定の波長以上の光を透過させて特定の波長以下の光を反射させる特性を有し、これにより白色光の大部分を透過させ、励起光を反射させている。
一方、上述した狭帯域光観察では、生体組織の内の組織表層の微細血管や微細構造を観察し易くするために、生体組織に照射する狭帯域光として、主として生体組織の中層及び深層組織の観察に適した赤色(R)の狭帯域光を用いずに、表層組織の観察に適した青色(B)の狭帯域光と中層組織及び表層組織の観察に適した緑色(G)の狭帯域光と2種類の狭帯域光のみを用い、B狭帯域光の照射によって撮像センサで得られる、主として表層組織の情報を含むB画像信号(B狭帯域データ)とG狭帯域光の照射によって撮像センサで得られる、主として中層組織及び表層組織の情報を含むG画像信号(G狭帯域データ)のみを用い、G画像信号(G狭帯域データ)をカラー画像のR画像データに割り付け、B画像信号をカラー画像のG画像データ及びB画像データに割り付け、3ch(チャンネル)のカラー画像データからなる疑似カラー画像を生成し、モニタ等に表示している(特許文献3参照)。
特許文献3に開示の技術では、狭帯域光観察に用いられるB狭帯域光とG狭帯域光との2種類の狭帯域光は、通常光観察に用いられる白色光源からの光をカラーフィルタによって時分割で切り替えることにより、面順次に発光されている。なお、通常光観察においても、白色光源からの光をカラーフィルタによって時分割で切り替えてRGB光を面順次に発光させている。
特開2005−342033号公報 特開2005−342034号公報 特許第4009626号公報
ところで、特許文献1及び2に開示の内視鏡用光源装置では、特殊光観察として自家蛍光による蛍光観察を行うので、励起光として紫外域側の短波長の光を用いているため、白色光と励起光とをダイクロイックミラーで合波しても、白色光の可視波長領域の中の特定波長域の光成分が抜けることはない。しかしながら、特許文献1及び2に開示の技術を、可視波長領域内の狭帯域光を用いる特殊光観察を行うための内視鏡用光源装置に適用した場合、白色光と狭帯域光とをダイクロイックミラーで合波するため、狭帯域光の光源が点灯していない場合には、この内視鏡用光源装置から出射する白色光から狭帯域光の波長帯域の光が抜けてしまうという問題が生じる。
すなわち、このような内視鏡用光源装置では、通常観察を行う場合、白色光における狭帯域光の波長帯域(特定波長域)の光量が大幅に低減してしまう。そのため、このような内視鏡用光源装置を用いた内視鏡によって通常観察を行うと、通常よりも得られる被写体や被検体の画像の精度が大幅に低下し、さらに画像全体が暗くなり、病変部等を見落とす誤診等を引き起こす恐れがあるという問題がある。
ところで、特許文献3に開示の技術では、特殊光観察に用いられる狭帯域光は、通常観察時に出射させる白色光(RGB)光に比べて狭帯域であるため、狭帯域光源の出射光量は、白色光源の出射光量に比して低下し、通常観察時に比較してモニタに表示される画像全体が暗くなるという問題がある。
このため、以上のような特殊光観察において、モニタ表示画像を明るくし、光量不足を補うために、狭帯域光源自体の出力を上げ、狭帯域光の出射光量を上げると、内視鏡先端部で発熱が増加し、観察対象の生体に不要な熱負荷をかけることになり、生体への損傷等の影響を与えるばかりか、内視鏡自体、したがって、内視鏡装置にも不要な熱負荷による劣化を招くこととなり、内視鏡装置の耐用年数を大幅に減少させてしまうという問題があった。
一方、特許文献3に開示の内視鏡装置に特許文献1及び2に開示される技術を適用することにより、狭帯域光観察時の光源光量の低下は、ある程度解消することができるが、上述したように通常観察時に重大な問題が生じるため、特許文献3に開示の内視鏡装置に特許文献1及び2に開示される技術を適用することができなかった。
そこで、本発明の目的は、通常観察の際にも、白色照明光の特定波長域の光量を低減させることなく、特殊光観察の際にも、表示画像を明るくするために狭帯域光の出射光量を不必要に上げ、内視鏡装置、特にその先端部に不要な熱負荷をかけて、観察対象の生体に不要な熱負荷をかけ、生体への損傷等の影響を与えることなく、また、不要な熱負荷による先端部の劣化を招くことなく、特殊光観察及び通常観察の両方の観察において、高精度な画像を得ることができ、かつ画像全体を明るくすることができ、これにより、高度な診断を可能にする内視鏡用光源装置を提供することにある。
上記課題を解決するために、本発明は、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を前記白色照明光の進行方向と直交する方向に出射する第2の光源部と、該第2の光源部から出射された前記狭帯域光の光束の形状及びサイズの少なくとも一方を変化させる整形レンズと、前記白色照明光と前記狭帯域光とが交差する位置に前記白色照明光の進行方向及び前記狭帯域光の進行方向に対して45°傾斜させて配置され、中心部分に少なくとも前記狭帯域光を反射する略楕円形の反射部及び該反射部の周辺部分に前記白色照明光を透過する透過部を備え、前記白色照明光と前記狭帯域光とを合波する合波部材と、内視鏡のライトガイドの入射端面に入射させるために、前記合波部材によって合波された合波光を前記ライトガイドの入射端面に対して集光する集光レンズと、を有し、前記合波部材は、前記白色照明光を前記透過部により透過し、前記整形レンズで整形された前記狭帯域光を、その進行方向が前記白色照明光の進行方向と一致するように前記略楕円形の反射部により反射させて、前記狭帯域光の光束が前記白色照明光の光束の中央部分に位置するように前記白色照明光と前記狭帯域光とを合波し、前記整形レンズは、傾斜配置された前記合波部材に入射する前記狭帯域光の光束の形状及びサイズが、前記合波部材の略楕円形の前記反射部の形状及びサイズと略等しくなるように、前記狭帯域光の光束を所定の円形に整形し、前記集光レンズは、前記合波光を、その光束のサイズが前記ライトガイドの入射端面のサイズと略一致するように、かつ前記合波光の内の前記狭帯域光の光束が前記ライトガイドの入射端面の中心部分に入射するように、集光することを特徴とする内視鏡用光源装置を提供する。
また、前記整形レンズで整形された前記狭帯域光の前記所定の略円形状の光束の直径は、前記白色照明光の光束の中心に存在する、その光量分布の低下部分の直径と略同一であることが好ましい。
さらに、前記集光レンズで集光された前記合波光が入射される入射端面、該入射端面から入射された前記合波光を内部で多重反射して面内の光量分布を均一化する本体及び均一化された光量分布を持つ合波光を出射する出射端面を備え、前記本体の内部の多重反射により前記出射端面における光量分布が均一化された合波光を、前記出射端面から出射して内視鏡装置のライトガイドへ入射させるロッドインテグレータを有し、該ロッドインテグレータのサイズは、前記ライトガイドのサイズと略等しく、前記集光レンズは、前記合波光を、そのサイズが前記ロッドインテグレータの入射端面のサイズと略一致するように、かつ前記合波光の内の前記狭帯域光の光束が前記ロッドインテグレータの入射端面の中心部分に入射するように、集光することが好ましい。
また、前記合波部材の略楕円形の前記反射部の長径は、前記透過部を透過する前記白色照明光によって形成される略楕円形の透過面の長径の10%〜50%であることが好ましく、前記合波部材の略楕円形の前記反射部の短径は、前記透過部を透過する前記白色照明光の直径の10%〜50%であることが好ましい。
また、前記合波部材の前記反射部のサイズは、前記合波部材の前記合波光の全出射面のサイズの1%〜25%であることが好ましい、
前記第1の光源は、放電管であることが好ましく、前記第1の光源は、キセノンランプを含むことが好ましい。
前記第2の光源は、半導体光源であることが好ましく、前記第2の光源は、青色レーザ光源、青紫色レーザ光源、又は青色LEDのいずれかを含むことが好ましい。
また、前記合波部材の反射部が、反射ミラーであることが好ましく、前記合波部材の反射部が、ダイクロイックミラーであることが好ましい。
また、本発明は、白色照明光を出射する第1の光源部と、前記白色照明光より狭い波長帯域の狭帯域光を前記白色照明光の進行方向と直交する方向に出射する第2の光源部と、該第2の光源部から出射された前記狭帯域光の光束の形状及びサイズの少なくとも一方を変化させる整形レンズと、前記白色照明光と前記狭帯域光とが交差する位置に前記白色照明光の進行方向及び前記狭帯域光の進行方向に対して30°〜60°傾斜させて配置され、中心部分に少なくとも前記狭帯域光を反射する略楕円形の反射部及び該反射部の周辺部分に前記白色照明光を透過する透過部を備え、前記白色照明光と前記狭帯域光とを合波する合波部材と、内視鏡のライトガイドの入射端面に入射させるために、前記合波部材によって合波された合波光を前記ライトガイドの入射端面に対して集光する集光レンズと、を有し、前記合波部材は、前記白色照明光を前記透過部により透過し、前記整形レンズで整形された前記狭帯域光を、その進行方向が前記白色照明光の進行方向と一致するように前記略楕円形の反射部により反射させて、前記狭帯域光の光束が前記白色照明光の光束の中央部分に位置するように前記白色照明光と前記狭帯域光とを合波し、前記整形レンズは、傾斜配置された前記合波部材に入射する前記狭帯域光の光束の形状及びサイズが、前記合波部材の略楕円形の前記反射部の形状及びサイズと略等しくなるように、前記狭帯域光の光束を所定の円形に整形し、前記集光レンズは、前記合波光を、その光束のサイズが前記ライトガイドの入射端面のサイズと略一致するように、かつ前記合波光の内の前記狭帯域光の光束が前記ライトガイドの入射端面の中心部分に入射するように、集光することを特徴とする内視鏡用光源装置を提供する。
また、本発明は、内視鏡と、前述のいずれかの内視鏡用光源装置と、を有することを特徴とする内視鏡システムを提供する。
前述の内視鏡システムは、前記内視鏡先端部からの前記狭帯域光の照射範囲の直径が、前記白色照明光の照射範囲の直径の約半分であることが好ましい。
本発明によれば、内視鏡用光源装置において、白色照明光と励起光との合波の際に白色照明光の特定波長域の大幅な光量の低減を防ぐとともに、特殊光観察時の狭帯域光の配光を狭くすることで、狭帯域光の照射を所定の範囲の観察視野に絞ることで十分な光量を確保するので、通常観察の際にも、白色照明光の特定波長域の光量を低減させることがないし、特殊光観察の際にも、表示画像を明るくするために狭帯域光の出射光量を不必要に上げて、内視鏡装置、特にその先端部に不要な熱負荷をかけて、観察対象の生体に不要な熱負荷をかけ、生体への損傷等の影響を与えることがないし、また、不要な熱負荷による先端部の劣化を招くことがないし、その結果、特殊光観察及び通常観察の両方の観察において、白色光や狭帯域光が照射される観察視野範囲内での画像の精度が低下したり、観察画像全体が暗くなるということが無く、観察視野範囲内で、高度な診断を可能にする高精度な画像を得ることができる。
本発明の実施形態の内視鏡用光源装置を用いる内視鏡システムの全体構成の一実施例を模式的に示すブロック図である。 図1に示す内視鏡用光源装置の一実施例の詳細構成を示す正面模式図である。 図2に示す内視鏡用光源装置の回転フィルタの一実施例の構成を示す正面図である。 (a)及び(b)は、それぞれ図3に示す回転フィルタの第1のフィルタ組及び第2のフィルタ組の分光特性の一例を示すグラフである。 (a)及び(b)は、それぞれ図2に示す内視鏡用光源装置に用いる合波部材の一実施例の側面図及び正面図である。 本発明を説明するために用いる合波部材の正面図である。 図2に示す内視鏡用光源装置の特殊光光源から合波部材までの狭帯域光の光路を模式的に示す説明図である。 本発明に用いられる狭帯域光のガウス分布を示すグラフである。 図1に示す内視鏡システムの内視鏡の視野角と特殊光の照射範囲の一例を模式的に示す説明図である。 本発明の内視鏡システムで撮像した画像における白色光及び特殊光の照射範囲の一例を模式的に示す説明図である。
以下、本発明に係る内視鏡用光源装置を、添付の図面に示す好適実施形態を参照して詳細に説明する。
図1は、本発明の内視鏡用光源装置を有する内視鏡システムの全体構成の一実施例を模式的に示すブロック図である。
同図に示すように、本実施形態の内視鏡システム10は、内視鏡12と、本発明の内視鏡用光源装置14と、プロセッサ16と、入出力部18とを有する。
ここで、内視鏡用光源装置(以下、単に光源装置ともいう)14及びプロセッサ16は、内視鏡12の制御装置を構成し、内視鏡12は、光源装置14と光学的に接続され、プロセッサ16と電気的に接続される。また、プロセッサ16は、入出力部18及び光源装置14と電気的に接続される。そして、入出力部18は、画像情報等を出力表示する表示部(モニタ)20、画像情報等を出力する記録部(図示せず)、及び通常観察モード(通常光モードともいう)や特殊光観察モード(特殊光モードともいう)などのモード設定や機能設定等の入力操作を受け付けるUI(ユーザインタフェース)として機能する入力部22を有する。
内視鏡12は、その先端から照明光を出射するための光ファイバ32を含む照明光学系と、被観察領域を撮像する撮像素子(センサ)26及びスコープケーブル34を含む撮像光学系とを有する電子内視鏡である。なお、図示しないが、内視鏡12は、被検体内に挿入される内視鏡挿入部と、内視鏡挿入部の先端の湾曲操作や観察のための操作を行う操作部と、内視鏡12を制御装置の光源装置14及びプロセッサ16に着脱自在に接続するコネクタ部を備える。さらに、図示はしないが、操作部及び内視鏡挿入部の内部には、組織採取用処置具等を挿入する鉗子チャンネルや、送気・送水用のチャンネル等、各種のチャンネルが設けられる。
内視鏡12の先端部分には、図1に示すように、被観察領域へ光を照射する照射口24Aが設けられ、この照射口24Aに隣接する受光部24Bに被観察領域の画像情報を取得するモノクロのCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の撮像素子(センサ)26が配置されている。内視鏡12の照射口24Aには、照明光学系を構成するカバーガラスやレンズ(図示せず)が配置され、受光部24Bの撮像素子26の受光面には撮像光学系を構成する対物レンズユニット(図示せず)が配置される。
内視鏡挿入部は、操作部の操作により湾曲自在にされ、内視鏡12が使用される被検体の部位等に応じて、任意の方向及び任意の角度に湾曲でき、照射口24A及び受光部24Bを、すなわち撮像素子26の観察方向を、所望の観察部位に向けることができる。
内視鏡12において、光源装置14から照射された光は、ライトガイド(光ファイバ32)を通って内視鏡の先端部まで伝播され、照射口24Aから所望の観察部位に向けて照射される。
ライトガイド32は、マルチモードファイバであり、一例として、NA(開口数)0.3〜0.6、直径30μmのものを1000〜2000本束ねて用いるものである。
そして、照明光が照射された被観察部位(被写体)からの戻り光が、受光部24Bを介して撮像素子26の受光面上に結像され、撮像素子26によって被観察部位が撮像される。
撮像後に撮像素子26から出力される撮像画像の画像信号は、スコープケーブル34を通じてプロセッサ16の画像処理システム36に入力される。
次に、図1及び図2を参照して、本発明の光源装置14を説明する。
なお、図2は、本発明の光源装置の構成の一実施例を模式的に示す正面模式図である。
本発明の光源装置14は、図2に示すように、第1の光源部28と、第2の光源部30と、合波部材42と、回転フィルタ47と、集光レンズ52と、ロッドインテグレータ56とで構成される。
第1の光源部28及び第2の光源部30からの発光は、プロセッサ16の光源制御部(図示省略)により個別に制御されており、第1の光源部28からの出射光と、第2の光源部30からの出射光の光量比は変更自在になっている。
これら各光源28、30からの出射光は、光源装置14内で合波され、ライトガイド(光ファイバ)32に入力される。
第1の光源部28は、通常光モード及び特殊光モードの両方に用いられる白色照明光(以下、単に白色光ともいう)を出射するキセノン光源(第1の光源)38と、キセノン光源38から出射した白色光をほぼ平行光束にする収斂光学系であるリフレクタ(放物面鏡)40とで構成される。
なお、本実施形態においては、白色光を出射する白色照明用光源としてキセノン光源を用いているが、本発明においては、白色光を出射する光源であれば特に限定はなく、キセノン光源の他、例えば、水銀ランプ、メタルハライドランプ等の放電型の高輝度ランプ光源等の放電管を用いることができる。なお、キセノン光源としては、パーキンエルマージャパン社製の300Wのキセノンランプが好ましく用いられる。
また、リフレクタ40は、キセノン光源38から放射される白色発光光を平行光束にして出射するためのもので、図示例では、キセノン光源38の電極間に発生するアーク(白色発光光)が焦点近傍に来るように配置された放物面ミラーからなるリフレクタを用いている。なお、リフレクタ40についても、キセノン光源38から放射される白色発光光を平行光束にできるものであれば、特に限定は無く、公知のものを用いればよい。
他方、第2の光源部30は、特殊光モードに用いられる光源部であり、狭帯域光を出射するためのレーザ光源やLED光源であって、例えば、青色レーザ光を出射する青色レーザ光源(445LD)、青紫色レーザ光を出射する青紫色レーザ光源(405LD)等の青色系統のレーザ光を出射する半導体レーザ光源又は青色LED光を出射する青色LED等を用いる特殊光光源48と、特殊光光源48から出射された半導体レーザ光(レーザ光)やLED光(以下、単に狭帯域光という)の光束を平行光束にすると共に、詳細は後述するが、狭帯域光の光束がその進行方向に対して45°傾斜させて配置された合波部材42に入射する形状及びサイズ(大きさ)、すなわち略楕円形のサイズが、合波部材42の反射部材44の反射面の形状及びサイズ、すなわち略楕円形のサイズと略等しくなるように、狭帯域光の光束を所定の円形状又は略円形状に整形するコリメータレンズ50と、を有する。
なお、特殊光光源48は、本発明においては、白色光より狭い波長帯域の狭帯域光を出射する光源であれば、特に限定はないが、青紫色レーザ光源(405LD、445)又は青色LED等の青色系統の半導体レーザ光源又はLED光源等以外のレーザ光源やLED光源等の半導体光源を用いてもよいが、表層組織を観察する場合には、青色系統のレーザ光源やLED光源等の半導体光源を用いるのが好ましい。
青色レーザ光源及び青紫色レーザ光源は、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオードを用いることもできる。
第2の光源部30は、特殊光光源48から出射され、コリメータレンズ50で所定の略円形状に整形された狭帯域光の光路が、第1の光源部28のキセノン光源38から出射された白色光の光路と直交し、狭帯域光が白色光に対して直交する方向から合波部材42に入射するように、白色光の光路の外側側方に配置される。
また、コリメータレンズ50は、特殊光光源48から出射された狭帯域光の光束がその進行方向に対して45°傾斜させて配置された合波部材42上に入射する際の光束の形状、例えば略楕円形及びサイズが、後述するが、合波部材42の反射部材44の反射面の形状、例えば略楕円形及びサイズ(図5(b)参照)と略等しくなるように、狭帯域光の光束を所定の円形状又は略円形状に整形するものであり、狭帯域光の入射光束の略楕円形の長軸方向のサイズ(長径)を反射部材44の反射面の略楕円形の長軸方向のサイズ(長径)に整形するための短軸方向のみにパワー(倍率)を持つシリンドリカルレンズ及び狭帯域光の入射光束の略楕円形の短軸方向のサイズ(短径)を反射部材44の反射面の略楕円形の短軸方向のサイズ(短径)に整形するための長軸方向のみにパワー(倍率)を持つシリンドリカルレンズの2枚のシリンドリカルレンズを組み合わせたものや、このような2枚のシリンドリカルレンズの機能を合わせ持つ組レンズなどを用いることができる。
なお、本発明においては、コリメータレンズ50としては、上述のような、特殊光光源48から出射した狭帯域光の光束の形状及びサイズを、傾斜配置された合波部材42上で、その反射部材44の反射面の形状及びサイズと等しくなるように整形するものに限定されず、狭帯域光の光束を平行光束にすると共に、狭帯域光の全光束を合波部材42の反射部材44の反射面で反射するように所定の略円形状に整形することができるものであれば、特に限定はない。
また、本発明おいては、特殊光光源48から出射された狭帯域光の光束の形状を変化させて、所定の略円形状に整形するコリメータレンズ50を用いているが、本発明はこれに限定されず、特殊光光源48が、合波部材42の反射部材44の反射面に対応する略円形状に相似な略円形状な光束の狭帯域光を出射するものである場合には、特殊光光源48から出射された狭帯域光の形状を変化させずに、狭帯域光の略円形状の光束を合波部材42の反射部材44の反射面に対応するサイズにすると共に、平行光束に整形するコリメータレンズを用いてもよい。
合波部材42は、本発明の特徴部分であり、キセノン光源38から出射される白色光と特殊光源48から出射される狭帯域光とが交差する位置に白色光及び狭帯域光の両進行方向に対して45°傾斜させて配置されるもので、通常光モードの際には、白色光を透過させ、特殊光モードの際には、白色光を透過させると共に狭帯域光を反射させることにより白色光と狭帯域光とを合波するものである。図示例では、合波部材42は、第1の光源部28の下流側の白色光の光路に略45°傾斜させて配置されると共に、第2の光源部30から出射される狭帯域光の光路に対しても略45°傾斜させて配置される。本明細書では、白色光の光路に沿って第1の光源部28の側を上流側、内視鏡12の光ファイバ32の側を下流側という。なお、合波部材42の詳細については、後に詳述する。
合波部材42の下流側には、回転フィルタ47が配置される。
ここで、図3は、図2に示す内視鏡用光源装置の回転フィルタの一実施例の構成を示す正面図であり、図4(a)は、図3に示す回転フィルタの第1のフィルタ組の分光特性の一例を示すグラフであり、他方、図4(b)は、図3に示す回転フィルタの第2のフィルタ組の分光特性の一例を示すグラフである。
回転フィルタ47は、通常モードでは、キセノン光源38から出射され、合波部材42を透過した白色光を赤色(R)成分、緑色(G)成分及び青色(B)成分に分離するとともに、特殊光モードでは、キセノン光源38から出射された白色光と特殊光光源48から出射された狭帯域光との合波部材42による合波光を、G成分の波長域に含まれ、これより狭い波長域のG狭帯域成分、及びB成分の波長域に含まれ、これより狭い波長域のB狭帯域成分に分離するものである。
回転フィルタ47は、図3に示すように、円盤状に構成され中心を回転軸とした2重構造となっている。この2重構造の外側の径部分には、図4(a)に示すような色再現に適したオーバーラップした分光特性の面順次光を出力するための第1のフィルタ組を構成するR1フィルタ部47r1、G1フィルタ部47g1、B1フィルタ部47b1が配置される。図4(a)に示すように、回転フィルタ47のR1フィルタ部47r1はR成分を分離し、G1フィルタ部47g1はG成分を分離し、B1フィルタ部47b1はB成分を分離する。他方、回転フィルタ47の2重構造の内側の径部分には、図4(b)に示すような所望の層組織情報が抽出可能な離散的な分光特性の2バンドの狭帯域な面順次光を出力するための第2のフィルタ組を構成するG2フィルタ部47g2、B2フィルタ部47b2、遮光フィルタ部47Cutが配置されている。図4(b)に示すように、回転フィルタ47のG2フィルタ部47g2はG狭帯域成分を分離し、B2フィルタ部47b2はB狭帯域成分を分離する。
回転フィルタ47は、図示しない制御回路により回転フィルタモータ51の駆動制御がなされ回転する。さらに、径方向の移動が後述する通常光モードと特殊光モードとの切り替えの際に、入力部32又はプロセッサ16からの制御信号によりモード切替モータ(図示せず)によって行われる。
集光レンズ52は、回転フィルタ47の下流側に配置され、合波部材42を透過した白色光又は合波部材42で合波された白色光と狭帯域光との合波光から、回転フィルタ47で分離された白色光又は合波光の各色成分(以下、面順次光ともいう)を、ライトガイドとなる光ファイバ32の入射端面に入射させるために、集光するものであり、そのために、後述するが、光ファイバ32の上流側に配置され、光ファイバ32のサイズと略等しいロッドインテグレータ56の一端に集光するものである。
したがって、集光レンズ52は、白色光又は合波光の各色成分の光束がロッドインテグレータ56の入射端面全体に入射するように、すなわち、面順次光の光束サイズが、ロッドインテグレータ56の入射端面のサイズ、したがって光ファイバ32の入射端面のサイズと略等しくなるように集光する。なお、合波光の内の狭帯域光の色成分(面順次光)も、同様に集光レンズ52によって集光されるが、合波光の内の狭帯域光の色成分の光束のサイズは、光ファイバ32及びロッドインテグレータ56の入射端面のサイズに対して、白色光の光束のサイズに対するコリメータレンズ50で整形された狭帯域光の光束のサイズの比率と同じ比率となるサイズである。したがって、集光レンズ52は、合波光の内の狭帯域光の色成分(面順次光)を、光ファイバ32及びロッドインテグレータ56の入射端面の中心部分に入射させるように集光する。なお、集光レンズ52としては、集光光学系で用いられる公知の集光レンズを用いればよい。
ロッドインテグレータ56は、集光レンズ52の下流側に配置され、合波部材42で合波され、回転フィルタ47で分離され、集光レンズ52で集光された各面順次光(白色光及び合波光の各色成分)を、面内光量分布を均一化した上で、内視鏡12の光ファイバ32の入射端面に入射させるためのものである。すなわち、ロッドインテグレータ56は、集光レンズ52で集光された面順次光が入射される入射端面56aと、入射端面56aから入射された面順次光を内部で多重反射して面内の光量分布を均一化する本体56bと、均一化された光量分布を持つ合波光を出射する出射端面56cとを備え、入射端面56aから入射され、本体56bの内部の多重反射により出射端面56cにおける光量分布が均一化された面順次光を出射端面56cから出射させ、出射された各面順次光の全光束を余すところなく、内視鏡12の光ファイバ32の入射端面に入射させる。
ここで、ロッドインテグレータ56のサイズ(直径)は、内視鏡12の光ファイバ32のサイズ(直径)と略等しく、ロッドインテグレータ56の出射端面56cのサイズは、光ファイバ32の入射端面のサイズと略等しい。
なお、ロッドインテグレータ56は、その入射端面56aに入射した光を、本体56bの内部で多重反射(全反射)を繰り返させることにより、出射端面56cを出射する光の出射端面内の光量分布を均一にするものであり、入射端面56aに入射した光の光線角度が保存され、入射光の各光線は、自身の入射端面56aへの入射角度と同じ出射角度で出射端面56cから出射するものである。
特に、本発明において、特殊光モード時に、合波部材42で合波され、回転フィルタ47で分離され、集光レンズ52で集光された各面順次光(合波光の各色成分)がロッドインテグレータ56に入射する際には、合波光のうちの狭帯域光の各面順次光は、後に述べる合波部材42の反射部材44においては、白色光の各面順次光よりも細く、白色光の各面順次光より小さいNAで入射し、入射した各面順次光を出射端面56cから出射する際にも、各面順次光の、出射端面56c内の光量分布を均一にした上で、同じNAで出射する。よって、狭帯域光の配光を狭くすることができるため、内視鏡先端での発熱や狭帯域光の光量を低減することができる。
なお、本発明においては、ロッドインテグレータ56には、特に限定はなく、内視鏡装置の照明光学系に一般的に用いられている公知のロッドインテグレータを用いればよい。
ここで、図5を用いて、本発明の光源装置の特徴部分である合波部材の一実施形態について詳述する。
なお、図5(a)は、合波部材の側面図、図5(b)は、その正面図を示し、図5(a)の図面向かって左側の面が入射面(白色光の透過面)であり、他方、図5(a)の図面向かって右側及び図5(b)の正面が出射面(狭帯域光の反射面)である。
合波部材42は、図2に示すように、白色光と狭帯域光とが交差する位置に、白色光の進行方向及び狭帯域光の進行方向の両方向に対して45°傾斜させて配置されるもので、本実施形態においては、図5に示すように、円盤状の透過部材46と、透過部材46の片側中央部に設けられる反射部材44とで構成される。すなわち、合波部材42は、白色光を透過部材46により透過し、コリメータレンズ50で所定の略円形状に整形された狭帯域光を、その進行方向が白色光の進行方向と略一致し、狭帯域光の光束が白色光の光束の中央部分に位置するように、反射部材44により反射させて、白色光と狭帯域光とを合波する。
透過部材46は、第1の光源部28から出射される白色光を透過する部材であり、白色光を透過することができればどのような部材を用いてもよい。
なお、本実施形態においては、キセノン光源38から出射される白色光の平行光束の太さに等しい短径を有し、その√2倍の長径を有する略楕円形の透過部材52を用いているが、白色光の光束を透過することができれば、どのような大きさの透過部材を用いてもよく、また、その形状も、正方形や長方形等のどのような形状の透過部材を用いてもよい。
例えば、キセノン光源38から出射される白色光の平行光束の太さの直径(2r)が、約25.4mmであれば、短径25.4mm(2r)、長径35.9mm(2(√2)r)の略楕円形状の透過部材を用いても良いし、これ以上の大きさの任意の形状の透過部材を用いてもよく、例えば、直径35.9mm以上の円形状の透過部材を用いてもよい。
また、本発明においては、透過部材52の入射面及び/又は出射面に、反射防止膜を設けるのが好ましい。反射防止膜としては、特に限定は無いが、公知の反射防止膜を用いることができる。このような反射防止膜を設けることにより、透明部材52の入射面及び/又は出射面で白色光が不要に反射することを防止し、白色光の透過効率を向上させることができる。このような反射防止膜によって、例えば、片面に付き、5%程度の表面反射を無くすことができる。
他方、反射部材44は、透過部材46の出射面の中央部分を覆うように設けられ、第2の光源部30の特殊光光源48から出射され、コリメータレンズ50で略円形状に整形された狭帯域光を、白色光の光路の下流側に向けて反射する略楕円形の光反射部材である。
ここで、反射部材44の形状及びサイズは、コリメータレンズ56によって略円形状に整形された狭帯域光の光束が、45°傾斜させて配置された合波部材42に入射する領域(反射領域)の形状及びサイズに略一致するのが好ましい。なお、本発明では、反射部材44の形状及びサイズは、狭帯域光の全光束を反射できるように、狭帯域光の光束が合波部材42に入射する反射領域の形状及びサイズに一致するのが最も好ましいが、厳密に一致していなくてもよく、略一致していれば良い。したがって、反射部材44の形状及びサイズは、狭帯域光の全光束を反射できるような形状及びサイズであるのが好ましい。
なお、反射部材44は、本発明において、第2の光源部30から出射された狭帯域光所定の略円形状の光束を反射して、主に第1の光源部28から出射された白色平行光の中央部分に、特にその光量低下部分に合波できるものであれば、特に限定的では無く、どのようなものを用いてもよく、上流側から合波部材42に入射する白色光を反射したり吸収したりすることにより、下流側に透過させず、狭帯域光を下流側に反射するものであっても良いし、白色光の一部の波長領域の成分、すなわち狭帯域光の波長領域を除く波長領域の成分を透過させることができるダイクロイックミラーを用いても良い。反射部材44として、ダイクロイックミラー用いることにより、反射部材44においても、反射する狭帯域光の波長領域を除く波長領域の白色光の成分を多少なりとも透過させることができるので、白色光を有効に利用することができ、合波光の光量をより向上させることができる。
ここで、本発明の発明者は、上述のように、特許文献1及び2の技術を可視領域の狭帯域光を用いる特殊光観察に適用する場合、狭帯域光光源が点灯していない通常光モードにおいて、内視鏡用光源装置から出射するキセノン光源からの白色光における特定波長域の光量が大幅に低減するのを極力さけるために、鋭意検討した結果、次のような形状の反射部材44を導きだした。
本発明の発明者は、例えば、白色光と狭帯域光とを合波するために、図6に示すような、自身の出射面に対して半分の面積を占める半円状の反射部材144と同様の面積を有する透過部材146とで成る合波部材142を用いた実験を行った。
この場合、上述の特許文献1及び2のように、白色光の光路全面を覆う大きさのダイクロイックミラーを用いた場合と比較すると、通常光モードにおける白色光における特定波長域の光量の低減を抑制することができた。
しかしながら、このような合波部材を用いた場合には、通常光モード及び特殊光モードのいずれの場合でも、キセノン光源からの白色光の特定波長域成分の光量の半分が失われてしまうため、内視鏡観察において得られる画像が暗くなり高度な診察ができないという問題があったのは上述したとおりである。
そこで、本発明の発明者は、通常光モード及び特殊光モードのいずれの場合でも白色光における特定波長域の光量の大幅な低減を極限まで抑制して白色光と狭帯域光とを合波するために、鋭意検討した結果、白色光光源として用いられる一般的なキセノン光源等の放電管には、リフレクタ40の中央部分にはアノード及びカソードからなる電極が存在し、アノードが通っている約直径4.0mmの孔も開いているため、キセノン光源等の放電管から出射される白色平行光の光束の中央部分には前述の孔と略同径の平行光のない部分が存在し、この白色平行光が存在しない中央部分の略円形形状及びサイズに対応するように、45°傾斜した合波部材42の反射部材44を略楕円形として、対応するサイズで合波部材42の出射面(透過面+反射面)の中央に載置すれば良いことを知見した。
すなわち、本発明においては、合波部材42の略楕円形の反射部材44の反射面の長径は、透過部材46を透過する白色光によって形成される略楕円形の透過面の長径の10%〜50%であるのが好ましい。
また、合波部材42の略楕円形の反射部材44の反射面のサイズは、合波部材42の合波光の全出射面(透過部材46の白色光の透過面+反射部材44の狭帯域光の反射面)のサイズの1%〜25%であるのが好ましい。
本実施形態において、例えば、第1の光源部28に前述のパーキンエルマージャパン社製の300Wのキセノンランプを用いる場合、その照射窓の大きさから照射される平行光束は、直径25.4mmとなる。また、この300Wキセノンランプの中心には、アノード及びカソードからなる電極が存在し、また、リフレクタ40の中央部分には、アノードの通る約直径4.0mmの孔も開いているため、この中央部分から白色光を出射できない。したがって、キセノンランプから出射される白色光の光束の中央部分には、白色光の光束が存在しない領域、例えば、約直径4.0mmのキセノンランプの光の無い部分ができる。
この白色光の光束の中心における約直径4.0mmの白色光の無い部分に対して、第2の光源からの狭帯域光を合波すれば、白色光を低減させることなく、さらには、互いに損失させること無く、白色光と狭帯域光とを合波することができる。
この場合においては、反射部材44は、この白色光の存在しない部分に対応するように、長径約5.7mm、短径約4.0mmの楕円形状とすることができる。
このように、本発明においては、白色光と狭帯域光との合波光において、狭帯域光の光束を白色光の光束の中央部分に配置するので、内視鏡12の先端部分から合波光(面順次光)を被写体(生体)に向けて照射する際に、内視鏡12の撮像画像の観察視野の内の重要な中央部分にのみに、特殊光観察に必要な狭帯域光(面順次光)を照射することができるので、特殊光観察に必要な狭帯域光の光量を低減することができ、内視鏡12の先端部分に過大な熱負荷をかけたり、その結果、劣化を早めたりすることを無くすことができる。
さらに、本発明の発明者は、上記のような条件を満たす反射部材44の形状及びサイズ(大きさ)、さらにはこのような反射部材44の形状及びサイズ(大きさ)に応じて、狭帯域光の光束を整形するコリメータレンズ50を構成する2組のシリンドリカルレンズの焦点距離を具体的に導き出した。以下に、図7及び図8を用いて説明する。
ここでは、例えば、図7に示すように、狭帯域光源として半導体レーザからなる特殊光光源48を用いるとする。
この場合に、半導体レーザからなる特殊光光源48から出射される狭帯域光は、半導体レーザの活性層に平行な方向に対して約20°の広がり角を有し、半導体レーザの活性層に垂直な方向に対して約10°の広がり角を有するものとし、狭帯域光の広がり角が広い側を合波部材42の反射部材44の略楕円形状の長軸側(長径方向)、すなわち、特殊光光源48から合波部材42までの狭帯域光の光路に対して図7の上下方向(紙面に平行な方向)とし、狭帯域光の広がり角が狭い側を合波部材42の反射部材44の略楕円形状の短軸側(短径方向)、すなわち、特殊光光源48から合波部材42までの狭帯域光の光路に対して図7の紙面に垂直な方向とする。
また、狭帯域光をガウス分布で表した際のガウスビームの相対放射強度が等高線半径の中心で100%である時の50%である等高線半径間に含まれる分布、したがって、50%以上のガウスビーム、すなわち、図8の斜線で表す部分の光のみを用いるとする。
さらに、キセノン光源38から出射される白色光の平行光束の太さの直径は、前述と同様、パーキンエルマージャパン社製の300Wのキセノンランプを用いると、25.4mmとなり、また、白色光の光束の中心の光の無い部分の直径は、4.0mmとなる。
その結果、合波部材42は45°傾斜させて配置されるため、透過部材46は、略楕円形状であり、透過部材46の出射面(透過面)の短径は、白色光の平行光束の直径と等しい25.4mmとされ、長径は35.9mm(25.4×√2)とされる。
一方、反射部材44の形状は、白色光の光束の中心の光の無い部分に対応するように、短径は、4.0mmとされ、長径は、5.7mm(4.0×√2)とされる。したがって、特殊光光源48から出射される狭帯域光の光束を、コリメータレンズ50によって、直径4.0mmの平行光束に整形すればよいことが分かる。
上記のような条件で、反射部材を設計した場合、第2の光源部30からの狭帯域平行光の光束が合波部材42上に形成する反射領域の形状が、反射部材44の形状と同一になるように、つまり短径4.0mm、長径5.7mmの楕円形となるように、狭帯域光を直径4.0mmの円形状に整形するコリメータレンズ50が設計される。
次に、このような合波部材42を用いた場合の特殊光光源48の発光点とコリメータレンズ50の焦点距離との関係について説明する。
図7において、特殊光光源48から出射され、合波部材42の反射部材44に入射する狭帯域光の光束の、反射部材44上における形状及びサイズが、反射部材44の反射面の形状及びサイズと一致するように、コリメータレンズ50において狭帯域光の光束を円形に整形するものとする。
ここで、図7において、コリメータレンズ50は、図7の紙面に平行な方向にパワーを持ち、この方向に関して結像するものとし、θは、特殊光光源48からのレーザ光等の狭帯域光の広がり角の半値角であり、fは、コリメータレンズ50の焦点距離であり、hは、コリメータレンズ50で整形された狭帯域光の光束の結像高さであるとすると、狭帯域光の広がり角の方向に関係なく、下記式(1)に示す結像公式が成り立つ。
h=f・sinθ…(1)
また、図7において、L1は、合波部材42の反射部材44の長さ(略楕円形状の長径)である。L2は、図示されないが、図7の紙面に垂直な方向における反射部材44の幅(略楕円形状の短径)であるとすると、下記式が成り立つ。ここで、L2はコリメータレンズ50で整形された狭帯域光の平行光束の直径であるということができる。
h=(L1/2)・sin45°…(2)
h=L2/2 …(3)
上述のとおり、図7の紙面に平行な方向においては、狭帯域光の広がり角が広い側の約20°であることから、θ=10°であり、L1=5.7mmであることから、この方向の焦点距離をfとすると、以下のようになる。
・sin10°=(5.7/2)×sin45°
≒12(mm)
こうして、狭帯域光の光束を直径4.0mmの円形状にするためのコリメータレンズ50には、狭帯域光の広がり角の広い側、すなわち図7の紙面に平行な方向の径を整形するためにこの方向にのみパワーを持つ焦点距離約12mmのシリンドリカルレンズが必要である。
一方、図7の紙面に垂直な方向では、狭帯域光の広がり角が狭い側の約10°であることから、θ=5°であり、L1=4.0mmであることから、この方向の焦点距離をfとすると、以下のようになる。
・sin°=4/2
≒23(mm)
こうして、狭帯域光の光束を直径4.0mmの円形状にするためのコリメータレンズ50には、狭帯域光の広がり角の狭い側、すなわち図7の紙面に垂直な方向の径を整形するためにこの方向にのみパワーを持つ焦点距離約23mmのシリンドリカルレンズが必要である。
このようなそれぞれの方向のみに焦点距離を持つ2つのシリンドリカルレンズからなるコリメータレンズ50を用いることにより、狭帯域光の光束の形状を、上記のような合波部材42の反射部材44の形状及び大きさに応じた略円形状に整形することができ、略円形状に整形された狭帯域光の光束を反射部材44に入射させることができる。その結果、狭帯域光の光束を白色光の光束の中央部分に合波することができ、白色光における特定波長域の光量の低減を抑制し、特殊観察及び通常観察のいずれの観察においても、高精度かつ全体的に明るい画像を得ることができ、高度な内視鏡診断を可能にすることができる。
また、図1に示す内視鏡システム10において、本発明の内視鏡用光源装置14から照射された合波光の白色光及び狭帯域光(面順次光)は、内視鏡12の光ファイバ32内においても、内視鏡用光源装置14のロッドイングレータ56の出射端面56cから入射された時のそれぞれの開口数(NA)を維持しつつ伝播し、内視鏡12の照射口24Aから照射される。
すなわち、本発明においては、合波部材42によって白色光の光束の光の少ない中央部分に、狭帯域光の光束が配置されるように合波し、中央が狭帯域光の光束、その周辺が白色光の光束からなる合波光(面順次光)の光束を、その関係を維持したまま集光レンズ52で集光して、合波光の全光束を、白色光はNAが大きい光として、狭帯域光はNAが小さい光として、ロッドイングレータ56に入射させ、入射された合波光の白色光及び狭帯域光は、ロッドイングレータ56に内において、それぞれのNAを維持したまま面内光量分布の均一化がなされつつ伝播されて出射され、内視鏡12の光ファイバ32に入射され、光ファイバ32においても、それぞれのNAを維持したまま伝播されて、光ファイバ32の先端、すなわち内視鏡の12の照射口24Aから、中央部分に配置されてNAが小さい狭帯域光とNAが周辺部分に配置されて大きい白色光とが合波された合波光が、被写体(生体)に照射される。
その結果、合波光が照射される被写体(生体)の照射範囲の中央部分は、主として狭帯域光が照射され、その周辺部分には主として白色光が照射されることになる。
図9に示すとおり、本発明の内視鏡用光源装置から照射される合波光の内の、狭帯域光の照射範囲は、図9に参照符号Aで示す60°であるとし、また、一般的な内視鏡の視野角は140°であるため、図示例の白色光の照射範囲も、図9に参照符号Bで示す140°であるとした場合、半球状の照度を均一だと仮定すると、照射に必要なエネルギーは、半球状の面積に比例するので、今、1rad≒57.3°であるので、下記式(4)及び(5)のとおり、照射範囲がAで60°の場合は、照射範囲がBで140°の場合の約1/5(0.842/4.134)のエネルギーで足りる。
したがって、本発明においては、特殊光観察時の狭帯域光の照射を所定の範囲の観察視野に絞ることで十分な光量を確保するので、通常観察の際にも、白色光の特定波長域の光量を低減させることがないし、特殊光観察の際にも、表示画像を明るくするために狭帯域光の出射光量を不必要に上げて、内視鏡装置、特にその先端部に不要な熱負荷をかけて、観察対象の生体に不要な熱負荷をかけ、生体への損傷等の影響を与えることがないし、また、不要な熱負荷による先端部の劣化を招くことがない。その結果、特殊光観察及び通常観察の両方の観察において、観察画像全体が暗くなるということが無く、高度な診断を可能にする高精度な画像を得ることができる。
Figure 0005587120
一方、内視鏡の撮像画像は、一般的に周辺が歪んでおり、特性は、f・sinθで計算される。よって、視野角B140°の画像に対する照射範囲A60°の範囲は、概ね、図8に示す領域A1及び領域B1のように表示される。sin30°は0.5であり、sin70°は約0.94であるため、領域Aと領域Bとの直径比率は、約1:2となる。つまり、面積比は、約1:4となる。
観察者にとって重要なのは、中心部の画像であり、周辺部分の画像は歪み不正確に写ることはよく知られているため、領域Aの範囲における画像が精度高く撮影されていれば、領域Aから外れた部分の画像については暗さや不鮮明さは問題とならない。
以上から、本発明においては、特殊光観察時の狭帯域光の照射を所定の範囲の観察視野に絞ることで十分な光量を確保するので、通常観察の際にも、白色照明光の特定波長域の光量を低減させることがないし、特殊光観察の際にも、熱負荷による不利益を招くことがないし、その結果、特殊光観察及び通常観察の両方の観察において、白色光や狭帯域光が照射される観察視野範囲内での画像の精度が低下し、観察画像全体が暗くなるということが無く、観察視野範囲内で、高度な診断を可能にする高精度な画像を得ることができる。
以上、合波部材42が傾斜角度45°(白色光の進行方向と反射部材44の反射面のなす角度が45°)に傾斜されて配置された場合について説明したが、合波部材42は、白色光と狭帯域光とが交差する位置に、白色光の進行方向に対して30°〜60°傾斜させて配置されるものであってもよい。この場合、反射部材44による狭帯域光の反射方向が白色光の進行方向と合致する必要があるため、合波部材42の傾斜角度をθ°(白色光の進行方向と反射部材44の反射面のなす角度をθ°)とすると、狭帯域光が反射部材44の反射面への入射する入射角度もθ°とする必要がある。よって、狭帯域光の合波部材42への入射角度がθ°となるように特殊光光源(第2の光源部30)が設置される。
この場合も前述と同様に、合波部材42の傾斜角度θ°に基づいて、白色光の光束の光の少ない中央部分に、狭帯域光の光束が配置されるように、反射部材44の形状およびサイズが設計され、コリメータレンズ50が設計される。
本発明の内視鏡用光源装置14は、基本的に以上のように構成される。
以下に、本発明の内視鏡用光源装置を有する内視鏡システムの作用について説明する。
上述のとおり、光源装置14は、通常光モード及び特殊光モードの両方に用いられるキセノン(Xe)光源(第1の光源部28)と、特殊光モードにおいて青紫色レーザ光源(405LD)又は青色LEDを用いる特殊光光源(第2の光源部30)とを発光源として備えている。これら各光源部28及び30からの発光(出射)は、光源制御部(図示せず)により個別に制御されており、第1の光源部28の出射光(白色光)と第2の光源部30の出射光(狭帯域光)との光量比は変更自在になっている。
通常光モードの場合、キセノン光源38から出射される白色光は、リフレクタ40によって平行光とされ、合波部材42を透過し、回転式フィルタ47の第1のフィルタ組のいずれかのフィルタ(R1フィルタ部47r1、G1フィルタ部47g1、B1フィルタ部47b1)を順次透過し、R光、G光及びB光の面順次光とされて、順次、集光レンズ52において集光されて、ロッドインテグレータ56に入射する。
特殊光モードの場合、キセノン光源38から出射される白色光は、リフレクタ40で平行光となり、他方、特殊光光源48から出射される狭帯域光は、コリメータレンズ50によって、合波部材42の略楕円形の反射部材44の短径と略等しい略円形の光束を備えるよう整形された平行光となる。
次いで、合波部材42において、白色平行光は、合波部材42を透過し、他方、上記のように略円形に整形された狭帯域平行光は、反射部材44に反射されて、透過した白色光の光路に合流し、中央部分に狭帯域光の光束が配置され、周辺部分に白色光の光束が配置された合波光となる。
次に、合波部材42で合波された合波光は、回転式フィルタ47の第2のフィルタ組の各フィルタ(G1フィルタ部47g2、B1フィルタ部47b2、遮光フィルタ部47cut)を順次透過し、G光及びB光の面順次光とされて、順次、集光レンズ52に入射し、集光レンズ52によって合波光(面順次光)内の狭帯域光と白色光との配置関係を維持したまま集光され、中央部分に配置されてNAが小さい狭帯域光とNAが周辺部分に配置されて大きい白色光とが合波された合波光として、ロッドインテグレータ56に入射する。
通常光モード及び特殊光モードいずれの場合においても、ロッドインテグレータ56に入射した白色光又は合波光(面順次光)は、ロッドインテグレータ56内で反射を繰り返し、出射時には出射面内の光量分布が均一になる。なお、ロッドインテグレータ56内では、合波光内の狭帯域光のNA及び白色光のNAは維持され、ロッドインテグレータ56から合波光内の両光のNAが維持されたまま出射される。
すなわち、通常光モード及び特殊光モードのいずれの場合も、ロッドインテグレータ56を通過した光は光量分布が均一になり、光ファイバ(ライトガイド)32に入力され、コネクタ部に伝送される。コネクタ部まで伝送された光は、照明光学系を構成する光ファイバ32によって、それぞれ内視鏡12の先端部まで伝搬される。そして、特殊光モード時においては、合波光は、狭帯域光のNA及び白色光のNAを維持したまま、光ファイバ32内を伝播する。
上述したように、通常光モードの白色光の面順次光も、特殊光モードの白色光と狭帯域光との合波光の面順次光も、内視鏡12の先端部の照射口24Aから被検体の被観察領域に向けて照射される。なお、特殊光モードの合波光は、狭帯域光のNA及び白色光のNAを維持したまま、照射される。
そして、照明光として面順次光が照射された被観察領域からの戻り光が、順次、受光部24Bを介して撮像素子32の受光面上に結像され、撮像素子22によって被観察領域が面順次光の各色毎に撮像される。
撮像後に撮像素子26から出力される撮像画像の各色の画像信号は、スコープケーブル42を通じてプロセッサ16の画像処理システム36に入力される。
次に、こうして撮像素子26によって撮像された撮像画像の各色の画像信号は、プロセッサ16の画像処理システム36を含む信号処理系によって画像処理され、モニタ20や記録装置(図示省略)にカラー画像として出力され、ユーザの観察に供される。
なお、特殊光モードにおいて、合波光内の狭帯域光が照射され、撮影された領域Aについては、その範囲が簡単に視認できるように、撮影画像上にその境界を表示してもよい。
なお、上記実施形態においては、回転式フィルタ47を用いて白色光及び合波光の面順次光を生成し、生成された面順次光を撮影対象に照射し、撮影対象からの戻り光をモノクロの撮像素子(センサ)26で撮像する面順次方式の撮像を行う構成としているが、本発明はこれに限定されず、回転式フィルタ47を用いずに、カラー撮像素子を用いる同時方式の撮像を行う構成としてもよい。
以上、本発明の内視鏡用光源装置及びこれに係る内視鏡システムについての実施形態を詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。
10 内視鏡システム
12 内視鏡
14 内視鏡用光源装置
16 プロセッサ
18 入出力部
20 表示部(モニタ)
22 入力部
24A 照射口
24B 受光部
26 撮像素子
28 第1の光源部
30 第2の光源部
32 ライトガイド(光ファイバ)
34 スコープケーブル
36 画像処理システム
38 キセノン光源(白色照明用光源)
40 リフレクタ(放物面鏡)
42 合波部材
44 反射部材
46 透過部材
47 回転フィルタ
48 特殊光光源
50 シリンドリカルレンズ(整形レンズ)
51 回転フィルタモータ
52 集光レンズ
56 ロッドインテグレータ

Claims (14)

  1. 白色照明光を出射する第1の光源部と、
    前記白色照明光より狭い波長帯域の狭帯域光を前記白色照明光の進行方向と直交する方向に出射する第2の光源部と、
    該第2の光源部から出射された前記狭帯域光の光束の形状及びサイズの少なくとも一方を変化させる整形レンズと、
    前記白色照明光と前記狭帯域光とが交差する位置に前記白色照明光の進行方向及び前記狭帯域光の進行方向に対して45°傾斜させて配置され、中心部分に少なくとも前記狭帯域光を反射する略楕円形の反射部及び該反射部の周辺部分に前記白色照明光を透過する透過部を備え、前記白色照明光と前記狭帯域光とを合波する合波部材と、
    内視鏡のライトガイドの入射端面に入射させるために、前記合波部材によって合波された合波光を前記ライトガイドの入射端面に対して集光する集光レンズと、
    を有し、
    前記合波部材は、前記白色照明光を前記透過部により透過し、前記整形レンズで整形された前記狭帯域光を、その進行方向が前記白色照明光の進行方向と一致するように前記略楕円形の反射部により反射させて、前記狭帯域光の光束が前記白色照明光の光束の中央部分に位置するように前記白色照明光と前記狭帯域光とを合波し、
    前記整形レンズは、傾斜配置された前記合波部材に入射する前記狭帯域光の光束の形状及びサイズが、前記合波部材の略楕円形の前記反射部の形状及びサイズと略等しくなるように、前記狭帯域光の光束を所定の円形に整形し、
    前記集光レンズは、前記合波光を、その光束のサイズが前記ライトガイドの入射端面のサイズと略一致するように、かつ前記合波光の内の前記狭帯域光の光束が前記ライトガイドの入射端面の中心部分に入射するように、集光することを特徴とする内視鏡用光源装置。
  2. 前記整形レンズで整形された前記狭帯域光の前記所定の略円形状の光束の直径は、前記白色照明光の光束の中心に存在する、その光量分布の低下部分の直径と略同一である請求項1に記載の内視鏡用光源装置。
  3. さらに、前記集光レンズで集光された前記合波光が入射される入射端面、該入射端面から入射された前記合波光を内部で多重反射して面内の光量分布を均一化する本体及び均一化された光量分布を持つ合波光を出射する出射端面を備え、前記本体の内部の多重反射により前記出射端面における光量分布が均一化された合波光を、前記出射端面から出射して内視鏡装置のライトガイドへ入射させるロッドインテグレータを有し、
    該ロッドインテグレータのサイズは、前記ライトガイドのサイズと略等しく、
    前記集光レンズは、前記合波光を、そのサイズが前記ロッドインテグレータの入射端面のサイズと略一致するように、かつ前記合波光の内の前記狭帯域光の光束が前記ロッドインテグレータの入射端面の中心部分に入射するように、集光する請求項1又は2に記載の内視鏡用光源装置。
  4. 前記合波部材の略楕円形の前記反射部の長径は、前記透過部を透過する前記白色照明光によって形成される略楕円形の透過面の長径の10%〜50%である請求項1〜3のいずれかに記載の内視鏡用光源装置。
  5. 前記合波部材の略楕円形の前記反射部の短径は、前記透過部を透過する前記白色照明光の直径の10%〜50%である請求項1〜4のいずれかに記載の内視鏡用光源装置。
  6. 前記合波部材の前記反射部の面積は、前記合波部材の前記合波光の全出射面の面積の1%〜25%である請求項1〜5のいずれかに記載の内視鏡用光源装置。
  7. 前記第1の光源は、放電管である請求項1〜6のいずれかに記載の内視鏡用光源装置。
  8. 前記第1の光源は、キセノンランプを含む請求項1〜7のいずれかに記載の内視鏡用光源装置。
  9. 前記第2の光源は、半導体光源である請求項1〜8のいずれかに記載の内視鏡用光源装置。
  10. 前記第2の光源は、青色レーザ光源、青紫色レーザ光源、又は青色LEDのいずれかを含む請求項1〜9のいずれかに記載の内視鏡用光源装置。
  11. 前記合波部材の反射部が、反射ミラーである請求項1〜10のいずれかに記載の内視鏡用光源装置。
  12. 前記合波部材の反射部が、ダイクロイックミラーである請求項1〜10のいずれかに記載の内視鏡用光源装置。
  13. 内視鏡と、
    請求項1〜12のいずれかに記載の内視鏡用光源装置と、を有することを特徴とする内視鏡システム。
  14. 前記内視鏡先端部からの前記狭帯域光の照射範囲の直径が、前記白色照明光の照射範囲の直径の約半分である請求項13に記載の内視鏡システム。
JP2010222055A 2010-09-30 2010-09-30 内視鏡用光源装置 Expired - Fee Related JP5587120B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010222055A JP5587120B2 (ja) 2010-09-30 2010-09-30 内視鏡用光源装置
CN201110302015.XA CN102440750B (zh) 2010-09-30 2011-09-28 内窥镜光源单元和内窥镜系统
US13/248,703 US8764644B2 (en) 2010-09-30 2011-09-29 Endoscope light source unit and endoscopy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222055A JP5587120B2 (ja) 2010-09-30 2010-09-30 内視鏡用光源装置

Publications (2)

Publication Number Publication Date
JP2012075562A JP2012075562A (ja) 2012-04-19
JP5587120B2 true JP5587120B2 (ja) 2014-09-10

Family

ID=45890377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222055A Expired - Fee Related JP5587120B2 (ja) 2010-09-30 2010-09-30 内視鏡用光源装置

Country Status (3)

Country Link
US (1) US8764644B2 (ja)
JP (1) JP5587120B2 (ja)
CN (1) CN102440750B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789232B2 (ja) * 2011-10-12 2015-10-07 富士フイルム株式会社 内視鏡システム及びその作動方法
JP5612028B2 (ja) * 2012-07-02 2014-10-22 富士フイルム株式会社 光源装置及び内視鏡システム
JP6180334B2 (ja) * 2014-01-23 2017-08-16 オリンパス株式会社 内視鏡用光源システム
JP6463903B2 (ja) * 2014-05-14 2019-02-06 オリンパス株式会社 内視鏡システム
JP6314041B2 (ja) * 2014-06-17 2018-04-18 オリンパス株式会社 内視鏡光源装置
CN104931416A (zh) * 2015-06-01 2015-09-23 安徽禄讯电子科技有限公司 一种高发光强度光源显微镜及图像鉴别分析装置和应用
CN104931418A (zh) * 2015-06-12 2015-09-23 合肥市徽腾网络科技有限公司 一种高发光强度光源显微镜及图像鉴别分析装置和应用
US20170296037A1 (en) * 2016-04-14 2017-10-19 Olympus Corporation Endoscope apparatus
CN106361256A (zh) * 2016-08-26 2017-02-01 上海澳华光电内窥镜有限公司 一种光源装置、发光方法及内窥镜系统
CN109310285B (zh) * 2016-09-01 2021-05-28 Hoya株式会社 电子镜及电子内窥镜系统
EP3685730A1 (en) * 2016-12-27 2020-07-29 DePuy Synthes Products, Inc. Devices for providing illumination in an endoscopic imaging environment
EP3574819A4 (en) * 2017-01-24 2019-12-11 Sony Corporation LIGHT SOURCE DEVICE, LIGHT QUANTITY DISTRIBUTION ADJUSTMENT METHOD, AND IMAGE ACQUISITION SYSTEM
US20200367750A1 (en) * 2018-02-01 2020-11-26 Henry Ford Health System Photoacoustic system for accurate localization of laser ablation catheter tip position and temperature monitoring during ablation procedures
WO2020036112A1 (ja) * 2018-08-13 2020-02-20 ソニー株式会社 医療用システム、医療用光源装置及び医療用光源装置における方法
CN109350267B (zh) * 2018-10-19 2021-06-04 江苏邦士医疗科技有限公司 一种直供冷光源手术器械
CN110575121A (zh) * 2019-09-02 2019-12-17 重庆金山医疗器械有限公司 一种内窥镜合光照明系统及方法
JP7229142B2 (ja) * 2019-10-08 2023-02-27 Hoya株式会社 内視鏡及び内視鏡装置
CN113440090B (zh) * 2020-03-24 2023-07-11 北京华信佳音医疗科技发展有限责任公司 分体式医用内窥镜

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080690B2 (ja) * 1990-06-29 2000-08-28 株式会社東芝 光学ヘッド
JPH09299327A (ja) * 1996-05-15 1997-11-25 Olympus Optical Co Ltd 内視鏡用光源装置
US6134365A (en) * 1998-06-01 2000-10-17 Colvin; James Barry Coherent illumination system and method
FR2783330B1 (fr) * 1998-09-15 2002-06-14 Assist Publ Hopitaux De Paris Dispositif d'observation de l'interieur d'un corps produisant une qualite d'observation perfectionnee
US6826424B1 (en) * 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
JP4694002B2 (ja) * 2001-01-29 2011-06-01 Hoya株式会社 内視鏡装置用光源システム
DE10136191A1 (de) * 2001-07-25 2003-02-20 Wolf Gmbh Richard Vorrichtung zur bildgebenden und spektroskopischen Diagnose von Gewebe
JP4211969B2 (ja) * 2002-11-07 2009-01-21 フジノン株式会社 照明光学系およびこれを用いた投写型表示装置
KR20040102301A (ko) * 2003-05-27 2004-12-04 삼성전자주식회사 보조광원을 채용하는 조명 장치 및 프로젝션 시스템
US7215468B2 (en) * 2003-07-29 2007-05-08 Olympus Corporation Confocal microscope
JP2005345716A (ja) * 2004-06-02 2005-12-15 Olympus Corp 顕微鏡
JP4656864B2 (ja) * 2004-05-31 2011-03-23 Hoya株式会社 内視鏡用光源装置
JP2005342034A (ja) * 2004-05-31 2005-12-15 Pentax Corp 内視鏡用光源装置
JP2006043248A (ja) * 2004-08-06 2006-02-16 Pentax Corp 光源装置
KR100961591B1 (ko) 2004-08-30 2010-06-04 올림푸스 가부시키가이샤 내시경 장치
JP4009626B2 (ja) * 2004-08-30 2007-11-21 オリンパス株式会社 内視鏡用映像信号処理装置
EP1810060A1 (en) * 2004-11-02 2007-07-25 Optronics ApS Lighting device having at least two optical systems
EP1918757A1 (en) * 2006-11-02 2008-05-07 Olympus Corporation Microscope illumination apparatus
JP4395792B2 (ja) * 2007-01-29 2010-01-13 セイコーエプソン株式会社 プロジェクタ
DE102007007797B4 (de) * 2007-02-16 2017-11-16 Leica Microsystems Cms Gmbh Fluoreszenzmikroskop mit Beleuchtungseinrichtung
JP4954858B2 (ja) * 2007-11-30 2012-06-20 オリンパス株式会社 蛍光観察装置および内視鏡装置
US20100309439A1 (en) * 2007-11-30 2010-12-09 Phoebus Vision Opto-Elec Tech Co., Ltd. Light source for projection system and projection display apparatus
DE102009025127A1 (de) * 2009-06-17 2010-12-23 Carl Zeiss Surgical Gmbh Beleuchtungseinrichtung für ein optisches Beobachtungsgerät

Also Published As

Publication number Publication date
US8764644B2 (en) 2014-07-01
CN102440750B (zh) 2015-01-21
CN102440750A (zh) 2012-05-09
US20120083656A1 (en) 2012-04-05
JP2012075562A (ja) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5587120B2 (ja) 内視鏡用光源装置
JP5216429B2 (ja) 光源装置および内視鏡装置
US7704206B2 (en) Endoscope that provides selection of each illumination mode of four different illumination modes
JP5460507B2 (ja) 内視鏡装置の作動方法及び内視鏡装置
US7662095B2 (en) Endoscope provided with a lighting system and a combined image transmission
JP6394374B2 (ja) 照明装置、照明方法及び観察装置
JP2009297290A (ja) 内視鏡装置およびその画像処理方法
JP5285967B2 (ja) 光源装置およびこれを用いた内視鏡装置
JP5485835B2 (ja) 内視鏡用光源装置及びその光量制御方法並びに内視鏡システム及びその制御方法
JP2011156339A (ja) 医療機器及び内視鏡装置
JP2007311114A (ja) 白色光を発する固体発光素子を用いた照明光学系、及びそれを備えた光学装置
JP6394373B2 (ja) 照明装置、照明方法及び観察装置
US20110164249A1 (en) Light spectrum detection method
JP5450339B2 (ja) 内視鏡用光源装置
CN109068968B (zh) 内窥镜用光源装置
JP2012070839A (ja) 光源装置および内視鏡診断装置
JP2009291347A (ja) 光源装置およびこれを用いた内視鏡装置
JP5677555B2 (ja) 内視鏡装置
JP2012115372A (ja) 内視鏡装置
JP2012139435A (ja) 電子内視鏡
JP5450342B2 (ja) 内視鏡用光源装置
JP6227706B2 (ja) 内視鏡用光源装置及び内視鏡システム
JP2014023630A (ja) 光源ユニット及び電子内視鏡装置
JP2012070822A (ja) 光源装置および内視鏡診断装置
JP2006122251A (ja) Ledファイバ光源装置及びそれを用いた内視鏡装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140723

R150 Certificate of patent or registration of utility model

Ref document number: 5587120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees