JP5285967B2 - 光源装置およびこれを用いた内視鏡装置 - Google Patents

光源装置およびこれを用いた内視鏡装置 Download PDF

Info

Publication number
JP5285967B2
JP5285967B2 JP2008152932A JP2008152932A JP5285967B2 JP 5285967 B2 JP5285967 B2 JP 5285967B2 JP 2008152932 A JP2008152932 A JP 2008152932A JP 2008152932 A JP2008152932 A JP 2008152932A JP 5285967 B2 JP5285967 B2 JP 5285967B2
Authority
JP
Japan
Prior art keywords
light
light source
wavelength
wavelength conversion
conversion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008152932A
Other languages
English (en)
Other versions
JP2009297141A (ja
Inventor
明 水由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2008152932A priority Critical patent/JP5285967B2/ja
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to EP09007428A priority patent/EP2130484B1/en
Priority to EP10171389A priority patent/EP2241244A1/en
Priority to US12/478,704 priority patent/US8506478B2/en
Priority to DE602009001103T priority patent/DE602009001103D1/de
Priority to AT09007428T priority patent/ATE506000T1/de
Publication of JP2009297141A publication Critical patent/JP2009297141A/ja
Priority to US12/837,124 priority patent/US8337400B2/en
Application granted granted Critical
Publication of JP5285967B2 publication Critical patent/JP5285967B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion

Description

本発明は、光源装置およびこれを用いた内視鏡装置に関する。
レーザ光を利用した光源装置においては、レーザ光と、このレーザ光により励起される蛍光体等の波長変換物質から発生する可視光とによって白色光を得る各種の光源装置が提案されている。この種の光源装置においては、レーザ光が特定の波長領域にラインスペクトルを有するため、そのラインスペクトルの周辺波長領域に比較的広い範囲にわたって発光強度の低い波長領域が生じることがある。そこで、一般の照明では、演色性を向上させるために、ブロードな波長に発光する蛍光体が適宜選択される。
その他にも、上記のレーザ光に加えて他種のレーザ光を加えることで、発光強度の低下した波長領域を補填することもできる。例えば、特許文献1には励起光として青色レーザ光と、この青色レーザ光とは異なる励起波長のレーザ光を加える例が記載されている。
ところで、内視鏡用途の光源装置においては、演色性の高い白色を得る他に、特定の波長帯域の光の下で診断するための照明光が求められることがある。
内視鏡でのいわゆる分光診断と呼ばれる手法に於いては、特定の波長帯域の光を用いて、例えば粘膜層あるいは粘膜下層に発生する新生血管を観察し、癌の有無等を診断している。観察に用いる照明光は、波長が短いほど散乱特性が強くなり、短波長では比較的浅い層の情報、長波長では比較的深い層からの情報が得られるようになる。このため、光の深達度を表層に限定して表面微細構造を観察する場合には、照明光を狭帯域化することがコントラストを向上させる上で重要となる。例えば、狭帯域フィルタを用いて取り出した狭い波長帯域の光で照明する内視鏡が、特許文献2に記載されている。
また、上部消化管の内視鏡診断には、従来の経口内視鏡ではなく、患者にとってより負担の少ない経鼻内視鏡が用いられつつある。経鼻内視鏡は経口内視鏡よりさらに挿入部が細く、ライトガイドの太さを確保することが困難になるので、明るい画像を撮影するために、照明光の光量を稼いだり、撮像素子の感度を向上させる等の改良が必要となる。
そして、上記のような細い内視鏡に於いても、狭帯域での測定診断が要求され始めている。狭帯域診断に関しては、非特許文献1に記載されている。
特開2006−173324号公報 特公平6−40174号公報 「狭帯域フィルタ 内蔵電子内視鏡システム(Narrow Band Imaging:NBI)の開発・臨床応用に関する試み」、佐野寧, 吉田茂昭 (国立がんセンター東病院), 小林正彦 (自衛隊中央病院)、Gastroenterol Endosc, 2000.9.20.
このように、分光診断に用いる内視鏡においては、コンパクト化を図りながら狭帯域の光を出射させることが求められている。特許文献1に記載の光源に於いては、狭帯域幅の緑色の発光を得るために、第2高調波発生による、いわゆるDPSS緑SHGレーザを用い、光源側で、例えばプリズムなどを用いて合波させている。しかし、この方法では、青色レーザ光により緑色〜赤色の光を励起発光する蛍光体に対して、他のレーザ光で導入される例えば緑色の光等を吸収しないことが要求される。つまり、白色光を得るために光路途中に配置する蛍光体は、白色光生成用のレーザ光以外の、特定の波長帯域の光を得るためのレーザ光に対して吸収が小さいものしか適用できない。
さらに、このような緑レーザで照明する場合に、そのコヒーレンシーの高さから、スペックル(干渉)により撮影画像にノイズが重畳したり、動画でちらつきが発生しやすくなる。
また、白色光照明光学系と特定の波長帯域の照明光学系とを、別々の光路として設け、蛍光体の制約を解消することも考えられるが、特に内視鏡においては、光路となるライトガイドが嵩張り、また、挿入部先端に新たに照射窓を設ける必要も生じ、挿入部を細径化することが困難となる。
そして、特許文献1の光源は、上記特許文献2や非特許文献1のように可視波長域の光を照射するものであり、演色性を向上させるために発光波長幅を広くしている。そのため、特に内視鏡にとって有用となる、青色や緑色の狭帯域の撮像信号の取得については、それに適した蛍光体の組み合わせ、時系列的な励起光源の切り替え、信号算出方法等に課題が多く残されている。つまり、励起光の切り替えによる発光波長帯域を明確に分離し、かつ選択的に発光させることが依然として難しい構成となっている。
本発明は、このような状況に鑑みてなされたもので、レーザ光と蛍光体の励起発光光とを含んで形成される白色光と、特定の狭い可視波長帯域の光とを、コンパクト化を図りつつ簡単な構成で選択的に照射することができる光源装置およびこれを用いた内視鏡装置を提供することを目的とする。
本発明は、下記構成からなる。
(1)青色の第1のレーザ光を出射する第1光源と、
前記第1のレーザ光を光入射側に入射して伝送する光ファイバーと、
該光ファイバーの光出射側に配置され、前記第1のレーザ光により緑色〜黄色の光を励起発光する第1波長変換材と、を有し、
前記第1のレーザ光と前記第1波長変換材からの励起発光光とを混合して白色光を得る光源装置であって、
前記青色の第1のレーザ光の中心波長より短波長となる紫乃至近紫外の中心波長の第2のレーザ光を出射する第2光源と、
前記第2のレーザ光を前記光ファイバーの光入射側の光路に導入する光カップリング手段と、
前記光ファイバーの光出射側より光路前方に設けられ、前記青色の第1のレーザ光と前記紫乃至近紫外の中心波長の第2のレーザ光により赤色光を励起発光する第2波長変換材と、
を備えたことを特徴とする光源装置。
この光源装置によれば、第1光源による照明光学系と、第2光源による照明光学系とを光カップリング手段により同軸にされ、光ファイバーの光出射側に第1波長変換材と第2波長変換材とが配置されることで、第1波長変換材からは第1のレーザ光による励起発光光が得られ、第2波長変換材からは第2のレーザ光による励起発光光が得られる。つまり、第1のレーザ光の一部と第1波長変換材からの励起発光光とによって白色光が得られ、第2のレーザ光により特定の可視波長帯域の光が励起発光されて得られるので、これら白色光と特定の可視波長帯域の光とを簡素な構成で選択的に出射させることができる。
この光源装置によれば、第2のレーザ光により励起発光する第2波長変換材が、第1のレーザ光によっても励起発光することで、光源装置からの出射可能な光成分が増えて、光の利用効率を向上できる。また、出射光の組み合わせを多様にでき、光検出する際の設計自由度を向上できる。
(1)記載の光源装置であって、
前記第1波長変換材と前記第2波長変換材の各蛍光物質を分散配置して一体に形成、あるいは前記第1波長変換材と前記第2波長変換材とを積層して一体に形成した波長変換部材を備えたことを特徴とする光源装置。
この光源装置によれば、各波長変換材が一体にされることでコンパクト化が図られる。そして、一体にされた第1波長変換材と第2波長変換材の蛍光物質から、それぞれ第1レーザ光による励起発光光と第2レーザ光による励起発光光が発生して、光路前方へ出射される。
) (1)又は(2)記載の光源装置と、
前記光源装置の光ファイバーの光出射部を内視鏡挿入部の先端側に配置して被検体を照明する照明光学系、および被検体からの光を受光して撮像信号を出力する撮像素子を含む撮像光学系を有する内視鏡と、
前記第1光源と前記第2光源からの各レーザ光の出射制御を行う制御手段と、
を備えたことを特徴とする内視鏡装置。
この内視鏡装置によれば、内視鏡挿入部を細径化でき、また、照射する光を、白色光と特定の可視波長帯域の光とを選択的に出射制御できるので、分光診断等を容易に行うことができる。
本発明の光源装置によれば、第1のレーザ光と蛍光物質の励起発光光とを含んで形成される白色光と、特定の狭い可視波長帯域の光とを簡単な構成で選択的に照射することができる。
また、この光源装置を用いた内視鏡装置によれば、照明光学系が簡素化されることで内視鏡挿入部の細径化が図られる。また、照射する光を、白色光と特定の可視波長帯域の光とを選択的に出射制御することを可能としたため、内視鏡による分光診断等を容易に行うことができる。
以下に、光源装置およびこれを用いた内視鏡装置ならびに画像処理方法の好適な実施の形態について、図面を参照して詳細に説明する。
図1に本実施形態の内視鏡装置の概念的な構成図を示した。
本実施形態の内視鏡装置100は、主に、内視鏡10、光源装置20、画像処理装置30、モニタ40を備えて構成される。
内視鏡10は、本体操作部11と、この本体操作部11に連設され、被検体(体腔)内に挿入される挿入部13とを備える。挿入部13の先端部には撮像光学系である固体撮像素子15と撮像レンズ17が配置され、また、撮像光学系の近傍には照明光学系である照明用光学部材19とこれに接続される光ファイバー21が配置されている。光ファイバー21は詳細を後述する光源装置20に接続され、固体撮像素子15からの撮像信号は画像処理装置30に入力される。
固体撮像素子15は、CCD(charge coupled device)やCMOS(Complementary Metal-Oxide Semiconductor)等の撮像素子が使用され、その撮像信号は、制御部29からの指令に基づいて撮像信号処理部27によって画像データに変換されて適宜の画像処理が施される。制御部29は撮像信号処理部27から出力される画像データを撮像画像表示手段であるモニタ40に映出する。また、制御部29には、撮像信号を保存するための第1のメモリ51と、第2のメモリ52が接続されている。これら第1のメモリ51,第2のメモリ52については後述する。
光ファイバー21は、光源装置20の後述する光源部31からの出射光を、挿入部13の先端まで導光する。光源装置20は、光源部31,光ファイバー21,照明用光学部材19を含んで構成される。
次に、光源部31の構成例を説明する。
図2は図1に示す内視鏡装置に用いられる光源装置の光学系の構成図である。
本実施形態の光源装置20は、中心波長445nmの青色レーザ光源(第1光源)33と、中心波長375nmの近紫外レーザ光源(第2光源)35と、青色レーザ光源33および近紫外レーザ光源35からのレーザ光をそれぞれ平行光化するコリメータレンズ37,37と、2本のレーザ光を偏光合波する光カップリング手段である偏光ビームスプリッタ39と、偏光ビームスプリッタ39で同一光軸上に合波されたレーザ光を集光する集光レンズ41と、光ファイバー21とを有する。そして、制御部29は、青色レーザ光源33と近紫外レーザ光源35からの各レーザ光の出射制御を行う制御手段として機能する。
青色レーザ光源33は、ブロードエリア型のInGaN系レーザダイオードである。
近紫外レーザ光源35は、不可視光である近紫外線を出射するブロードエリア型のInGaN系半導体レーザである。なお、ここでは近紫外線を出射するレーザで説明するが、中心波長405nmの紫色レーザを用いてもよく、紫乃至近紫外レーザ光源が利用可能である。
青色レーザ光源33からのレーザ光と近紫外レーザ光源35からのレーザ光は、偏光ビームスプリッタ39で合波され、集光レンズ41により光ファイバー21に入力される。光ファイバー21は入力されたレーザ光を、内視鏡10の挿入部13(図1参照)の先端側まで伝搬する。
一方、光ファイバー21の光出射側には、照明用光学部材19を構成する集光レンズ43が配置されるとともに、第1波長変換材と第2波長変換材とが一体にされた波長変換部材45が配置されている。波長変換部材45は、複数種の蛍光物質を分散配置して一体に形成された一塊のブロックである。また、図示は省略するが、内視鏡10の挿入部13の先端表面には、カバーガラスやレンズを介して照明用光学部材19が配置される。
波長変換部材45を構成する第1波長変換材は、青色レーザ光源33からのレーザ光の一部を吸収して緑色〜黄色に励起発光する複数種の蛍光体(例えばYAG系蛍光体、あるいはBAM(BaMgAl10O37)等を含む蛍光体等)を含んで構成される。これにより、青色レーザ光源33からのレーザ光と、このレーザ光から変換された緑色〜黄色の励起光とが合波されて、白色光が生成される。
波長変換部材45を構成する第2波長変換材は、近紫外レーザ光源35からのレーザ光を吸収して緑色に励起発光するダウンコンバージョン材料からなる。このダウンコンバージョン材料としては、例えば、緑色蛍光体であるLiTbW2O8(小田喜 勉、“白色LED用蛍光体について”、電子情報通信学会技術研究報告ED2005-28, CFM2005-20,SDM2005-28, pp.69-74(2005-05)等を参照)や、ベータサイアロン(β−sialon:Eu)青色蛍光体(広崎 尚登、解 栄軍、佐久間 健、“サイアロン系信蛍光体とそれを用いた白色LEDの開発”、応用物理学会誌 第74巻、第11号、pp.1449-1452(2005)、あるいは、山元 明 東京工科大パイオニクス学部、応用物理学会誌 第76巻 第3号、p.241(2007)を参照)等を用いることができる。ベータサイアロンは、β型窒化ケイ素結晶にアルミニウムと酸とが固溶したSi6-zAl2O2N8-z(zは固溶量)の組成で示される結晶である。ここでは、第2波長変換材として、これらLiTbW2O8とベータサイアロンとの双方を混在させたものとしている。また、双方の蛍光体を層状に重ねた構成としてもよい。
波長変換部材45は、第1波長変換材と第2波長変換材が有する各蛍光体をランダムに分散配置して一体に形成したものである。なお、各蛍光体をランダムに分散させる以外にも、例えば、第1波長変換材と第2波長変換材とをそれぞれ微小ブロック化し、これら微少ブロック同士を接合した構成にしたり、それぞれを層状に重ねた積層構造とする等、蛍光体材料に応じて適宜な変更が可能である。
上記構成により、光ファイバー21から出射される各レーザ光は、波長変換部材45に照射され、波長変換部材45は、第1波長変換材によって、青色レーザ光源33からの青色レーザ光の一部を吸収して、この青色レーザ光よりも長波長の光(緑色〜黄色の光)を励起発光する。そして、近紫外レーザ光源35からの近紫外レーザ光の一部乃至は全てを吸収して、狭帯域の緑色光、青色光に励起発光する。これにより、第1波長変換材が励起発光した緑色〜黄色光と青色レーザ光との合波による白色光、および第2波長変換材が励起発光した狭帯域の緑色光、青色光とが光路前方に出射される。これら各波長変換材は、青色レーザ光が第2波長変換材を吸収することなく透過し、また、近紫外レーザ光が第1波長変換材を吸収することなく透過するように選択される。
上記のように、近紫外レーザ光で励起発光させた緑色光、青色光を照射することで、レーザ光をそのまま照明光として出射する場合と比較すると、レーザ光によるスペックル(干渉)に起因して、撮影画像にノイズが重畳したり、動画像表示させた際のちらつきの発生を防止できる。
なお、波長変換部材45の変換光出射側に、不要な近紫外光の出射を抑制するための近紫外光の選択反射膜を設けると、近紫外光が波長変換部材45に再入射されて、緑発光、狭青色光をより強めることができる。また、近紫外光の代わりに紫色レーザを用いる場合は、同様に紫色光の選択反射膜を設ければよい。
図3は、青色レーザ光が第1波長変換材により波長変換された後の光のスペクトル分布を示すグラフである。青色レーザ光源33からの青色レーザ光は、中心波長445nmの輝線で表され、このレーザ光により第1波長変換材が励起発光する光によって、概ね450nm〜700nmの波長帯域で発光強度が増大する。この波長帯域の光と青色レーザ光とによって白色光が形成される。
図4は、第2波長変換材として用いるLiTbW2O8の励起スペクトルおよび発光スペクトルである。LiTbW2O8は、波長375nm付近にシャープな励起帯が存在し、中心波長375nmの近紫外レーザ光が効率良く波長変換が可能となっている。そして、Tb3+イオンのDF5遷移による波長544nmを中心とする発光は、半値幅が20nm程度の波長帯域の狭い高強度の光となっている。
図5は、同じく第2波長変換材として用いるベータサイアロンの励起スペクトルおよび発光スペクトルである。ベータサイアロンは、波長350〜430nmの光を吸収して、450〜520nmの青〜青緑色を発光する蛍光体であり、中心波長375nmの近紫外レーザ光を効率よく波長変換することができる。したがって、光源装置20は、図3に示す白色光と、図4に示す波長544nmを中心とする緑色光および図5に示す450〜520nmの青〜青緑色とを選択的に出射することができる。なお、第2波長変換材から発生する緑色、青色、他の波長域の発光は同時に出射されるが、固体撮像素子15が有するカラーフィルタにより、例えば緑色光成分のみを固体撮像素子15で検出することで、緑色光成分と他の光成分とを容易に分離することができる。また、青色光成分も同様に分離できる。したがって、後段の信号処理で混色の問題を生じることはない。
次に、上記構成の光源装置20が内視鏡10に組み込まれた内視鏡装置100の使用態様例を説明する。
図1に示すように、内視鏡装置100においては、内視鏡10の挿入部13を体腔内に挿入して、挿入部13先端から照明光を照明用光学部材19を通して照射させ、その反射光を、撮像レンズ17を通して固体撮像素子15で撮像する。撮像して得た撮像信号は、撮像信号処理部27によって適宜な画像処理を施してモニタ40に出力する。あるいは記録媒体に保存する。
このような固体撮像素子15を用いた撮像の際、体腔内で白色の照明光を照射して観察する通常の内視鏡診断時には、制御部2は、図2に示す青色レーザ光源33からのレーザ光の出力をONにし、近紫外レーザ光源35をOFFにするか、あるいはシャッターにより出力を遮蔽する。この場合には、青色レーザ光源33からのレーザ光と、波長変換部材45の第1波長変換材の励起発光光とによって生成される白色照明光が被検体に照射される。また、内視鏡装置100による分光診断を行う際は、制御部2は、近紫外レーザ光源35の出力をONにして緑色光および青色光を被検体に照射する。そして、狭帯域の緑色光と青色光とを同時に照射した被検体からの反射光を撮像し、分光診断用の疑似カラー画像を生成する。例えば、撮像素子15による緑検出信号(狭帯域の緑色光の反射光成分)を赤色の色調、青検出信号を青色と緑色の色調に変換して疑似カラー画像を生成する。この疑似カラー画像によれば、被検体の表層の表面微細構造(毛細血管や粘膜微細構造等)を明瞭に観察することができる。例えば、中心波長445nmの青色レーザ光でピットおよび表層血管の描出、中心波長532nmのベータサイアロンによる狭帯域の緑色光で深部の微細血管や発赤を観察できるようになる。
ここで、分光診断を行う場合の具体的な制御例を説明する。
図6は、撮像光学系により撮像して時系列的に得た複数のフレーム画像(a)と、これらフレーム画像を並べ替えて表示する様子(b)を概念的に示す説明図である。ここでは、白色光による照明光下の観察像と、特定の可視波長帯域(緑色、青色)の光による照明光下の観察像とを、それぞれ別々にモニタ40に表示する制御を行う。
制御部29は、図6(a)に示すように、光源部31からの出射光を制御して、第1フレーム目では、中心波長445nmの青色レーザ光を出射させて白色光を被検体に照射する。撮像素子15は、白色光で照明された被検体を撮像し、その撮像信号を第1のメモリ51に保存する。
次に、制御部29は、光源部31による出射光を制御して、第2フレーム目では、中心波長375nmの近紫外レーザ光を出射させ、第2波長変換材により発生する緑色光と青色光とを被検体に照射する。撮像素子15は、緑色光と青色光で照明された被検体を撮像し、その撮像信号を第2のメモリ53に保存する。
以降、同様にして、第3フレーム(奇数フレーム)では第1フレーム目と同様に、第4フレーム(偶数フレーム)では第2フレームと同様に照明・撮像・撮像信号保存の処理を行うことを繰り返す。つまり、白色光の照明と、特定の可視波長帯域の光を含む照明とを撮像素子15の撮像フレーム毎に交互に切り換える。すると、図6(b)に示すように、第1のメモリ51には白色光による照明画像が蓄積され、第2のメモリ53には緑色光と青色光による狭帯域診断用画像が蓄積される。これら2種類の撮像信号による画像情報を、図7に示すように、モニタ上の異なる表示領域55、57に、第1のメモリと第2のメモリに保存された撮像信号をそれぞれ表示する。各表示領域のサイズは図示例では同一にしているが、いずれか一方を他方より大きく表示したり、いずれか一方の画像表示領域内に、他方の画像を小さく表示する等、任意に設定することができる。
このように、白色光の照明下の撮像画像と、特定の可視波長帯域の光を含む照明下の撮像画像とを交互に撮像することで、双方を略同時に画像取得することができ、2種類の画像情報をリアルタイムで同時に表示させることができる。また、それぞれの撮像画像を並べて表示することで、観察位置とその部位の性状が同時に把握でき、分光診断による診断精度を一層高められる。
また、特定の可視波長帯域の光を照射して撮像する際に、上記のようにLiTbW2O8 の緑色励起光、ベータサイアロンによる青色励起光の照明光の組み合わせ以外にも、種々の光成分の組み合わせが可能である。
例えば、青色レーザ光源33からのレーザ光を狭帯域の照明光を擬似的に単独で照射した場合の観察画像を得ることができる。その場合には、撮像光学系により撮像して時系列的に得た複数のフレーム画像に対して、撮像タイミングの異なるフレーム画像に跨った画像演算処理を行う。
つまり、それぞれ異なる特定の波長帯域光を検出した検出色画面(青、緑、赤の3原色の画面)を複数画面有して構成されるフレーム画像を、複数回にわたって撮像する一方、各フレーム画像の撮像タイミングに同期して複数種の光源からの光をそれぞれ異なる条件で照射する。第1光源により被検体を照明したときの観察画像を第1フレーム画像、第2光源により被検体を照明したときの観察画像を第2フレーム画像としたとき、第1フレーム画像と第2フレーム画像とを繰り返し撮像し、第1フレーム画像の特定の検出色画面の輝度情報と、第2フレーム画像の特定の検出画面の輝度情報とを演算処理して、光源装置からの特定の波長成分の光による観察画像を解析的に求める。
図8に、図6と同様に撮像した各フレーム画像に対して特定の検出色の画面に含まれる主要な光成分を示した。ここでは、第1波長変換材としてYAG蛍光体の代わりにベータサイアロン緑色蛍光体とCaAlSiN3赤色蛍光体とを用い、波長375nm、445nmのいずれの光であっても励起発光する蛍光体を用いている。図9にCaAlSiN3赤色蛍光体の励起スペクトルおよび発光スペクトルを示した。CaAlSiN3赤色蛍光体は、450nmの青色光で効率よく励起され、650nm付近の赤色光を発光する。この蛍光体の組み合わせよれば、青色レーザ光源33(図2参照)と近紫外レーザ光源35のいずれの光源からの光であっても、波長変換部材45を励起発光させることができる。したがって、出射する光成分が増えることで、光の利用効率が向上する。
図8に示すように、中心波長445nmのレーザ光を照射して撮像して得た撮像信号である第1フレームは、青色の検出光画面B1では、青色レーザ光源33からの中心波長445nmのレーザ光、第1波長変換材のベータサイアロンによる青色蛍光による照明光下での観察光が含まれ、緑色の検出光画面G1では、第1波長変換材のベータサイアロンによる緑光蛍光による照明光下での観察光が含まれ、赤色の検出光画面R1では、第1波長変換材のCaAlSiN3による赤色蛍光による照明光下での観察光が含まれる。
また、次に中心波長375nmのレーザ光を照射して撮像して得た撮像信号である第2フレームは、青色の検出光画面B2では、第2波長変換材のベータサイアロンによる青色蛍光による照明光下での観察光が含まれ、緑色の検出光画面G2では、第2波長変換材のベータサイアロンによる緑色蛍光、第2波長変換材のLiTbW2O8による狭帯幅の緑色蛍光による照明光下での観察光が含まれ、赤色の検出光画面R2では、第2波長変換材のCaAlSiN3からの赤色蛍光による照明光下での観察光が含まれる。
そして、次に中心波長445nmのレーザ光を照射して撮像して得た撮像信号である第3フレームは、第1フレームと同様の光成分となる。以降、同様に第4フレームは第2フレームと同様となり、第5フレームは第3フレーム(第1フレーム)と同様となって、これが繰り返される。
ここで、第2波長変換材のLiTbW2O8による狭帯域の緑色蛍光による観察光は、第1フレームのG1に含まれるが、ベータサイアロンによる青色蛍光による観察光に重畳されてブロードなスペクトルとなって、もともとの狭帯域の緑色蛍光による観察光は直接的に検出することはできない。そこで、第2フレームの緑色の検出光画面G2から第1フレームの緑色の検出光画面G1を減算して、ベータサイアロンの緑色蛍光成分を相殺することにより、LiTbW2O8による狭帯域の緑色蛍光成分のみによる観察光を選択的に抽出することができる。
同様に、狭波長帯域とされた445nmのレーザ光も同様に、第1フレームのB1に含まれるが、ベータサイアロンによる青色蛍光と重畳されて直接的に検出することはできない。そこで、B1からB2を減算すれば、445nmのレーザ光のみによる観察光を選択的に抽出することができる。
また、白色光による観察光画像についても、上記のフレーム間処理を実施することで、情報量をより多く含んだ画像として得ることが可能となる。白色光照明による観察光は、第1、第3フレーム(奇数フレーム)で得られるが、輝線成分となるレーザ光が混在する照明光よりも、むしろ第2フレームにおけるベータサイアロンによる比較的波長帯域幅の広い青色蛍光を用いた方が演色性を向上できる。そこで、白色光による観察光画像として、第1フレームをそのまま用いることなく、第1フレームのG1,R1と、第2フレームのB2を組み合わせることで、より演色性のよい白色光による観察光画像を得ることができる。
また、狭帯域照明光による観察光画像として、G2-G1で得られるLiTbW2O8による狭帯域の緑色蛍光成分と、B1-B2で得られる445nmのレーザ光成分による観察光画像を得ることができる。
さらに、これらの組み合わせ以外にも、任意に設定できることは言うまでもない。例えば、中心波長445nmの青色レーザ光で照明(白色照明)した観察画像を第1フレーム、中心波長405nmの緑色レーザ光により緑色の狭波長帯域で照明した観察画像を第2フレーム、中心波長375nmの近紫外レーザ光による青色の広波長帯域の励起発光光で照明した観察画像を第3フレームで取り込み、各フレームで相互に演算処理することも可能である。
上記のように、撮像して得られる各フレームの各検出光画面のそれぞれを適宜組み合わせて利用することで、診断に都合のよい画像情報を簡単に提供することができる。例えば、445nmのレーザ光による観察光を演算(B1-B2)により求め、これを青色と緑色の色調に割り当て、LiTbW2O8による狭帯域の緑色蛍光による観察光を演算(G2-G1)により求め、これを赤色の色調に割り当てる。このように、特定の波長成分の光による観察画像を、それぞれ特定の色調に変換して疑似カラーの強調画像を生成することで、組織表層部の毛細血管や腺管構造(ピットパターン)等が強調表示され、毛細血管が集中する悪性腫瘍の発見等に大きく寄与できる。
以上説明した内視鏡にとって有用な、青色や緑色の狭帯域の撮像信号取得に適した蛍光体の組み合わせや、時系列的な励起光源の切り替え、信号算出方法により、励起光の切り替えにより発光波長帯域を明確に分離、かつ選択的に発光させることができる。
これにより、粘膜の深い部分に到達しにくい青色光が組織の表層部の毛細血管を、また、組織の内部にまで行き届く緑色光が深部の血管をそれぞれ鮮明に映し出した画像を簡単にして得ることができる。また、上述した説明においては、青色レーザ光源33と近紫外レーザ光源35とのいずれか一方をONに、他方をOFFにして照明光を得ていたが、この他にも、これらレーザ光源を共にONにして蛍光体を励起させ、その状態で撮像して得た撮像画像を適宜な演算処理を施すことにより、所望の発光波長帯域の光成分を取り出すこともできる。
以上説明したように、本実施形態の内視鏡装置100によれば、照明光学系の光源としてレーザ光を用いることで、光ファイバーにより導光でき、高輝度の光を拡散を抑えて高効率で伝搬させることができる。また、白色光と特定の狭い可視波長帯域の光とを同一の光路から照射させる同軸照明構造としたため、新たに複数本の照明光学系を内視鏡の挿入部に設ける必要がなく、さらに導光路を光ファイバーで構成できるため、従前のライトガイド(光ファイバー束)を要することなく、内視鏡挿入部の細径化が図り易くなる。
また、特定の狭い可視波長帯域の光を生成する近紫外レーザ光源35からのレーザ光は、不可視光であるため、第2波長変換材によって全てが波長変換されずに、一部の光が第2波長変換材をそのまま通過しても、出射される照明光の色バランスを崩すことがない。したがって、体腔内の観察画像に色味変化を及ぼすことなく内視鏡の診断精度を高く維持できる。そして、近紫外レーザ光源35からの近紫外レーザ光は、第1波長変換材に対して吸収が殆どなく、光強度の低下が少ないため、光利用効率の高い照明光学系を構築できる。
上述の第2波長変換材の励起光は、波長帯域が半値幅で40nm以下に設定されることが好ましい。これは次の理由による。
CCDやCMOS等の撮像素子は、カラーフィルタを備えており、例えばR(赤)、G(緑)、B(青)の各原色(他にも補色としてシアン、マゼンタ、イエロー等の組み合わせもある)を特定検出色としてフルカラー画像情報を生成している。各検出色の光強度検出は、ある波長幅の有感度波長帯内の光強度を検出するが、実際には各検出色の波長が近接しており、有感度波長帯の一部が相互にオーバーラップしている。しかし、オーバーラップする領域が多いと混色が生じるため、通常、このオーバーラップする領域を狭めることがなされている。
有感度波長帯は、例えば、Bでは100nm以下、Gでは80nm以下、RではGとの混色防止のため100nm以下に設計される(本明細書では、これを実質的な有感度波長帯と呼称する)。したがって、撮像素子に混色の影響なく各検出色を検出するには、励起光の波長帯域をこの実質的な有感度波長帯よりも狭い波長幅にすればよい。換言すれば、波長変換部材45が励起発光する特定の可視波長帯域の発光スペクトル曲線のピークの半値幅が、カラーフィルタの特定検出色を検出する波長帯域のスペクトル感度曲線のピークの半値幅より狭い波長幅にする。これにより、特定の波長帯域の励起光が複数の有感度波長帯に跨って検出されることがなくなる。また、観察したい被検体に合わせてスペクトルの中心をカラーフィルタの中心からずらす場合もあり、その場合には、励起光の波長帯域の幅をより狭くする必要がある。
このため、第2波長変換材47の励起光の波長帯域の幅は、60nm以下、好ましくは40nm以下、さらに好ましくは20nm以下に設定する。また、光強度の観点からは10nm以上であることが好ましい。この励起光の波長帯域の幅は、第2波長変換材を適宜選定すること等により任意に設定できる。
また、撮像素子の光強度検出による理由の他に、狭帯域内視鏡(narrow band imaging :NBI)による診断を行う際に、狭帯域化が必要となる点も挙げられる。生体組織に照明光が照射されると、光は拡散的に伝播する。吸収や散乱特性が強いと、光は生体組織内の深くまで伝播されずに反射光として観察される。その吸収・散乱特性は、強い波長依存性を有し、波長が短いほど散乱特性が強くなり、光の生体組織への深達度は照射する光の波長によって決定される。特に、早期病変の診断に重要となる粘膜表面の微細構造の観察には、表面から浅い層内からの情報が重要となるので、その場合には、第2波長変換材の励起光の波長帯域を、所望の波長でしかも帯域を狭くすることで、観察目的とする層からの情報を選択的に抽出することが可能となる。
以上説明したように、各実施形態の内視鏡装置によれば、レーザ光と蛍光体の励起発光光とを含んで形成される白色光と、特定の狭い可視波長帯域の光とを、細径化を図りつつ簡単な構成で選択的に照射することができる。
なお、本光源装置およびこれを用いた内視鏡装置は、前述した各実施形態に限定されるものではなく、適宜、変形や改良等が可能である。例えば、白色光と特定の狭い可視波長帯域の光とを、内視鏡10の本体操作部11に設けたスイッチ等により、簡単な手元操作により切り換え自在とすることで、使い勝手を向上することができる。
内視鏡装置の概念的な構成図である。 図1の内視鏡装置に用いる光源装置の光学系の構成図である。 青色レーザ光が第1波長変換材により波長変換された後の光のスペクトル分布を示すグラフである。 第2波長変換材として用いるLiTbW2O8の励起スペクトルおよび発光スペクトルを示すグラフである。 第2波長変換材として用いるベータサイアロンの励起スペクトルおよび発光スペクトルを示すグラフである。 撮像光学系により撮像して時系列的に得た複数のフレーム画像(a)と、これらフレーム画像を並べ替えて表示する様子(b)を概念的に示す説明図である。 モニタ上の異なる表示領域に、第1のメモリと第2のメモリに保存された撮像信号をそれぞれ表示した様子を模式的に示す説明図である。 各フレーム画像に対する特定の検出色の画面に含まれる主要な光成分を示す説明図である。 CaAlSiN3赤色蛍光体の励起スペクトルおよび発光スペクトルを示すグラフである。
符号の説明
10 内視鏡
11 本体操作部
13 挿入部
15 固体撮像素子
19 照明用光学部材
20 光源装置
21 光ファイバー
27 撮像信号処理部
29 制御部
30 画像処理装置
31 光源部
33 青色レーザ光源
35 近紫外レーザ光源
39 偏光ビームスプリッタ
45 波長変換部材
51 第1のメモリ
53 第2のメモリ
55,57 表示領域
100 内視鏡装置

Claims (3)

  1. 青色の第1のレーザ光を出射する第1光源と、
    前記第1のレーザ光を光入射側に入射して伝送する光ファイバーと、
    該光ファイバーの光出射側に配置され、前記第1のレーザ光により緑色〜黄色の光を励起発光する第1波長変換材と、を有し、
    前記第1のレーザ光と前記第1波長変換材からの励起発光光とを混合して白色光を得る光源装置であって、
    前記青色の第1のレーザ光の中心波長より短波長となる紫乃至近紫外の中心波長の第2のレーザ光を出射する第2光源と、
    前記第2のレーザ光を前記光ファイバーの光入射側の光路に導入する光カップリング手段と、
    前記光ファイバーの光出射側より光路前方に設けられ、前記青色の第1のレーザ光と前記紫乃至近紫外の中心波長の第2のレーザ光により赤色光を励起発光する第2波長変換材と、
    を備えたことを特徴とする光源装置。
  2. 請求項1記載の光源装置であって、
    前記第1波長変換材と前記第2波長変換材の各蛍光物質を分散配置して一体に形成、あるいは前記第1波長変換材と前記第2波長変換材とを積層して一体に形成した波長変換部材を備えたことを特徴とする光源装置。
  3. 請求項1又は請求項2記載の光源装置と、
    前記光源装置の光ファイバーの光出射部を内視鏡挿入部の先端側に配置して被検体を照明する照明光学系、および被検体からの光を受光して撮像信号を出力する撮像素子を含む撮像光学系を有する内視鏡と、
    前記第1光源と前記第2光源からの各レーザ光の出射制御を行う制御手段と、
    を備えたことを特徴とする内視鏡装置。
JP2008152932A 2008-06-04 2008-06-11 光源装置およびこれを用いた内視鏡装置 Expired - Fee Related JP5285967B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008152932A JP5285967B2 (ja) 2008-06-11 2008-06-11 光源装置およびこれを用いた内視鏡装置
EP10171389A EP2241244A1 (en) 2008-06-04 2009-06-04 Illumination device for use in endoscope
US12/478,704 US8506478B2 (en) 2008-06-04 2009-06-04 Illumination device for use in endoscope
DE602009001103T DE602009001103D1 (de) 2008-06-04 2009-06-04 Beleuchtungsvorrichtung zur Verwendung in Endoskopen
EP09007428A EP2130484B1 (en) 2008-06-04 2009-06-04 Illumination device for use in endoscope
AT09007428T ATE506000T1 (de) 2008-06-04 2009-06-04 Beleuchtungsvorrichtung zur verwendung in endoskopen
US12/837,124 US8337400B2 (en) 2008-06-04 2010-07-15 Illumination device for use in endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152932A JP5285967B2 (ja) 2008-06-11 2008-06-11 光源装置およびこれを用いた内視鏡装置

Publications (2)

Publication Number Publication Date
JP2009297141A JP2009297141A (ja) 2009-12-24
JP5285967B2 true JP5285967B2 (ja) 2013-09-11

Family

ID=41544681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152932A Expired - Fee Related JP5285967B2 (ja) 2008-06-04 2008-06-11 光源装置およびこれを用いた内視鏡装置

Country Status (1)

Country Link
JP (1) JP5285967B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009297290A (ja) * 2008-06-13 2009-12-24 Fujifilm Corp 内視鏡装置およびその画像処理方法
JP2011156339A (ja) * 2010-01-08 2011-08-18 Fujifilm Corp 医療機器及び内視鏡装置
JP2012050641A (ja) * 2010-08-31 2012-03-15 Fujifilm Corp 内視鏡システム
JP5455856B2 (ja) * 2010-09-27 2014-03-26 富士フイルム株式会社 温度調節装置および温度調節方法、光源装置ならびに内視鏡診断装置
JP5526000B2 (ja) * 2010-11-15 2014-06-18 富士フイルム株式会社 内視鏡及び内視鏡用光源装置
JP5600568B2 (ja) * 2010-12-01 2014-10-01 富士フイルム株式会社 内視鏡装置
JP5600569B2 (ja) * 2010-12-01 2014-10-01 富士フイルム株式会社 内視鏡装置
JP5159904B2 (ja) * 2011-01-11 2013-03-13 富士フイルム株式会社 内視鏡診断装置
JP5631757B2 (ja) * 2011-01-19 2014-11-26 富士フイルム株式会社 電子内視鏡システム
JP5380581B2 (ja) * 2012-06-08 2014-01-08 株式会社フジクラ 照明構造及び内視鏡
JP6103959B2 (ja) * 2013-01-29 2017-03-29 オリンパス株式会社 光源装置及び被検体観察装置並びに光源制御方法
JP2014171511A (ja) * 2013-03-06 2014-09-22 Olympus Corp 被検体観察システム及びその方法
JP6412709B2 (ja) 2014-04-02 2018-10-24 オリンパス株式会社 観察画像取得システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061909A (ja) * 2001-08-22 2003-03-04 Pentax Corp 光源装置及び電子内視鏡装置
JP4198086B2 (ja) * 2003-06-25 2008-12-17 オリンパス株式会社 蛍光観察用装置
DE202005022114U1 (de) * 2004-10-01 2014-02-10 Nichia Corp. Lichtemittierende Vorrichtung
JP2006173324A (ja) * 2004-12-15 2006-06-29 Nichia Chem Ind Ltd 発光装置

Also Published As

Publication number Publication date
JP2009297141A (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5285967B2 (ja) 光源装置およびこれを用いた内視鏡装置
JP5216429B2 (ja) 光源装置および内視鏡装置
JP5371946B2 (ja) 内視鏡診断装置
JP5114024B2 (ja) 光イメージング装置
JP2009297290A (ja) 内視鏡装置およびその画像処理方法
JP5460507B2 (ja) 内視鏡装置の作動方法及び内視鏡装置
JP5073579B2 (ja) 撮像装置
JP6505792B2 (ja) 内視鏡用光源装置及び内視鏡システム
JP5159904B2 (ja) 内視鏡診断装置
WO2014136706A1 (ja) 被検体観察システム及び方法
JP5485191B2 (ja) 内視鏡装置
EP2241244A1 (en) Illumination device for use in endoscope
US20070213593A1 (en) Endoscope system
US20120248333A1 (en) Device For Fluorescence Diagnosis
JP2012016545A (ja) 内視鏡装置
JP5371858B2 (ja) 電子内視鏡装置
US20150327755A1 (en) Light source device and subject observation apparatus as well as light source control method
JP2010022700A (ja) 内視鏡システム
JP2012130504A (ja) 内視鏡システム、内視鏡システムのプロセッサ装置、及び画像生成方法
WO2014104095A1 (ja) 被検体観察システム及び方法、カプセル型内視鏡システム
JP2018089109A (ja) 内視鏡装置及び内視鏡装置の作動方法
WO2015029709A1 (ja) 内視鏡システム
JP2009291347A (ja) 光源装置およびこれを用いた内視鏡装置
JP2012050641A (ja) 内視鏡システム
JP2012070839A (ja) 光源装置および内視鏡診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5285967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees