JP2005306174A - タイヤ性能予測方法 - Google Patents

タイヤ性能予測方法 Download PDF

Info

Publication number
JP2005306174A
JP2005306174A JP2004124695A JP2004124695A JP2005306174A JP 2005306174 A JP2005306174 A JP 2005306174A JP 2004124695 A JP2004124695 A JP 2004124695A JP 2004124695 A JP2004124695 A JP 2004124695A JP 2005306174 A JP2005306174 A JP 2005306174A
Authority
JP
Japan
Prior art keywords
material property
tire
temperature
property value
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004124695A
Other languages
English (en)
Inventor
Yoshihiro Tanaka
嘉宏 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2004124695A priority Critical patent/JP2005306174A/ja
Publication of JP2005306174A publication Critical patent/JP2005306174A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

【課題】転がり抵抗等のタイヤ性能を高精度に予測する。
【解決手段】タイヤについてFEMモデルを作成し(1)、材料物性値(ヤングモジュラスとtanδ)の初期値を与え(2)、実使用状態に相当する条件下で静解析により歪みサイクルを求め(3)、該歪みサイクルからエネルギー損失率を算出し(4)、該エネルギー損失率を用いた熱解析により各有限要素の温度を求めてタイヤの温度分布を求め(5)、該温度分布が定常状態に到達したか否かを判定し(6)、到達していない場合に、各有限要素につき、材料物性値と温度との既知の対応関係から、熱解析で求めた温度に応じて材料物性値を更新して(7)、解析を繰り返し、温度分布が定常状態に到達した時点でタイヤ性能を予測する(8)。
【選択図】 図1

Description

本発明は、タイヤの性能を高精度に予測することができるタイヤ性能予測方法に関するものである。
FEM(有限要素法)モデルを用いたシミュレーションによる製品性能予測は、試作費用や時間の節約等を目的として、様々な分野で行われており(例えば、下記特許文献1参照)、タイヤにおいてもFEMモデルを用いた性能予測が試みられている。
従来、かかるシミュレーションによりタイヤ性能を予測する際、FEMモデルに用いられる材料物性値(ヤングモジュラスやtanδ等)としては、一般に1つの条件下で個々の材料物性値を測定した値を用いて、その測定値をFEMモデルに適用して種々の条件でのFEM解析が実施されている。
図6は、タイヤの転がり抵抗を予測する際の従来手法の流れを示すフローチャートである。図示するように、従来手法では、まず、ステップ11において、解析対象となるタイヤのFEMモデルを作成し、ステップ12において、ヤングモジュラスやtanδ(損失係数)などの材料物性値を定義する。その際、材料物性値は、タイヤを構成する各材料について、ある一定の温度、周波数及び歪みで測定した値を用いる。そして、ステップ13において、このFEMモデルを仮想リムに装着し、実使用状態に相当する空気圧を与え、更に実使用状態に相当する垂直荷重をリム中心に負荷して、静解析を実施する。この静解析において、上記ヤングモジュラスから各有限要素について歪みサイクルが求められる。次いで、ステップ14において、歪みサイクルとtanδからエネルギー損失率を計算する。そして、ステップ15において、上記エネルギー損失率から転がり抵抗を求める(下記非特許文献1参照)。
このように図6の手法では、材料物性値の定義において材料の温度、歪み、周波数依存性を考慮せずに転がり抵抗を予測しているが、転がり抵抗においてはこれらの条件がその値を左右する重要な要因となるため、上記従来の手法では転がり抵抗の高精度予測には至っていないのが実情である。
この点に関し、下記非特許文献2には、材料物性値が温度による影響を受けることを考慮して、上記ステップ14のエネルギー損失率の算出後に、熱解析を行うことでタイヤの温度分布を求め、この温度分布が定常状態に到達したか否かを判定して、定常状態に到達するまで上記ステップ13以降の静解析、エネルギー損失率の算出及び熱解析を繰り返し、定常状態に到達した時点で転がり抵抗の予測を行うことが開示されている。
しかしながら、この非特許文献2には、熱解析後の収束判定により温度分布が定常状態に到達していなかった場合に、材料物性値をどのように更新するかについては全く開示されておらず、そのため、効率的な高精度予測にはなお問題があった。
特開2002−365205号公報 Theodore C. Warholic,"Tire Rolling Loss Prediction from the Finite Element Analysis of a Statically Loaded Tire", Thesis, Degree of Motor of Science in Mechanical Engineering, University of Akron, 米国, 1987 H. C. Park 他3名,"Analysis of Temperature Distribution in a Rolling Tire Due to Strain Energy Dissipation", Tire Science and Technology, TSTCA, Vol.25, No.3, July-September, 1997, 韓国, p.214-228
本発明は、以上の点に鑑みてなされたものであり、転がり抵抗等のタイヤ性能を高精度に予測することができるタイヤ性能予測方法を提供することを目的とする。
本発明に係るタイヤ性能予測方法は、次のステップを含むものである。
(a)タイヤについて有限要素に分割したFEMモデルを作成するステップ、
(b)該タイヤについての材料物性値の初期値を与えるステップ、
(c)前記FEMモデルにつき実使用状態に相当する条件下で解析することにより各有限要素について前記材料物性値からエネルギー損失率を求めるステップ、
(d)前記エネルギー損失率を用いた熱解析により各有限要素の温度を求めてタイヤの温度分布を求めるステップ、
(e)前記温度分布が定常状態に到達したか否かを判定するステップ、
(f)前記ステップ(e)で前記温度分布が定常状態に到達していないと判定したとき、各有限要素につき、前記材料物性値を、材料物性値と温度との既知の対応関係から、前記ステップ(d)で求めた温度に応じて更新して、前記ステップ(c)に戻るステップ、
(g)前記ステップ(e)で前記温度分布が定常状態に到達したと判定したときに、当該温度分布でのFEMモデルからタイヤ性能を予測するステップ。
かかる本発明のタイヤ性能予測方法において、材料物性値の定義とエネルギー損失率の算出については、実使用状態に相当する条件下でのFEM解析により各有限要素についてエネルギー損失率を求めることができるものであれば、特に限定されない。好ましくは、前記ステップ(b)において、前記材料物性値として第1の材料物性値と第2の材料物性値を与え、前記ステップ(c)において、前記FEMモデルにつき実使用状態に相当する条件下で静解析を実施して各有限要素について前記第1の材料物性値から歪みを求め、次いで、該歪みと前記第2の材料物性値から各有限要素についてエネルギー損失率を求め、更に、前記ステップ(f)において、各有限要素につき、前記第1及び第2の材料物性値を、それぞれ材料物性値と温度との既知の対応関係から、前記ステップ(d)で求めた温度に応じて更新することである。この場合、第1の材料物性値としては、静解析により各有限要素について歪みを求めることができれば、特に限定されないが、好ましくはヤングモジュラスが用いられる。また、第2の材料物性値としては、上記歪みを用いてエネルギー損失率を算出することできれば、特に限定されないが、好ましくはtanδ(損失係数)が用いられる。
上記のステップ(f)では材料の温度依存性を考慮して材料物性値を更新しているが、温度依存性とともに歪み依存性も考慮して更新することにより、更に高精度な予測が可能となる。すなわち、本発明では、前記ステップ(f)において、材料物性値と温度と歪みとの既知の対応関係から、前記ステップ(d)で求めた温度と、前記ステップ(c)で求めた歪みに応じて、前記材料物性値を更新するようにしてもよい。
また、材料の温度依存性とともに周波数依存性を考慮して材料物性値を更新してもよく、すなわち、本発明では、前記ステップ(c)において、前記静解析の結果に基づいて周波数を求め、前記ステップ(f)において、材料物性値と温度と周波数との既知の対応関係から、前記ステップ(d)で求めた温度と、前記ステップ(c)で求めた周波数に応じて、前記材料物性値を更新するようにしてもよい。
更にまた、より高精度の予測を行うべく、材料の温度依存性とともに歪み依存性と周波数依存性を考慮して材料物性値を更新してもよく、すなわち、本発明では、前記ステップ(c)において、前記静解析の結果に基づいて周波数を求め、前記ステップ(f)において、材料物性値と温度と歪みと周波数との既知の対応関係から、前記ステップ(d)で求めた温度と、前記ステップ(c)で求めた歪み及び周波数に応じて、前記材料物性値を更新するようにしてもよい。
本発明のタイヤ性能予測方法は、前記ステップ(g)において、定常状態に到達したときの温度分布でのエネルギー損失率から転がり抵抗を予測するものであってもよい。
本発明によれば、材料の温度依存性、好ましくは更に歪み依存性及び/又は周波数依存性を考慮して材料物性値を更新するようにしたので、転がり抵抗等のタイヤ性能を高精度に予測することができる。
以下、本発明の実施形態について図面を参照して説明する。
図1は実施形態にかかるタイヤ性能予測方法の流れを示すフローチャートであり、コンピュータを用いて実施することができる。より詳細には、下記ステップ1〜8をコンピュータに実行させるためのプログラムを作成しておき、このプログラムを入力したコンピュータを用いることにより本実施形態の性能予測方法を実施することができる。
本実施形態では、まず、ステップ1において、解析対象となるタイヤについて初期FEMモデルを作成する。より詳細には、自然平衡状態のタイヤ断面形状を基準形状とし、この基準形状を有限要素法(FEM)によりモデル化して、内部構造を含むタイヤ断面形状を表すと共にメッシュ分割によって複数の有限要素に分割されたタイヤFEMモデルを作成する。図2,3はFEMモデルの一例を示したものであり、図2に示すように、タイヤ断面は複数の有限要素に分割され、これら各有限要素は、図3に示すようにタイヤ周方向に複数に分割されている。なお、図3の例では、タイヤ周方向において均等な角度で分割しているが、このような均等分割には限られず、例えば、接地面側が細かくメッシュ分割されていてもよい。
次のステップ2では、材料物性値を定義し、その初期値を与える。材料物性値は、トレッドゴム、サイドウォールゴム、ベルト層、カーカス層などタイヤを構成する各材料毎に定義され、その初期値として、ある一定の温度、歪み及び周波数の条件下で予め測定した値をそれぞれ付与する。従って、初期値では、材料が同一であれば、付与される材料物性値も同じ値となる。ここで、本実施形態では、材料物性値としてヤングモジュラス(引張のヤングモジュラス及びせん断のヤングモジュラス)とtanδを定義する。
次のステップ3では、実使用状態に相当するリムサイズの仮想リムにタイヤFEMモデルを装着して剛体結合し、これに実使用状態に相当する空気圧を与え、更に、実使用状態に相当する垂直荷重を仮想リムのリム中心に負荷して静解析(構造解析、荷重解析とも言う。)を実施する。
この静解析では、上記FEMモデルに各材料の材料物性値としてヤングモジュラスを入力することにより、各有限要素について歪みを求める。詳細には、各有限要素についてタイヤ周方向に分割された要素毎に歪みを求めることにより、タイヤ周方向における歪み分布を表す歪みサイクルを求める。図4(a)は、ある有限要素(図2において黒塗りした要素X)についての周方向での引張歪み分布の一例を示すグラフ、図4(b)は、該有限要素についての周方向でのせん断歪み分布の一例を示すグラフであり、このような歪みサイクルを求める。
本実施形態では、また、このステップ3において、前記静解析で得られた歪みサイクルから歪みの周波数を求める。歪みの周波数は、歪みサイクル(タイヤ周方向における歪み分布)をフーリエ級数展開により所定次数(例えば20次)まで次数分解したとき、その中で最も支配的な次数成分の周波数である。ここで、最も支配的な次数成分とは、振幅が最大となる次数成分である。
次のステップ4では、ステップ3で得られた歪みサイクルと、材料物性値としてのtanδとを用いて、図2に示すタイヤ断面内の各有限要素について、エネルギー損失率(タイヤ一周分のエネルギー損失率)を計算する。エネルギー損失率の計算は、例えば上記非特許文献1に記載された方法により行うことができ、すなわち、下記式(1)によりエネルギー損失率を計算することができる。
Figure 2005306174
次いで、ステップ5において、上記エネルギー損失率をエネルギー源として用いて熱解析(熱伝導解析)を実施することにより、各有限要素の温度を求めてタイヤの温度分布を求める。熱解析は、例えば上記非特許文献2に記載の方法により行うことができ、各材料の熱伝導係数(率)を入力するとともに、温度に関する境界条件(タイヤ外表面およびタイヤ内面の温度等)を付与した上で、上記エネルギー損失率から発熱量を求めて熱伝導を解析することにより、各有限要素の温度を求めることができる。本実施形態では、図2に示すタイヤ断面での各有限要素は、タイヤ周方向において同じ温度を持つことになる。
そして、ステップ6において、上記で求めた温度分布が収束しているかどうか、即ち定常状態に到達したか否かを判定する。収束判定に際しては、本実施形態では、各有限要素の温度を合計し、この合計値が前回の熱解析で得られた温度分布の合計値との対比により一定の値に収束したかを判定する。その際の判定方法は特に限定されず、例えば熱流体数値計算における平均自乗残差による収束判定を用いることができる。そして、収束していないと判定した場合にはステップ7に進み、収束したと判定した場合にはステップ8に進む。なお、初回の温度分布導出後の収束判定では、対比するものがないため、収束していないと判定して、ステップ7に進む。
ステップ7では、各有限要素について、材料物性値と温度と歪みと周波数との既知の対応関係から、ステップ5で求めた温度と、ステップ3で求めた歪み及びその周波数に応じて、材料物性値を更新する。更新は、この実施形態では、各有限要素についてタイヤ周方向に分割された要素毎に行う。
詳細には、タイヤを構成する各材料について、予め、温度と歪みと周波数の条件をふって各条件での材料物性値を測定して、材料物性値と、温度、歪み及び周波数との関係を求めておく。図5は、そのような関係の一例を示したものであり、(a)は、周波数=20Hzでの低歪み条件(例えば2%)と高歪み条件(例えば10%)における温度とヤングモジュラスとの関係を示したもの、(b)は、周波数=20Hzでの低歪み条件と高歪み条件における温度とtanδとの関係を示したものである。このような図を、各周波数毎に求めておくことにより、材料物性値と温度と歪みと周波数との対応関係が得られる。なお、このような対応関係は、データベースとしてコンピュータの記憶手段に予め記憶させておけば、該データベースを用いて更新を行うことができる。
そして、この対応関係を用い、各有限要素について、ステップ5で求められた温度、ステップ3で求められた歪み及びその周波数から、対応するヤングモジュラス及びtanδを求めて、その値をそれぞれの有限要素における材料物性値の更新値とする。ここで、歪みについては、図4に示す歪みサイクルにおいて、タイヤ周方向の各要素の歪みに相当する値を用いればよい。例として、ある有限要素につき、上記で求めた温度が35℃、歪みが10%、歪みの周波数が20Hzの場合には、図5(a)より、ヤングモジュラスの更新値として4MPaが得られ、また、図5(b)より、tanδの更新値として0.1が得られる。なお、この例では、歪みは2%と10%の2条件としているが、3条件以上について求めておいてもよい。また、例えば歪みが上記2条件の間の値(例えば5%)であった場合には、上記2条件の値から補間して求めればよい。この点は周波数についても同様である。また、ヤングモジュラスについては、引張とせん断のそれぞれについて上記のような関係を求めておき、それぞれ更新すればよい。
このようにして各有限要素における材料物性値を更新した後、ステップ3に戻り、ステップ3〜7を繰り返し実行する。そして、ステップ6で温度分布が収束したと判定した場合には、ステップ8に進み、当該温度分布でのFEMモデルからタイヤ性能を予測する。本実施形態では、定常状態に到達したときの温度分布でのエネルギー損失率から転がり抵抗を予測する。転がり抵抗の予測は、各有限要素のエネルギー損失率を合計してタイヤ全体のエネルギー損失率を求めることにより行う。
このようなタイヤ性能の予測は、1つのタイヤについて上記したFEM解析を行って転がり抵抗値を予測することもできるが、通常は、複数のタイヤについてそれぞれ上記FEM解析を実施することにより、複数のタイヤ間での性能の比較評価を行うために用いられる。例えば、あるタイヤに対し、その転がり抵抗性能を改良するためにトレッドのゴム配合を変更したタイヤを開発する際に、その基準タイヤと開発タイヤを用いて、基準タイヤと比較した開発タイヤの性能評価のために、本実施形態の方法を使用することができる。その場合、上記転がり抵抗の予測は、ステップ8でエネルギー損失率の合計値を求め、この合計値同士を比較することにより行うことができ、必ずしも転がり抵抗値を算出して比較する必要はない。
なお、上記実施形態では、転がり抵抗を予測する場合について説明したが、本発明では、転がり抵抗に限られず、他のタイヤ性能を予測する場合にも適用することができる。例えば、本発明によれば、温度分布に即した正確なエネルギー損失率を求めることができるので、各有限要素の単位体積当たりエネルギー損失率の大きさからタイヤの耐久性を予測することができ、ベルト端部の高速耐久性の予測に適用することも可能である。
また、上記実施形態では、ステップ7において、温度と、歪みと、歪みの周波数の全ての依存性を考慮して、材料物性値を更新することとしたが、本発明はこれには限られない。例えば、温度依存性のみ、温度依存性と歪み依存性、又は、温度依存性と周波数依存性を考慮して、材料物性値を更新してもよく、その場合、考慮しない条件は一定として他の条件をふって材料物性値を測定し、上記対応関係を求めておけばよい。但し、本発明では、上記三者の全ての依存性を考慮することが、予測精度を高める上で有利である。
タイヤサイズが共に185/65R15であり、トレッドキャップゴム配合が異なる2つの空気入りラジアルタイヤ(タイヤA(コントロールタイヤ)、タイヤB(開発タイヤ))について、上記した本実施形態の方法に従って転がり抵抗を予測し、タイヤAの予測値を100とした指数表示によりタイヤBの予測値を下記表1に示した。また、比較例として、図6に示す従来の手法によりタイヤAとタイヤBについて転がり抵抗を予測し、同様にタイヤAの予測値を100とした指数表示によりタイヤBの予測値を下記表1に示した。更に、タイヤAとタイヤBについて転がり抵抗を実測し、タイヤAの実測値を100とした指数表示によりタイヤBの実測値を下記表1に示した。なお、両タイヤA、Bについて、リムサイズは15×6JJ、空気圧は210kPa、荷重は3430N、タイヤ速度は80km/hとした。また、転がり抵抗の実測値は、SAE J1269に準拠して測定した。
Figure 2005306174
表1に示すように、従来の手法に比べて、本発明に係る実施形態の手法では、実測値に近い解析結果が得られ、タイヤ性能の高精度の予測が可能であることが確認された。
本発明は、転がり抵抗を始めとするタイヤ性能を高精度に予測することができ、そのため、タイヤの開発及び性能評価に利用することができる。
本発明の1実施形態に係るタイヤ性能予測方法の流れを示すフローチャートである。 タイヤ断面を複数の有限要素に分割したFEMモデルの図である。 該FEMモデルの側面図である。 該FEMモデルの周方向における(a)引張歪み及び(b)せん断歪みの分布を示すグラフである。 (a)はヤングモジュラスと温度との関係を示すグラフ、(b)はtanδと温度との関係を示すグラフである。 従来のタイヤ性能予測方法の流れを示すフローチャートである。

Claims (7)

  1. (a)タイヤについて有限要素に分割したFEMモデルを作成するステップと、
    (b)該タイヤについての材料物性値の初期値を与えるステップと、
    (c)前記FEMモデルにつき実使用状態に相当する条件下で解析することにより各有限要素について前記材料物性値からエネルギー損失率を求めるステップと、
    (d)前記エネルギー損失率を用いた熱解析により各有限要素の温度を求めてタイヤの温度分布を求めるステップと、
    (e)前記温度分布が定常状態に到達したか否かを判定するステップと、
    (f)前記ステップ(e)で前記温度分布が定常状態に到達していないと判定したとき、各有限要素につき、前記材料物性値を、材料物性値と温度との既知の対応関係から、前記ステップ(d)で求めた温度に応じて更新して、前記ステップ(c)に戻るステップと、
    (g)前記ステップ(e)で前記温度分布が定常状態に到達したと判定したときに、当該温度分布でのFEMモデルからタイヤ性能を予測するステップと、
    を含むタイヤ性能予測方法。
  2. 前記ステップ(b)において、前記材料物性値として第1の材料物性値と第2の材料物性値を与え、
    前記ステップ(c)において、前記FEMモデルにつき実使用状態に相当する条件下で静解析を実施して各有限要素について前記第1の材料物性値から歪みを求め、次いで、該歪みと前記第2の材料物性値から各有限要素についてエネルギー損失率を求め、
    前記ステップ(f)において、各有限要素につき、前記第1及び第2の材料物性値を、それぞれ材料物性値と温度との既知の対応関係から、前記ステップ(d)で求めた温度に応じて更新する
    ことを特徴とする請求項1記載のタイヤ性能予測方法。
  3. 前記第1の材料物性値がヤングモジュラスであり、前記第2の材料物性値がtanδであることを特徴とする請求項2記載のタイヤ性能予測方法。
  4. 前記ステップ(f)において、材料物性値と温度と歪みとの既知の対応関係から、前記ステップ(d)で求めた温度と、前記ステップ(c)で求めた歪みに応じて、前記材料物性値を更新することを特徴とする請求項2又は3記載のタイヤ性能予測方法。
  5. 前記ステップ(c)において、前記静解析の結果に基づいて周波数を求め、
    前記ステップ(f)において、材料物性値と温度と周波数との既知の対応関係から、前記ステップ(d)で求めた温度と、前記ステップ(c)で求めた周波数に応じて、前記材料物性値を更新することを特徴とする請求項2又は3記載のタイヤ性能予測方法。
  6. 前記ステップ(c)において、前記静解析の結果に基づいて周波数を求め、
    前記ステップ(f)において、材料物性値と温度と歪みと周波数との既知の対応関係から、前記ステップ(d)で求めた温度と、前記ステップ(c)で求めた歪み及び周波数に応じて、前記材料物性値を更新することを特徴とする請求項2又は3記載のタイヤ性能予測方法。
  7. 前記ステップ(g)において、定常状態に到達したときの温度分布でのエネルギー損失率から転がり抵抗を予測することを特徴とする請求項1〜6のいずれかに記載のタイヤ性能予測方法。
JP2004124695A 2004-04-20 2004-04-20 タイヤ性能予測方法 Pending JP2005306174A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124695A JP2005306174A (ja) 2004-04-20 2004-04-20 タイヤ性能予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124695A JP2005306174A (ja) 2004-04-20 2004-04-20 タイヤ性能予測方法

Publications (1)

Publication Number Publication Date
JP2005306174A true JP2005306174A (ja) 2005-11-04

Family

ID=35435418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124695A Pending JP2005306174A (ja) 2004-04-20 2004-04-20 タイヤ性能予測方法

Country Status (1)

Country Link
JP (1) JP2005306174A (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175937A (ja) * 2004-12-21 2006-07-06 Sumitomo Rubber Ind Ltd タイヤのシミュレーション方法
JP2007131209A (ja) * 2005-11-11 2007-05-31 Bridgestone Corp タイヤの数値解析モデルとその作成方法、及び、タイヤの転がり抵抗の解析方法とその数値解析モデル
JP2007210527A (ja) * 2006-02-10 2007-08-23 Bridgestone Corp タイヤの温度分布予測方法とタイヤの温度分布予測計算プログラム
JP2007210528A (ja) * 2006-02-10 2007-08-23 Bridgestone Corp タイヤの温度分布予測方法、熱解析モデル、及び、タイヤの温度分布予測計算プログラム
JP2009222656A (ja) * 2008-03-18 2009-10-01 Yokohama Rubber Co Ltd:The ベルト体の走行発熱予測方法および走行抵抗力予測方法並びに回転体の走行発熱予測方法および転動抵抗予測方法
JP2010033446A (ja) * 2008-07-30 2010-02-12 Yokohama Rubber Co Ltd:The 粘弾性体のシミュレーション方法
JP2010033427A (ja) * 2008-07-30 2010-02-12 Yokohama Rubber Co Ltd:The 粘弾性体のシミュレーション方法およびシミュレーション装置
JP2010030519A (ja) * 2008-07-30 2010-02-12 Yokohama Rubber Co Ltd:The 構造体のシミュレーション方法および装置
JP2010036733A (ja) * 2008-08-05 2010-02-18 Yokohama Rubber Co Ltd:The タイヤの転がり抵抗のシミュレーション方法および装置
JP2011089788A (ja) * 2009-10-20 2011-05-06 Yokohama Rubber Co Ltd:The 粘弾性試験方法、タイヤのシミュレーション方法およびタイヤのシミュレーション装置
JP2012030702A (ja) * 2010-07-30 2012-02-16 Yokohama Rubber Co Ltd:The タイヤのシミュレーション方法及びタイヤのシミュレーション用コンピュータプログラム
JP2012078252A (ja) * 2010-10-04 2012-04-19 Toyo Tire & Rubber Co Ltd タイヤ性能予測方法、その装置及びプログラム
JP2013075654A (ja) * 2011-09-15 2013-04-25 Sumitomo Rubber Ind Ltd タイヤの耐久性評価方法及びこれを用いた設計方法
CN103260910A (zh) * 2010-12-13 2013-08-21 株式会社普利司通 推荐轮胎选择系统
JP2014024416A (ja) * 2012-07-25 2014-02-06 Sumitomo Rubber Ind Ltd タイヤの耐久性評価方法及びこれを用いた設計方法
JP2017219477A (ja) * 2016-06-09 2017-12-14 株式会社ブリヂストン タイヤ劣化状態予測方法
WO2018045721A1 (zh) * 2016-09-08 2018-03-15 东南大学 一种温度场-热路直接耦合的电机热分析方法
JP7401286B2 (ja) 2019-12-17 2023-12-19 Toyo Tire株式会社 タイヤの評価方法
JP7406092B2 (ja) 2020-02-27 2023-12-27 横浜ゴム株式会社 タイヤシミュレーション方法、プログラム、及びタイヤシミュレーション装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175937A (ja) * 2004-12-21 2006-07-06 Sumitomo Rubber Ind Ltd タイヤのシミュレーション方法
JP4608306B2 (ja) * 2004-12-21 2011-01-12 住友ゴム工業株式会社 タイヤのシミュレーション方法
JP2007131209A (ja) * 2005-11-11 2007-05-31 Bridgestone Corp タイヤの数値解析モデルとその作成方法、及び、タイヤの転がり抵抗の解析方法とその数値解析モデル
JP2007210527A (ja) * 2006-02-10 2007-08-23 Bridgestone Corp タイヤの温度分布予測方法とタイヤの温度分布予測計算プログラム
JP2007210528A (ja) * 2006-02-10 2007-08-23 Bridgestone Corp タイヤの温度分布予測方法、熱解析モデル、及び、タイヤの温度分布予測計算プログラム
JP2009222656A (ja) * 2008-03-18 2009-10-01 Yokohama Rubber Co Ltd:The ベルト体の走行発熱予測方法および走行抵抗力予測方法並びに回転体の走行発熱予測方法および転動抵抗予測方法
JP2010033446A (ja) * 2008-07-30 2010-02-12 Yokohama Rubber Co Ltd:The 粘弾性体のシミュレーション方法
JP2010033427A (ja) * 2008-07-30 2010-02-12 Yokohama Rubber Co Ltd:The 粘弾性体のシミュレーション方法およびシミュレーション装置
JP2010030519A (ja) * 2008-07-30 2010-02-12 Yokohama Rubber Co Ltd:The 構造体のシミュレーション方法および装置
JP2010036733A (ja) * 2008-08-05 2010-02-18 Yokohama Rubber Co Ltd:The タイヤの転がり抵抗のシミュレーション方法および装置
JP2011089788A (ja) * 2009-10-20 2011-05-06 Yokohama Rubber Co Ltd:The 粘弾性試験方法、タイヤのシミュレーション方法およびタイヤのシミュレーション装置
JP2012030702A (ja) * 2010-07-30 2012-02-16 Yokohama Rubber Co Ltd:The タイヤのシミュレーション方法及びタイヤのシミュレーション用コンピュータプログラム
JP2012078252A (ja) * 2010-10-04 2012-04-19 Toyo Tire & Rubber Co Ltd タイヤ性能予測方法、その装置及びプログラム
CN103260910A (zh) * 2010-12-13 2013-08-21 株式会社普利司通 推荐轮胎选择系统
CN103260910B (zh) * 2010-12-13 2015-11-25 株式会社普利司通 推荐轮胎选择系统
JP2013075654A (ja) * 2011-09-15 2013-04-25 Sumitomo Rubber Ind Ltd タイヤの耐久性評価方法及びこれを用いた設計方法
JP2014024416A (ja) * 2012-07-25 2014-02-06 Sumitomo Rubber Ind Ltd タイヤの耐久性評価方法及びこれを用いた設計方法
JP2017219477A (ja) * 2016-06-09 2017-12-14 株式会社ブリヂストン タイヤ劣化状態予測方法
WO2017212915A1 (ja) * 2016-06-09 2017-12-14 株式会社ブリヂストン タイヤ劣化状態予測方法
CN109313105A (zh) * 2016-06-09 2019-02-05 株式会社普利司通 轮胎劣化状态预测方法
CN109313105B (zh) * 2016-06-09 2020-09-29 株式会社普利司通 轮胎劣化状态预测方法
US11312188B2 (en) 2016-06-09 2022-04-26 Bridgestone Corporation Tire deterioration state prediction method
WO2018045721A1 (zh) * 2016-09-08 2018-03-15 东南大学 一种温度场-热路直接耦合的电机热分析方法
JP7401286B2 (ja) 2019-12-17 2023-12-19 Toyo Tire株式会社 タイヤの評価方法
JP7406092B2 (ja) 2020-02-27 2023-12-27 横浜ゴム株式会社 タイヤシミュレーション方法、プログラム、及びタイヤシミュレーション装置

Similar Documents

Publication Publication Date Title
JP2005306174A (ja) タイヤ性能予測方法
JP4931430B2 (ja) タイヤの温度分布予測方法とタイヤの温度分布予測計算プログラム
JP6682369B2 (ja) タイヤ劣化状態予測方法
JP4469172B2 (ja) タイヤのシミュレーション方法
JP4931431B2 (ja) タイヤの熱解析モデル、及び、タイヤの温度分布予測計算プログラム
US7464586B2 (en) Tire designing method and program
Cho et al. Finite element estimation of hysteretic loss and rolling resistance of 3-D patterned tire
JP2005047295A (ja) タイヤ経時変化予測方法、装置、プログラム及び媒体
JP2004210106A (ja) タイヤ経時変化予測方法、タイヤ特性予測方法、タイヤ設計方法、タイヤ製造方法、空気入りタイヤおよびプログラム
JP2007083925A (ja) タイヤとホイールの組立体の挙動シミュレーション方法及びタイヤの挙動シミュレーション方法
Mars et al. Incremental, critical plane analysis of standing wave development, self-heating, and fatigue during regulatory high-speed tire testing protocols
JP2018086892A (ja) タイヤ温度予測方法及びタイヤ温度予測装置
JP2006010378A (ja) タイヤ経時変化予測方法、装置、プログラム及び媒体
JP5128853B2 (ja) 空気入りタイヤの設計方法
JP6039210B2 (ja) タイヤの耐久性の予測方法
JP5373411B2 (ja) 空気入りタイヤのシミュレーション方法
JP5189318B2 (ja) 空気入りタイヤの転動特性予測方法
JP2006111168A (ja) タイヤ性能予測方法、タイヤシミュレーション方法、タイヤ性能予測プログラム及び記録媒体
JP2007131209A (ja) タイヤの数値解析モデルとその作成方法、及び、タイヤの転がり抵抗の解析方法とその数値解析モデル
JP2011226991A (ja) 転がり抵抗予測方法及び転がり抵抗予測装置
JP2007283859A (ja) タイヤ性能予測方法、及びプログラム
JP6312975B2 (ja) タイヤの耐久性評価方法及びこれを用いた設計方法
JP5584004B2 (ja) タイヤ性能予測方法及びタイヤ性能予測装置
JP7451965B2 (ja) タイヤの転がり抵抗の計算方法、コンピュータプログラム及び計算装置
JP2007276697A (ja) タイヤの性能予測方法及びタイヤの性能予測用コンピュータプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309