JP2005298327A - トリクロロモノシランの製造方法 - Google Patents

トリクロロモノシランの製造方法 Download PDF

Info

Publication number
JP2005298327A
JP2005298327A JP2005112132A JP2005112132A JP2005298327A JP 2005298327 A JP2005298327 A JP 2005298327A JP 2005112132 A JP2005112132 A JP 2005112132A JP 2005112132 A JP2005112132 A JP 2005112132A JP 2005298327 A JP2005298327 A JP 2005298327A
Authority
JP
Japan
Prior art keywords
silicon
dust
silicon particles
trichloromonosilane
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005112132A
Other languages
English (en)
Other versions
JP4612456B2 (ja
Inventor
Bernhard Pfluegler
プフリューグラー ベルンハルト
Gerhard Traunspurger
トラウンシュプルガー ゲルハルト
Walter Gruenleitner
グリュンライトナー ヴァルター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of JP2005298327A publication Critical patent/JP2005298327A/ja
Application granted granted Critical
Publication of JP4612456B2 publication Critical patent/JP4612456B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof
    • C01B33/10742Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material
    • C01B33/10757Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane
    • C01B33/10763Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof prepared by hydrochlorination of silicon or of a silicon-containing material with the preferential formation of trichlorosilane from silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

【課題】トリクロロモノシランを製造する廉価な方法を提供する。
【解決手段】流動床反応器中で珪素粒子を塩化水素と反応することによりトリクロロモノシランを製造する方法において、珪素粒子として塊状珪素から決められた珪素粒を製造する際に廃物生成物として生じる珪素ダストを使用し、珪素ダストを直接反応器に導入することを特徴とする。
【選択図】なし

Description

本発明は粒子状珪素およびガス状塩化水素からトリクロロモノシランを製造する方法に関する。
半導体工業および光電池工業のためのきわめて純粋な珪素の必要量は近年飛躍的に増加している。種々の製造方法から水素を用いるトリクロロシランからの堆積が商業的に注目すべき変形として強調される。従って半導体分野に使用される珪素の90%が精製されたトリクロロシランを用いて製造される。冶金学の珪素からのトリクロロシランの製造は流動床反応器で実施する。これは文献に記載されている(例えば特許文献1参照)。ここには珪素粒子からなる珪素層を塩化水素が貫流する反応器が記載されている。塩化水素が珪素粒子と反応し、テトラクロロシランおよびトリクロロモノシランおよび水素が生じる。その際生成物ガス中のできるだけ高いトリクロロモノシラン含量を達成するために反応器に必要な粒度分布および最適な粒度分布に言及していない。未反応塩化水素およびトリクロロシランの高い二次生成物が製造費用をかなり高くする。
反応器の温度が650℃のこれらの流動床反応器での製造方法は文献に記載されている(非特許文献1参照)。この温度で塩化水素が有利に珪素粒子と反応し、トリクロロモノシランと水素を生じる。
テトラクロロシランとトリクロロモノシランの比が反応器中で維持される温度に依存することが文献に示される(特許文献2参照)。更に使用される珪素粒子の均一性の増加により生成物ガス中の塩化水素ガスの分量がなお3%であり、SiCl、少ない生成物が得られることが示される。特許文献2によれば、1〜1000μm、有利に50〜800μmの粒度分布を有する、溶融Siのガス噴霧により得られる珪素粉末を、流動床反応器でのトリクロロモノシランの製造に使用することが有利である。
流動床法と異なり、トリクロロシランおよびテトラクロロシランを製造するための撹拌層法が記載されている(特許文献3参照)。その際珪素は塊の形で存在する。
30〜500μm、有利に50〜200μmの粒度を有する珪素粒子を流動床反応器中でトリクロロモノシランを製造するために使用することが公知である(特許文献4参照)。この商業的に得られる材料は使用する前に更に洗浄することができる。
Siダストをまず液体に入れ、その後はじめて反応器(Mueller−Rochow合成またはトリクロロモノシラン合成)に導入することが公知である(特許文献5参照)。この方法は費用がかかり、使用すべき珪素粉末を粉砕により必要な微細度にする。
米国特許(US−A)第4092446号 Ullmanns Encyklopaedie der technischen Chemie、2002年 ドイツ特許(DE−A1)第3938897号 ドイツ特許(DE−C2)第3239590号 英国特許第945618号 米国特許(US−A1)第0151737号
本発明の課題はトリクロロモノシランを製造する廉価な方法を提供することである。
前記課題は、流動床反応器中で珪素粒子を塩化水素と反応する方法において、珪素粒子として塊状珪素から決められた珪素粒を製造する際に廃物生成物として生じる珪素ダストを使用し、珪素ダストを直接反応器に導入することにより解決される。
珪素ダストは、例えばメチルクロロシラン合成およびトリクロロシラン合成に使用するために、決められた珪素粒子分布を生じる際に生じる。その際まず0.5mまでの縁部長さを有する塊状珪素を破砕する。破砕後、珪素を粉砕し、引き続き篩い分けまたは選別する。こうして決められた粒度分布を有する粉砕した珪素を製造する。すべての処理工程(破砕、粉砕、篩い分けおよび選別)において生じるSiダストを吸引濾過する。このダストを本発明によりトリクロロシランを製造するために使用する。このダストは従来廃棄さられるかまたはエネルギーをかけて溶融し、再び粉砕した。両方とも本発明の方法により節約される費用と結びつく。世界的に毎年多くの量で生じる廃物珪素ダストの利用により、本発明の方法において、この方法は大きな経済的な利点を提供する。珪素ダストの改造費用または廃棄費用がもはや生じない。
本発明は更に塊状珪素の破砕の際に廃物生成物として生じる珪素ダストの、流動床反応器でトリクロロモノシランを製造するための使用に関する。
有利に最大粒度80μmを有する珪素ダストを使用する。特に有利には珪素ダストは、すべての珪素粒子の全部の数に対して10%の珪素粒子が少なくとも1.3μmであり、多くても8μmの大きさであり、すべての珪素粒子の全部の数に対して50%の珪素粒子が少なくとも9μmであり、多くても31μmの大きさであり、すべての珪素粒子の全部の数に対して90%の珪素粒子が少なくとも32μmであり、多くても78μmの大きさである粒度分布合計を有する。
粒度分布の測定は有利にレーザー散乱光測定により行う。その際例えばモデル、HELOS、Symptec社、のようなレーザー回折分光計を使用することができる、測定方法はISO13320により行った。試料を、圧縮空気を用いて乾燥して分散させ、空気流中で測定セルに供給する。試料の前処理のために、試料を105℃で3時間にわたり加熱した。
金属珪素と塩化水素の反応は公知のようにきわめて急速に進行する。これに関して使用される珪素粒子の表面積が決定的である。単位体積当たりに含まれる固形物はより細かい粒を使用する場合に相当してより大きい表面積を有する。従ってダストの使用が流動床中で高い反応熱を生じ、これによりトリクロロモノシラン選択率を低下することが予想される。しかし本発明の枠内でこの作用は意想外にも観察されなかった。それどころかむしろトリクロロモノシラン選択率を増加する、完全に予測されない反対の作用が示された。すなわちトリクロロモノシラン反応器中で、珪素粒子と塩化水素ガスの反応によりトリクロロモノシランを製造する場合に、塊状珪素の破砕の際にかなりの量で生じる、前記のきわめて細かいSi粒子の使用により、トリクロロモノシランが多く、同時に塩化水素が少ない生成物ガスが得られることが確認された。これによりトリクロロモノシランを製造する処理費用が明らかに低下する。
従って本発明の方法に有利に使用される珪素ダストは有利に決められた珪素粒を製造する際に生じる廃物ダストである。しかしこの粒を使用して達成すべき方法の利点により、前記珪素粒を意図的に製造することが同様に可能である。
従って本発明は珪素粒子の混合物からなる珪素ダストに関し、珪素粒子が最大粒度80μmを有し、珪素ダストが、すべての珪素粒子の全部の数に対して10%の珪素粒子が少なくとも1.3μmであり、多くても8μmの大きさであり、すべての珪素粒子の全部の数に対して50%の珪素粒子が少なくとも9μmであり、多くても31μmの大きさであり、すべての珪素粒子の全部の数に対して90%の珪素粒子が少なくとも32μmであり、多くても78μmの大きさである粒度分布合計を有することを特徴とする。
この微粒子の珪素ダストの使用により、銅のような触媒を使用せずに珪素粒子と塩化水素ガスを反応することによりトリクロロモノシランを製造する際の処理費用が低下し、それというのもトリクロロモノシランが多く、塩化水素が少ない生成物ガスが得られるからである。トリクロロモノシラン/テトラクロロシランの選択率は温度に強く依存する。従って冷却による熱の維持が本発明の方法で特に要求される。前記方法は有利に250〜600℃、特に280〜400℃の温度で実施する。
本発明の方法において塩化水素と珪素粉末のモル比4:1〜3:1の添加が有利に行われる。化学量論的に塩化水素と珪素粉末の3.1:1のモル比が特に有利である。
本発明の方法の間、反応器中の圧力は有利に0〜5バールの過圧、有利に1バールの過圧である。流動床高さ:反応器直径の商は有利に10:1〜1:1、特に8:1〜2:1、特に有利に約4:1である。
生じる生成物ガスから−40℃で低温凝縮により凝縮できる成分を分離する。
図1は実施例と比較例の粒度分布合計を示す。
以下の例は本発明の詳細な説明に使用する。
例1:Si粒の製造
市販されている珪素(鉄含量1.4質量%、アルミニウム0.2質量%、カルシウム0.015質量%)を一般的な方法を使用してブロック注入珪素の破砕、粉砕および篩い分けにより種々の珪素粒度分布を有する群に処理した。粒の組成を表1に示す(粒1〜3)。種々の珪素粒度分布を比較例として使用した。
例2:ベースラインの作成(比較例)
米国特許第4092446号の図12に示される流動床反応器中で例を実施した。
反応器に標準的な粒度分布の珪素を充填した。粒度分布は以下のとおりであった。粒子の10%:100μm未満、粒子の50%:300μm未満、および粒子の90%:500μm未満(標準)。
まず珪素床を珪素流動床が形成されるまでNで洗浄した。その際流動床高さ:反応器直径の商が約4であるように注意した。引き続き流動床を外部加熱により300℃の温度にした。この温度を冷却により全部の試験時間にわたり維持した。引き続き塩化水素および前記粒度分布を有する珪素粉末を化学量論的に3:1で添加した。流動床の高さを全部の試験時間にわたり一定に維持した。反応器中の圧力は試験時間にわたり1バールの過圧であった。48時間の反応器の運転時間後にそれぞれ液体試料および同時にガス試料を採取した。生成物ガスの凝縮できる成分を冷却勾配により−40℃で凝縮し、生じる液体をガスクロマトグラフィー(GC)により分析した。熱伝導度検出器により検出した。生成物ガスの凝縮できない成分を、赤外線分光計(IR)を用いて未反応塩化水素にもとづいて分析した[体積%]。それぞれ2つの1時間の間隔で(48時間後および49時間後)取り出した値から平均値が形成された。その際残留ガス(凝縮した成分を有しない生成物ガス)中の塩化水素含量を13.3体積%で決定し、凝縮物中のトリクロロモノシラン含量を71%で測定した。
例3
例2に記載された経過を異なる珪素粉末を使用して実施した。粉末タイプ1〜4は廃物粉末である。粒1〜3は比較のために製造した粒である。この珪素粉末の最も大きい粒子は最大粒度<500μmを有した。
それぞれの試験の実施後、反応器を完全に空にし、新たに珪素を充填し、反応開始後48時間に試料を採取した。
表1は珪素ダストの粒度分布(B:本発明による例、V:比較例)および達成された結果を記載する。
Figure 2005298327
本発明による粒度分布を有するSi粉末の使用により珪素および塩化水素からのトリクロロモノシランの製造方法の明らかな改良が達成されることが結果から確認される。塩化水素の変換率およびトリクロロモノシランの収率(表1のSitri)である方法の収率が増加する。
本発明の実施例と比較例の粒度分布合計を示す図である。

Claims (7)

  1. 流動床反応器中で珪素粒子を塩化水素と反応することによりトリクロロモノシランを製造する方法において、珪素粒子として塊状珪素から決められた珪素粒を製造する際に廃物生成物として生じる珪素ダストを使用し、珪素ダストを直接反応器に導入することを特徴とするトリクロロモノシランを製造する方法。
  2. 珪素ダストとして、メチルクロロシラン合成およびトリクロロシラン合成に使用するために特定の珪素粒分布を製造する際に生じる廃物ダストを使用する請求項1記載の方法。
  3. 80μmの最大粒度を有する珪素ダストを使用する請求項1または2記載の方法。
  4. 珪素ダストが、すべての珪素粒子の全部の数に対して10%の珪素粒子が少なくとも1.3μmであり、多くても8μmの大きさであり、すべての珪素粒子の全部の数に対して50%の珪素粒子が少なくとも9μmであり、多くても31μmの大きさであり、すべての珪素粒子の全部の数に対して90%の珪素粒子が少なくとも32μmであり、多くても78μmの大きさである粒度分布合計を有する請求項1記載の方法。
  5. 珪素ダストが最大粒度80μmを有し、すべての珪素粒子の全部の数に対して10%の珪素粒子が少なくとも1.3μmであり、多くても8μmの大きさであり、すべての珪素粒子の全部の数に対して50%の珪素粒子が少なくとも9μmであり、多くても31μmの大きさであり、すべての珪素粒子の全部の数に対して90%の珪素粒子が少なくとも32μmであり、多くても78μmの大きさである粒度分布合計を有することを特徴とする珪素ダスト。
  6. 流動床反応器中でトリクロロモノシランを製造するための、塊状珪素の破砕の際に廃物生成物として生じる珪素ダストの使用。
  7. 流動床反応器中でトリクロロモノシランを製造するための請求項4または5記載の珪素ダストの使用。
JP2005112132A 2004-04-08 2005-04-08 トリクロロモノシランの製造方法 Active JP4612456B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004017453A DE102004017453A1 (de) 2004-04-08 2004-04-08 Verfahren zur Herstellung von Trichlormonosilan

Publications (2)

Publication Number Publication Date
JP2005298327A true JP2005298327A (ja) 2005-10-27
JP4612456B2 JP4612456B2 (ja) 2011-01-12

Family

ID=34934510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112132A Active JP4612456B2 (ja) 2004-04-08 2005-04-08 トリクロロモノシランの製造方法

Country Status (7)

Country Link
US (1) US8043591B2 (ja)
EP (1) EP1586537B1 (ja)
JP (1) JP4612456B2 (ja)
CN (1) CN1680399B (ja)
AT (1) ATE454356T1 (ja)
DE (2) DE102004017453A1 (ja)
ES (1) ES2338568T3 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137870A (ja) * 2006-12-05 2008-06-19 Osaka Titanium Technologies Co Ltd シリコン塩化物の製造方法
WO2013073144A1 (ja) * 2011-11-16 2013-05-23 国立大学法人山口大学 廃シリコンからのハロシランの製造方法
KR20200144572A (ko) * 2018-04-18 2020-12-29 와커 헤미 아게 클로로실란의 제조 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160930B2 (ja) * 2004-05-19 2008-10-08 シャープ株式会社 ハロシランの製造方法、固形分の精製方法
DE102006009954A1 (de) 2006-03-03 2007-09-06 Wacker Chemie Ag Wiederverwertung von hochsiedenden Verbindungen innerhalb eines Chlorsilanverbundes
JP5480884B2 (ja) * 2008-04-17 2014-04-23 ユニミン コーポレーション 温熱フィルムに用いる、制御された粒径分布を有する、鉱石又は岩石マテリアルから形成される粉末
US20100264362A1 (en) * 2008-07-01 2010-10-21 Yongchae Chee Method of producing trichlorosilane (TCS) rich Chlorosilane product stably from a fluidized gas phase reactor (FBR) and the structure of the reactor
WO2010017231A1 (en) * 2008-08-04 2010-02-11 Hariharan Alleppey V Method to convert waste silicon to high purity silicon
DE102009020143A1 (de) * 2009-05-04 2010-11-11 Pv Silicon Forschungs- Und Produktionsgesellschaft Mbh Verfahren zur Aufbereitung von Sägeabfällen zur Rückgewinnung von Silizium für die Herstellung von Solarsilizium
DE102009046265A1 (de) * 2009-10-30 2011-05-19 Rheinisch-Westfälische Technische Hochschule Aachen Verfahren zur Aufarbeitung von Sägerückständen aus der Produktion von Silizium-Wafern
DE102010044108A1 (de) 2010-11-18 2012-05-24 Evonik Degussa Gmbh Herstellung von Chlorsilanen aus kleinstteiligem Reinstsilicium
US10040689B2 (en) 2014-12-19 2018-08-07 Dow Silicones Corporation Process for preparing monohydrogentrihalosilanes
EP3691995B1 (de) 2017-10-05 2021-03-17 Wacker Chemie AG Verfahren zur herstellung von chlorsilanen unter verwendung eines katalysators ausgewählt aus der gruppe co, mo, w
CN109319790B (zh) * 2018-11-09 2020-11-24 成都蜀菱科技发展有限公司 一种利用细硅粉生产氯硅烷的方法及氯硅烷产品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424832A (en) * 1977-07-22 1979-02-24 Wacker Chemie Gmbh Reusing method of reaction residue containing elemental silicon
JPS63170210A (ja) * 1987-01-09 1988-07-14 Toa Nenryo Kogyo Kk クロルシランの製造方法
US5063040A (en) * 1988-03-23 1991-11-05 Huels Aktiengesellschaft Method for increasing the yield of trichlorosilane in the fluidized-bed hydrochlorination of silicon

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2466412A (en) * 1946-02-21 1949-04-05 Gen Electric Method of preparation of hydrocarbon-substituted halosilanes
ES259162A1 (es) 1959-06-24 1961-01-01 Pechiney Prod Chimiques Sa Procedimiento perfeccionado para la fabricaciën industrial de triclorosilano
US4092446A (en) * 1974-07-31 1978-05-30 Texas Instruments Incorporated Process of refining impure silicon to produce purified electronic grade silicon
JPS5832011A (ja) 1981-08-17 1983-02-24 Nippon Aerojiru Kk 珪素と塩化水素からトリクロルシランと四塩化珪素を製造する方法
DE3236276A1 (de) * 1982-09-30 1984-04-05 Heliotronic Forschungs- und Entwicklungsgesellschaft für Solarzellen-Grundstoffe mbH, 8263 Burghausen Neuer werkstoff aus silicium und verfahren zu seiner herstellung
US4526769A (en) * 1983-07-18 1985-07-02 Motorola, Inc. Trichlorosilane production process
NO166032C (no) 1988-12-08 1991-05-22 Elkem As Fremgangsmaate ved fremstilling av triklormonosilan.
US5871705A (en) * 1996-09-19 1999-02-16 Tokuyama Corporation Process for producing trichlorosilane
DE10044794A1 (de) * 2000-09-11 2002-04-04 Bayer Ag Verfahren zur Herstellung von Trichlorsilan
DE10118483C1 (de) 2001-04-12 2002-04-18 Wacker Chemie Gmbh Staubrückführung bei der Direktsynthese von Chlor- und Methylchlorsilanen in Wirbelschicht

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424832A (en) * 1977-07-22 1979-02-24 Wacker Chemie Gmbh Reusing method of reaction residue containing elemental silicon
JPS63170210A (ja) * 1987-01-09 1988-07-14 Toa Nenryo Kogyo Kk クロルシランの製造方法
US5063040A (en) * 1988-03-23 1991-11-05 Huels Aktiengesellschaft Method for increasing the yield of trichlorosilane in the fluidized-bed hydrochlorination of silicon

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137870A (ja) * 2006-12-05 2008-06-19 Osaka Titanium Technologies Co Ltd シリコン塩化物の製造方法
JP4664892B2 (ja) * 2006-12-05 2011-04-06 株式会社大阪チタニウムテクノロジーズ シリコン塩化物の製造方法
WO2013073144A1 (ja) * 2011-11-16 2013-05-23 国立大学法人山口大学 廃シリコンからのハロシランの製造方法
JP2013103872A (ja) * 2011-11-16 2013-05-30 Yamaguchi Univ 廃シリコンからのハロシランの製造方法
KR20200144572A (ko) * 2018-04-18 2020-12-29 와커 헤미 아게 클로로실란의 제조 방법
JP2021521092A (ja) * 2018-04-18 2021-08-26 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG クロロシランの製造方法
JP7087109B2 (ja) 2018-04-18 2022-06-20 ワッカー ケミー アクチエンゲゼルシャフト クロロシランの製造方法
KR102528127B1 (ko) 2018-04-18 2023-05-02 와커 헤미 아게 클로로실란의 제조 방법

Also Published As

Publication number Publication date
CN1680399B (zh) 2010-04-28
EP1586537A1 (de) 2005-10-19
US8043591B2 (en) 2011-10-25
JP4612456B2 (ja) 2011-01-12
ES2338568T3 (es) 2010-05-10
DE102004017453A1 (de) 2005-10-27
US20050226803A1 (en) 2005-10-13
DE502005008807D1 (de) 2010-02-25
CN1680399A (zh) 2005-10-12
ATE454356T1 (de) 2010-01-15
EP1586537B1 (de) 2010-01-06

Similar Documents

Publication Publication Date Title
JP4612456B2 (ja) トリクロロモノシランの製造方法
DE102009020143A1 (de) Verfahren zur Aufbereitung von Sägeabfällen zur Rückgewinnung von Silizium für die Herstellung von Solarsilizium
RU1838236C (ru) Способ получени трихлормоносилана
AU2095800A (en) Agglomeration of silicon powders
KR101309600B1 (ko) 트리클로로실란 제조방법
CN113226987B (zh) 氯硅烷类的制造方法
US11198613B2 (en) Process for producing chlorosilanes using a catalyst selected from the group of Co, Mo, W
JPH035396B2 (ja)
JPH0448725B2 (ja)
US11845667B2 (en) Method for producing chlorosilanes
TWI724830B (zh) 用結構最適化的矽顆粒生產氯矽烷的方法
JPH07502006A (ja) 表面に結合されたハロゲンを有する微小粒状シリコーン、その製造方法及びその用途
TWI744873B (zh) 用結構最適化的矽粒子製備氯矽烷的方法
JP7374228B2 (ja) 構造最適化シリコン粒子を用いたメチルクロロシランの調製方法
US7108734B2 (en) Silicon powder for preparing alkyl- or aryl-halogenosilanes
JPS636483B2 (ja)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080716

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081014

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090527

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090825

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4612456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250