JP2005291553A - マルチ型空気調和装置 - Google Patents
マルチ型空気調和装置 Download PDFInfo
- Publication number
- JP2005291553A JP2005291553A JP2004103873A JP2004103873A JP2005291553A JP 2005291553 A JP2005291553 A JP 2005291553A JP 2004103873 A JP2004103873 A JP 2004103873A JP 2004103873 A JP2004103873 A JP 2004103873A JP 2005291553 A JP2005291553 A JP 2005291553A
- Authority
- JP
- Japan
- Prior art keywords
- indoor
- temperature
- indoor unit
- electronic expansion
- air conditioner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 claims abstract description 24
- 230000005514 two-phase flow Effects 0.000 claims abstract description 15
- 239000003507 refrigerant Substances 0.000 abstract description 51
- 230000001143 conditioned effect Effects 0.000 abstract description 7
- 238000004378 air conditioning Methods 0.000 description 29
- 239000012071 phase Substances 0.000 description 15
- 230000005494 condensation Effects 0.000 description 9
- 238000009833 condensation Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000030279 gene silencing Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007791 dehumidification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009429 electrical wiring Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/21—Refrigerant outlet evaporator temperature
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
【課題】 異なる運転制御が可能な二台の室内機ユニットを有するマルチ型空気調和装置において、空調負荷に差がある場合であっても、それぞれの空調負荷に応じた適正な冷媒分配を可能にすること。
【解決手段】 独自の電子膨張弁14A,14Bを備えている2台の室内機ユニット20A,20Bを具備してなるマルチ型空気調和装置において、両室内機ユニットの室内熱交換器21A,21Bが、それぞれ二相流部の温度を検出する二相流部温度センサ23A,23Bと、気相部温度センサ24A,24Bとを備え、冷房運転時に二相流部温度センサ23A,23B及び気相部温度センサ24A,24Bで検出した温度差から各室内熱交換器21A,21B毎に出口過熱度を算出し、各室制御部からの圧縮機指令回転数および該出口過熱度に基づいて室内機ユニット毎に電子膨張弁14A,14Bの開度を個別に補正する過熱度制御モードを設けた。
【選択図】図1
【解決手段】 独自の電子膨張弁14A,14Bを備えている2台の室内機ユニット20A,20Bを具備してなるマルチ型空気調和装置において、両室内機ユニットの室内熱交換器21A,21Bが、それぞれ二相流部の温度を検出する二相流部温度センサ23A,23Bと、気相部温度センサ24A,24Bとを備え、冷房運転時に二相流部温度センサ23A,23B及び気相部温度センサ24A,24Bで検出した温度差から各室内熱交換器21A,21B毎に出口過熱度を算出し、各室制御部からの圧縮機指令回転数および該出口過熱度に基づいて室内機ユニット毎に電子膨張弁14A,14Bの開度を個別に補正する過熱度制御モードを設けた。
【選択図】図1
Description
本発明は、空調運転(冷房運転、暖房運転及び除湿運転)により空調空気を噴出する2台の室内機ユニットを備え、各室内機ユニット毎に異なる運転制御が可能なマルチ型空気調和装置に関する。
室内の冷暖房や除湿(以下、総称して「空調」と呼ぶ)を行う空気調和装置は、室内機ユニットと室外機ユニットとの間を冷媒配管及び電気配線で接続した構成とされる。このような空気調和装置は、圧縮機、室外熱交換器、絞り機構、室内熱交換器及び四方弁を主な構成要素として冷媒の循環回路を形成するヒートポンプを用いており、圧縮機から送出される冷媒の循環方向を四方弁の操作によって切り換えることで、所望の空調運転を行っている。
このような空気調和装置には、一式の室外機ユニットに対し、室内機ユニットが一台接続された構成のシングル型と、それぞれ独自の運転制御を可能にした室内機ユニットが複数接続された構成のマルチ型とがある。
このような空気調和装置には、一式の室外機ユニットに対し、室内機ユニットが一台接続された構成のシングル型と、それぞれ独自の運転制御を可能にした室内機ユニットが複数接続された構成のマルチ型とがある。
上述した空気調和装置においては、圧縮機の吸入部及び吐出部での過熱度を評価して運転制御を行っているが、異なる運転制御が可能な複数台の室内機ユニット毎に過熱度を評価する運転制御は行われていない。
また、従来のマルチ型空気調和装置においては、バイパス回路を設けることなく低能力の室内熱交換器が接続された際の高圧側冷媒圧力の上昇を防止するため、室外熱交換器出口温度と低圧飽和温度とに基づいて、暖房運転時に過熱度制御を実施することが提案されている。(たとえば、特許文献1参照)
特開平7−225058号公報
また、従来のマルチ型空気調和装置においては、バイパス回路を設けることなく低能力の室内熱交換器が接続された際の高圧側冷媒圧力の上昇を防止するため、室外熱交換器出口温度と低圧飽和温度とに基づいて、暖房運転時に過熱度制御を実施することが提案されている。(たとえば、特許文献1参照)
ところで、異なる運転制御が可能な2台の室内機ユニットを備えているマルチ型空気調和装置において、圧縮機の吸入部及び吐出部での過熱度を評価して運転制御を行うという従来技術により冷房運転を実施すれば、両ユニットの運転負荷が大きく異なるような運転状況では、単純に各室内機の要求に従い冷媒循環量を按分しているだけでは次のような問題が生じてくる。
すなわち、空調負荷の高い室内機ユニット側では、室内熱交換器を通過する風量に対し冷媒循環量が多く分配されているため、室内熱交換器内の過熱域は小さくなり室内熱交換機のフィンは空気中の湿分が結露して十分に濡れている。一方、空調負荷の低い室内機ユニット側では、室内熱交換器を通過する風量に対し冷媒循環量の分配が少ないため、室内熱交換器内の過熱域は大きくなり結果として冷却する空気中の湿分が凝縮することなく通過するので、室内熱交換器のフィンは乾いたものとなる。
すなわち、空調負荷の高い室内機ユニット側では、室内熱交換器を通過する風量に対し冷媒循環量が多く分配されているため、室内熱交換器内の過熱域は小さくなり室内熱交換機のフィンは空気中の湿分が結露して十分に濡れている。一方、空調負荷の低い室内機ユニット側では、室内熱交換器を通過する風量に対し冷媒循環量の分配が少ないため、室内熱交換器内の過熱域は大きくなり結果として冷却する空気中の湿分が凝縮することなく通過するので、室内熱交換器のフィンは乾いたものとなる。
しかし、圧縮機の吸入部では2台の空調運転に適正な過熱度となっているため、冷房負荷に大きな差があるにもかかわらず、そのまま冷房運転が継続されることとなる。このような状態で冷房運転が継続されると、分配されて循環する冷媒量に大きな差が生じることとなるため、二つの室内熱交換器を比較すると過熱度に大きな差が生じてしまう。このため、高温多湿の室内空気が十分な冷却能力のない乾いた室内熱交換器を通過する場合には除湿されない空調空気となって流出するため、室内熱交換器から湿分を含んだままの空調空気が予め冷えているランナ通路に流入することにより、ランナ通路内で冷やされて結露することが懸念される。このようなランナ結露が発生すると、室内機ユニットの吹出口から水滴が滴下したり、あるいは、室内機ユニットから吹き出す空調空気と共に水分が飛散するという不具合を生じて好ましくない。
このように、冷房負荷が異なる2台の室内機ユニットを冷房運転する場合、圧縮機の吸入部及び吐出部での過熱度を評価して運転制御を行うだけでは、室内熱交換器毎に空調負荷に見合った適正な冷媒量分配が行われているか否かを判断できないため、低負荷側でのランナ結露発生が問題となって対策が望まれている。
本発明は、上記の事情に鑑みてなされたものであり、異なる運転制御が可能な二台の室内機ユニットを有するマルチ型空気調和装置において、その空調負荷に差がある場合であっても、それぞれの空調負荷に応じた適正な冷媒分配を可能とする運転制御を提供することにある。
本発明は、上記の事情に鑑みてなされたものであり、異なる運転制御が可能な二台の室内機ユニットを有するマルチ型空気調和装置において、その空調負荷に差がある場合であっても、それぞれの空調負荷に応じた適正な冷媒分配を可能とする運転制御を提供することにある。
本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係るマルチ型空気調和機は、室外機ユニットと、該室内機ユニットに接続されそれぞれが独自の電子膨張弁を備えている2台の室内機ユニットとを具備してなるマルチ型空気調和装置において、前記室内機ユニットの室内熱交換器が、それぞれ二相流部の温度を検出する第1の温度検出手段と、気相側の温度を検出する第2の温度検出手段とを備え、冷房運転時に前記第1及び第2の温度検出手段で検出した温度差から各室内熱交換器毎に出口過熱度を算出し、該出口過熱度に基づいて前記室内機ユニット毎に前記電子膨張弁の開度を個別に補正する過熱度制御モードを備えていることを特徴とするものである。
本発明に係るマルチ型空気調和機は、室外機ユニットと、該室内機ユニットに接続されそれぞれが独自の電子膨張弁を備えている2台の室内機ユニットとを具備してなるマルチ型空気調和装置において、前記室内機ユニットの室内熱交換器が、それぞれ二相流部の温度を検出する第1の温度検出手段と、気相側の温度を検出する第2の温度検出手段とを備え、冷房運転時に前記第1及び第2の温度検出手段で検出した温度差から各室内熱交換器毎に出口過熱度を算出し、該出口過熱度に基づいて前記室内機ユニット毎に前記電子膨張弁の開度を個別に補正する過熱度制御モードを備えていることを特徴とするものである。
このようなマルチ型空気調和装置によれば、室内機ユニットの室内熱交換器が、それぞれ二相流部の温度を検出する第1の温度検出手段と、気相側の温度を検出する第2の温度検出手段とを備え、冷房運転時に前記第1及び第2の温度検出手段で検出した温度差から各室内熱交換器毎に出口過熱度を算出し、該出口過熱度に基づいて前記室内機ユニット毎に前記電子膨張弁の開度を個別に補正する過熱度制御モードを備えているので、室内機ユニット毎に電子膨張弁の開度を個別に制御して出口過熱度のフィードバック制御を行うことができるようになり、空調負荷に大きな差がある場合であっても、各室内ユニット毎の過熱度評価を行ってそれぞれの電子膨張弁を開度調整するので、適正な冷媒分配が可能となる。
上述した本発明のマルチ型空気調和機によれば、室内熱交換器のそれぞれに設けた二相流部の温度を検出する第1の温度検出手段と気相側の温度を検出する第2の温度検出手段とにより検出した温度差から各室内熱交換器毎に出口過熱度を算出し、該出口過熱度に基づいて前記室内機ユニット毎に前記電子膨張弁の開度を個別に補正する過熱度制御モードを備えているので、室内機ユニット毎に電子膨張弁の開度を個別に制御して出口過熱度のフィードバック制御を行い、空調負荷に大きな差がある場合であっても、各室内ユニット毎の過熱度評価を行ってそれぞれの電子膨張弁を開度調整し、各室内機ユニットの空調負荷に見合った適正な冷媒分配が可能となる。すなわち、空調負荷が異なる2台の室内機ユニットに見合った能力制御が可能となるので、低負荷側の室内機ユニットにおいて、冷媒供給量の不足により室内熱交換器が乾くことに起因して発生するランナー結露を防止または抑制することができる。
以下、本発明に係るマルチ型空気調和装置の一実施形態について、図面を参照して説明する。
図1は、マルチ型空気調和装置の全体構成例を示す説明図である。このマルチ型空気調和装置は、室外機ユニット10と、同室外機ユニット10に接続された2台の室内機ユニット20(図示の例では、室内機ユニット20A,20B)とを具備して構成される。これら室内機ユニット10及び室外機ユニット20は、冷媒を流す冷媒配管30や図示しない電気配線等により接続されている。
図1は、マルチ型空気調和装置の全体構成例を示す説明図である。このマルチ型空気調和装置は、室外機ユニット10と、同室外機ユニット10に接続された2台の室内機ユニット20(図示の例では、室内機ユニット20A,20B)とを具備して構成される。これら室内機ユニット10及び室外機ユニット20は、冷媒を流す冷媒配管30や図示しない電気配線等により接続されている。
室外機ユニット10は、冷媒を圧縮して送出する圧縮機11と、冷媒の循環方向を切り換える四方弁12と、冷媒と外気との間で熱交換を行う室外熱交換器13と、絞り機構として機能する電子膨張弁14とを主な構成要素とし、さらに、消音の目的で圧縮機11の吐出側配管に配設されたマフラ15と、同じく消音の目的で圧縮機11の吸入管配管に配設された吸入マフラ16と、各種の運転制御を行う室外制御部17とを具備して構成される。なお、この室内機ユニット10には、この他にも図示省略の室外ファン、レシーバ、サービスバルブ及びストレーナ等の機器類や温度センサ等のセンサ類が設けられている。
室内機ユニット20のケーシング内には、室内熱交換器21や室内制御部22などの他にも図示しない室内ファン等の機器を収納した構成とされる。また、室内熱交換器21には、二相流部の温度を検出する二相流部温度センサ(第1の温度検出手段)23と、気相側の温度を検出する気相部温度センサ(第2の温度検出手段)24と、室内吸込空気の温度を検出する吸込温度センサ25とが設けられており、これらの温度センサで検出した温度データは室内制御部22に入力される。ここで、二相流部温度センサ23は、室内熱交換器21のパス中間部に取り付けた温度センサであり、二相流部における圧力飽和温度を検出している。また、気相部温度センサ24は、冷房運転時において室内熱交換器21の出口側(気相側)配管に取り付けた温度センサであり、気相冷媒の温度を検出している。
なお、図中の各符号に付記されたA,Bは、2つの室内機ユニットを区別して説明する場合にのみ使用するものとする。
なお、図中の各符号に付記されたA,Bは、2つの室内機ユニットを区別して説明する場合にのみ使用するものとする。
この室内機ユニット20は、室内ファンで吸引した室内の空気を室内熱交換器21に導いて通過させ、上述した室外機ユニット10から供給される冷媒との間で熱交換した空調空気を室内に吹き出すように構成されている。また、2台の室内機ユニット20A,20Bは、それぞれ異なる空調対象の部屋に設置され、各部屋の状況に応じて異なる運転制御が可能に構成されている。なお、ここでの異なる運転制御とは、冷房運転または暖房運転のいずれか一方を選択し、部屋毎に異なる空調負荷に対応した運転制御を行うこと意味しており、二つの室内機ユニット20A,20Bが暖房運転及び冷房運転のように異なる空調運転を同時に行うものではない。
2台の室内機ユニット20A,20Bは、それぞれ室外機ユニット10内のパイプコネクタ31,ヘッダー32で分岐した冷媒配管30A,30Bに接続されている。また、室外機ユニット10内の各冷媒配管30A,3Bには、それぞれ独立して動作する電子膨張弁14A,14Bが、室外熱交換器13と室内ユニット20A,20Bとの間に配設されている。
なお、上述した室内機ユニット10には、圧縮機11の吸入管センサ11a及び吐出管センサ11bと、室外熱交換器13の液相側に設けられた室外熱交センサ13aと、外気温を検出する外温センサ18とを具備し、それぞれの検出値が室外制御部17に入力されるようになっている。
なお、上述した室内機ユニット10には、圧縮機11の吸入管センサ11a及び吐出管センサ11bと、室外熱交換器13の液相側に設けられた室外熱交センサ13aと、外気温を検出する外温センサ18とを具備し、それぞれの検出値が室外制御部17に入力されるようになっている。
以下では、上述した構成のマルチ型空気調和装置の作用について、冷房運転時及び暖房運転時のそれぞれの場合に分けて説明する。
最初に、冷房運転時の空調作用について、図中に矢印で示した冷媒の流れとともに説明する。なお、冷房運転及び暖房運転は、四方弁12の操作により変化する冷媒の流れ方向に応じて選択切換えされる。
最初に、冷房運転時の空調作用について、図中に矢印で示した冷媒の流れとともに説明する。なお、冷房運転及び暖房運転は、四方弁12の操作により変化する冷媒の流れ方向に応じて選択切換えされる。
さて、圧縮機11の圧縮で高温高圧の気体とされた冷媒は、マフラ15及び四方弁12を通過して室外熱交換器13に送られ、室外の空気(以下、「室外気」と呼ぶ)と熱交換する。この熱交換により、高温高圧の気体冷媒が室外気に熱を与えて凝縮液化し、高温高圧の液冷媒となる。この高温高圧の液冷媒は、電子膨張弁14を通過することで減圧され、低温低圧の気液二相冷媒となり、冷媒配管30を通り室内機ユニット20の室内熱交換器21に送られる。
低温低圧の液冷媒は、室内熱交換器21で室内の空気(以下、「室内気」と呼ぶ)と熱交換し、空調対象である室内気から熱を奪って当該室内気を冷却するとともに、冷媒自身は蒸発気化して低温低圧の気体冷媒となる。
この気体冷媒は、ヘッダー32、四方弁12及び吸入マフラ16を通過して再び圧縮機11に吸引され、以下同様の過程で状態変化を繰り返しながら、マルチ型空気調和装置の冷凍サイクルを循環することになる。このような冷房運転時において、空調負荷が異なる二つの室内気ユニット20A,20Bを同時に運転する場合、両ユニットに分配される冷媒循環量は電子膨張弁14A,14Bの開度により調整される。なお、運転停止中の室内機ユニット20については、同ユニットに接続された電子膨張弁14が全閉とされる。
この気体冷媒は、ヘッダー32、四方弁12及び吸入マフラ16を通過して再び圧縮機11に吸引され、以下同様の過程で状態変化を繰り返しながら、マルチ型空気調和装置の冷凍サイクルを循環することになる。このような冷房運転時において、空調負荷が異なる二つの室内気ユニット20A,20Bを同時に運転する場合、両ユニットに分配される冷媒循環量は電子膨張弁14A,14Bの開度により調整される。なお、運転停止中の室内機ユニット20については、同ユニットに接続された電子膨張弁14が全閉とされる。
次に、暖房運転について簡単に説明する。この暖房運転は、上述した冷房運転から四方弁12を操作して冷媒の循環方向を切り換えることにより実施される。
この暖房運転では、圧縮機11から四方弁12までの冷媒の流れは冷房運転時と同様であるが、四方弁12を出た高温高圧の気相冷媒は、ヘッダー32から室内機ユニット20の室内熱交換器21へ導かれ、室内気と熱交換して放熱する。この放熱により凝縮した高温高圧の液冷媒は、電子膨張弁14を通過する際に減圧されて低温低圧の気液二相冷媒となり、室外熱交換器13に流れ込む。
この暖房運転では、圧縮機11から四方弁12までの冷媒の流れは冷房運転時と同様であるが、四方弁12を出た高温高圧の気相冷媒は、ヘッダー32から室内機ユニット20の室内熱交換器21へ導かれ、室内気と熱交換して放熱する。この放熱により凝縮した高温高圧の液冷媒は、電子膨張弁14を通過する際に減圧されて低温低圧の気液二相冷媒となり、室外熱交換器13に流れ込む。
室外熱交換器13に流れ込んだ液冷媒は、この熱交換器を通過する際に室外気と熱交換して吸熱し、蒸発気化して低温低圧の気体冷媒となる。この気体冷媒は、四方弁12及び吸入マフラ16を通過して圧縮機11に吸引され、以下同様の過程で状態変化を繰り返しながら、マルチ型空気調和装置の冷凍サイクルを循環することになる。
上述したマルチ型空気調和装置の冷房運転時においては、2台の室内熱交換器21A,21Bのうち一方が非常に乾いてランナー結露が発生することがないように、ゾーン制御によりシステム全体の運転点を満足した場合、各室内熱交換器21A,21Bの過熱度を評価することでその濡れ状態も適正に制御する過熱度制御モードを実施する。
ここで、ゾーン制御について簡単に説明する。この制御は、圧縮機回転数に対し吐出過熱度、吸入過熱度、吐出管温度などを目標範囲内に収めるため電子膨張弁開度を補正する制御であり、マルチ型空気調和装置の通常制御において、オープンループ制御と組み合わせて実施されるものである。また、オープンループ制御は、圧縮機回転数に対し電子膨張弁開度を比例的に設定する制御であり、その係数は外気温、吐出管温度、吸入過熱度などにより決まる。なお、オープンループ制御及びゾーン制御については、たとえば実公平7−14772号公報、特開2003−106608号公報及び特開2003−130426号公報により開示されている。
通常制御においては、オープンループ制御により電子膨張弁14の大まかな開度を定め、ゾーン制御により適正な運転点を保つように電子膨張弁14の開度が微調整される。また、各室内気ユニット20A,20B毎の電子膨張弁開度は、オープンループ制御及びゾーン制御によりそれぞれ要求される開度を足し合わせ、室内制御部22A.22Bから出力される空調負荷に応じた圧縮機11の指令回転数に応じて配分される。
ここで、ゾーン制御について簡単に説明する。この制御は、圧縮機回転数に対し吐出過熱度、吸入過熱度、吐出管温度などを目標範囲内に収めるため電子膨張弁開度を補正する制御であり、マルチ型空気調和装置の通常制御において、オープンループ制御と組み合わせて実施されるものである。また、オープンループ制御は、圧縮機回転数に対し電子膨張弁開度を比例的に設定する制御であり、その係数は外気温、吐出管温度、吸入過熱度などにより決まる。なお、オープンループ制御及びゾーン制御については、たとえば実公平7−14772号公報、特開2003−106608号公報及び特開2003−130426号公報により開示されている。
通常制御においては、オープンループ制御により電子膨張弁14の大まかな開度を定め、ゾーン制御により適正な運転点を保つように電子膨張弁14の開度が微調整される。また、各室内気ユニット20A,20B毎の電子膨張弁開度は、オープンループ制御及びゾーン制御によりそれぞれ要求される開度を足し合わせ、室内制御部22A.22Bから出力される空調負荷に応じた圧縮機11の指令回転数に応じて配分される。
上述した過熱度制御モードでは、二相流部温度センサ23で検出した二相流部の圧力飽和温度(TIP1)と、気相側の温度を検出する気相部温度センサ24で検出した冷媒のガス温度(TIP2)との温度差(ΔTIP)から、二つの空調対象にそれぞれ設けた室内気ユニット20A,20Bについて、それぞれ室内熱交換器21A,21Bの出口過熱度を算出して評価する。
この温度差、すなわち出口過熱度(ΔTIP)は、
ΔTIP=TIP2−TIP1
で定義される。
この温度差、すなわち出口過熱度(ΔTIP)は、
ΔTIP=TIP2−TIP1
で定義される。
そして、空調負荷が異なる2台の室内機ユニット20A,20Bのそれぞれについて、電子膨張弁14A,14Bの開度を個別に補正・制御して出口過熱度のフィードバック制御を行う。以下では、この過熱度制御モードについて、具体例を示して説明する。
まず最初に、この過熱度制御モードを開始する条件は、第1に冷房運転時であること、第2にゾーン制御により運転点を満足した場合の二つであり、両方を満たすことが必要となる。この条件が満たされると、二つの室内機ユニット20A,20Bについて、それぞれ二相流部温度センサ23A,23B及び気相部温度センサ24A,24Bの検出温度から過熱度評価を実施する。なお、ゾーン制御により運転点が満足された状態では、二つの室内機ユニット20A,20Bについて、それぞれの空調負荷に応じて冷媒を分配するよう電子膨張弁14A,14Bの開度Cpが決められている。
まず最初に、この過熱度制御モードを開始する条件は、第1に冷房運転時であること、第2にゾーン制御により運転点を満足した場合の二つであり、両方を満たすことが必要となる。この条件が満たされると、二つの室内機ユニット20A,20Bについて、それぞれ二相流部温度センサ23A,23B及び気相部温度センサ24A,24Bの検出温度から過熱度評価を実施する。なお、ゾーン制御により運転点が満足された状態では、二つの室内機ユニット20A,20Bについて、それぞれの空調負荷に応じて冷媒を分配するよう電子膨張弁14A,14Bの開度Cpが決められている。
そして、室内機ユニット20の運転台数及び圧縮機11の指令回転数により、下記の条件(1)〜(3)に準じて図2に示す表A〜Cの中からひとつを選択する。なお、図2の数値はいずれも一例を示すものであり、これに限定されるものではない。
これらの表A〜Cは、上述した出口過熱度(ΔTIP)に対応する電子膨張弁14の開度変更量(パルス数)を定めた制御マップであり、それぞれの電子膨張弁14A,14Bについて、算出した出口過熱度(ΔTIP)に対応するパルス数だけ開度を増減して変更する。なお、上述した指令回転数は、室内機ユニット20A,20Bそれぞれの空調負荷に応じて、室外機ユニット10の圧縮機11に出される要求回転数であり、通常は空調負荷が大きいほど大きな値となる。
これらの表A〜Cは、上述した出口過熱度(ΔTIP)に対応する電子膨張弁14の開度変更量(パルス数)を定めた制御マップであり、それぞれの電子膨張弁14A,14Bについて、算出した出口過熱度(ΔTIP)に対応するパルス数だけ開度を増減して変更する。なお、上述した指令回転数は、室内機ユニット20A,20Bそれぞれの空調負荷に応じて、室外機ユニット10の圧縮機11に出される要求回転数であり、通常は空調負荷が大きいほど大きな値となる。
(1)表Aを選択する条件
a.室内機ユニット20を1台のみ運転している場合
b.室内機ユニット20A,20Bを2台運転し、圧縮機11の指令回転数が2台共に 所定値R以上か、あるいは、圧縮機11の指令回転数が2台共に所定値R未満であ る場合
(2)表Bを選択する条件
室内機ユニット20A,20Bを2台運転し、いずれか一方の指令回転数だけが所定値 R未満の場合であって、指令回転数が所定値R以上の室内機ユニット
(3)表Cを選択する条件
室内機ユニット20A,20Bを2台運転し、いずれか一方の指令回転数だけが所定値 R未満の場合であって、指令回転数が所定値R未満の室内機ユニット
a.室内機ユニット20を1台のみ運転している場合
b.室内機ユニット20A,20Bを2台運転し、圧縮機11の指令回転数が2台共に 所定値R以上か、あるいは、圧縮機11の指令回転数が2台共に所定値R未満であ る場合
(2)表Bを選択する条件
室内機ユニット20A,20Bを2台運転し、いずれか一方の指令回転数だけが所定値 R未満の場合であって、指令回転数が所定値R以上の室内機ユニット
(3)表Cを選択する条件
室内機ユニット20A,20Bを2台運転し、いずれか一方の指令回転数だけが所定値 R未満の場合であって、指令回転数が所定値R未満の室内機ユニット
上述した表から電子膨張弁開度の変更量SHが決まると、この変更量SHの積算値がゾーン制御実施後に決められた電子膨張弁開度Cpに加算される。すなわち、過熱制御実施後に分配される電子膨張弁14A,14Bの開度Cは、
C=Cp+ΣSH
で表される。
C=Cp+ΣSH
で表される。
たとえば、上述した(2)の条件により図2の表Bが選択される室内機ユニット20の場合、算出した出口過熱度(ΔTIP)が12℃以上(12℃≦ΔTIP)であれば、電子膨張弁14の開度を+4パルスだけ補正する。なお、電子膨張弁14の開度を補正するパルス数は、正(+)が開度を増して開く方向であり、負(−)が開度を減らして閉じる方向となる。
また、上述した(3)の条件により図2の表Cが選択される室内機ユニット20の場合には、算出した出口過熱度(ΔTIP)が10℃以上(10℃≦ΔTIP)であれば、電子膨張弁14の開度を+5パルスだけ補正する。
また、上述した(3)の条件により図2の表Cが選択される室内機ユニット20の場合には、算出した出口過熱度(ΔTIP)が10℃以上(10℃≦ΔTIP)であれば、電子膨張弁14の開度を+5パルスだけ補正する。
すなわち、上述した開度補正の制御マップは、指令回転数が所定値より低く空調負荷の小さい室内機ユニット20側(表Cを適用)において、指令回転数が所定値より高く空調負荷の大きい室内機ユニット20側(表Bを適用)と比較した場合、出口過熱度が低い段階で大きなパルス数の開度補正を実施し、なるべく早く電子膨張弁14の開度を増して冷媒供給量が増加するように設定されている。そして、開度補正の変更量が0パルスになるまで、たとえば表Cの場合、出口過熱度が−5℃≦ΔTIP<0℃になるまで、フィードバック制御を繰り返す。
このため、冷媒循環量が少なく乾いた状態の室内熱交換機21は、この過熱度制御モードの実施により冷媒循環量が増加するので、その分過熱領域が減少し冷却能力も増加する。従って、空調負荷の小さい室内機ユニット20においても、室内熱交換機21の冷却能力が増すことにより、通過する室内気の湿分を凝縮させて除去することが可能になる。換言すれば、室内熱交換機21のフィンに結露して濡れた状態となるので、湿度の高い室内気がそのままランナ通路内に流入して結露するのを防止することができる。
なお、上述した過熱度制御モードの実施により、圧縮機11の適正な運転点から外れる可能性もあるが、この場合は、再度ゾーン制御を実施することで圧縮機の運転点を保護する制御は継続する。
なお、上述した過熱度制御モードの実施により、圧縮機11の適正な運転点から外れる可能性もあるが、この場合は、再度ゾーン制御を実施することで圧縮機の運転点を保護する制御は継続する。
以上説明したように、本発明のマルチ型空気調和装置においては、2台ある室内熱交換機21A,21B毎に算出した出口過熱度から電子膨張弁14A,14Bの開度補正を個別に行う過熱度制御モードを備えているので、室内気ユニット20A,20Bの空調負荷が大きく異なっている場合であっても、冷媒分配量を修正して低負荷側における冷媒循環量の不足を解消することができる。この結果、ランナ結露を防止できるので、室内機ユニット20から結露水が水滴となって落下したり、あるいは、空調空気とともに水分が室内へ飛散するようなことはない。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
10 室外機ユニット
11 圧縮機
12 四方弁
13 室外熱交換器
14A,14B 電子膨張弁
20A,20B 室内機ユニット
21A,21B 室内熱交換機
23A,23B 二相流部温度センサ(第1の温度検出手段)
24A,24B 気相部温度センサ(第2の温度検出手段)
11 圧縮機
12 四方弁
13 室外熱交換器
14A,14B 電子膨張弁
20A,20B 室内機ユニット
21A,21B 室内熱交換機
23A,23B 二相流部温度センサ(第1の温度検出手段)
24A,24B 気相部温度センサ(第2の温度検出手段)
Claims (1)
- 室外機ユニットと、該室内機ユニットに接続されそれぞれが独自の電子膨張弁を備えている2台の室内機ユニットとを具備してなるマルチ型空気調和装置において、
前記室内機ユニットの室内熱交換器が、それぞれ二相流部の温度を検出する第1の温度検出手段と、気相側の温度を検出する第2の温度検出手段とを備え、
冷房運転時に前記第1及び第2の温度検出手段で検出した温度差から各室内熱交換器毎に出口過熱度を算出し、該出口過熱度に基づいて前記室内機ユニット毎に前記電子膨張弁の開度を個別に補正する過熱度制御モードを備えていることを特徴とするマルチ型空気調和装置。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004103873A JP2005291553A (ja) | 2004-03-31 | 2004-03-31 | マルチ型空気調和装置 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004103873A JP2005291553A (ja) | 2004-03-31 | 2004-03-31 | マルチ型空気調和装置 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2005291553A true JP2005291553A (ja) | 2005-10-20 |
Family
ID=35324681
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2004103873A Pending JP2005291553A (ja) | 2004-03-31 | 2004-03-31 | マルチ型空気調和装置 |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2005291553A (ja) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100790050B1 (ko) | 2006-09-04 | 2008-01-02 | 엘지전자 주식회사 | 멀티 공기조화기의 제어방법 |
| JP2009250479A (ja) * | 2008-04-03 | 2009-10-29 | Sharp Corp | 空気調和機 |
| JP2010216761A (ja) * | 2009-03-18 | 2010-09-30 | Mitsubishi Heavy Ind Ltd | マルチ形空気調和機 |
| EP2532992A1 (en) | 2011-06-09 | 2012-12-12 | Mitsubishi Heavy Industries | Multi-type air conditioner and control method therefor |
| JP2013047579A (ja) * | 2011-08-29 | 2013-03-07 | Toshiba Corp | 空調制御システムおよび空調制御方法 |
| US20130174591A1 (en) * | 2010-09-13 | 2013-07-11 | Carrier Corporation | Superheat control for a refrigerant vapor compression system |
| CN104006445A (zh) * | 2013-02-26 | 2014-08-27 | 珠海格力电器股份有限公司 | 多联式空调器及其控制方法 |
| CN105588284A (zh) * | 2016-01-04 | 2016-05-18 | 广东美的暖通设备有限公司 | 空调系统室内机冷媒分流控制方法及装置 |
| EP3199889A1 (en) * | 2016-01-28 | 2017-08-02 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Air conditioner |
| CN114963547A (zh) * | 2021-05-25 | 2022-08-30 | 青岛海尔新能源电器有限公司 | 热水器控制方法、装置、设备及存储介质 |
-
2004
- 2004-03-31 JP JP2004103873A patent/JP2005291553A/ja active Pending
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100790050B1 (ko) | 2006-09-04 | 2008-01-02 | 엘지전자 주식회사 | 멀티 공기조화기의 제어방법 |
| JP2009250479A (ja) * | 2008-04-03 | 2009-10-29 | Sharp Corp | 空気調和機 |
| JP2010216761A (ja) * | 2009-03-18 | 2010-09-30 | Mitsubishi Heavy Ind Ltd | マルチ形空気調和機 |
| US20130174591A1 (en) * | 2010-09-13 | 2013-07-11 | Carrier Corporation | Superheat control for a refrigerant vapor compression system |
| EP2532992A1 (en) | 2011-06-09 | 2012-12-12 | Mitsubishi Heavy Industries | Multi-type air conditioner and control method therefor |
| JP2013047579A (ja) * | 2011-08-29 | 2013-03-07 | Toshiba Corp | 空調制御システムおよび空調制御方法 |
| CN104006445A (zh) * | 2013-02-26 | 2014-08-27 | 珠海格力电器股份有限公司 | 多联式空调器及其控制方法 |
| CN105588284A (zh) * | 2016-01-04 | 2016-05-18 | 广东美的暖通设备有限公司 | 空调系统室内机冷媒分流控制方法及装置 |
| EP3199889A1 (en) * | 2016-01-28 | 2017-08-02 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Air conditioner |
| CN114963547A (zh) * | 2021-05-25 | 2022-08-30 | 青岛海尔新能源电器有限公司 | 热水器控制方法、装置、设备及存储介质 |
| CN114963547B (zh) * | 2021-05-25 | 2023-12-12 | 青岛海尔新能源电器有限公司 | 热水器控制方法、装置、设备及存储介质 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6494765B2 (ja) | 空気調和システム | |
| JPH04295568A (ja) | 空気調和機 | |
| JP4849095B2 (ja) | 空気調和装置 | |
| JPWO2017081820A1 (ja) | 空気調和システムおよび空気調和システムの制御方法 | |
| JP6250148B2 (ja) | 空気調和システム | |
| WO2020261982A1 (ja) | 空調システム | |
| JP2005291553A (ja) | マルチ型空気調和装置 | |
| JP5594030B2 (ja) | コントローラ、調湿用制御部および空調処理システム | |
| JP2013002749A (ja) | 空気調和装置 | |
| JP2008157557A (ja) | 空気調和装置 | |
| JP2008175430A (ja) | 空気調和機 | |
| JP4074422B2 (ja) | 空調機とその制御方法 | |
| JP7374633B2 (ja) | 空気調和機及び空気調和システム | |
| WO2019155614A1 (ja) | 空気調和装置、空調システム及び熱交換ユニット | |
| KR20190088693A (ko) | 멀티형 공기조화기 | |
| JP4647399B2 (ja) | 換気空調装置 | |
| JP6938950B2 (ja) | 空気調和システム | |
| JP2018071864A (ja) | 空気調和機 | |
| JP6660873B2 (ja) | ヒートポンプ式温調装置 | |
| JP6573723B2 (ja) | 空気調和装置 | |
| JP7189472B2 (ja) | 空調システム | |
| JP2006234295A (ja) | マルチ型空気調和装置 | |
| JP5827717B2 (ja) | ヒートポンプ付ファンコイル式放射空調パネル用空調機 | |
| JP2006234296A (ja) | マルチ型空気調和装置 | |
| JP7193356B2 (ja) | 外気処理装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061117 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080729 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090217 |