JP2005247920A - ハイドレート生成方法および生成装置 - Google Patents

ハイドレート生成方法および生成装置 Download PDF

Info

Publication number
JP2005247920A
JP2005247920A JP2004057518A JP2004057518A JP2005247920A JP 2005247920 A JP2005247920 A JP 2005247920A JP 2004057518 A JP2004057518 A JP 2004057518A JP 2004057518 A JP2004057518 A JP 2004057518A JP 2005247920 A JP2005247920 A JP 2005247920A
Authority
JP
Japan
Prior art keywords
hydrate
ice
heat
generation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004057518A
Other languages
English (en)
Other versions
JP4488769B2 (ja
Inventor
Kazuyoshi Matsuo
和芳 松尾
Takashi Arai
新井  敬
Yuichi Kato
裕一 加藤
Goro Taguchi
梧郎 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004057518A priority Critical patent/JP4488769B2/ja
Publication of JP2005247920A publication Critical patent/JP2005247920A/ja
Application granted granted Critical
Publication of JP4488769B2 publication Critical patent/JP4488769B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】本発明の課題は、コンパクトな装置構成で簡易かつ効率的にハイドレートを生成することができるハイドレート生成方法およびこの方法に好適なハイドレート生成装置を提供することにある。
【解決手段】原料水を冷却して氷を生成する氷生成部10と、ハイドレート生成温度領域内で氷の一部を融解させて水とし、この水をハイドレート形成物質と反応させてハイドレートを生成するハイドレート生成部20と、さらに必要に応じて、氷生成部10からハイドレート生成部20に導入される氷全量をハイドレート化するのに要する以上のハイドレート形成物質をハイドレート生成部20に導入する過剰導入手段63、63と、を備えていることを特徴とする。
【選択図】図1

Description

本発明は、例えばメタンガスや天然ガスなどのハイドレート形成物質を原料としてハイドレートを生成するハイドレート生成方法および生成装置に関する。
ハイドレートは、水分子で構成されるクラスター内にガス状のハイドレート形成物質(例えばメタン、天然ガス、エタン、プロパン、二酸化炭素など)が包接された構造の水和物である。このハイドレートは、1m中に約165Nmもの天然ガスを包蔵することができるなど高いガス包蔵性を有するとともに、大きな生成熱・解離熱、生成・解離差圧、高い反応選択性等の性質を有するため、例えば天然ガスの輸送・貯蔵システムや蓄熱システム、アクチュエータ、混合ガスの分離・精製システムなどの多様な用途での利用が注目されており、現在盛んに研究されている。
ハイドレート形成物質がメタンであるメタンハイドレートを製造するには、メタンガスと水とをメタンハイドレート生成条件下で反応させる必要がある。図4はメタンハイドレートの平衡図であり、平衡曲線Sより高圧・低温側(図4において平衡曲線Sの上側)においてメタンハイドレートの生成が可能であることを示している。しかし、反応温度が0℃未満であるとハイドレートが生成される前に原料水が凍結して氷となってしまい、ハイドレート生成反応が固(氷)−気(メタンガス)接触反応となってしまうために生成速度が著しく低下して実用的でないという問題がある。従って、実用的には、ハイドレート生成条件は図4中斜線で示す領域(反応温度が0℃以上の領域)に限定されてしまい、例えば5.4MPaの圧力条件下では反応温度が0から8℃となる。
また、ハイドレート生成反応は発熱反応(約435kJ/kg)であるため、生成反応を持続させるためには生成熱を除熱する必要がある。しかし、上述した原料水の凍結を回避するために反応系を0℃未満の冷媒で冷却することができず、実用的には原料水温度が4℃程度となるように調整してハイドレート生成反応を行っていた。そのため、熱交換の温度差を実用上4℃程度しか確保することができず、冷媒と被冷却原料との温度差(ΔT)が小さいために伝熱面積の大きい熱交換器が必要となってしまい、設備構成が全体として大型なものとなってしまう問題があった。
特開2003−80056号公報(特許文献1)には、ガスを水和させてガスハイドレートを生成する生成容器について開示されている。この生成容器は水相を冷却する冷却手段を備えているが、生成容器表面積分の伝熱面積しか確保することができないためハイドレート生成熱を充分に除熱することができず、生成容器内をハイドレート生成条件(温度:2〜10℃、圧力:4MPa以上)に維持することが困難である。
特開2003−80056号公報
本発明はこのような実情に鑑みなされたものであり、その課題は、コンパクトな装置構成で簡易かつ効率的にハイドレートを生成することができるハイドレート生成方法およびこの方法に好適なハイドレート生成装置を提供することにある。
上記課題を解決するため、本発明の第1の態様に係るハイドレート生成方法の発明は、原料水を冷却して氷を生成する氷生成工程と、ハイドレート生成温度領域内で前記氷の一部を融解させ、ハイドレート生成熱を前記氷の冷熱によって除去しながらハイドレートを生成するハイドレート生成工程と、を含むことを特徴とする。
ここで「氷の冷熱」とは、氷の温度上昇に関与する温度変化熱と氷の融解熱(潜熱)とを合わせた熱を意味するものであり、具体的には、氷の温度が−20℃、融点が0℃である場合を例に挙げると、−20℃から0℃まで氷の温度を上昇させるのに関与する温度変化熱と、融点において氷を水に状態変化させる融解熱とを合わせた熱である。
この特徴によれば、氷生成工程において大きな温度差(ΔT)を用意して原料水を冷却することができるので、少ない伝熱面で効率的に氷を生成することができる。また、ハイドレート生成熱を氷の冷熱により除去しながらハイドレートを生成するので、ハイドレートを効率的に生成することができる。
また、本発明の第2の態様に係るハイドレート生成方法の発明は、原料水を冷却して氷を生成する氷生成工程と、ハイドレート生成温度領域内で前記氷の一部を融解させ、ハイドレート生成熱を前記氷の冷熱及びハイドレート形成物質の顕熱によって除去しながらハイドレートを生成するハイドレート生成工程と、を含むことを特徴とする。
ここで「ハイドレート形成物質の顕熱」とは、ハイドレート形成物質を所定温度上昇させるのに要する熱であり、具体的にはハイドレート形成物質の比熱と質量と温度上昇幅との積により求めることができる。
この特徴によれば、氷生成工程において大きな温度差(ΔT)を用意して原料水を冷却することができるので、少ない伝熱面で効率的に氷を生成することができる。また、ハイドレート生成熱を氷の冷熱及びハイドレート形成物質の顕熱により除去しながらハイドレートを生成するので、ハイドレートを効率的に生成することができる。
また、本発明の第3の態様に係るハイドレート生成装置の発明は、原料水を冷却して氷を生成する氷生成部と、ハイドレート生成温度領域内で前記氷の一部を融解させて水とし、この水をハイドレート形成物質と反応させてハイドレートを生成するハイドレート生成部と、を備えていることを特徴とする。
この特徴によれば、大きな温度差(ΔT)を用意して原料水を冷却して氷を生成することができるので、伝熱面を小さくすることができ、氷生成部の構成をコンパクトにすることができる。また、ハイドレート生成部ではハイドレート生成温度領域内で氷の一部を溶解させて水とし、この水をハイドレート形成物質と反応させてハイドレートを生成するので、ハイドレート生成熱を氷の冷熱で除去しながらハイドレートを生成することができる。従って、装置構成を簡易かつコンパクトにすることができる。
また、本発明の第4の態様に係るハイドレート生成装置の発明は、原料水を冷却して氷を生成する氷生成部と、ハイドレート生成温度領域内で前記氷の一部を融解させて水とし、この水をハイドレート形成物質と反応させてハイドレートを生成するハイドレート生成部と、前記氷生成部から前記ハイドレート生成部に導入される氷全量をハイドレート化するのに要する以上のハイドレート形成物質を前記ハイドレート生成部に導入する過剰導入手段と、を備えていることを特徴とする。
この特徴によれば、大きな温度差(ΔT)を用意して原料水を冷却して氷を生成することができるので、伝熱面を小さくすることができ、氷生成部の構成をコンパクトにすることができる。また、ハイドレート生成部ではハイドレート生成温度領域内で氷の一部を融解させて水とし、この水をハイドレート形成物質と反応させてハイドレートを生成するので、ハイドレート生成熱を氷の冷熱で除去しながらハイドレートを生成することができる。さらに、氷全量をハイドレート化するのに要する以上のハイドレート形成物質をハイドレート生成部に導入する過剰導入手段を備えているので、ハイドレート生成熱を氷の冷熱だけでなくハイドレート形成物質の顕熱によっても除去することができ、もってハイドレートの生成反応を容易に制御することができるとともに確実に反応を進行させることができる。従って、装置構成を簡易かつコンパクトにすることができる。
また、本発明の第5の態様に係るハイドレート生成装置の発明は、前記第3の態様または前記第4の態様において、前記ハイドレート生成部は、ハイドレート生成反応を徐々に進行させながら前記氷を移送させる移送手段を備えていることを特徴とする。
この特徴によれば、ハイドレート生成部が、ハイドレート生成反応を徐々に進行させながら氷を移送させる移送手段を備えているので、反応を確実に進行させることができるとともに、反応の進行程度を容易に制御することができる。
また、本発明の第6の態様に係るハイドレート生成装置の発明は、前記第3の態様または前記第4の態様において、前記ハイドレート生成部は、当該ハイドレート生成部内に前記ハイドレート形成物質による流動層を形成させるハイドレート形成物質噴出手段を備えていることを特徴とする。
この特徴によれば、ハイドレート生成部が、ハイドレート生成部内にハイドレート形成物質による流動層を形成させるハイドレート形成物質噴出手段を備えているので、流動層中で反応を進行させることでハイドレート生成反応を確実に進行させることができるとともに、反応の進行程度を容易に制御することができる。
本発明によれば、大きい温度差を用意して水を冷却することができるので、少ない伝熱面で効率的に氷を生成することができる。また、生成熱を効率的に除去しながらハイドレート生成反応を進行させることができるので、高効率なハイドレート生成が可能である。また、生成熱を効率的に除熱することができるので、伝熱面を用いることなくハイドレートを生成することができる。従って、装置構成をコンパクトにすることができる。
本発明に係るハイドレート生成方法は、原料水を冷却して氷を生成する氷生成工程と、ハイドレート生成温度領域内で前記氷の一部を融解させ、ハイドレート生成熱を前記氷の冷熱によって除去しながらハイドレートを生成するハイドレート生成工程と、を含むことを特徴とするもの、または、原料水を冷却して氷を生成する氷生成工程と、ハイドレート生成温度領域内で前記氷の一部を融解させ、ハイドレート生成熱を前記氷の冷熱及びハイドレート形成物質の顕熱によって除去しながらハイドレートを生成するハイドレート生成工程と、を含むことを特徴とするものである。
本発明に用いられるハイドレート形成物質(原料ガス)としては、ハイドレートを形成するものであれば特に制限されるものではなく、例えばメタンガス、天然ガス、エタンガス、プロパンガス、二酸化炭素ガスなどを挙げることができる。
ハイドレート生成条件は、用いるハイドレート形成物質の種類、反応圧力、反応温度に応じて適宜調整することができ、例えばハイドレート形成物質がメタンガスである場合には図4中斜線で示すハイドレート生成領域に調整することができ、具体的には反応圧力が5.4MPaの場合には反応温度を0から8℃程度に制御する。なお、以下ではハイドレート形成物質としてメタンガスを使用し、5.4MPaの圧力条件下でメタンハイドレートを生成する場合を例に挙げて説明する。
ここで原料水1kgからメタンハイドレートを生成する場合を例に挙げてハイドレート生成方法およびハイドレート生成に係る模式的な熱収支について説明する。
まず、氷点以下の任意温度(例えば図4中のc点)で原料水1kgを冷却して氷1kgを生成する。この氷1kgは、氷の比熱(kJ/kg℃)と、氷点と任意温度との温度差(ΔT:℃)と、質量(1kg)との積に相当する温度変化熱量(kJ)、及び、融解熱量〔335kJ(80kcal)〕を合わせた熱量を冷熱として有している。なお、ここでは説明の便宜上、氷の冷熱として融解熱のみを有する場合(すなわち温度変化熱を有さない場合)について説明する。
メタンハイドレートは水分子とメタン分子から構成されており、その構成比率は水:0.866、メタン:0.134である。また、メタンハイドレートの生成反応は発熱反応であり、その生成熱量は435kJ/kg(104kcal/kg)である。従って、メタンハイドレートを生成するには前記生成熱を除熱することが必要となる。水1kgを原料とすると、上記構成比率より1.155kgのメタンハイドレートを生成することができ、このときの生成熱量は502kJ(120kcal)となる。
ここで、氷1kgの融解熱量(335kJ)は、水1kgを原料としてメタンハイドレートを生成する際の生成熱量(502kJ)の約67%に相当する。すなわち、ハイドレート生成温度領域内で氷の一部を融解させ、ハイドレート生成熱を氷の融解熱により除去しながらハイドレートを生成することで生成熱量の約67%を除熱することができる。換言すれば、氷の有する融解熱のみによって反応率約67%のハイドレートを生成することができるものである。
また、必要に応じて、反応率を100%とする場合(すなわち、原料水1kgの全てをハイドレート化して1.155kgのメタンハイドレートを生成する場合)には、ハイドレート生成熱量(502kJ)から氷融解熱量(335kJ)を引いて得られる不足熱量〔167kJ(39.9kcal)〕を、原料メタンガスの顕熱により補うことが可能である。ここで、前記不足熱量(167kJ)をメタンガスの顕熱で補う場合について説明する。
メタンガスの比熱は2.72kJ/kg℃(0.65kcal/kg℃)であり、ハイドレート生成時のメタンガスの温度上昇幅を5℃(1℃から6℃に上昇)とした場合、不足熱量を補足するのに必要なメタンガス量は、不足熱量(167kJ)を、メタンガスの比熱(2.72kJ/kg℃)と温度上昇幅(5℃)との積(13.6kJ/kg)で除して得ることができ、その結果は12.3kgとなる。従って、メタンハイドレート生成熱量(502kJ)のうち、氷融解熱量(335kJ)で不足する熱量(167kJ)をメタンガス12.3kgで補うことができる。すなわち、ハイドレート生成熱を氷の冷熱及びメタンガスの顕熱により除去しながら反応させることにより、効率的にハイドレートを生成することができる。
また、1.155kgのメタンハイドレートに含まれるメタン量は0.155kgであるから、不足熱量を補うメタンガス量(12.3kg)は、メタンハイドレートの生成に必要とされるメタンガス量(0.155kg)の約79.4倍となる。
なお、ここでは上述したように氷の冷熱のうち温度変化熱を考慮していない。従って、氷の温度変化熱を考慮した場合には、氷の冷熱によって、より多くのハイドレート生成熱を除熱することができるとともに、不足熱量の補足のためのメタンガス量を少なくすることができる。すなわち、氷の冷熱として融解熱のみならず温度変化熱をも利用することでハイドレート生成熱の除熱率を向上させることができ、ハイドレート生成率をより一層高めることができる。さらに、氷の温度、原料ガスの温度や量などを制御することにより、ハイドレートの生成率(含有率)を適宜制御することが可能である。
次に、本発明に係るハイドレート製造装置の実施形態について図1を参照しつつ説明する。本実施形態に係るハイドレート生成装置101は、所定の耐圧性を有し、全体として一体形成された円筒形状の容器9を有しており、その上部に氷生成部10が配設され、氷生成部10の下部にハイドレート生成部20が配設された縦型構成となっている。また、ハイドレート生成装置101の全体は、図示しない圧力制御手段によってハイドレートが生成され得る圧力(本実施形態では5.4MPa)に調整されている。
氷生成部10には、原料水を導入する水導入ノズル11と、原料水を冷却して氷を生成する冷却部12と、生成した氷を掻き取る氷掻き取り手段としての板体14が設けられている。冷却部12は容器9の内面に沿って円筒形状に設けられており、この冷却部12には冷媒冷却器51で所定温度(原料水の氷点以下の任意温度であり、本実施形態では−5から−50℃程度、好ましくは−20から−50℃程度である。)に冷却された冷媒が冷媒導入ノズル56から導入され、冷媒排出ノズル57を介して排出されるように構成されている。このように、冷却部12における原料水と冷媒との温度差(ΔT)を大きくとることができるので少ない伝熱面積で原料水を凍結させて氷を生成することができ、装置構成をコンパクトにすることができる。具体的には、例えば冷媒の温度が−10℃である場合には、原料水と冷媒との温度差(ΔT)が4℃である場合と比し、伝熱面積を40%程度にまで低減させることができる。
また、板体14は容器9の中心に配設された回転軸18に取り付けられており、駆動源19の駆動による回転軸18の回転駆動に伴い冷却部12に生成した氷を掻き取るように構成されている。なお、冷却部12を介して冷媒を循環させる冷媒ライン59には調節弁53が設けられており、原料水の量や冷媒温度などに応じて冷却部12への冷媒導入量を調整することができるようになっている。
ハイドレート生成部20はハイドレートを生成する空間部を有しているとともに、移送手段の一例である撹拌羽根21を備えている。この撹拌羽根21は回転軸18に取り付けられており、氷を一時的に保持する保持面を有し、回転軸18の回転駆動に伴って回転してハイドレート生成反応を徐々に進行させながら氷等の固体状物を装置下部に向けて移送させるように構成されている。すなわち、撹拌羽根21は、氷生成部10から落下してハイドレート生成部20に導入された氷がハイドレート生成反応に関与する前に排出ノズル23から排出されることを回避してハイドレート生成反応が充分に進行するように構成・制御されており、ハイドレート生成部20の上部側から下部側に向けて徐々にハイドレート生成率が高まるようになっている。従って、撹拌羽根21により氷生成部10側から排出ノズル23側に向けて生成物中のハイドレート化率を高めることができるとともに、移送速度や反応時間などの反応条件を制御することで反応の進行程度を容易に制御することができる。
なお、移送手段はハイドレート生成部20において充分なハイドレート生成反応を確保することができる構成のものであれば良く、例えばそれぞれ独立して回転軸18に取り付けられ、一時的に氷を保持する保持面を有し、段階的に下段の板体に移送させることで徐々に反応を進行させる構成のものや、回転軸18を中心として螺旋状に形成され、螺旋下部に向けて徐々に反応を進行させる構成のものなどを用いることができる。また、板体14及び撹拌羽根21が単一の回転軸18に取り付けられているので、高圧に制御される装置構成を簡易なものにすることができる。
また、ハイドレート生成部20には、必要に応じて外部からの熱の侵入を防ぎ内部を常にハイドレート生成温度領域(本実施形態では0から8℃程度)に保持する保冷手段(図示せず)を設けることができる。この保冷手段はハイドレート生成部20を氷点以下に冷却する機能を有するものではなく、ハイドレート生成部20をハイドレート生成温度領域内に保冷し得る機能を有するものであればよく、例えばハイドレート生成部20の周囲を覆う保冷器や撹拌羽根21内を流通する保冷剤などを用いることができる。このようにハイドレート生成部20を積極的に冷却する必要がないので、例えば大きな伝熱面を有する冷却器などを設ける必要がなく、装置構成を簡易かつコンパクトなものにすることができる。
ハイドレート生成部20には、ガス冷却器61で所定温度(ハイドレート生成温度であり、本実施形態では0から8℃程度、好ましくは0から3℃程度、最も好ましくは0から2℃程度である。)に冷却されたメタンガスがガス導入ノズル66から導入され、攪拌羽根21の隙間を流通して徐々に流下し、反応に関与しなかったメタンガスがガス排出ノズル67を介して排出されるように構成されている。ガス導入ノズル66から導入されたメタンガスは、ハイドレート生成部20を通過する際にハイドレート生成熱を吸収してある程度昇温するが、ガス排出ノズル67から排出される時点においてハイドレート生成温度領域内に保たれるように制御されており、具体的には、ガスライン69上に設けられた調節弁63、63によるガス量の調整、ガス冷却器61によるガス温度の調整などによって制御される。
なお、原料ガスをハイドレート生成部20に導入するガスライン69には原料ガスの導入量を調整する調節弁63、63が設けられており、この調節弁63、63は、氷生成部10からハイドレート生成部20に導入される氷全量をハイドレート化するのに要する以上のメタンガスをハイドレート生成部20に導入する過剰導入手段としての機能を兼ね備えている。
次に、本実施形態に係るハイドレート生成装置101の作用について説明する。
水導入ノズル11から氷生成部10に導入された原料水は、冷却部12の内表面を薄膜状に流下する間に冷却されて氷となる。生成した氷は板体14により順次掻き取られ、微細な粉末状(例えば、粒径が数μmから数百μm程度)となってハイドレート生成部20に落下する。このように、氷生成部10では原料水から連続的に氷を生成し、この氷を連続的にハイドレート生成部20に供給する。
ハイドレート生成部20への氷の供給量は、反応条件などに応じて適宜調整することができ、例えばハイドレート生成部20内で氷やハイドレートなどの固体状物を排出ノズル23側に向けて徐々に流下させることができ、かつ原料ガスの流通を妨げることがない程度として、ハイドレート生成部20での固体状物の充填率が30から50%程度となるように制御することができる。
このハイドレート生成部20では、ハイドレート生成温度領域内で氷の一部を融解させて水とし、この水をメタンガスと反応させてメタンハイドレートを生成する。また、ハイドレート生成部20は、メタンハイドレートの生成熱と氷の冷熱とメタンガスが持ち込む顕熱によって、内部温度が常にハイドレート生成温度領域に保持されている。
ここで、ハイドレート生成部20でのメタンハイドレート生成過程について図2を参照しつつ説明する。
まず、氷生成部10からハイドレート生成部20に氷2〔図2(A)〕が導入される。図2(A)に示す氷は、ハイドレート生成熱やメタンガス顕熱などを冷熱として吸収して温度が上昇し、ハイドレート生成温度領域内で一部(表面)が融解して水が生成され、図2(B)に示す如く氷2の表面が水3で濡れた状態が構成される。このように本発明では、氷2の一部をハイドレート生成温度領域内で融解させるものの氷水スラリーが構成される程度にまで氷融解を進行させるものではなく、図2(B)に示すように、氷2を核とし、その表面が水3で濡れる程度までの氷融解を生じさせるものである。
氷2の表面水3は雰囲気ガスであるメタンガスと反応してメタンハイドレート4を生成させ、図2(C)に示す如く氷2の表面にハイドレート4が形成された状態が構成される。このように本発明では、主として、氷2の一部融解に由来する水3とメタンガス(ハイドレート形成物質)とを反応させてハイドレートを生成させるものである。そして、メタンハイドレートが生成される際に生じる生成熱が氷の温度を上昇させる温度変化熱および融解熱として利用されることで氷の温度上昇・融解が促進される。換言すれば、ハイドレートの生成熱を氷の冷熱によって除去しながらハイドレート生成反応を進行させるものである。
そして、氷2の表面に形成されたメタンハイドレート4が分離し、図2(D)に示す如く初期〔図2(A)〕と比してメタンハイドレート生成分だけ小さくなった氷2が構成される。以下同様に、メタンハイドレート生成温度領域内での氷の一部融解による水の生成、その水を原料としたメタンハイドレートの生成が繰り返されることにより、最終的には氷の全部又は一部をメタンハイドレートに変換させることができる。なお、必要に応じてハイドレート生成反応を開始させる段階に反応開始剤としての水をハイドレート生成部20に導入することができる。
図1に戻り、本実施形態に係るハイドレート生成装置101では、ハイドレート生成部20の氷生成部10側(上流側)から排出ノズル23側(下流側)に向けてハイドレート生成反応を徐々に進行させることができる。また、反応の制御が容易であり、所望のハイドレート濃度の生成物を回収することが可能である。なお、ハイドレート生成部20での反応時間は、反応条件や生成物のハイドレート濃度などに応じて適宜調整することが可能であり、例えば10分から200分程度とすることができる。
そして、生成したメタンハイドレートは、装置底部の排出ノズル23を介して装置外部に排出され、貯蔵条件や使用条件などに応じてペレット形状への加工処理や自己保存効果発現処理、大気圧への減圧処理などの後処理が適宜施される。
以上説明したように、ハイドレートの生成に伴う生成熱が氷の冷熱として消費され、生じた水が原料ガスと反応してハイドレートを生成するとともに生成熱を生じさせ、さらにこの生成熱が氷の冷熱として消費されるという具合に、ハイドレート生成熱を氷の冷熱によって除去しながら反応を進行させることができ、ハイドレート生成反応を確実に進行させることができる。さらに、上述したように原料ガスの顕熱によってもハイドレート生成熱を除去することができるので、より一層確実にハイドレート生成反応を進行させることができるとともに、効率的にハイドレートを生成することができる。また、ハイドレート生成熱の大部分が氷の冷熱によって除去されるので、装置構成を簡易かつコンパクトにすることが可能である。
また、氷生成部10で生成される氷の温度を調整することで氷の温度変化熱を制御することができるので、ハイドレート生成部20に持ち込まれる氷の冷熱を適宜調整することができる。さらに、ハイドレート生成部20での反応時間、反応温度、反応圧力などの反応条件の制御および原料ガスの導入温度や導入量の制御によって、ハイドレート生成率を適宜調整することができる。従って、ハイドレート含有率が低いものから高いものまで、所望のハイドレートを生成することが可能である。
次に本発明に係るハイドレート生成装置の第2実施形態について説明する。図3は、本発明の第2実施形態に係るハイドレート生成装置を示す図面である。このハイドレート生成装置102は第1実施形態と比し、移送手段に代えてハイドレート形成物質噴出手段を設けた構成となっている。従って、第1実施形態と同一の構成要素には、同一の符号を付して詳しい説明を省略する。
ハイドレート生成部20の下部には、ハイドレート形成物質噴出手段の一例であるガス噴出ノズル25が設けられており、その上部にはガス噴出ノズル25から導入され反応に関与しなかったメタンガスを排出するガス排出ノズル67が設けられている。ガス噴出ノズル25からはガス冷却器61で所定温度(ハイドレート生成温度であり、本実施形態では0から8℃程度、好ましくは0から3℃程度、最も好ましくは0から1℃程度である。)に冷却されたメタンガスが、氷生成部10から落下してくる氷に対向するように勢いよく上方に向けて噴出され、ハイドレート生成部20内に流動層26を形成させている。すなわち、ガス噴出ノズル25からのガス噴出に由来する流動層26は、氷生成部10から落下してハイドレート生成部20に導入された氷がハイドレート生成反応に関与する前に排出ノズル23から排出されることを回避してハイドレート生成反応が充分に進行するように機能するものである。その結果、生成物中のハイドレート生成率を確実に高めることができる。なお、ガス噴出ノズル25からの原料ガスの噴出量や流速等の条件はハイドレート生成部20の体積や氷の粒径、反応条件等に応じて適宜設定することができる。
ガス噴出ノズル25から導入されたメタンガスは、ハイドレート生成部20を通過する際にハイドレート生成熱を吸収してある程度昇温するが、ガス排出ノズル67から排出される時点においてハイドレート生成温度領域内に保たれるように制御されている。
なお、原料ガスをハイドレート生成部20に導入するガスライン69には原料ガスの導入量を調整する調節弁63、63が設けられており、この調節弁63、63は、氷生成部10からハイドレート生成部20に導入される氷全量をハイドレート化するのに要する以上のメタンガスをハイドレート生成部20に導入する過剰導入手段としての機能を兼ね備えている。
次に、本実施形態に係るハイドレート生成装置102の作用について説明する。
水導入ノズル11から氷生成部10に導入された原料水は、冷却部12の内表面を薄膜状に流下する間に冷却されて氷となる。生成した氷は板体14により順次掻き取られ、微細な粉末状(例えば、粒径が数μmから数百μm程度)となってハイドレート生成部20に落下する。このように、氷生成部10は原料水から連続的に氷を生成し、この氷を連続的にハイドレート生成部20に供給する。
流動床反応部として機能するハイドレート生成部20への氷の供給量は、反応条件などに応じて適宜調整することができ、例えばハイドレート生成部20内で流動層26が形成され、ハイドレート生成反応が進行する程度に制御することができる。
氷生成部10からハイドレート生成部20に落下して導入された氷は流動層26中を漂いながら、図2を用いて説明したようにメタンハイドレート生成温度領域内での一部融解による水の生成、その水を原料としたメタンハイドレートの生成を繰り返し、最終的には氷の全部又は一部がメタンハイドレートに変換される。すなわち、ハイドレート生成部20の流動層26中では、図2(A)、(D)に示す氷粒子、図2(B)に示す表面が水で濡れた氷粒子、図2(C)に示す表面にハイドレートが形成された氷粒子およびハイドレート粒子が均一な状態となって完全に混ざり合った完全混合状態が構成された上でハイドレート生成反応が進行する。従って、少ない体積でハイドレートを生成することができ、装置全体の構成を簡易かつコンパクトなものにすることができるとともに、流動層26中での滞留時間などの反応条件を制御することで反応の進行程度を容易に制御することができる。
また、本実施形態に係るハイドレート生成装置102は、ハイドレート生成部20に流動層26が形成される程度の原料ガスがガス噴出ノズル25を介して導入され、このガスの大部分がガス排出ノズル67から排出される構成であるので、ハイドレート生成熱を排出ガスに吸収させることで効率的に反応系外に持ち出すことができる。従って、ハイドレート生成部20の温度制御が極めて容易であり、ハイドレート生成部20の温度を確実にハイドレート生成温度領域に維持することで効率的なハイドレート生成が可能である。
そして、生成したメタンハイドレートは、装置底部の排出ノズル23を介して装置外部に排出され、貯蔵条件や使用条件などに応じてペレット形状への加工処理や自己保存効果発現処理、大気圧への減圧処理などの後処理が適宜施される。
なお、本実施形態に係るハイドレート生成装置102では、氷とハイドレートとの流動性が異なる場合には流動性の差を利用して生成したハイドレートを回収することができる。流動性の差を利用した装置構成としては、例えばハイドレート生成部を二重管構造とし、内管内部に流動層を形成させるとともに当該内管内部に氷を落下させてハイドレートを生成させ、生成したハイドレートを内管と外管との間を介して装置外部に排出させて回収する構成とすることができる。このような構成であると、所定割合以上にハイドレート化が進行した生成物のみを回収することが可能である。
以上、図面を参照しつつ本発明に係るハイドレート生成装置の実施形態について説明したが、ハイドレート生成装置の構成はこれらに限定されるものではなく、特許請求の範囲に記載されている構成であれば排除されるものではない。具体的には例えば、移送手段としてスクリュー型のものを配設した構成のもの、ハイドレート生成部を横置きとし、移送手段としてスクリューコンベアなどを配設した構成のもの、生成装置全体を斜めに配設し、その傾斜角度を制御することで反応時間などの反応条件を制御した構成のものなどでもよい。
本発明は、メタンハイドレートや天然ガスハイドレートなどのハイドレートを生成するハイドレート生成方法および生成装置として利用可能である。
本発明の第1実施形態に係るハイドレート生成装置を示す図面である。
ハイドレートの生成過程の説明に供する図面である。
本発明の第2実施形態に係るハイドレート生成装置を示す図面である。
メタンハイドレートの平衡図である。
符号の説明
2 氷
3 水
4 ハイドレート
9 容器
10 氷生成部
11 水導入ノズル
12 冷却部
18 回転軸
20 ハイドレート生成部
21 撹拌羽根
23 排出ノズル
25 ガス噴出ノズル
26 流動層
51 冷媒冷却器
61 ガス冷却器
101、102 ハイドレート生成装置

Claims (6)

  1. 原料水を冷却して氷を生成する氷生成工程と、
    ハイドレート生成温度領域内で前記氷の一部を融解させ、ハイドレート生成熱を前記氷の冷熱によって除去しながらハイドレートを生成するハイドレート生成工程と、を含むことを特徴とする、ハイドレート生成方法。
  2. 原料水を冷却して氷を生成する氷生成工程と、
    ハイドレート生成温度領域内で前記氷の一部を融解させ、ハイドレート生成熱を前記氷の冷熱及びハイドレート形成物質の顕熱によって除去しながらハイドレートを生成するハイドレート生成工程と、を含むことを特徴とする、ハイドレート生成方法。
  3. 原料水を冷却して氷を生成する氷生成部と、
    ハイドレート生成温度領域内で前記氷の一部を融解させて水とし、この水をハイドレート形成物質と反応させてハイドレートを生成するハイドレート生成部と、を備えていることを特徴とする、ハイドレート生成装置。
  4. 原料水を冷却して氷を生成する氷生成部と、
    ハイドレート生成温度領域内で前記氷の一部を融解させて水とし、この水をハイドレート形成物質と反応させてハイドレートを生成するハイドレート生成部と、
    前記氷生成部から前記ハイドレート生成部に導入される氷全量をハイドレート化するのに要する以上のハイドレート形成物質を前記ハイドレート生成部に導入する過剰導入手段と、を備えていることを特徴とする、ハイドレート生成装置。
  5. 請求項3または請求項4において、前記ハイドレート生成部は、ハイドレート生成反応を徐々に進行させながら前記氷を移送させる移送手段を備えていることを特徴とする、ハイドレート生成装置。
  6. 請求項3または請求項4において、前記ハイドレート生成部は、当該ハイドレート生成部内に前記ハイドレート形成物質による流動層を形成させるハイドレート形成物質噴出手段を備えていることを特徴とする、ハイドレート生成装置。
JP2004057518A 2004-03-02 2004-03-02 ハイドレート生成方法および生成装置 Expired - Fee Related JP4488769B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057518A JP4488769B2 (ja) 2004-03-02 2004-03-02 ハイドレート生成方法および生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057518A JP4488769B2 (ja) 2004-03-02 2004-03-02 ハイドレート生成方法および生成装置

Publications (2)

Publication Number Publication Date
JP2005247920A true JP2005247920A (ja) 2005-09-15
JP4488769B2 JP4488769B2 (ja) 2010-06-23

Family

ID=35028716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057518A Expired - Fee Related JP4488769B2 (ja) 2004-03-02 2004-03-02 ハイドレート生成方法および生成装置

Country Status (1)

Country Link
JP (1) JP4488769B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238826A (ja) * 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートの生成方法及び装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199784B1 (ko) * 2010-11-30 2012-11-09 (주)유성 가스 하이드레이트 반응기
KR101328183B1 (ko) 2011-09-19 2013-11-13 한국생산기술연구원 스크레퍼를 이용한 가스하이드레이트 반응기의 열전달 및 반응효율 향상 방법 및 장치
RU2500950C1 (ru) * 2012-08-16 2013-12-10 Виктор Дорофеевич Лапшин Способ подготовки природного газа для транспортирования
RU2520220C2 (ru) * 2012-08-16 2014-06-20 Виктор Дорофеевич Лапшин Комплекс для доставки природного газа потребителю
RU2496048C1 (ru) * 2012-08-16 2013-10-20 Виктор Дорофеевич Лапшин Способ доставки природного газа потребителю
RU2498153C1 (ru) * 2012-08-16 2013-11-10 Виктор Дорофеевич Лапшин Устройство для подготовки природного газа для транспортирования

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949600A (ja) * 1995-05-31 1997-02-18 Osaka Gas Co Ltd 天然ガスの貯蔵送出方法およびその装置
JPH10196895A (ja) * 1997-01-13 1998-07-31 I H I Plantec:Kk 天然ガスのハイドレートによるガス貯蔵設備
JP2001072615A (ja) * 1999-09-01 2001-03-21 Ishikawajima Harima Heavy Ind Co Ltd ハイドレート製造方法及びその製造装置
JP2001519470A (ja) * 1997-10-14 2001-10-23 モービル・オイル・コーポレイション ガス・ハイドレートを製造する方法および装置
JP2001342473A (ja) * 2000-03-30 2001-12-14 Mitsubishi Heavy Ind Ltd ガスハイドレート製造装置およびガスハイドレート脱水装置
JP2004035840A (ja) * 2002-07-08 2004-02-05 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート脱水機
JP2004059630A (ja) * 2002-07-25 2004-02-26 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート生成方法及び装置
JP2004099831A (ja) * 2002-09-12 2004-04-02 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート製造方法及び装置
JP2004256619A (ja) * 2003-02-25 2004-09-16 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート製造貯蔵方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949600A (ja) * 1995-05-31 1997-02-18 Osaka Gas Co Ltd 天然ガスの貯蔵送出方法およびその装置
JPH10196895A (ja) * 1997-01-13 1998-07-31 I H I Plantec:Kk 天然ガスのハイドレートによるガス貯蔵設備
JP2001519470A (ja) * 1997-10-14 2001-10-23 モービル・オイル・コーポレイション ガス・ハイドレートを製造する方法および装置
JP2001072615A (ja) * 1999-09-01 2001-03-21 Ishikawajima Harima Heavy Ind Co Ltd ハイドレート製造方法及びその製造装置
JP2001342473A (ja) * 2000-03-30 2001-12-14 Mitsubishi Heavy Ind Ltd ガスハイドレート製造装置およびガスハイドレート脱水装置
JP2004035840A (ja) * 2002-07-08 2004-02-05 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート脱水機
JP2004059630A (ja) * 2002-07-25 2004-02-26 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート生成方法及び装置
JP2004099831A (ja) * 2002-09-12 2004-04-02 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート製造方法及び装置
JP2004256619A (ja) * 2003-02-25 2004-09-16 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート製造貯蔵方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238826A (ja) * 2006-03-10 2007-09-20 Mitsui Eng & Shipbuild Co Ltd ガスハイドレートの生成方法及び装置

Also Published As

Publication number Publication date
JP4488769B2 (ja) 2010-06-23

Similar Documents

Publication Publication Date Title
US8420018B2 (en) Gas hydrate production apparatus
EP1375630A1 (en) Gas hydrate production device and gas hydrate dehydrating device
JP4559898B2 (ja) ガスハイドレート製造装置
JP5156903B2 (ja) 遠心分離原理によるガスハイドレートの連続製造及び脱水装置及び方法
JP2004010686A (ja) ガスハイドレートの生成装置、製造装置および製造方法
JP4488769B2 (ja) ハイドレート生成方法および生成装置
JP2013540706A (ja) 天然ガスハイドレート製造装置及び天然ガスハイドレート製造方法
CN103298558B (zh) 催化剂回收系统、烃合成反应装置、烃合成反应系统及催化剂回收方法
JP2004035840A (ja) ガスハイドレート脱水機
JP3891033B2 (ja) ガスハイドレート連続製造装置及び該装置を用いたガスハイドレート連続製造方法
JP4488768B2 (ja) ハイドレートの生成方法及び生成装置
JP6320883B2 (ja) 気体分離装置及び気体分離方法
JP2009221458A (ja) ガスハイドレートの精製方法
JP4620439B2 (ja) ガスハイドレート生成装置および生成方法
JP3891032B2 (ja) ガスハイドレート連続製造方法及び装置
JP2004217487A (ja) 水素ガス包接水和物の製造方法及び装置
JP5127537B2 (ja) ガスハイドレート製造装置の液体冷却装置及び方法
JP2006143771A (ja) ガスハイドレートの製造方法および装置
JP4620508B2 (ja) 重力脱水式の脱水装置
JP6322100B2 (ja) 気体分離装置及び気体分離方法
JP2007238826A (ja) ガスハイドレートの生成方法及び装置
JP2007238697A (ja) ガスハイドレートの生成及び再ガス化方法並びに生成兼再ガス化装置
JP2004155747A (ja) ガスクラスレート製造方法および製造装置
JP2012233022A (ja) ガスハイドレート生成用反応水の製造装置
JP2007217632A (ja) ガスハイドレート生成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees