JP3891032B2 - ガスハイドレート連続製造方法及び装置 - Google Patents

ガスハイドレート連続製造方法及び装置 Download PDF

Info

Publication number
JP3891032B2
JP3891032B2 JP2002129012A JP2002129012A JP3891032B2 JP 3891032 B2 JP3891032 B2 JP 3891032B2 JP 2002129012 A JP2002129012 A JP 2002129012A JP 2002129012 A JP2002129012 A JP 2002129012A JP 3891032 B2 JP3891032 B2 JP 3891032B2
Authority
JP
Japan
Prior art keywords
gas hydrate
gas
hydrate
reaction vessel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002129012A
Other languages
English (en)
Other versions
JP2003321686A (ja
Inventor
龍三 平岡
賢一 田原
喜一 布上
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP2002129012A priority Critical patent/JP3891032B2/ja
Publication of JP2003321686A publication Critical patent/JP2003321686A/ja
Application granted granted Critical
Publication of JP3891032B2 publication Critical patent/JP3891032B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハイドレート生成ガス(例えばメタン)と水とを反応させてガスハイドレートを連続的に製造するようにしたガスハイドレート連続製造方法及び装置に関するものである。
【0002】
【従来の技術】
近年、事業用及び工業用の燃料には、地球温暖化対策としてCO2排出量の少ないものが求められており、このため単位燃焼量当たりのCO2排出量が少ない天然ガス等を使用することが進められている。
【0003】
天然ガスは、主成分のメタンにエタン、プロパン、ブタンを数%含んだガスであり、天然ガスを輸送もしくは貯蔵する場合には、天然ガスを−162℃以下の極低温で液化天然ガス(LNG)として輸送もしくは貯蔵を行っている。天然ガスを燃料として使用する場合には、天然ガスを液化する液化プラントや、天然ガスを極低温で輸送及び貯槽し得るLNG船及び貯蔵設備が必要となり、大規模な設備費、運搬コスト及び運転コストが掛かる問題があった。このために、従来では、一般に大量の天然ガスが採取できる大規模採取地にしか利用することができなかった。
【0004】
一方、上記したような大規模な天然ガス採取地以外にも、中、小規模の天然ガス採取地は多数存在しているが、前記したような大規模設備やコストの問題から中、小規模の天然ガス採取地の天然ガスは利用されていないのが現状である。
【0005】
そこで、天然ガスを取り扱い易い状態で大量に固体化することが考えられており、その1つとしてガスハイドレートがある。
【0006】
ガスハイドレートは、水分子が弱く結合して形成された籠状構造に、例えば天然ガスの成分であるメタン、エタン、プロパン、ブタン等の炭化水素(ハイドレート生成ガス)が閉じ込められたシャーベット状の固体化合物であり、ガスハイドレートを製造する場合には、0〜10℃の水に10〜70ataのメタン等のハイドレート生成ガスを接触させ、この時ガスハイドレート生成熱(98kcal/kg)を除去するよう冷却することによってガスハイドレートが生成される。ガスハイドレートは、生成熱によって温度が上昇すると生成効率が大幅に低下し、一方、温度が上昇しても圧力が高ければガスハイドレートの生成は確保できる。
【0007】
上記したようにガスハイドレートは、前記液化天然ガス方式に比して、比較的高い温度と低い圧力で製造できるので、製造設備を小型で安価なものとすることができ、しかもガスハイドレートは固体として安定しているので、保管、運搬等の取扱いが容易であり、よって、前記したような中、小規模の天然ガス採取地にも容易に適用して、従来利用されていない中、小規模の天然ガス採取地の天然ガスを有効利用することができる。
【0008】
従来より、ガスハイドレートの製造には、反応容器内に水を収容しておき、ハイドレート生成ガスを液面上部の空間に供給することにより液面で接触させるようにした液面接触方式、反応容器内にハイドレート生成ガスを供給しておき、反応容器内上部から水を散布して接触させる水散布方式、反応容器内に水を収容しておき、水中にハイドレート生成ガスを供給して気泡接触させるようにしたバブリング方式等が考えられているが、以下では、本発明が対象としている液面接触方式におけるメタンを用いた従来のガスハイドレート生成装置について説明する。
【0009】
図6はその一例を示したものであり、この装置は、耐圧の反応容器50に給水管51により水を供給して所定のレベルを保持するようにし、更に、前記反応容器50内の液面の上部空間に、ハイドレート生成ガス導入管52によりメタンを導入してメタンと水とを液面で接触させることにより水和反応を行わせてガスハイドレートを生成するようにしている。この時、前記反応容器50内が10〜70ataの圧力になるようにメタンの供給を調節する。又、反応容器50の外部にはジャケット式の冷却装置53を設けて前記水和反応によるガスハイドレートの生成熱を除去するようにしている。冷却装置53には、上記ジャケット式以外に、反応容器50の液中に熱交換器を挿入して液を直接冷却するようにしたものもある。又、反応容器50内の液中には上部のモータ54によって回転される攪拌羽根55を設けて液の攪拌を行うようにしている。
【0010】
そして、反応容器50の側面には、略液面高さの位置にガスハイドレート取出口56を有する取出管57を接続して、液面に生成したガスハイドレートを取出管57を介して外部に取り出すようにしている。
【0011】
図6のガスハイドレート生成装置を用いてガスハイドレートを製造するには、先ず反応容器50内に給水管51により所定の水位まで水を供給し、続いてハイドレート生成ガス導入管52によりメタンを導入して反応容器50内が10〜70ataの所定圧力になるように調節する。更にモータ54にて攪拌羽根55を回転させることにより液を攪拌する。上記したように水を収容した反応容器50内にメタンを導入すると、水とメタンの接触により水和反応が行われてガスハイドレートが生成する。この水和反応によるガスハイドレートの生成熱は冷却装置53によって除去される。液面に生成したガスハイドレートは、ガスハイドレート取出口56から取出管57によって外部に取り出される。
【0012】
上記したように、ガスハイドレートが生成されると、水とハイドレート生成ガスが消費されるので、所定の水位が保持されるように給水管51による給水を行うと共に、所定圧力が保持されるようにハイドレート生成ガス導入管52によるメタンの供給を行う。
【0013】
【発明が解決しようとする課題】
しかし、図6に示した従来のガスハイドレート生成装置では、以下のような問題を有していた。
【0014】
即ち、水とメタンは液面で接触して水和反応によりガスハイドレートを生成することになるため、液面を覆うようにガスハイドレート層58が形成されることになる。このために、ガスハイドレート層58がメタンと水の接触を妨害することになって、ガスハイドレートの生成効率を著しく低下させる。
【0015】
更に、前記のように液面に形成されたガスハイドレート層58は移動しないために塊状を形成し易く、塊となったガスハイドレートはガスハイドレート取出口56から取り出せなくなる問題がある。又、ガスハイドレート層58はガスハイドレート取出口56に向かって移動し難い。従って、この問題を解決するために、図6の従来装置では、反応容器50内における前記ガスハイドレート取出口56の近傍位置に、回転駆動するようにした排出羽根59を設けてガスハイドレートをガスハイドレート取出口56に導くようにしている。しかし、上記排出羽根59は、ガスハイドレート取出口56の直近傍のガスハイドレートの塊を壊したり移動させるだけであり、液面全体に形成されるガスハイドレート層58を壊して効率良くガスハイドレート取出口56に向かわせることはできず、よって安定したガスハイドレートの取り出しができないという問題を有していた。
【0016】
一方、前記攪拌羽根55を液面に近い位置に設けて高速回転させることにより液面を巻き込むように運転し、これによってガスハイドレート層58を壊すことも考えられているが、この方式では気泡の巻き込みによって液面に泡状の密度が低いガスハイドレートが生成し、この泡状のガスハイドレートは流動性が悪いためにガスハイドレート取出口56からの取り出しが更に困難になるという問題がある。
【0017】
又、前記取出管57によるガスハイドレートの取り出しには、反応容器50内を10〜70ataの所定圧力に保持したままガスハイドレートを取り出すことが要求されるが、このように圧力を保持したままでガスハイドレートを安定して取り出す有効な方法も提案されていない。
【0018】
従って、液面接触方式における従来のガスハイドレート生成装置においては、ガスハイドレートを連続して高効率にしかも安定して製造することが困難であった。
【0019】
本発明は、上記従来技術の有する問題点に鑑みてなしたものであり、反応容器内で水とハイドレート生成ガスとを反応させて生成したガスハイドレートを連続的に安定して取り出せるようにして高効率なガスハイドレートの製造を可能にしたガスハイドレート連続製造方法及び装置を提供することを目的としている。
【0020】
【課題を解決するための手段】
請求項1に記載の発明は、反応容器に所定レベルを保持するよう水を供給すると共に反応容器内が所定圧力範囲に保持されるようにハイドレート生成ガスを供給して所定の冷却温度で接触させることによりガスハイドレートを生成させる方法において、回転軸の径方向に延びた連結材に固定され液面の上下に亘って延びた砕部材を回転させて液面に生成するガスハイドレート膜を破砕することによりスラリ状のガスハイドレートとし、該スラリ状のガスハイドレートを圧力保持が可能な強制取出手段により反応容器外部に取り出すことを特徴とするガスハイドレート連続製造方法、に係るものである。
【0021】
請求項2に記載の発明は、前記反応容器内のガスハイドレートの生成状況を、反応容器内で一定回転する破砕装置のトルクにより監視して生成を制御することを特徴とする請求項1記載のガスハイドレート連続製造方法、に係るものである。
【0022】
請求項3に記載の発明は、前記反応容器内のガスハイドレートの生成状況を、反応容器の水に塩類を混合しておき、液中の塩類の濃度により監視して生成を制御することを特徴とする請求項1記載のガスハイドレート連続製造方法、に係るものである。
【0023】
請求項4に記載の発明は、前記強制取出手段により取り出したスラリ状のガスハイドレートを水とガスハイドレートとに分離することを特徴とする請求項1記載のガスハイドレート連続製造方法、に係るものである。
【0024】
請求項5に記載の発明は、給水管とハイドレート生成ガス導入管とを備えた反応容器と、液面の上下に亘って延びる破砕部材を備えて回転する破砕装置と、反応容器の所定高さにガスハイドレート取出口が接続されており反応容器内圧力を保持してスラリ状のガスハイドレートを反応容器外部に取り出し可能な強制取出手段とを備えたことを特徴とするガスハイドレート連続製造装置、に係るものである。
【0025】
請求項6に記載の発明は、前記強制取出手段がスクリューポンプであることを特徴とする請求項5記載のガスハイドレート連続製造装置、に係るものである。
【0026】
請求項7に記載の発明は、前記強制取出手段がスネークポンプであることを特徴とする請求項5記載のガスハイドレート連続製造装置、に係るものである。
【0027】
請求項8に記載の発明は、前記破砕装置が、液中で回転する攪拌羽根を備えていることを特徴とする請求項5記載のガスハイドレート連続製造装置、に係るものである。
【0028】
請求項9に記載の発明は、前記破砕装置の負荷を検出するトルク検出器を設け、該トルク検出器の検出トルクが所定値を保持するように前記ハイドレート生成ガス導入管に設けた流量調節弁を制御する制御装置を備えたことを特徴とする請求項5記載のガスハイドレート連続製造装置、に係るものである。
【0029】
請求項10に記載の発明は、前記反応容器の水に塩類を混合しておき、水中の塩類の濃度を検出する濃度検出器を設け、該濃度検出器の検出濃度が所定値を保持するように前記ハイドレート生成ガス導入管に設けた流量調節弁を制御する制御装置を備えたことを特徴とする請求項5記載のガスハイドレート連続製造装置、に係るものである。
【0030】
請求項11に記載の発明は、前記強制取出手段におけるガスハイドレート取出口の反対側端部に、スラリ状のガスハイドレートを水とガスハイドレートとに分離する固液分離装置を設けたことを特徴とする請求項5記載のガスハイドレート連続製造装置、に係るものである。
【0031】
上記手段によれば、以下のように作用する。
【0032】
反応容器内の液面部分を破砕装置によって攪拌するようにしているので、液面にはガスハイドレートによって覆われない水面が常に現出し、よってハイドレート生成ガスは常に水と接触することができ、ガスハイドレートの生成が高効率で行われる。
【0033】
液面部分は常に破砕装置によって攪拌されているので、液面に生成したガスハイドレートは破砕装置によって破砕されることになり、よって液面には破砕された細かい粒子でしかも流動性を有するスラリ状のガスハイドレートが形成されることになる。従って、スラリ状のガスハイドレートは、ガスハイドレート取出口に良好に流入して強制取出手段により取り出されるので、連続取り出しが安定して行われるようになる。
【0034】
更にこの時、液中に備えた攪拌羽根を破砕部材と一緒に回転させるようにすると、攪拌羽根による攪拌によって液中温度を均一に保持することができ、よってガスハイドレートの生成を安定させることができる。
【0035】
強制取出手段によって取り出されたスラリ状のガスハイドレートを、固液分離装置に導いて水を分離することにより、ガスハイドレートのみが得られる。
【0036】
更に、破砕装置に設けたトルク検出器からの検出トルクを制御装置に入力して生成スラリの粘性の変化を求め、その粘性の変化からガスハイドレートの生成状況を判断してハイドレート生成ガスの導入量を調節するようにしているので、反応容器内にスラリ状のガスハイドレートを常に安定して一定量生成させることができ、よって、強制取出手段によるガスハイドレートの取り出しを更に安定して確実に行えるようになる。
【0037】
又、反応容器の水に塩類を予め混合しておき、液中の塩類の濃度の変化を検出することによりガスハイドレートの生成状況を判断してハイドレート生成ガスの導入量を調節するようにしているので、反応容器内にスラリ状のガスハイドレートを常に安定して一定量生成させることができ、よって、強制取出手段によるガスハイドレートの取り出しを更に安定して確実に行えるようになる。
【0038】
上記したように、破砕装置によるスラリ状のガスハイドレートの形成と、反応容器内のガスハイドレートの生成状況を監視して生成を制御する構成と、強制取出手段による強制取り出しによって、ガスハイドレートの製造が、連続して高効率にしかも安定して行えるようになる。
【0039】
【発明の実施の形態】
以下、本発明の実施の形態を、図示例と共に説明する。以下に示す形態例では、ハイドレート生成ガスとしてメタンを用いた場合について説明するが、ハイドレート生成ガスとしてはメタンに限らず、エタン、プロパン、ブタン、クリプトン、キセノン及び二酸化炭素を用いてもガスハイドレートを製造することができる。
【0040】
図1は本発明を実施するガスハイドレート連続製造装置の形態の一例を示すもので、図中1は反応容器である。反応容器1の下部には、給水ポンプ2と流量調節弁3と冷却器4とを有する給水管5が接続されている。又、反応容器1の上部には、加圧装置6と流量調節弁7と冷却器8とを有するハイドレート生成ガス導入管9が接続されている。
【0041】
反応容器1には、反応容器1上部に設けたモータ10により液面と液面に近い液中を所要の回転半径で回転する破砕部材11を備えた破砕装置12を設けている。
【0042】
破砕装置12は、図2、図3に示すようにモータ10の回転軸13の下端に横(左右)に延びる所要長さの連結材14を固定しており、該各連結材14の両端部に鉛直下方に延びる破砕部材11を固定している。この破砕部材11は、板により羽根状に形成されていてもよく、又棒状材であってもよい。上記破砕部材11は、反応容器1内の液面の上部と下部とに亘って延びており、これにより液面と液面に近い水を攪拌できるようになっている。尚、図2、図3の例では破砕部材11を直径方向の2箇所に設けた場合を示しているが、設置する破砕部材11の数は任意に選定することができる。又、複数の破砕部材11を備える場合、回転軸13から延びる連結材14の長さを同じにすることによって同じ回転半径で回転するようにしてもよく、又、連結材14の長さを異なった長さとすることによって異なった回転半径で回転するようにしてもよい。
【0043】
又、図4は破砕装置の他の例を示したものであり、反応容器1液中で回転する攪拌羽根15を前記回転軸13に取り付けて前記破砕部材11と一緒に回転させるようにしている。
【0044】
図1の反応容器1の上下中間高さの所定位置には、反応容器1内圧力を保持してスラリ状のガスハイドレートを反応容器1外部に取り出せるようにした強制取出手段16を接続している。図1の強制取出手段16は、ガスハイドレート取出口17が反応容器1の側面に接続された外管18の内部に回転駆動装置19によって回転する螺旋羽根軸20を備えたスクリューポンプ21の場合を示している。
【0045】
前記スクリューポンプ21におけるガスハイドレート取出口17の反対側端部には、スクリーン22の内部に螺旋羽根軸23を備えて前記スクリューポンプ21により取り出されたスラリ状のガスハイドレートを、螺旋羽根軸23の作用により軸方向後方へ送るガスハイドレートと、スクリーン22を通る水とに分離するようにした固液分離装置24を設けている。この固液分離装置24には図示例以外の方式も採用することができる。図1中25は、固液分離装置24により分離したガスハイドレートを受入れて凍結を行う凍結槽である。又、固液分離装置24で分離された水は前記給水管5に戻して利用することができる。
【0046】
一方、図5は強制取出手段16の他の例を示したものであり、反応容器1の下部から液中を延びて上端のガスハイドレート取出口17が液面に開口した取出管26を設け、該取出管26にスネークポンプ27(モーノポンプ)を取り付けることにより、反応容器1内の圧力を保持しつつスラリ状のガスハイドレートを反応容器1外部に取り出せるようにした場合を示している。スネークポンプ27におけるガスハイドレート取出口17の反対側端部には、前記と同様の固液分離装置24及び凍結槽25を設けている。尚、前記強制取出手段16によって反応容器1のガスハイドレートを取り出す方向は任意に選定できる。
【0047】
前記反応容器1、強制取出手段16、固液分離装置24の夫々の外周には冷却器1a,16a,24aが備えられており、冷凍装置28からの冷媒が、前記固液分離装置24の冷却器24a、強制取出手段16の冷却器16a、反応容器1の冷却器1aを経てハイドレート生成ガス導入管9の冷却器8及び給水管5の冷却器4を介して前記冷凍装置28に戻されるようになっている。
【0048】
図1中29は制御装置であり、該制御装置29には、反応容器1に設けたレベル計30からの液面高さ信号31が入力されており、又、反応容器1内上部に設けた圧力計32からの圧力信号33が入力されており、更に、温度計34の温度信号35が入力されている。
【0049】
更に、制御装置29には、前記破砕部材11を一定回転で駆動しているモータ10のトルクを検出するにトルク検出器36からの検出トルク37が入力されている。
【0050】
そして、制御装置29は、レベル計30の液面高さ信号31が所定値を示して、図1の場合では液面がスクリューポンプ21におけるガスハイドレート取出口17の下辺に一致した位置或いはそれより若干低い位置になるように、又、図5の場合では液面が取出管26上端のガスハイドレート取出口17に一致した位置或いはそれより若干低い位置になるように、給水管5の流量調節弁3を自動的に調節するようになっている。
【0051】
更に、制御装置29は、圧力計32の圧力信号33が10〜70ataの所定値を示すように、ハイドレート生成ガス導入管9の流量調節弁7を自動的に調節するようになっている。又、制御装置29は、温度計34の温度信号35が0〜10℃の所定値を示すように、前記冷凍装置28の運転を自動的に調節するようになっている。更に、制御装置29は、強制取出手段16の回転駆動装置19の制御を行うようになっている。
【0052】
又、制御装置29は、トルク検出器36からの検出トルク37により、ガスハイドレートの粘性を求めてガスハイドレートの生成状況を判断し、検出トルク37が所定値より低い時にはハイドレート生成ガスの導入量を増加するように流量調節弁7を自動調節し、又、検出トルク37が所定値より高い時にはハイドレート生成ガスの導入量を減少するように流量調節弁7を自動調節する。
【0053】
又、図1の凍結槽25には−15℃〜−20℃の冷却を行ってガスハイドレートの凍結を行う冷却器38を備えている。
【0054】
以下、上記形態例の作用を説明する。
【0055】
図1に示す給水管5により反応容器1に所定の水位まで水を供給し、続いて破砕装置12のモータ10を駆動して破砕部材11を回転させながらハイドレート生成ガス導入管9により反応容器1にメタンを供給する。この時、反応容器1内部の圧力と温度は夫々所定値になるように調節する。すると、メタンは液面で水と接しガスハイドレートを生成する。
【0056】
この時、液面部分は破砕部材11の回転によって攪拌されているので、液面にはガスハイドレートによって覆われない水面が常に現出し、よってメタンは常に水と接触することができ、ガスハイドレートが高効率で生成されるようになる。
【0057】
更に、液面部分には常に破砕部材11が回転しているので、液面に生成するガスハイドレートは常に破砕部材11によって破砕されることになり、よって液面には破砕された細かい粒子でしかも流動性を有するスラリ状のガスハイドレートが形成されることになる。この時、破砕部材11は生成したガスハイドレート膜を破砕できる程度の低い回転速度で回転させればよく、よって破砕部材11の回転によって水中に気泡を巻き込むような問題は生じない。
【0058】
更に図4に示すように、液中に備えた攪拌羽根15を前記破砕部材11と一緒に回転させるようにすると、攪拌羽根15による攪拌によって液中温度を均一に保持することができ、よってガスハイドレートの生成を安定させることができる。
【0059】
上記したように、破砕装置12によって形成されたスラリ状のガスハイドレートは、ガスハイドレート取出口17に良好に流入することができ、よって図1のスクリューポンプ21或いは図5のスネークポンプ27による強制取出手段16により安定して反応容器1の外部に取り出される。
【0060】
この時、制御装置29は、トルク検出器36からの検出トルク37を入力して、生成スラリの粘性の変化を求め、その粘性の変化からガスハイドレートの生成状況を判断し、検出トルク37が所定値より低い時にはガスハイドレートの生成が少ないと判断してハイドレート生成ガスの導入量を増加するように流量調節弁7を自動調節し、又、検出トルク37が所定値より高い時にはガスハイドレートの生成が多いと判断してハイドレート生成ガスの導入量を減少するように流量調節弁7を自動調節する。
【0061】
これにより、反応容器1内にはスラリ状のガスハイドレートが常に安定して一定量生成されるようになり、前記強制取出手段16によるガスハイドレートの取り出しを更に安定して確実に行えるようになる。
【0062】
強制取出手段16によって取り出されたスラリ状のガスハイドレートは、固液分離装置24に導かれて水が分離されることによりガスハイドレートのみとなる。更にこの脱水したガスハイドレートを凍結槽25にて凍結すると、大気においても分解しないガスハイドレートとなる。
【0063】
上記したように、破砕装置12によるスラリ状のガスハイドレートの形成と、反応容器1内のガスハイドレートの生成状況を監視して生成を制御する構成と、強制取出手段16による強制取り出しとによって、ガスハイドレートの製造が、連続して高効率にしかも安定して行われるようになる。
【0064】
更に図1の装置では、前記トルク検出器36からの検出トルク37によって反応容器1内のガスハイドレートの生成状況を監視する方法とは別の監視方法を同時に示している。
【0065】
この監視方法は、反応容器1の水に塩(NaCl)等の塩類を予め混合しておき、液中の塩類の濃度を検出する濃度検出器39を設け、該濃度検出器39からの検出濃度40を前記制御装置29に入力するようにしている。反応容器1内においてガスハイドレートの生成が進行すると、水が減少することによって塩類は濃縮されて濃度が上昇するので、検出濃度40の変化からガスハイドレートの生成状況を判断し、検出濃度40が所定値より低い時にはガスハイドレートの生成が少ないと判断してハイドレート生成ガスの導入量を増加するように流量調節弁7を自動調節し、又、検出濃度40が所定値より高い時にはガスハイドレートの生成が多いと判断してハイドレート生成ガスの導入量を減少するように流量調節弁7を自動調節する。この方法によっても反応容器1内にはスラリ状のガスハイドレートが常に安定して一定量生成されるようになり、よって前記強制取出手段16によるガスハイドレートの取り出しを更に安定して確実に行えるようになる。
【0066】
【発明の効果】
本発明のガスハイドレート連続製造装置では、反応容器内の液面部分を破砕装置によって攪拌するようにしているので、液面にはガスハイドレートによって覆われない水面が常に現出し、よってハイドレート生成ガスは常に水と接触することができ、ガスハイドレートの生成が高効率で行われる効果がある。
【0067】
液面部分は常に破砕装置によって攪拌されているので、液面に生成したガスハイドレート膜は破砕装置によって破砕されることになり、よって液面には破砕された細かい粒子でしかも流動性を有するスラリ状のガスハイドレートが形成されることになる。従って、スラリ状のガスハイドレートは、ガスハイドレート取出口に良好に流入して強制取出手段により取り出されるので、連続取り出しが安定して行える効果がある。
【0068】
更にこの時、液中に備えた攪拌羽根を破砕部材と一緒に回転させるようにすると、攪拌羽根による攪拌によって液中温度を均一に保持することができ、よってガスハイドレートの生成を安定させられる効果がある。
【0069】
強制取出手段によって取り出されたスラリ状のガスハイドレートを、固液分離装置に導いて水を分離することにより、ガスハイドレートのみが得られる効果がある。
【0070】
更に、破砕装置に設けたトルク検出器からの検出トルクを制御装置に入力して生成スラリの粘性の変化を求め、その粘性の変化からガスハイドレートの生成状況を判断してハイドレート生成ガスの導入量を調節するようにしているので、反応容器内にスラリ状のガスハイドレートを常に安定して一定量生成させることができ、よって、強制取出手段によるガスハイドレートの取り出しを更に安定して確実に行える効果がある。
【0071】
又、反応容器の水に塩類を予め混合しておき、液中の塩類の濃度の変化を検出することによりガスハイドレートの生成状況を判断してハイドレート生成ガスの導入量を調節するようにしているので、反応容器内にスラリ状のガスハイドレートを常に安定して一定量生成させることができ、よって、強制取出手段によるガスハイドレートの取り出しを更に安定して確実に行える効果がある。
【0072】
上記したように、破砕装置によるスラリ状のガスハイドレートの形成と、反応容器内のガスハイドレートの生成状況を監視して生成を制御する構成と、強制取出手段による強制取り出しによって、ガスハイドレートの製造が、連続して高効率にしかも安定して行えるようになる効果がある。
【図面の簡単な説明】
【図1】本発明を実施するガスハイドレート連続製造装置の形態の一例を示す切断側面図である。
【図2】破砕装置の一例を示す切断側面図である。
【図3】図2のIII−III方向矢視図である。
【図4】破砕装置の他の例を示す切断側面図である。
【図5】図1とは異なる強制取出手段の一例を示す説明図である。
【図6】従来のガスハイドレート生成装置の一例を示す概略切断側面図である。
【符号の説明】
1 反応容器
5 給水管
7 流量調節弁
9 ハイドレート生成ガス導入管
11 破砕部材
12 破砕装置
15 攪拌羽根
16 強制取出手段
17 ガスハイドレート取出口
21 スクリューポンプ
24 固液分離装置
26 取出管
27 スネークポンプ
29 制御装置
36 トルク検出器
37 検出トルク
39 濃度検出器
40 検出濃度

Claims (11)

  1. 反応容器に所定レベルを保持するよう水を供給すると共に反応容器内が所定圧力範囲に保持されるようにハイドレート生成ガスを供給して所定の冷却温度で接触させることによりガスハイドレートを生成させる方法において、回転軸の径方向に延びた連結材に固定され液面の上下に亘って延びた砕部材を回転させて液面に生成するガスハイドレート膜を破砕することによりスラリ状のガスハイドレートとし、該スラリ状のガスハイドレートを圧力保持が可能な強制取出手段により反応容器外部に取り出すことを特徴とするガスハイドレート連続製造方法。
  2. 前記反応容器内のガスハイドレートの生成状況を、反応容器内で一定回転する破砕装置のトルクにより監視して生成を制御することを特徴とする請求項1記載のガスハイドレート連続製造方法。
  3. 前記反応容器内のガスハイドレートの生成状況を、反応容器の水に塩類を混合しておき、液中の塩類の濃度により監視して生成を制御することを特徴とする請求項1記載のガスハイドレート連続製造方法。
  4. 前記強制取出手段により取り出したスラリ状のガスハイドレートを水とガスハイドレートとに分離することを特徴とする請求項1記載のガスハイドレート連続製造方法。
  5. 給水管とハイドレート生成ガス導入管とを備えた反応容器と、液面の上下に亘って延びる破砕部材を備えて回転する破砕装置と、反応容器の所定高さにガスハイドレート取出口が接続されており反応容器内圧力を保持してスラリ状のガスハイドレートを反応容器外部に取り出し可能な強制取出手段とを備えたことを特徴とするガスハイドレート連続製造装置。
  6. 前記強制取出手段がスクリューポンプであることを特徴とする請求項5記載のガスハイドレート連続製造装置。
  7. 前記強制取出手段がスネークポンプであることを特徴とする請求項5記載のガスハイドレート連続製造装置。
  8. 前記破砕装置が、液中で回転する攪拌羽根を備えていることを特徴とする請求項5記載のガスハイドレート連続製造装置。
  9. 前記破砕装置の負荷を検出するトルク検出器を設け、該トルク検出器の検出トルクが所定値を保持するように前記ハイドレート生成ガス導入管に設けた流量調節弁を制御する制御装置を備えたことを特徴とする請求項5記載のガスハイドレート連続製造装置。
  10. 前記反応容器の水に塩類を混合しておき、水中の塩類の濃度を検出する濃度検出器を設け、該濃度検出器の検出濃度が所定値を保持するように前記ハイドレート生成ガス導入管に設けた流量調節弁を制御する制御装置を備えたことを特徴とする請求項5記載のガスハイドレート連続製造装置。
  11. 前記強制取出手段におけるガスハイドレート取出口の反対側端部に、スラリ状のガスハイドレートを水とガスハイドレートとに分離する固液分離装置を設けたことを特徴とする請求項5記載のガスハイドレート連続製造装置。
JP2002129012A 2002-04-30 2002-04-30 ガスハイドレート連続製造方法及び装置 Expired - Fee Related JP3891032B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129012A JP3891032B2 (ja) 2002-04-30 2002-04-30 ガスハイドレート連続製造方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129012A JP3891032B2 (ja) 2002-04-30 2002-04-30 ガスハイドレート連続製造方法及び装置

Publications (2)

Publication Number Publication Date
JP2003321686A JP2003321686A (ja) 2003-11-14
JP3891032B2 true JP3891032B2 (ja) 2007-03-07

Family

ID=29542580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129012A Expired - Fee Related JP3891032B2 (ja) 2002-04-30 2002-04-30 ガスハイドレート連続製造方法及び装置

Country Status (1)

Country Link
JP (1) JP3891032B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523466B2 (ja) * 2005-03-24 2010-08-11 三井造船株式会社 ガスハイドレート生成装置および生成方法
KR101161011B1 (ko) * 2010-04-26 2012-07-02 한국생산기술연구원 원심 분리 원리에 의한 가스하이드레이트 연속 제조 및 탈수 장치 및 방법
CN107462677B (zh) * 2017-08-10 2024-06-04 中国地质调查局水文地质环境地质调查中心 天然气水合物开采防砂试验装置及方法
CN108671858B (zh) * 2018-08-06 2023-06-27 西南石油大学 一种水合物快速合成装置及方法
CN113731313B (zh) * 2021-09-09 2022-10-14 滨州职业学院 一种具有磁力转矩可调反应釜的化工机械系统
CN114082370A (zh) * 2021-11-22 2022-02-25 西南石油大学 一种旋转式多相流水合物生成实验装置

Also Published As

Publication number Publication date
JP2003321686A (ja) 2003-11-14

Similar Documents

Publication Publication Date Title
US6180843B1 (en) Method for producing gas hydrates utilizing a fluidized bed
US20050107648A1 (en) Gas hydrate production device and gas hydrate dehydrating device
KR101495221B1 (ko) 천연가스 하이드레이트 제조 장치 및 천연가스 하이드레이트 제조 방법
JP4559898B2 (ja) ガスハイドレート製造装置
JP5156903B2 (ja) 遠心分離原理によるガスハイドレートの連続製造及び脱水装置及び方法
JP3891032B2 (ja) ガスハイドレート連続製造方法及び装置
JP2004075771A (ja) ガスハイドレート製造装置
JP3891033B2 (ja) ガスハイドレート連続製造装置及び該装置を用いたガスハイドレート連続製造方法
JP4096580B2 (ja) ハイドレート製造方法及び装置
WO2004048268A1 (en) Method of quantitatively producing ammonia from urea
US8403242B2 (en) Snow making method and apparatus
CN114405048A (zh) 一种凝华结晶方法及系统
EP2567142B1 (en) Methods and system for continuously pumping a solid material
JP2001010989A (ja) メタンハイドレートの製造装置および製造方法
JP2006143771A (ja) ガスハイドレートの製造方法および装置
JP4488769B2 (ja) ハイドレート生成方法および生成装置
JP2002038171A (ja) ハイドレートの製造方法および製造装置、天然ガスの貯蔵方法
JP2016059835A (ja) 気体分離装置及び気体分離方法
JP4676187B2 (ja) ガスハイドレート払出し装置
JP4062431B2 (ja) ガスクラスレート製造方法および製造装置
JP4062510B2 (ja) ガスクラスレート製造方法および製造装置
CN205127924U (zh) 一种高纯度粉末状气体水合物的制作设备
JP2003041272A (ja) ガスハイドレートの生成方法および生成装置
JP2004244495A (ja) 天然ガスハイドレートの生成方法および生成装置
KR20180024144A (ko) 수두차를 이용한 가스 하이드레이트 생성 및 해리 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050112

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Effective date: 20060912

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Effective date: 20061127

Free format text: JAPANESE INTERMEDIATE CODE: A61

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees