JP2005181984A - 液晶表示装置とその製造方法 - Google Patents

液晶表示装置とその製造方法 Download PDF

Info

Publication number
JP2005181984A
JP2005181984A JP2004313653A JP2004313653A JP2005181984A JP 2005181984 A JP2005181984 A JP 2005181984A JP 2004313653 A JP2004313653 A JP 2004313653A JP 2004313653 A JP2004313653 A JP 2004313653A JP 2005181984 A JP2005181984 A JP 2005181984A
Authority
JP
Japan
Prior art keywords
layer
scanning line
metal layer
electrode
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004313653A
Other languages
English (en)
Other versions
JP4846227B2 (ja
Inventor
Kiyohiro Kawasaki
清弘 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanta Display Japan Inc
Quanta Display Inc
Original Assignee
Quanta Display Japan Inc
Quanta Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanta Display Japan Inc, Quanta Display Inc filed Critical Quanta Display Japan Inc
Priority to JP2004313653A priority Critical patent/JP4846227B2/ja
Publication of JP2005181984A publication Critical patent/JP2005181984A/ja
Application granted granted Critical
Publication of JP4846227B2 publication Critical patent/JP4846227B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 コンタクト形成時の不具合を回避し、製造工程の削減を実現し、歩留を上げ、液晶パネルの低価格化を実現する。
【解決手段】 透明導電層と低抵抗金属との積層からなる信号線と擬似絵素電極を形成し、パシベーション絶縁層への開口部形成時に擬似絵素電極上の低抵抗金属層を除去して透明導電層よりなる絵素電極を得ることで信号線の形成工程と絵素電極の形成工程を合理化することで、コンタクトの形成工程と半導体層の形成工程、あるいは走査線の形成工程とコンタクトの形成工程または走査線の形成工程と半導体層の形成工程のハーフトーン露光技術と組合せて液晶表示装置の4枚マスク・プロセス、3枚マスク・プロセスを構築する。
【選択図】 図2

Description

本発明はカラー画像表示機能を有する液晶表示装置、とりわけアクティブ型の液晶表示装置に関するものである。
近年の微細加工技術、液晶材料技術および高密度実装技術等の進歩により、5〜50cm対角の液晶表示装置でテレビジョン画像や各種の画像表示機器が商用ベースで大量に提供されている。また、液晶パネルを構成する2枚のガラス基板の一方にRGBの着色層を形成しておくことによりカラー表示も容易に実現している。特にスイッチング素子を絵素毎に内蔵させた、いわゆるアクティブ型の液晶パネルではクロストークも少なく、応答速度も早く高いコントラスト比を有する画像が保証されている。
これらの液晶表示装置(液晶パネル)は走査線としては200〜1200本、信号線としては300〜1600本程度のマトリクス編成が一般的であるが、最近は表示容量の増大に対応すべく大画面化と高精細化とが同時に進行している。
図18は液晶パネルへの実装状態を示し、液晶パネル1を構成する一方の透明性絶縁基板、例えばガラス基板2上に形成された走査線の電極端子群5に駆動信号を供給する半導体集積回路チップ3を導電性の接着剤を用いて接続するCOG(Chip−On−Glass)方式や、例えばポリイミド系樹脂薄膜をベースとし、金または半田メッキされた銅箔の端子を有するTCPフィルム4を信号線の電極端子群6に導電性媒体を含む適当な接着剤で圧接して固定するTCP(Tape−Carrier−Package)方式などの実装手段によって電気信号が画像表示部に供給される。ここでは便宜上二つの実装方式を同時に図示しているが実際には何れかの方式が適宜選択される。
液晶パネル1のほぼ中央部に位置する画像表示部内の画素と走査線及び信号線の電極端子5,6との間を接続する配線路が7、8で、必ずしも電極端子群5,6と同一の導電材で構成される必要はない。9は全ての液晶セルに共通する透明導電性の対向電極を対向面上に有するもう1枚の透明性絶縁基板である対向ガラス基板またはカラーフィルタである。
図19はスイッチング素子として絶縁ゲート型トランジスタ10を絵素毎に配置したアクティブ型液晶表示装置の等価回路図を示し、11(図18では7)は走査線、12(図18では8)は信号線、13は液晶セルであって、液晶セル13は電気的には容量素子として扱われる。実線で描かれた素子類は液晶パネルを構成する一方のガラス基板2上に形成され、点線で描かれた全ての液晶セル13に共通な対向電極14はもう一方のガラス基板9の対向する主面上に形成されている。絶縁ゲート型トランジスタ10のOFF抵抗あるいは液晶セル13の抵抗が低い場合や表示画像の階調性を重視する場合には、負荷としての液晶セル13の時定数を大きくするための補助の蓄積容量15を液晶セル13に並列に加える等の回路的工夫が加味される。なお16は蓄積容量15の共通母線となる蓄積容量である。
図20は液晶表示装置の画像表示部の要部断面図を示し、液晶パネル1を構成する2枚のガラス基板2,9は樹脂性のファイバ、ビーズあるいはカラーフィルタ9上に形成された同じく樹脂性の柱状スペーサ等のスペーサ材(図示せず)によって数μm程度の所定の距離を隔てて形成され、その間隙(ギャップ)はガラス基板9の周縁部において有機性樹脂よりなるシール材と封口材(何れも図示せず)とで封止された閉空間になっており、この閉空間に液晶17が充填されている。
カラー表示を実現する場合には、ガラス基板9の閉空間側に着色層18と称する染料または顔料のいずれか一方もしくは両方を含む厚さ1〜2μm程度の有機薄膜が被着されて色表示機能が与えられるので、その場合にはガラス基板9は別名カラーフィルタ(Color Filter 略語はCF)と呼称される。そして液晶材料17の性質によってはガラス基板9の上面またはガラス基板2の下面の何れかもしくは両面上に偏光板19が貼付され、液晶パネル1は電気光学素子として機能する。現在、市販されている大部分の液晶パネルでは液晶材料にTN(ツイスト・ネマチック)系の物を用いており、偏光板19は通常2枚必要である。図示はしないが、透過型液晶パネルでは光源として裏面光源が配置され、下方より白色光が照射される。
液晶17に接して2枚のガラス基板2,9上に形成された例えば厚さ0.1μm程度のポリイミド系樹脂薄膜20は液晶分子を決められた方向に配向させるための配向膜である。21は絶縁ゲート型トランジスタ10のドレインと透明導電性の絵素電極22とを接続するドレイン電極(配線)であり、信号線(ソース線)12と同時に形成されることが多い。信号線12とドレイン電極21との間に位置するのは半導体層23であり詳細は後述する。カラーフィルタ9上で隣り合った着色層18の境界に形成された厚さ0.1μm程度のCr薄膜層24は半導体層23と走査線11及び信号線12に外部光が入射するのを防止するための光遮蔽部材で、いわゆるブラックマトリクス(Black Matrix 略語はBM)として定着化した技術である。
ここでスイッチング素子として絶縁ゲート型トランジスタの構造と製造方法に関して説明する。絶縁ゲート型トランジスタには2種類のものが現在多用されており、そのうちの一つのエッチストップ型と呼称されるものを従来例として紹介する。図21は従来の液晶パネルを構成するアクティブ基板(表示装置用半導体装置)の単位絵素の平面図であり、図19(e)のA−A’、B−B’およびC−C’線上の断面図を図22に示し、その製造工程を以下に簡単に説明する。
先ず図21(a)と図22(a)に示したように耐熱性と耐薬品性と透明性が高い絶縁性基板として厚さ0.5〜1.1mm程度のガラス基板2、例えばコーニング社製の商品名1737の一主面上にSPT(スパッタ)等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層を被着し、微細加工技術によりゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。走査線の材質は耐熱性と耐薬品性と耐弗酸性と導電性を総合的に勘案して選択するが一般的にはCr,Ta,MoW合金等の耐熱性の高い金属または合金が使用される。
液晶パネルの大画面化や高精細化に対応して走査線の抵抗値を下げるためには走査線の材料としてAL(アルミニウム)を用いるのが合理的であるが、ALは単体では耐熱性が低いので上記した耐熱金属であるCr,Ta,Moまたはそれらのシリサイドと積層化する、あるいはALの表面に陽極酸化で酸化層(Al2O3)を付加することも現在では一般的な技術である。すなわち走査線11は1層以上の金属層で構成される。
次にガラス基板2の全面にPCVD(プラズマ・シーブイディ)装置を用いてゲート絶縁層となる第1のSiNx(シリコン窒化)層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン(a−Si)層31、及びチャネルを保護する絶縁層となる第2のSiNx層32と3種類の薄膜層を例えば、0.3−0.05−0.1μm程度の膜厚で順次被着した後、図21(b)と図22(b)に示したように微細加工技術によりゲート電極11A上の第2のSiNx層をゲート電極11Aよりも幅細く選択的に残して保護絶縁層32Dとし、第1の非晶質シリコン層31を露出する。
続いて同じくPCVD装置を用いて全面に不純物として例えば燐を含む第2の非晶質シリコン層33を例えば0.05μm程度の膜厚で被着した後、図21(c)と図22(c)に示したようにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の薄膜層34と、低抵抗配線層として膜厚0.3μm程度のAL薄膜層35と、さらに膜厚0.1μm程度の中間導電層として例えばTi薄膜層36を順次被着し、微細加工技術によりソース・ドレイン配線材であるこれら3種の薄膜層34A,35A及び36Aの積層からなる絶縁ゲート型トランジスタのドレイン電極21と信号線も兼ねるソース電極12を選択的に形成する。この選択的パターン形成は、ソース・ドレイン配線の形成に用いられる感光性樹脂パターンをマスクとしてTi薄膜層36、AL薄膜層35、Ti薄膜層34を順次食刻した後、ソース・ドレイン電極12,21間の第2の非晶質シリコン層33を除去して第2のSiNx層32Dを露出するとともに、その他の領域では第1の非晶質シリコン層31をも除去してゲート絶縁層30を露出することによってなされる。このようにチャネルの保護層である第2のSiNx層32Dが存在して第2の非晶質シリコン層33の食刻が自動的に終了することからこの製法はエッチストップと呼称される。
さらに上記感光性樹脂パターンを除去した後、ガラス基板2の全面に透明性の絶縁層としてゲート絶縁層と同様にPCVD装置を用いて0.3μm程度の膜厚のSiNx層を被着してパシベーション絶縁層37とし、図21(d)と図22(d)に示したようにパシベーション絶縁層37を微細加工技術により選択的に除去してドレイン電極21上に開口部62と、画像表示部外の領域で走査線11上に開口部63と、信号線12上に開口部64を形成してドレイン電極21と走査線11と信号線12の一部分を露出する。同様に蓄積容量線16を平行に束ねた電極パターン上には開口部65を形成して蓄積容量線16の一部を露出する。
最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITO(Indium−Tin−Oxide)あるいはIZO(Indium−Zinc−Oxide)を被着し、図21(e)と図22(e)に示したように微細加工技術により開口部62を含んでパシベーション絶縁層37上に絵素電極22を選択的に形成してアクティブ基板2として完成する。開口部63内の露出している走査線11の一部を電極端子5とし、開口部64内の露出している信号線12の一部を電極端子6としても良く、図示したように開口部63,64を含んでパシベーション絶縁層37上にITOよりなる電極端子5A,6Aを選択的に形成しても良いが、通常は電極端子5A,6A間を接続する透明導電性の短絡線40も同時に形成される。その理由は、図示はしないが電極端子5A,6Aと短絡線40との間を細長いストライプ状に形成することにより高抵抗化して静電気対策用の高抵抗とすることが出来るからである。同様に番号は付与しないが開口部65を含んで蓄積容量線16への電極端子が形成される。
信号線12の配線抵抗が問題とならない場合にはALよりなる低抵抗配線層35は必ずしも必要ではなく、その場合にはCr,Ta,Mo等の耐熱金属材料を選択すればソース・ドレイン配線12,21を単層化して簡素化することが可能である。このようにソース・ドレイン配線は耐熱金属層を用いて第2の非晶質シリコン層と電気的な接続を確保することが重要であり、絶縁ゲート型トランジスタの耐熱性については先行例である特開平7−74368号公報に詳細が記載されている。なお、図21(c)において蓄積容量線16とドレイン電極21がゲート絶縁層30を介して平面的に重なっている領域50(右下がり斜線部)が蓄積容量15を形成しているが、ここではその詳細な説明は省略する。
以上述べた5枚マスク・プロセスは詳細な経緯は省略するが、半導体層の島化工程の合理化とコンタクト形成工程が1回削減された結果得られたもので、ドライエッチ技術の導入により当初は7〜8枚程度必要であったフォトマスクも現時点では5枚に減少してプロセスコストの削減に大きく寄与している。液晶表示装置の生産コストを下げるためにはアクティブ基板の作製工程ではプロセスコストを、またパネル組立工程とモジュール実装工程では部材コストを下げることが有効であることは周知の開発目標である。プロセスコストを下げるためにはプロセスを短くする工程削減と、安価なプロセス開発またはプロセスへの置き換えとがあるが、ここでは4枚のフォトマスクでアクティブ基板が得られる4枚マスク・プロセスを工程削減の一例として説明する。4枚マスク・プロセスはハーフトーン露光技術の導入により写真食刻工程を削減するもので、図23は4枚マスク・プロセスに対応したアクティブ基板の単位絵素の平面図で、図23(e)のA−A’、B−B’及びC−C’線上の断面図を図24に示す。既に述べたように絶縁ゲート型トランジスタには2種類のものが現在多用されているが、ここではチャネルエッチ型の絶縁ゲート型トランジスタを採用している。
先ず5枚マスク・プロセスと同様にガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層を被着し、図23(a)と図24(a)に示したように微細加工技術によりゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。
次にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となるSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を、例えば0.3−0.2−0.05μm程度の膜厚で順次被着する。引き続き、SPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi薄膜層34と、膜厚0.3μm程度の低抵抗配線層としてAL薄膜層35と、さらに膜厚0.1μm程度の中間導電層として例えばTi薄膜層36を、すなわちソース・ドレイン配線材を順次被着し、微細加工技術により絶縁ゲート型トランジスタのドレイン電極21とソース電極も兼ねる信号線12を選択的に形成するのであるが、この選択的パターン形成に当たりハーフトーン露光技術により図23(b)と図24(b)に示したようにソース・ドレイン間のチャネル形成領域80B(斜線部)の膜厚が例えば1.5μmで、ソース・ドレイン配線形成領域80A(12),80A(21)の膜厚3μmよりも薄い感光性樹脂パターン80A,80Bを形成する点が大きな特徴である。
このような感光性樹脂パターン80A,80Bは、液晶表示装置用基板の作製には通常ポジ型の感光性樹脂を用いるので、ソース・ドレイン配線形成領域80Aが黒、すなわちCr薄膜が形成されており、チャネル領域80Bは灰色(中間調)、たとえば幅0.5〜1μm程度のラインアンドスペースのCrパターンが形成されており、その他の領域は白、すなわちCr薄膜が除去されているようなフォトマスクを用いれば良い。灰色領域は露光機の解像力が不足しているために微細なラインアンドスペースが解像されることはなく、ランプ光源からのフオトマスク照射光を半分程度透過させることが可能であるので、ポジ型感光性樹脂の残膜特性に応じて図24(b)に示したような断面形状を有する感光性樹脂パターン80A,80Bを得ることができる。なお、灰色領域にCr薄膜のスリットではなく、Cr薄膜とは異なった膜厚の例えばMoSi2薄膜を形成することより同等の機能を有するフォトマスクを得る事もできる。
上記感光性樹脂パターン80A,80Bをマスクとして図24(b)に示したようにTi薄膜層36、AL薄膜層35、Ti薄膜層34、第2の非晶質シリコン層33及び第1の非晶質シリコン層31を順次食刻してゲート絶縁層30を露出した後、図23(c)と図24(c)に示したように酸素プラズマ等の灰化手段により感光性樹脂パターン80A,80Bを1.5μm以上膜減りさせると感光性樹脂パターン80Bが消失してチャネル領域が露出するとともに、ソース・ドレイン配線形成領域にのみ膜減りした感光性樹脂パターン80C(12),80C(21)をそのまま残すことができる。そこで膜減りした感光性樹脂パターン80C(12),80C(21)をマスクとして、再びソース・ドレイン配線間(チャネル形成領域)のTi薄膜層,AL薄膜層,Ti薄膜層,第2の非晶質シリコン層33A及び第1の非晶質シリコン層31Aを順次食刻し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻する。ソース・ドレイン配線がソース・ドレイン配線材をエッチングした後に第1の非晶質シリコン層31Aを0.05〜0.1μm程度残して食刻することによりなされるので、このような製法で得られる絶縁ゲート型トランジスタはチャネルエッチ型と呼称されている。なお上記酸素プラズマ処理においてレジストパターン80Aは膜減りして80Cに変換されるのでパターン寸法の変化を抑制するため異方性を強めることが望ましく、具体的にはRIE(Reactive Ion Etching)方式、さらに高密度のプラズマ源を有するICP(Inductive Coupled Plasama)方式やTCP(Transfer Coupled Plasama)方式の酸素プラズマ処理がより望ましい。
さらに上記感光性樹脂パターン80C(12),80C(21)を除去した後は、5枚マスク・プロセスと同じく図23(d)と図24(d)に示したようにガラス基板2の全面に透明性の絶縁層として0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、ドレイン電極21上と画像表示部外の領域で走査線11上と信号線12上にそれぞれ開口部62,63,64を形成し、開口部63内のパシベーション絶縁層37とゲート絶縁層30を除去して開口部63内に走査線の一部を露出するとともに、開口部62,64内のパシベーション絶縁層37を除去して開口部62内にドレイン電極21の一部と開口部64内に信号線の一部を露出する。
最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITOあるいはIZOを被着し、図23(e)と図24(e)に示したように微細加工技術によりパシベーション絶縁層37上に開口部62を含んで透明導電性の絵素電極22を選択的に形成してアクティブ基板2として完成する。電極端子は絵素電極22と同時にパシベーション絶縁層37上にITOよりなる透明導電性の電極端子5A,6Aを形成している。
このように5枚マスク・プロセスと4枚マスク・プロセスにおいてはドレイン電極21と走査線11へのコンタクト形成工程が同時になされるため、それらに対応した開口部62,63内の絶縁層の厚さと種類が異なっている。パシベーション絶縁層37はゲート絶縁層30に比べると製膜温度が低く膜質が劣悪で、弗酸系のエッチング(食刻)液による食刻では食刻速度が夫々数1000Å/分、数100Å/分と1桁も異なり、ドレイン電極21上の開口部62の断面形状は上部に余りにも過食刻が生じて穴径が制御できない理由から弗素系のガスを用いた乾式食刻(ドライエッチ)を採用している。
ドライエッチを採用してもドレイン電極21上の開口部62はパシベーション絶縁層37のみであるので、走査線11上の開口部63と比較して過食刻になるのは避けられず、材質によっては中間導電層36Aが食刻ガスによって膜減りすることがある。また、食刻終了後の感光性樹脂パターンの除去に当たり、まずは弗素化された表面のポリマー除去のために酸素プラズマ灰化で感光性樹脂パターンの表面を0.1〜0.3μm程度削り、その後に有機剥離液、例えば東京応化製の剥離液106等を用いた薬液処理がなされるのが一般的であるが、中間導電層36Aが膜減りして下地のアルミニウム層35Aが露出した状態になっていると、酸素プラズマ灰化処理でアルミニウム層35Aの表面に絶縁体であるAL2O3が形成されて、絵素電極22との間で良好なオーミック接触が得られなくなる。そこで中間導電層36Aが膜減りしてもいいように、その膜厚を例えば0.2μmと厚く設定することでこの問題から逃れようとしている。あるいは開口部62〜65の形成時、アルミニウム層35Aを除去して下地の耐熱金属層であるTi薄膜層34Aを露出してから絵素電極22を形成する回避策も可能であり、この場合には当初から中間導電層36Aは不要となるメリットもある。
しかしながら前者の対策ではこれら薄膜の膜厚の面内均一性が良好でないとこの取組みも必ずしも有効に作用するわけではなく、また食刻速度の面内均一性が良好でない場合にも全く同様である。後者の対策では中間導電層36Aは不要となるが、アルミニウム層35Aの除去工程が増加し、また開口部62の断面制御が不十分であると絵素電極22が段切れを起こす恐れがあった。
また4枚マスク・プロセスにおいて適用されているチャネル形成工程はソース・ドレイン配線12,21間のソース・ドレイン配線材と不純物を含む半導体層を選択的に除去することでなされ、この工程は絶縁ゲート型トランジスタのON特性を大きく左右するチャネルの長さ(現在の量産品で4〜6μm)を決定する工程である。このチャネル長の変動は絶縁ゲート型トランジスタのON電流値を大きく変化させるので、通常は厳しい製造管理を要求されるが、チャネル長、すなわちハーフトーン露光領域のパターン寸法は露光量(光源強度とフォマスクのパターン精度、特にライン&スペース寸法)、感光性樹脂の塗布厚、感光性樹脂の現象処理、および当該のエッチング工程における感光性樹脂の膜減り量等多くのパラメータに左右され、加えてこれら諸量の面内均一性もあいまって必ずしも歩留高く安定して生産できるわけではなく、従来の製造管理よりも一段と厳しい製造管理が必要となり、決して高度に完成したレベルにあるとは言えないのが現状である。特にチャネル長が6μm以下ではレジストパターンの膜厚減少に伴って発生するパターン寸法の影響が大きくその傾向が顕著となる。なぜならば感光性樹脂パターン80A,80Bの膜厚を1.5μm膜減りさせるに際して感光性樹脂パターン80A,80Bが等方的に膜減りすると、当然感光性樹脂パターン80A,80B間の寸法は3μmも大きくなるのでチャネル長も設定値よりも3μm長く形成されてしまうからである。
本発明はかかる現状に鑑みなされたもので、従来の5枚マスク・プロセスや4枚マスク・プロセスに共通するコンタクト形成時の不具合を回避するだけでなく、製造マージンの大きいハーフトーン露光技術を採用して製造工程の削減を実現するものである。また液晶パネルの低価格化を実現し、需要の増大に対応していくためにも製造工程数の更なる削減を鋭意追求していく必要性があることは明白であり、他の主要な製造工程を簡略化あるいは低コスト化する技術を付与することによりさらに本発明の価値を高めんとするものである。
請求項1に記載の液晶表示装置は一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極とを有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、
透明導電層と低抵抗金属層との積層からなり信号線も兼ねるソース配線と、擬似絵素電極も兼ねるドレイン配線が不純物を含む第2の半導体層と耐熱金属層を介してチャネルとなる不純物を含まない第1の半導体層に接続され、
第1の透明性絶縁基板上のパシベーション絶縁層に形成された開口部内の前記擬似絵素電極の低抵抗金属層が除去されて露出した透明導電層を絵素電極とすることを特徴とする。
この構成は絶縁ゲート型トランジスタのソース・ドレインと透明導電層との間に耐熱金属層を介在させて電気的な接続を確保し、透明導電層と低抵抗金属層との積層からなり信号線も兼ねるソース配線及び擬似絵素電極も兼ねるドレイン電極を形成し、パシベーション絶縁層への開口部形成工程において擬似絵素電極上のパシベーション絶縁層に加えて低抵抗金属層をも除去することで得られ、これによって絵素電極の形成工程と信号線の形成工程を同一のフォトマスクを用いて処理する合理化を実現している。
また更なる工程削減のためにコンタクト形成工程の合理化、あるいはコンタクトの形成工程と半導体層の形成工程、さらには走査線の形成工程とコンタクトの形成工程または走査線の形成工程と半導体層の形成工程をハーフトーン露光技術により同一のフォトマスクで処理する技術との組合せにより様々な液晶表示装置の実施形態を構成することが可能であるのでそれを請求項2から請求項7で具体的に述べることとする。
請求項2に記載の液晶表示装置は第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなる走査線が形成され、
ゲート電極上に1層以上のゲート絶縁層を介して不純物を含まない第1の半導体層がゲート電極よりも幅太く島状に形成され、
前記第1の半導体層上にゲート電極と重なるように不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、
画像表示部外の領域で走査線上のゲート絶縁層に開口部が形成されて開口部内に走査線の一部が露出し、
前記ソース電極上とゲート絶縁層上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上とゲート絶縁層上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、ゲート絶縁層上に前記開口部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする。
この構成により透明導電性の絵素電極は信号線と同時に形成されるのでゲート絶縁層上に形成されるが、アクティブ基板上には従来通りのパシベーション絶縁層が形成されて絶縁ゲート型トランジスタのチャネルとソース・ドレイン配線を保護している。また絵素電極と同様に走査線の電極端子と信号線の電極端子も透明導電層で構成され、これはアクティブ基板上のパシベーション絶縁層の存在と同様に本発明の液晶表示装置に共通する構造的な特徴である。
請求項3に記載の液晶表示装置は同じく、少なくとも、
第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなる走査線が形成され、
ゲート電極上にはゲート電極よりも幅太く、走査線と信号線の交差点近傍には走査線よりも幅太く、ゲート絶縁層と不純物を含まない第1の半導体層との積層が島状に形成され、
ゲート電極上の第1の半導体層上にはゲート電極と重なるように不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、走査線と信号線の交差点の第1の半導体層上には不純物を含む第2の半導体層と耐熱金属層との積層が島状に形成され、
前記ソース電極上と、第1の透明性絶縁基板上と、走査線と信号線の交差点近傍の耐熱金属層上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、画像表示部外の領域で第1の透明性絶縁基板上に走査線の一部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする。
この構成により走査線の大部分と蓄積容量線の一部を除いてこれらの電極は製造工程の途中ではガラス基板2上に露出するが、最終的にはアクティブ基板上に形成される従来通りのパシベーション絶縁層によって絶縁ゲート型トランジスタのチャネル及びソース・ドレイン配線と同様に保護される。そして透明導電性の絵素電極は信号線と同時に形成されるのでガラス基板上に形成される。
請求項4に記載の液晶表示装置は同じく、少なくとも、
第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなりその側面に絶縁層を有する走査線が形成され、
前記走査線上に1層以上のゲート絶縁層が形成され、
ゲート電極上のゲート絶縁層上に不純物を含まない第1の半導体層が島状に形成され、
前記第1の半導体層上に不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、
画像表示部外の領域で走査線上のゲート絶縁層に開口部が形成されて開口部内に走査線の一部が露出し、
前記ソース電極上と第1の透明性絶縁基板上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、前記開口部上と開口部周辺の第1の半導体層と第2の半導体層と耐熱金属層との積層上に透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする。
この構成により走査線へのコンタクトは走査線と自己整合的に形成されるとともにゲート絶縁層はゲート電極と同一のパターン幅で形成され、ゲート電極(走査線)の側面にはゲート絶縁層とは別の絶縁層が付与されて走査線と信号線との交差が可能となる。なお透明導電性の絵素電極は信号線と同時に形成されるのでガラス基板上に形成される。
請求項5に記載の液晶表示装置は同じく、少なくとも、
第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなりその側面に絶縁層を有する走査線が形成され、
前記走査線上に1層以上のゲート絶縁層が形成され、
ゲート電極上のゲート絶縁層上に不純物を含まない第1の半導体層が島状に形成され、
前記第1の半導体層上に不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、
画像表示部外の領域で走査線上のゲート絶縁層に開口部が形成されて開口部内に走査線の一部が露出し、
前記ソース電極上と第1の透明性絶縁基板上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、前記開口部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする。
この構成により半導体層は走査線と自己整合的に形成されるとともにゲート絶縁層はゲート電極と同一のパターン幅で形成され、ゲート電極(走査線)の側面にはゲート絶縁層とは別の絶縁層が付与されて走査線と信号線との交差が可能となる。なお透明導電性の絵素電極は信号線と同時に形成されるのでガラス基板上に形成される。
請求項6に記載の液晶表示装置は同じく、少なくとも、
第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなりその側面に絶縁層を有する走査線が形成され、
前記走査線上に1層以上のゲート絶縁層が形成され、
ゲート電極上のゲート絶縁層上に前記ゲート絶縁層よりもわずかに小さい不純物を含まない第1の半導体層が島状に形成され、
前記第1の半導体層上に不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、
画像表示部外の領域で走査線上のゲート絶縁層に開口部が形成されて開口部内に走査線の一部が露出し、
前記ソース電極上と第1の透明性絶縁基板上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、前記開口部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする。
この構成により半導体層はゲート電極上にゲート電極よりもわずかに幅細く形成され、かつゲート絶縁層はゲート電極と同一のパターン幅で形成され、ゲート電極(走査線)の側面にはゲート絶縁層とは別の絶縁層が付与されて走査線と信号線との交差が可能となる。なお透明導電性の絵素電極は信号線と同時に形成されるのでガラス基板上に形成される。
請求項7に記載の液晶表示装置は同じく、少なくとも、
第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなりその側面に絶縁層を有する走査線が形成され、
ゲート電極上と、走査線と信号線の交差点近傍の走査線上にゲート絶縁層と不純物を含まない第1の半導体層との積層が島状に形成され、
ゲート電極上の第1の半導体層上には不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、走査線と信号線の交差点の第1の半導体層上には不純物を含む第2の半導体層と耐熱金属層との積層が形成され、
前記ソース電極上と、第1の透明性絶縁基板上と、走査線と信号線の交差点の耐熱金属層上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、画像表示部外の領域で第1の透明性絶縁基板上に走査線の一部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする。
この構成により半導体層は走査線と自己整合的に形成されるとともにゲート絶縁層はゲート電極上と走査線と信号線の交差点近傍の走査線上にのみゲート電極(走査線)と同一のパターン幅で形成され、ゲート電極(走査線)の側面にはゲート絶縁層とは別の絶縁層が付与されて走査線と信号線との交差が可能となる。なお透明導電性の絵素電極は信号線と同時に形成されるのでガラス基板上に形成される。
請求項8に記載の液晶画像表示装置は走査線の側面に形成された絶縁層が有機絶縁層であることを特徴とする請求項4、請求項5、請求項6及び請求項7に記載の液晶表示装置である。この構成により走査線の材質や構成によらず走査線の側面に電着法により有機絶縁層を形成する事ができて、ハーフトーン露光技術を用いて走査線の形成工程とコンタクトまたは半導体層の形成工程を1枚のフォトマスクで連続して処理する事が可能となる。
請求項9に記載の液晶画像表示装置は第1の金属層が陽極酸化可能な金属層よりなり走査線の側面に形成された絶縁層が陽極酸化層であることを特徴とする請求項4、請求項5、請求項6及び請求項7に記載の液晶表示装置である。この構成により走査線の側面に陽極酸化により陽極酸化層を形成する事ができて、ハーフトーン露光技術を用いて走査線の形成工程とコンタクトまたは半導体層の形成工程を1枚のフォトマスクで連続して処理する事が可能となる。
請求項10は請求項2に記載の液晶表示装置の製造方法であって、走査線を形成する工程と、耐熱金属層を積層された半導体層を形成する工程と、コンタクトを形成する工程と、透明導電層と低抵抗金属層との積層よりなる擬似絵素電極及び信号線と、走査線と信号線の擬似電極端子を形成する工程と、パシベーション絶縁層を形成後、擬似絵素電極上と擬似電極端子上に開口部を形成して開口部内のパシベーション絶縁層と低抵抗金属層を除去する工程を有することを特徴とする。
この構成により絵素電極と信号線を1枚のフォトマスクを用いて形成する製造工程の削減がなされて5枚のフォトマスクを用いてTN型の液晶表示装置を作製する事ができる。
請求項11も請求項2に記載の液晶表示装置の製造方法であって、走査線を形成する工程と、ハーフトーン露光技術によりコンタクトと耐熱金属層を積層された半導体層を1枚のフォトマスクを用いて形成する工程と、透明導電層と低抵抗金属層との積層からなる擬似絵素電極及び信号線と、走査線と信号線の擬似電極端子を形成する工程と、パシベーション絶縁層を形成後、擬似絵素電極上と擬似電極端子上に開口部を形成して開口部内のパシベーション絶縁層と低抵抗金属層を除去する工程を有することを特徴とする。
この構成により絵素電極と信号線を1枚のフォトマスクを用いて形成する製造工程の削減と、コンタクトと半導体層を1枚のフォトマスクを用いて形成する製造工程の削減が同時になされ4枚のフォトマスクを用いてTN型の液晶表示装置を製造することが可能となる。
請求項12は請求項3に記載の液晶表示装置の製造方法であって、走査線を形成する工程と、耐熱金属層を積層された半導体層の形成に際し走査線を露出する工程と、透明導電層と低抵抗金属層との積層からなる擬似絵素電極及び信号線と、走査線と信号線の擬似電極端子を形成する工程と、パシベーション絶縁層を形成後、擬似絵素電極上と擬似電極端子上に開口部を形成して開口部内のパシベーション絶縁層と低抵抗金属層を除去する工程を有することを特徴とする。
この構成により絵素電極と信号線を1枚のフォトマスクを用いて形成する製造工程の削減と、半導体層の形成に当たり走査線を露出することでコンタクト形成工程を合理化する製造工程の削減がなされる結果、4枚のフォトマスクを用いてTN型の液晶表示装置を作製する事が可能となる。
請求項13は請求項4に記載の液晶表示装置の製造方法であって、ハーフトーン露光技術により走査線とコンタクトを1枚のフォトマスクを用いて形成する工程と、耐熱金属層を積層された半導体層を形成する工程と、透明導電層と低抵抗金属層との積層からなる擬似絵素電極及び信号線と、走査線と信号線の擬似電極端子を形成する工程と、パシベーション絶縁層を形成後、擬似絵素電極上と擬似電極端子上に開口部を形成して開口部内のパシベーション絶縁層と低抵抗金属層を除去する工程を有することを特徴とする。
この構成により絵素電極と信号線を1枚のフォトマスクを用いて形成する製造工程の削減と、走査線とコンタクトを1枚のフォトマスクを用いて形成する製造工程の削減が同時になされ4枚のフォトマスクを用いてTN型の液晶表示装置を製造することが可能となる。
請求項14は請求項5に記載の液晶表示装置の製造方法であって、ハーフトーン露光技術により走査線と耐熱金属層を積層された半導体層を1枚のフォトマスクを用いて形成する工程と、コンタクトを形成する工程と、透明導電層と低抵抗金属層との積層からなる擬似絵素電極及び信号線と、走査線と信号線の擬似電極端子を形成する工程と、パシベーション絶縁層を形成後、擬似絵素電極上と擬似電極端子上に開口部を形成して開口部内のパシベーション絶縁層と低抵抗金属層を除去する工程を有することを特徴とする。
この構成により絵素電極と信号線を1枚のフォトマスクを用いて形成する製造工程の削減と、走査線と半導体層を1枚のフォトマスクを用いて形成する製造工程の削減が同時になされ、4枚のフォトマスクを用いてTN型の液晶表示装置を製造することが可能となる。
請求項15は請求項6に記載の液晶表示装置の製造方法であって、耐熱金属層を積層された半導体層を形成する工程と、ハーフトーン露光技術により走査線とコンタクトを1枚のフォトマスクを用いて形成する工程と、透明導電層と低抵抗金属層との積層からなる擬似絵素電極及び信号線と、走査線と信号線の擬似電極端子を形成する工程と、パシベーション絶縁層を形成後、擬似絵素電極上と擬似電極端子上に開口部を形成して開口部内のパシベーション絶縁層と低抵抗金属層を除去する工程を有することを特徴とする。
この構成により絵素電極と信号線を1枚のフォトマスクを用いて形成する製造工程の削減と、走査線とコンタクトを1枚のフォトマスクを用いて形成する製造工程の削減が同時になされ4枚のフォトマスクを用いてTN型の液晶表示装置を製造することが可能となる。
請求項16は請求項7に記載の液晶表示装置の製造方法であって、ハーフトーン露光技術により走査線と耐熱金属層を積層された半導体層を1枚のフォトマスクを用いて形成するとともにゲート絶縁層をも除去して走査線を露出する工程と、透明導電層と低抵抗金属層との積層からなる擬似絵素電極及び信号線と、走査線と信号線の擬似電極端子を形成する工程と、パシベーション絶縁層を形成後、擬似絵素電極上と擬似電極端子上に開口部を形成して開口部内のパシベーション絶縁層と低抵抗金属層を除去する工程を有することを特徴とする。
この構成により絵素電極と信号線を1枚のフォトマスクを用いて形成する製造工程の削減と、走査線と半導体層を1枚のフォトマスクを用いて形成するとともに走査線を露出するのでコンタクト形成工程を不要とする製造工程の削減が同時になされ、3枚のフォトマスクを用いてTN型の液晶表示装置を製造することが可能となる。
絶縁ゲート型トランジスタのソース・ドレインと透明導電層との間に耐熱金属層を介在させて電気的な接続を確保し、透明導電層と低抵抗金属層との積層からなり信号線も兼ねるソース配線と擬似絵素電極も兼ねるドレイン電極を形成し、パシベーション絶縁層への開口部形成工程において擬似絵素電極上のパシベーション絶縁層に加えて低抵抗金属層をも除去することで透明導電性の絵素電極を得る工程削減は本発明の主眼点であり、走査線と信号線の電極端子も絵素電極と同様に透明導電層で構成されるという構造的な特徴が生まれる。
加えて半導体層の形成時にゲート絶縁層をも除去して走査線を露出してコンタクト形成工程を合理化する技術、並びにハーフトーン露光技術を併用してコンタクトと半導体層を1枚のフォトマスクを用いて形成する合理化技術、及び走査線とコンタクトまたは走査線と半導体層を1枚のフォトマスクを用いて形成する合理化技術との組合せもあいまって、写真食刻工程数を従来の5回よりさらに削減できて4枚あるいは3枚のフォトマスクを用いて液晶表示装置を作製することが可能となり、液晶表示装置のコスト削減の観点からも工業的な価値は極めて大きい。しかもこれらの工程のパターン精度はさほど高くないので歩留や品質に大きな影響を与えない事も生産管理を容易なものとしてくれる。
本発明の要件は上記の説明からも明らかなようにアクティブ基板の作製に当たり絶縁ゲート型トランジスタのソース・ドレインと透明導電層との間に耐熱金属層を介在させて電気的な接続を確保し、透明導電層と低抵抗金属層との積層よりなり信号線も兼ねるソース配線と擬似絵素電極も兼ねるドレイン配線を形成した後、パシベーション絶縁層への開口部形成時に擬似絵素電極上の低抵抗金属層を選択的に除去することで絵素電極を形成した点にあり、それ以外の構成に関しては走査線、ゲート絶縁層等の材質や膜厚等が異なった表示装置用半導体装置、あるいはその製造方法の差異も本発明の範疇に属することは自明であり、垂直配向の液晶を用いた液晶表示装置においても本発明の有用性は変らず、また絶縁ゲート型トランジスタの半導体層も非晶質シリコンに限定されるものでないことも明らかである。
本発明の実施例を図1〜図17に基づいて説明する。図1に本発明の実施例1に係る表示装置用半導体装置(アクティブ基板)の平面図を示し、図2に図1のA−A’線上とB−B’線上及びC−C’線上の製造工程の断面図を示す。同様に実施例2は図3と図4、実施例3は図5と図6、実施例4は図7と図8、実施例5は図9と図10、実施例6は図11と図12、実施例7は図13と図14で夫々アクティブ基板の平面図と製造工程の断面図を示す。なお従来例と同一の部位については同一の符号を付して詳細な説明は省略する。
実施例1では先ずガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層として例えばCr,Ta,Mo等の耐熱金属あるいはそれらの合金やシリサイドを被着する。必要であれば低抵抗化のためにALまたはAL合金と耐熱性の高いこれらの金属との積層とすれば良いことは言うまでも無い。そして図1(a)と図2(a)に示したように微細加工技術によりゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。なお蓄積容量15を絵素電極(ドレイン電極)と前段の走査線との間で構成するのであれば蓄積容量線16は必須の構成部位では無い。
次にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び例えば不純物として燐を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を例えば、0.3−0.2−0.05μm程度の膜厚で順次被着し、さらにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の耐熱金属またはそれらのシリサイドよりなる薄膜層34を被着した後、図1(b)と図2(b)に示したように微細加工技術によりゲート電極11上にゲート電極11Aよりも幅太く耐熱金属層34Aと第2の非晶質シリコン層33A及び第1の非晶質シリコン層31Aとの積層からなる半導体層領域を選択的に形成してゲート絶縁層30を露出する。
続いて図1(c)と図2(c)に示したように微細加工技術により画像表示部外の領域で走査線11上と蓄積容量線16上に開口部63A,65Aを形成し、前記開口部63A,65A内のゲート絶縁層30を選択的に食刻して夫々走査線11の一部73と蓄積容量線16の一部75を露出する。
そしてガラス基板2の全面にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層91として例えばIZOまたはITOあるいはこれらの混合体を被着し、さらに低抵抗金属層として膜厚0.3μm程度のALまたはAL(Nd)合金薄膜層35を順次被着した後、微細加工技術によりALまたはAL(Nd)合金薄膜層35と透明導電層91と耐熱金属層34Aと第2の非晶質シリコン層33Aをエッチング(食刻)して除去し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻することにより図1(d)と図2(d)に示したようにゲート電極11Aと一部重なるように低抵抗金属層35Aと透明導電層91Aとの積層からなりソース配線も兼ねる信号線12と、低抵抗金属層35Bと透明導電層91Bとの積層からなり擬似絵素電極P22も兼ねる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成し、ソース・ドレイン配線12,21の形成と同時に開口部63A内に露出している走査線の一部73を含んで走査線の擬似電極端子P5と信号線12の一部よりなる擬似電極端子P6も同時に形成する。同様に蓄積容量線16の一部75を含んで番号は付与しないが蓄積容量線16の擬似電極端子も形成するが、これは以降の説明では省略する。このように耐熱金属層34Aはこの工程で一対の電極34A−1、34A−2(共に図示せず)に分割され、信号線12は一方の電極34A−1を、また擬似絵素電極P22は他方の電極34A−2を含んで形成されることにより夫々絶縁ゲート型トランジスタのソース電極、ドレイン電極として機能する。
ソース・ドレイン配線12,21の形成に当たり、IZOまたはITOあるいはこれらの混合体よりなる透明導電層91には結晶性が皆無に近い非晶質の膜質のものを作製すると、低低抵抗金属層としてALまたはAL(Nd)合金薄膜層35のエッチングに用いる燐酸系のエッチング液で連続して透明導電層91を除去することが出来るので、エッチング工程が簡素化されて低コスト化が推進される。
合理化された従来例で説明したように1回の露光処理と2回の食刻処理で形成されたソース・ドレイン配線12,21と比較すると、本発明のソース・ドレイン配線12,21は1回の露光処理と1回の食刻処理で形成されるためにパターン幅の変動する要因が少なく、ソース・ドレイン配線12,21の寸法管理も、ソース・ドレイン配線12,21間すなわちチャネル長の寸法管理も従来のハーフトーン露光技術よりはパターン精度の管理が容易である。
ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に透明性の絶縁層としてPCVD装置を用いて0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図1(e)と図2(e)に示したように擬似絵素電極P22上と擬似電極端子P5,P6上にそれぞれ開口部38,63,64を形成し、各開口部内のパシベーション絶縁層と低抵抗金属層35A〜35Cを選択的に除去して透明導電性の絵素電極22と透明導電性の電極端子5A,6Aの大部分を露出する。
ALまたはAL(Nd)よりなる低抵抗金属層35A〜35Cの除去に当たり、先述したようにIZOまたはITOあるいはこれらの混合体よりなる透明導電層91に結晶性が皆無に近い非晶質の膜質のものを採用していても、パシベーション絶縁層37の形成時に与えられる250℃前後の基板加熱によってIZOまたはITOあるいはこれらの混合体よりなる透明導電層91A〜91Cは結晶化が促進されて微結晶化あるいは多結晶化して膜質が緻密化し燐酸系のエッチング液に対する耐性が生ずるので、開口部内の低抵抗金属層35A〜35Cを燐酸系のエッチング液で除去しても透明導電性の絵素電極22と電極端子5A,6Aが膜減りする不具合は回避または抑制される。
このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例1が完了する。蓄積容量15の構成に関しては図1(e)に示したように、絵素電極22と蓄積容量線16がゲート絶縁層30を介して平面的に重なっている領域51(右下がり斜線部)が蓄積容量15を構成する場合を例示しているが、蓄積容量15の構成はこれに限られるものではなく、前段の走査線11と絵素電極22との間にゲート絶縁層30を含む絶縁層を介して構成しても良い。静電気対策はアクティブ基板2の外周に静電気対策用の透明導電層パターン40を配置し、透明導電層パターン40を透明導電性の電極端子5A,6Aに接続して構成する従来例の静電気対策でも良いが、ゲート絶縁層30への開口部形成工程が付与されているのでその他の静電気対策も容易である。
実施例1では絵素電極と信号線の同時形成による工程削減を実現したが必要なフォトマスク枚数は5枚止まりに過ぎない。その他の主要工程を合理化して更なる低コスト化を実現する事が本発明の主題であり、以下の実施例では絵素電極と信号線を同時に形成する工程削減を維持しつつ他の主要工程を合理化して4枚マスク・プロセスさらには3枚マスク・プロセスを実現する創意・発明について説明する。
実施例2では実施例1と同様に先ず、ガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層として例えばCr,Ta,Mo等の耐熱金属あるいはそれらの合金やシリサイドを被着し、図3(a)と図4(a)に示したようにゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。
次にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物として例えば燐を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を例えば、0.3−0.2−0.05μm程度の膜厚で順次被着し、さらにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の耐熱金属またはそれらのシリサイドよりなる薄膜層34を被着した後、画像表示部外の領域で走査線11上と蓄積容量線16上に開口部(コンタクト領域)63A,65Aを有するとともに絶縁ゲート型トランジスタの半導体層形成領域、すなわちゲート電極11A上の領域81Aの膜厚が例えば2μmと他の領域81Bの膜厚1μmよりも厚い感光性樹脂パターン81A,81Bをハーフトーン露光技術により形成する。そして図3(b)と図4(b)に示したように感光性樹脂パターン81A,81Bをマスクとして開口部63A,65A内に露出している耐熱金属層34と第2の非晶質シリコン層33と第1の非晶質シリコン層31を順次食刻し、開口部63A,65A内にゲート絶縁層30を露出する。
続いて酸素プラズマ等の灰化手段により上記感光性樹脂パターン81A,81Bを1μm以上膜減りさせると、図3(c)と図4(c)に示したように感光性樹脂パターン81Bが消失して耐熱金属層34が露出すると共にゲート電極11A上にのみ膜減りした感光性樹脂パターン81Cをそのまま残すことができる。感光性樹脂パターン81C、すなわち島状半導体層のパターン幅はゲート電極11Aの寸法にマスク合わせ精度を加算したものであるから、ゲート電極11Aを10〜12μm、合わせ精度を±3μmとすると16〜18μmとなり寸法精度としては厳しいものではない。しかしながらレジストパターン81Aから81Cへの変換時にレジストパターンが等方的に1μm膜減りすると、寸法が2μm小さくなるだけでなく、後続のソース・ドレイン配線形成時のマスク合わせ精度が1μm小さくなって±2μmとなり、前者よりも後者の影響がプロセス的には厳しいものとなる。したがって上記酸素プラズマ処理ではパターン寸法の変化を抑制するため異方性を強めることが望ましい。具体的にはRIE方式、さらに高密度のプラズマ源を有するICP方式やTCP方式の酸素プラズマ処理がより望ましい。あるいはレジストパターンの寸法変化量を見込んでレジストパターン81Aのパターン寸法をあらかじめ大きく設計することでプロセス的な対応を図る等の処置が望ましい。
引き続き図3(d)と図4(d)に示したように膜減りした感光性樹脂パターン81Cをマスクとして耐熱金属層34と第2の非晶質シリコン層33と第1の非晶質シリコン層31をゲート11電極Aよりも幅広く選択的に残して島状34A,33A,31Aとし、ゲート絶縁層30を露出する。
この時、開口部63A,65Aのエッチング状況は下記に記載する通りで、最終的には開口部63A,65A内に走査線11の一部73と蓄積容量線16の一部75が夫々露出する。耐熱金属層34の食刻には通常塩素系のガスを用いたドライエッチ(乾式食刻)が採用されるが、その時にSiNxよりなるゲート絶縁層30は耐性を持ち殆ど膜減りしないので先ず耐熱金属層34が除去されてガラス基板2の全面に第2の非晶質シリコン層33が露出する。次に第2の非晶質シリコン層33と第1の非晶質シリコン層31の食刻には弗素系のガスを用いたドライエッチが採用されるが、その時にSiNxよりなるゲート絶縁層30は非晶質シリコン層31,33とほぼ同じ速度で食刻されるプロセス条件を適用する事により、第2の非晶質シリコン層33(膜厚0.05μm)と第1の非晶質シリコン層31(膜厚0.2μm)の食刻が終ると開口部63A,65A内のSiNxよりなるゲート絶縁層30(膜厚0.3μm)食刻も終わり、開口部63A,65A内に走査線11の一部73と蓄積容量線16の一部75が夫々露出する。
この適切な食刻速度比よりも速く第2の非晶質シリコン層33と第1の非晶質シリコン層31の食刻が終る場合には過食刻で開口部63A,65A内のゲート絶縁層30を除去しなければならないが、その場合には既にガラス基板2の全面にゲート絶縁層30が露出しており、全体としてゲート絶縁層30が膜減りして後続の製造工程で形成される信号線12と走査線11との層間短絡及び絵素電極22と蓄積容量線16との層間短絡が生じ易く歩留を下げるので、その対策としては走査線11と信号線12との交点近傍と蓄積容量線16上に図示はしないが、半導体層形成領域と同様に耐熱金属層34と第2の非晶質シリコン層33と第1の非晶質シリコン層31とからなる積層を残してゲート絶縁層30の膜減りを防止することができる。すなわちパターン設計による歩留確保が可能である。
半導体層形成領域の食刻時に耐熱金属層34の食刻ガスまたは食刻液が露出している走査線11の一部73と蓄積容量線16の一部75を食刻する速度が極めて低い場合、例えば耐熱金属層34がCr,Moで(Crの食刻液には過塩素酸と硝酸セリウムの混合液、Moの食刻液には過酸化水素水に微量のアンモニアを添加した食刻液を用いる)、走査線11がAL合金のような場合には、図5(b)と図6(b)においてゲート絶縁層30も一気に連続して食刻して開口部63A,65A内に走査線11の一部73と蓄積容量線16の一部75を夫々露出し、その後酸素プラズマ処理を行い、膜減りした感光性樹脂パターン81Cをマスクとして上記の食刻液を用いて耐熱金属層34(Cr,Mo)を除去し、次にドライエッチで第2の非晶質シリコン層33と第1の非晶質シリコン層31を食刻してゲート絶縁層30を露出することが可能であるが、一般的に言ってドライエッチでは食刻液を用いたウエットエッチ並みの選択比が得られないので、その場合には当初に記載した食刻方法を採用する事になる。
耐熱金属層34に高融点金属のシリサイドを採用すると、弗素系のガスを用いたドライエッチで第2の非晶質シリコン層33と第1の非晶質シリコン層31と同等にエッチングすることが容易であり、一気にこれらの3種類の薄膜層とゲート絶縁層30をドライエッチで除去することは可能であるが、耐熱金属層34に高融点金属のシリサイドが採用された事例はあまり知られてはいないようであり本発明でも請求項として記載は省略しているが、製造工程の簡略化のためには耐熱金属層34に高融点金属のシリサイドの採用が望ましい。そのための障害としてはSPT装置に用いられるターゲットが筆頭に挙げられ、とりわけ最近の液晶製造装置の大型化に伴って一辺が1mを超えるような大型のターゲット開発が必要である。
前記感光性樹脂パターン81Cを除去した後は実施例1と同様にガラス基板2の全面にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層91として例えばIZOまたはITOあるいはこれらの混合体を被着し、さらに低抵抗金属層として膜厚0.3μm程度のALまたはAL(Nd)合金薄膜層35を順次被着した後、微細加工技術によりALまたはAL(Nd)合金薄膜層35と透明導電層91と耐熱金属層34Aと第2の非晶質シリコン層33Aを食刻して除去し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻することにより、図3(e)と図4(e)に示したようにゲート電極11Aと一部重なるように91Aと35Aとの積層からなり信号線も兼ねるソース配線12と、91Bと35Bとの積層からなり擬似絵素電極P22も兼ねる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成し、ソース・ドレイン配線12,21の形成と同時に露出している走査線の一部73を含んで走査線の電擬似極端子P5と信号線12の一部よりなる擬似電極端子P6も同時に形成する。
ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に透明性の絶縁層としてPCVD装置を用いて0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図3(f)と図4(f)に示したように擬似絵素電極P22上と擬似電極端子P5,P6上にそれぞれ開口部38,63,64を形成し、各開口部内のパシベーション絶縁層と低抵抗金属層35A〜35Cを選択的に除去して透明導電性の絵素電極22と透明導電性の電極端子5A,6Aの大部分を露出する。
このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例2が完了する。蓄積容量15の構成に関しては実施例1と同一になるが、既に述べたようにゲート絶縁層を介しての層間短絡を抑制するため、ゲート絶縁層30に加えて耐熱金属層34と第2の非晶質シリコン層33と第1の非晶質シリコン層31からなる積層を介在させることも容易である。ただし、この場合には蓄積容量15を構成する絶縁層がゲート絶縁層30と第1の非晶質シリコン層31との積層になるので光を透過しない蓄積容量15の面積が若干増加し、その分開口率が低下するのは避けられない。
上記のように実施例2はハーフトーン露光技術を用いて半導体層の形成工程とコンタクトの形成工程を同一のフォトマスクで処理する事により製造工程の削減を推進し4枚のフォトマスクを用いて液晶表示装置を得ている。
走査線11とカラーフィルタ上の対向電極14との間で直流電流が流れて液晶が劣化しないように適当な絶縁層を露出した走査線に付与する事ができれば半導体層領域を形成するに際してゲート絶縁層をも除去して走査線を露出することによりコンタクト形成工程を削減する事も可能となり、それを実施例3で説明するが、この場合ハーフトーン露光技術は不要となるのでフォトマスク作製が極めて容易である。
実施例3では走査線11と蓄積容量線16の形成後、第1の非晶質シリコン層31、及び例えば不純物として燐を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を例えば、0.3−0.2−0.05μm程度の膜厚で順次被着し、さらにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の耐熱金属またはそれらのシリサイドよりなる薄膜層34を被着するまでは実施例1と同一のプロセスで進行する。
さらに図5(b)と図6(b)に示したように微細加工技術により耐熱金属層34、第2の非晶質シリコン層33、第1の非晶質シリコン層31及びゲート絶縁層層30を選択的に除去して絶縁ゲート型トランジスタの半導体層形成領域すなわちゲート電極11A近傍と、走査線11と信号線12とが交差する領域の近傍と、蓄積容量線16と信号線12とが交差する領域の近傍と、蓄積容量形成領域すなわち大半の蓄積容量16線上とその近傍に夫々耐熱金属層34A1〜34A4、第2の非晶質シリコン層33A1〜A4、第1の非晶質シリコン層31A1〜A4及びゲート絶縁層30A1〜A4との積層からなる半導体層領域を形成し、走査線11と蓄積容量線16を露出する。
その後は実施例1と同様にガラス基板2の全面にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層91として例えばIZOまたはITOあるいはこれらの混合体を被着し、さらに低抵抗金属層として膜厚0.3μm程度のALまたはAL(Nd)合金薄膜層35を順次被着した後、微細加工技術により図5(c)と図6(c)に示したようにゲート電極11Aと一部重なるように91Aと35Aとの積層からなりソース配線も兼ねる信号線12と、91Bと35Bとの積層からなり擬似絵素電極P22も兼ねる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成し、ソース・ドレイン配線12,21の形成と同時に露出している走査線11の一部上に走査線の擬似電極端子P5と、信号線12の一部よりなる擬似電極端子P6も同時に形成する。
ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に透明性の絶縁層としてPCVD装置を用いて0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図5(d)と図6(d)に示したように擬似絵素電極P22上と擬似電極端子P5,P6上にそれぞれ開口部38,63,64を形成し、各開口部内のパシベーション絶縁層と低抵抗金属層35A〜35Cを選択的に除去して透明導電性の絵素電極22と透明導電性の電極端子5A,6Aの大部分を露出する。
このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例3が完了する。蓄積容量15の構成に関しては図5(e)に示したように、絵素電極22と蓄積容量線16が耐熱金属層34A4と第2の非晶質シリコン33A4と第1の非晶質シリコン31A4とゲート絶縁層30A4(何れも図示せず)を介して平面的に重なっている領域51(右下がり斜線部)が蓄積容量15を構成する場合を例示している。
上記のように実施例3は半導体層の形成工程時にゲート絶縁層をも除去して走査線を露出することにより、コンタクト形成工程を合理化してハーフトーン露光技術を併用せずに製造工程の削減を推進し4枚のフォトマスクを用いて液表表示装置を得ているが、ハーフトーン露光技術を別の主要工程に適用することで異なった内容の4枚マスク・プロセスも可能であるので、それを以下に説明する。
実施例4では先ずガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層として例えばCr,Ta,Mo等の耐熱金属あるいはそれらの合金やシリサイドを被着する。走査線の側面に形成される絶縁層に陽極酸化層を選択する場合にはその陽極酸化層が絶縁性を保有する必要があり、その場合にはTa単体では抵抗が高いこととAL単体では耐熱性が乏しいことを考慮すると、既に述べたように走査線の低抵抗化のために走査線の構成としては耐熱性の高いAL(Zr,Ta,Nd)合金等の単層構成あるいはAL/Ta,Ta/AL/Ta,AL/AL(Ta,Zr,Nd)合金等の積層構成が選択可能である。なおAL(Ta,Zr,Nd)は数%以下のTa,ZrやNd等が添加された耐熱性の高いAL合金を意味している。
次にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物として例えば燐を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を例えば、0.3−0.2−0.05μm程度の膜厚で順次被着し、さらにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の耐熱金属またはそれらのシリサイドよりなる薄膜層34を被着した後、図7(a)と図8(a)に示したように画像表示部外の領域で走査線11上と蓄積容量線16上の開口部63A,65Aに対応したコンタクト形成領域82Bの膜厚が例えば1μmで、走査線11と蓄積容量線16に対応した領域82Aの膜厚が2μmであるような感光性樹脂パターン82A,82Bをハーフトーン露光技術により形成し、感光性樹脂パターン82A,82Bをマスクとして耐熱金属層34、第2の非晶質シリコン層33、第1の非晶質シリコン層31、ゲート絶縁層30及び第1の金属層を選択的に除去してガラス基板2を露出する。
続いて酸素プラズマ等の灰化手段により上記感光性樹脂パターン82A,82Bを1μm以上膜減りさせると図7(b)と図8(b)に示したように感光性樹脂パターン82Bが消失して上記開口部63A,65A内に耐熱金属層34A,34Bが露出すると共に走査線11上と蓄積容量線16上に膜減りした感光性樹脂パターン82Cをそのまま残すことができる。感光性樹脂パターン82C(黒領域)、すなわちゲート電極11Aのパターン幅はソース・ドレイン配線間の寸法にマスク合わせ精度を加算したものであるから、ソース・ドレイン配線間を4〜6μm、合わせ精度を±3μmとすると最小でも10〜12μmとなり寸法精度としては厳しいものではない。また走査線11と蓄積容量線16のパターン幅も抵抗値の関係から通常10μm以上に設定される。しかしながら実施例4においては半導体層をゲート電極11Aよりも幅太く形成することができないため、レジストパターン82Aから82Cへの変換時にレジストパターンが等方的に1μm膜減りすると、寸法が2μm小さくなるだけでなく、後続のソース・ドレイン配線形成時のマスク合わせ精度が1μm小さくなって±2μmとなり、前者よりも後者の影響がプロセス的には厳しいものとなる。したがって上記酸素プラズマ処理ではパターン寸法の変化を抑制するため異方性を強めることが望ましい。あるいはレジストパターンの寸法変化量を見込んでレジストパターン82Aのパターン寸法をあらかじめ大きく設計することでプロセス的な対応を図る等の処置が望ましい。
引き続き図8(b)に示したようにゲート電極11Aの側面に絶縁層76を形成する。このためには図15に示したように、走査線11(蓄積容量線16も同様であるがここでは図示を略す)を並列に束ねる配線77とガラス基板2の外周部で電着または陽極酸化時に電位を与えるための接続パターン78が必要であり、さらにプラズマCVD装置による非晶質シリコン層31,33とシリコン窒化層30及びSPT等の真空製膜装置による耐熱金属層34の適当なマスク手段を用いた製膜領域79が接続パターン78より内側に限定され、接続パターン78に電位を与える事が出来なければならない。そこで鋭い刃先を有する鰐口クリップ等の接続手段を用いて接続パターン78上の感光性樹脂パターン82C(78)を突き破り接続パターン78(走査線11)に+(プラス)電位を与えてエチレングリコールを主成分とする化成液中にガラス基板2を浸透させて陽極酸化を行うと、走査線11がAL系の合金であれば、例えば化成電圧200Vで0.3μmの膜厚を有するアルミナ(AL2O3)が形成される。電着の場合には文献、月間「高分子加工」2002年11月号にも示されているようにペンダントカルボシキル基含有ポリイミド電着液を用いて電着電圧数Vで0.3μmの膜厚を有するポリイミド樹脂層が形成される。走査線11と蓄積容量線16の露出している側面への絶縁層形成に当たって留意すべき事項は、後に続く製造工程の何処かで少なくとも走査線11の並列を解除しないとアクティブ基板2の電気検査のみならず、液晶表示装置としての実動作に支障があることは言うまでもないだろう。解除手段としてはレーザ光の照射による蒸散、またはスクライブによる機械的切除が簡易的であるが詳細な説明は省略する。
月間「高分子加工」2002年11月号
絶縁層76の形成後、図7(c)と図8(c)に示したように感光性樹脂パターン82Cをマスクとして開口部63A,65A内の耐熱金属層34A,34Bと第2の非晶質シリコン層33A,33Bと第1の非晶質シリコン層31A,31Bとゲート絶縁層30A,30Bを選択的に食刻して夫々走査線11の一部73と蓄積容量線16の一部75を露出する。
前記感光性樹脂パターン82Cを除去した後、図7(d)と図8(d)に示したように微細加工技術によりゲート電極11A上に耐熱金属層34Aと第2の非晶質シリコン層33Aと第1の非晶質シリコン層31Aとの積層からなる島状の半導体層領域を選択的に残して走査線11上のゲート絶縁層30Aと蓄積容量線16上のゲート絶縁層30Bを露出する。この時、開口部63A,65A内に露出している走査線11の一部73と蓄積容量線16の一部75は感光性樹脂パターンで覆っておけば走査線11の一部73と蓄積容量線16の一部75が半導体層領域の形成時に膜減りする、あるいは変質すると言った不具合は容易に回避できる。すなわち開口部63A,65Aの周囲にも耐熱金属層34Cと第2の非晶質シリコン層33Cと第1の非晶質シリコン層31Cが部分的に残ってしまうが、走査線11と蓄積容量線16へのコンタクト形成に関しては何ら支障の無いものである。
この後は実施例1と同様にガラス基板2の全面にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層91として例えばIZOまたはITOあるいはこれらの混合体を被着し、さらに低抵抗金属層として膜厚0.3μm程度のALまたはAL(Nd)合金薄膜層35を順次被着した後、微細加工技術によりALまたはAL(Nd)合金薄膜層35と透明導電層91と耐熱金属層34Aと第2の非晶質シリコン層33Aを食刻して除去し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻することにより、図7(e)と図8(e)に示したように半導体層領域34A(ゲート電極11A)と一部重なるように91Aと35Aとの積層からなり信号線も兼ねるソース配線12と、91Bと35Bとの積層からなり擬似絵素電極P22も兼ねる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成し、ソース・ドレイン配線12,21の形成と同時に開口部63A,65Aの周囲の耐熱金属層34Cと第2の非晶質シリコン層33Cと第1の非晶質シリコン層31Cと露出している走査線の一部73を含んで走査線の擬似電極端子P5と、信号線12の一部よりなる擬似電極端子P6も同時に形成する。
ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に透明性の絶縁層としてPCVD装置を用いて0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図7(f)と図8(f)に示したように擬似絵素電極P22上と擬似電極端子P5,P6上にそれぞれ開口部38,63,64を形成し、各開口部内のパシベーション絶縁層と低抵抗金属層35A〜35Cを選択的に除去して透明導電性の絵素電極22と透明導電性の電極端子5A,6Aの大部分を露出する。
このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例4が完了する。蓄積容量15の構成に関しては図7(f)に示したように、絵素電極22と蓄積容量線16がゲート絶縁層30Bを介して平面的に重なっている領域51(右下がり斜線部)が蓄積容量15を構成する場合を例示している。
上記のように実施例4ではハーフトーン露光技術を用いて走査線の形成工程とコンタクトの形成工程を同一のフォトマスクで処理する事により製造工程の削減を推進し4枚のフォトマスクを用いて液晶表示装置を得ているが、本発明者は更なる合理化の組合せが存在することを発案するに至り、それによって異なった内容の4枚マスク・プロセスが可能となるのでそれを以下に説明する。
実施例5では先ずガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層として例えばCr,Ta,Mo等の耐熱金属あるいはそれらの合金やシリサイドを被着する。走査線の側面に形成される絶縁層に陽極酸化層を選択する場合にはその陽極酸化層が絶縁性を保有する必要があり、その場合に適した材料については既に述べた通りである。
次にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物として例えば燐を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を例えば、0.3−0.2−0.05μm程度の膜厚で順次被着し、さらにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の耐熱金属またはそれらのシリサイドよりなる薄膜層34を被着した後、図9(a)と図10(a)に示したように半導体層形成領域、すなわちゲート電極11A上の領域84Aの膜厚が例えば2μmで、走査線11と蓄積容量線16に対応した領域84Bの膜厚が1μmであるような感光性樹脂パターン84A,84Bをハーフトーン露光技術により形成し、同パターン84A,84Bをマスクとして耐熱金属層34、第2の非晶質シリコン層33、第1の非晶質シリコン層31、ゲート絶縁層30及び第1の金属層を選択的に除去してガラス基板2を露出する。
続いて酸素プラズマ等の灰化手段により上記感光性樹脂パターン84A,84Bを1μm以上膜減りさせると図9(b)と図10(b)に示したように感光性樹脂パターン84Bが消失して耐熱金属層34A,34Bが露出すると共に半導体層形成領域上にのみ膜減りした感光性樹脂パターン84Cをそのまま残すことができる。感光性樹脂パターン84C、すなわち半導体層形成領域(ゲート電極11A)のパターン幅はソース・ドレイン配線間の寸法にマスク合わせ精度を加算したものであるから、ソース・ドレイン配線間を4〜6μm、合わせ精度を±3μmとすると最小でも10〜12μmとなり寸法精度としては厳しいものではない。しかしながらレジストパターン84Aから84Cへの変換時にレジストパターンが等方的に1μm膜減りすると、寸法が2μm小さくなるだけでなく、後続のソース・ドレイン配線形成時のマスク合わせ精度が1μm小さくなって±2μmとなり、前者よりも後者の影響がプロセス的には厳しいものとなる。したがってここでも上記酸素プラズマ処理ではパターン寸法の変化を抑制するため異方性を強めることが望ましい。またはレジストパターン84Aのパターン寸法が大きくなるような露光・現像条件でプロセス的な対応を図る等の処置が望ましい。
引き続き図9(c)と図10(c)に示したように膜減りした感光性樹脂パターン84Cをマスクとして耐熱金属層34A,34Bと第2の非晶質シリコン層33A,33Bと第1の非晶質シリコン層31A,31Bを選択的に食刻してゲート電極11A上に耐熱金属層34Aと第2の非晶質シリコン層33Aと第1の非晶質シリコン層31Aとの積層からなる半導体層領域を形成し、走査線11上と蓄積容量線16上のゲート絶縁層30A,30Bを夫々露出する。
前記感光性樹脂パターン84Cを除去した後、ゲート電極11Aの側面に絶縁層76を形成する。このためには図16に示したように、走査線11(蓄積容量線16も同様であるがここでは図示を略す)を並列に束ねる配線77とガラス基板2の外周部で電着または陽極酸化時に電位を与えるための接続パターン78が必要であり、さらにプラズマCVD装置による非晶質シリコン層31,33とシリコン窒化層30及びSPT等の真空製膜装置による耐熱金属層34の適当なマスク手段を用いた製膜領域79が接続パターン78より内側に限定され、少なくとも接続パターン78が露出している必要がある。接続パターン78に鋭い刃先を有する鰐口クリップ等の接続手段を用いて走査線11に+(プラス)電位を与えてエチレングリコールを主成分とする化成液中にガラス基板2を浸透させて陽極酸化を行うと走査線11がAL系の合金であれば、例えば化成電圧200Vで0.3μmの膜厚を有するアルミナ(AL2O3)が形成される。電着の場合には先述したようにペンダントカルボシキル基含有ポリイミド電着液を用いて電着電圧数Vで0.3μmの膜厚を有するポリイミド樹脂層が形成される。なお実施例5においては絶縁層76を形成することにより走査線11及び蓄積容量線16上のゲート絶縁層30A及び30Bに生じているピンホールが絶縁層であるアルミナまたはポリイミド樹脂で埋められるため、走査線11及び蓄積容量線16と後述するソース・ドレイン配線12,21との間の層間短絡が抑制される副次的な効果もあることを忘れてはならない。
さらに図9(d)と図10(d)に示したように微細加工技術により画像表示部外の領域で走査線11と蓄積容量線16のコンタクト形成領域に開口部63A,65Aを形成して開口部63A,65A内のゲート絶縁層30A,30Bを選択的に除去して夫々走査線11の一部73と蓄積容量線16の一部75を露出する。
この後は実施例1と同様にガラス基板2の全面にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層91として例えばIZOまたはITOあるいはこれらの混合体を被着し、さらに低抵抗金属層として膜厚0.3μm程度のALまたはAL(Nd)合金薄膜層35を順次被着した後、微細加工技術によりALまたはAL(Nd)合金薄膜層35と透明導電層91と第2の非晶質シリコン層33Aを食刻して除去し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻することにより、図9(e)と図10(e)に示したように半導体層領域34A(ゲート電極11A)と一部重なるように91Aと35Aとの積層からなり信号線も兼ねるソース配線12と、91Bと35Bとの積層からなり擬似絵素電極P22も兼ねる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成し、ソース・ドレイン配線12,21の形成と同時に開口部63A内に露出している走査線の一部73を含んで走査線の擬似電極端子P5と、信号線12の一部よりなる擬似電極端子P6も同時に形成する。
ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に透明性の絶縁層としてPCVD装置を用いて0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図9(f)と図10(f)に示したように擬似絵素電極P22上と擬似電極端子P5,P6上にそれぞれ開口部38,63,64を形成し、各開口部内のパシベーション絶縁層と低抵抗金属層35A〜35Cを選択的に除去して透明導電性の絵素電極22と透明導電性の電極端子5A,6Aの大部分を露出する。
このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例5が完了する。蓄積容量15は図9(f)に示したように絵素電極22と蓄積容量線16がゲート絶縁層30Bを介して平面的に重なっている領域51(右下がり斜線部)で構成され、実施例4と同一になる。
上記のように実施例5では走査線の形成工程と半導体層の形成工程及びソース・ドレイン配線の形成工程と絵素電極の形成工程においてハーフトーン露光技術を用いて同一のマスクを用いて処理する合理化により4枚のフォトマスクを用いて液表表示装置を得ているが、従来には無い観点から写真食刻工程の順番を入れ替える事によりもう少し製造工程数を削減する事が可能であるのでそれを実施例6で説明する。
実施例6でも実施例5と同様に先ずガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層92として例えばCr,Ta,Mo等の耐熱金属あるいはそれらの合金やシリサイドを被着する。
次にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物して例えば燐を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を例えば、0.3−0.2−0.05μm程度の膜厚で順次被着し、さらにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の耐熱金属またはそれらのシリサイドよりなる薄膜層34を被着した後、微細加工技術により図11(a)と図12(a)に示したように耐熱金属層34Aと第2の非晶質シリコン層33Aと第1の非晶質シリコン層31Aとの積層からなる半導体層領域を選択的に形成してゲート絶縁層30を露出する。
続いて図11(b)と図12(b)に示したようにコンタクト形成領域である開口部63A,65Aに対応した領域82Bの膜厚が例えば1μmで、走査線11と蓄積容量線16に対応した領域82Aの膜厚が2μmであるような感光性樹脂パターン82A,82Bをハーフトーン露光技術により形成し、感光性樹脂パターン82A,82Bをマスクとして少なくともゲート絶縁層30及び第1の金属層92を選択的に除去してガラス基板2を露出する。耐熱金属層34Aと第2の非晶質シリコン層33Aと第1の非晶質シリコン層31Aとの積層からなる半導体層領域よりも若干パターン幅を大きく設定して感光性樹脂パターン82Aのパターン幅を設定すると合理的であるが、絶縁ゲート型トランジスタのサイズが若干大きくなる不具合が生じる。逆に感光性樹脂パターン82Aのパターン幅を上記の積層からなる半導体層領域よりも若干小さく設定しても、ゲート絶縁層30及び第1の金属層92の食刻時に上記の積層からなる半導体層がマスクとなり半導体層も食刻されてその断面形状がテーパ加工されるので、何れにしても上記の積層からなる半導体層はゲート絶縁層30Aとゲート電極11Aよりもパターン幅が小さくなる。
引き続き酸素プラズマ等の灰化手段により上記感光性樹脂パターン82A,82Bを1μm以上膜減りさせると図11(c)と図12(c)に示したように感光性樹脂パターン82Bが消失して開口部63A,65A内にゲート絶縁層30A,30Bが露出すると共に走査線11上と蓄積容量線16上に膜減りした感光性樹脂パターン82Cをそのまま残すことができる。上記酸素プラズマ処理ではパターン寸法の変化を抑制するため異方性を強めることが望ましい。あるいはレジストパターンの寸法変化量を見込んでレジストパターン82Aのパターン寸法をあらかじめ大きく設計することでプロセス的な対応を図る等の処置が望ましいことも既に述べた通りである。
その後、図12(c)に示したようにゲート電極11Aの側面に絶縁層76を形成する。このためには実施例4と同様で、図15に示したように走査線11を並列に束ねる配線77とガラス基板2の外周部で電着または陽極酸化時に電位を与えるための接続パターン78が必要であり、さらにプラズマCVD装置による非晶質シリコン層31,33とシリコン窒化層30,32とSPTによる耐熱金属層34の適当なマスク手段を用いた製膜領域79が接続パターン78より内側に限定され、接続パターン78に電位を与える事が出来なければならない。そこで鋭い刃先を有する鰐口クリップ等の接続手段を用いて接続パターン78上の感光性樹脂パターン82C(78)を突き破り走査線11に+(プラス)電位を与えてエチレングリコールを主成分とする化成液中にガラス基板2を浸透させて陽極酸化を行って陽極酸化層であるアルミナ(AL2O3)層、または電着によりペンダントカルボシキル基含有ポリイミド電着液を用いてポリイミド樹脂層を形成する。
絶縁層76の形成後、図11(d)と図12(d)に示したように膜減りした感光性樹脂パターン82Cをマスクとして開口部63A,65A内のゲート絶縁層30A,30Bを選択的に食刻して夫々走査線11の一部73と蓄積容量線16の一部75を露出する。
その後は膜減りした感光性樹脂パターン82Cを除去し、ガラス基板2の全面にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層91として例えばIZOまたはITOあるいはこれらの混合体を被着し、さらに低抵抗金属層として膜厚0.3μm程度のALまたはAL(Nd)合金薄膜層35を順次被着した後、微細加工技術によりALまたはAL(Nd)合金薄膜層35と透明導電層91と第2の非晶質シリコン層33Aを食刻して除去し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻することにより、図11(e)と図12(e)に示したように半導体領域34Aと一部重なるように91Aと35Aとの積層からなり信号線も兼ねるソース配線12と、91Bと35Bとの積層からなり擬似絵素電極P22も兼ねる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成し、ソース・ドレイン配線12,21の形成と同時に開口部63A内に露出している走査線の一部73を含んで走査線の擬似電極端子P5と、信号線12の一部よりなる擬似電極端子P6も同時に形成する。
ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に透明性の絶縁層としてPCVD装置を用いて0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図11(f)と図12(f)に示したように擬似絵素電極P22上と擬似電極端子P5,P6上にそれぞれ開口部38,63,64を形成し、各開口部内のパシベーション絶縁層と低抵抗金属層35A〜35Cを選択的に除去して透明導電性の絵素電極22と透明導電性の電極端子5A,6Aの大部分を露出する。
このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例6が完了する。蓄積容量15は図11(f)に示したように絵素電極22と蓄積容量線16がゲート絶縁層30Bを介して平面的に重なっている領域51(右下がり斜線部)で構成され、実施例4と同一になる。
実施例3で示したように走査線11とカラーフィルタ9上の対向電極14との間で直流電流が流れて液晶が劣化しないように適当な絶縁層を露出した走査線に付与する事ができれば半導体層領域を形成するに際してゲート絶縁層をも除去して走査線を露出することによりコンタクト形成工程を削減する事も可能となる。そこで実施例7では走査線の形成工程と半導体層の形成工程をハーフトーン露光技術により工程削減した結果、露出する走査線の側面には電着または陽極酸化により絶縁層を形成して走査線と信号線との交差を可能にした後、ガラス基板上に絶縁層として従来通りパシベーション絶縁層を用いることで露出した走査線を再び絶縁化した液晶表示装置を得んとするものである。
実施例7でも先ずガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層92を被着する。次にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を例えば、0.3−0.2−0.05μm程度の膜厚で順次被着し、さらにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi,Cr,Mo等の耐熱金属またはそれらのシリサイドよりなる薄膜層34を被着した後、図13(a)と図14(a)に示したように半導体層形成領域すなわちゲート電極11A上の領域84A1と、走査線11と信号線12とが交差する領域近傍の84A2と、蓄積容量線16と信号線12とが交差する領域近傍の84A3と、蓄積容量形成領域すなわち大半の蓄積容量16線上の84A4の膜厚が例えば2μmで、ゲート電極11Aも兼ねる走査線11と蓄積容量線16に対応した感光性樹脂パターン84Bの膜厚が1μmであるような感光性樹脂パターン84A1〜84A4及び84Bをハーフトーン露光技術により形成し、感光性樹脂パターン84A1〜84A4及び84Bをマスクとして耐熱金属層34、第2の非晶質シリコン層33、第1の非晶質シリコン層31及びゲート絶縁層層30に加えて第1の金属層92をも選択的に除去してガラス基板2を露出する。
このようにしてゲート電極11Aも兼ねる走査線11と蓄積容量線16に対応した多層膜パターンを得た後、酸素プラズマ等の灰化手段により上記感光性樹脂パターン84A1〜84A4及び84Bを1μm以上膜減りさせると感光性樹脂パターン84Bが消失し、図13(b)と図14(b)に示したように耐熱金属層34A,34Bが露出すると共にゲート電極11A上と、走査線11と信号線12とが交差する領域近傍と、蓄積容量線16と信号線12とが交差する領域近傍と、蓄積容量16線の大部分上に膜減りした感光性樹脂パターン84C1〜84C4をそのまま残すことができる。上記酸素プラズマ処理では後続のソース・ドレイン配線形成工程におけるマスク合わせ精度が低下しないように異方性を強めてパターン寸法の変化を抑制することが望ましいことは既に述べた通りである。
その後、図14(b)に示したようにゲート電極11Aの側面に絶縁層76を形成する。このためには図17に示したように、走査線11(蓄積容量線16も同様であるがここでは図示を略す)を並列に束ねる配線77とガラス基板2の外周部で電着または陽極酸化時に電位を与えるための接続パターン78が必要であり、さらにプラズマCVD装置による非晶質シリコン層31,33とシリコン窒化層30,32とSPTによる耐熱金属層34の適当なマスク手段を用いた製膜領域79が接続パターン78より内側に限定され、接続パターン78に電位を与える事が出来なければならない。そこで鋭い刃先を有する鰐口クリップ等の接続手段を用いて接続パターン78上の感光性樹脂パターン84C5(78)を突き破り接続パターン78(走査線11)に+(プラス)電位を与えてエチレングリコールを主成分とする化成液中にガラス基板2を浸透させて陽極酸化を行って陽極酸化層であるアルミナ(AL2O3)層、または電着によりペンダントカルボシキル基含有ポリイミド電着液を用いてポリイミド樹脂層を形成する。
続いて図13(c)と図14(c)に示したように膜減りした感光性樹脂パターン84C1〜84C4をマスクとしてゲート電極11A上と、走査線11と信号線12とが交差する領域近傍には耐熱金属層34Aと第2の非晶質シリコン33Aと第1の非晶質シリコン31Aとゲート絶縁層30Aからなる積層を選択的に残し、蓄積容量線16と信号線12とが交差する領域近傍と大部分の蓄積容量16線上には耐熱金属層34Bと第2の非晶質シリコン33Bと第1の非晶質シリコン31Bとゲート絶縁層30Bからなる積層を選択的に残すとともに、走査線11上の耐熱金属層34Aと第2の非晶質シリコン層33Aと第1の非晶質シリコン層31Aとゲート絶縁層30Aを食刻して走査線11を露出すると同時に蓄積容量線16上の耐熱金属層34Bと第2の非晶質シリコン層33Bと第1の非晶質シリコン層31Bとゲート絶縁層30Bを食刻して蓄積容量形成領域以外の蓄積容量線16を露出する。
前記感光性樹脂パターン84C1〜84C4を除去した後はガラス基板2の全面にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層91として例えばIZOまたはITOあるいはこれらの混合体を被着し、さらに低抵抗金属層として膜厚0.3μm程度のALまたはAL(Nd)合金薄膜層35を順次被着した後、微細加工技術によりALまたはAL(Nd)合金薄膜層35と透明導電層91と第2の非晶質シリコン層33Aを食刻して除去し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻することにより、図13(d)と図14(d)に示したように半導体層領域34A(ゲート電極11A)と一部重なるように91Aと35Aとの積層からなり信号線も兼ねるソース配線12と、91Bと35Bとの積層からなり擬似絵素電極P22も兼ねる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成し、ソース・ドレイン配線12,21の形成と同時に露出している走査線11の一部を含んで走査線の擬似電極端子P5と、信号線12の一部よりなる擬似電極端子P6も同時に形成する。
ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に透明性の絶縁層としてPCVD装置を用いて0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図13(e)と図14(e)に示したように擬似絵素電極P22上と擬似電極端子P5,P6上にそれぞれ開口部38,63,64を形成し、各開口部内のパシベーション絶縁層と低抵抗金属層35A〜35Cを選択的に除去して透明導電性の絵素電極22と透明導電性の電極端子5A,6Aの大部分を露出する。
このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例7が完了する。蓄積容量15の構成に関しては図13(e)に示したように、絵素電極22と蓄積容量線16が耐熱金属層34Bと第2
の非晶質シリコン33Bと第1の非晶質シリコン31Bとゲート絶縁層30Bを介して平面的に重なっている領域51(右下がり斜線部)が蓄積容量15を構成する場合を例示しており、絶縁層76が付加された事を除けば実施例3と実質的に同一である。
本発明の実施例1にかかる表示装置用半導体装置の平面図 本発明の実施例1にかかる表示装置用半導体装置の製造工程断面図 本発明の実施例2にかかる表示装置用半導体装置の平面図 本発明の実施例2にかかる表示装置用半導体装置の製造工程断面図 本発明の実施例3にかかる表示装置用半導体装置の平面図 本発明の実施例3にかかる表示装置用半導体装置の製造工程断面図 本発明の実施例4にかかる表示装置用半導体装置の平面図 本発明の実施例4にかかる表示装置用半導体装置の製造工程断面図 本発明の実施例5にかかる表示装置用半導体装置の平面図 本発明の実施例5にかかる表示装置用半導体装置の製造工程断面図 本発明の実施例6にかかる表示装置用半導体装置の平面図 本発明の実施例6にかかる表示装置用半導体装置の製造工程断面図 本発明の実施例7にかかる表示装置用半導体装置の平面図 本発明の実施例7にかかる表示装置用半導体装置の製造工程断面図 実施例4と実施例6における絶縁層形成のための接続パターンの配置図 実施例5における絶縁層形成のための接続パターンの配置図 実施例7における絶縁層形成のための接続パターンの配置図 液晶パネルの実装状態を示す斜視図 液晶パネルの等価回路図 液晶パネルの断面図 従来例のアクティブ基板の平面図 従来例のアクティブ基板の製造工程断面図 合理化されたアクティブ基板の平面図 合理化されたアクティブ基板の製造工程断面図
符号の説明
1:液晶パネル
2:アクティブ基板(ガラス基板)
3:半導体集積回路チップ
4:TCPフィルム
5:走査線の電極端子、走査線の一部
P5:走査線の擬似電極端子
6:信号線の電極端子、信号線の一部
P6:信号線の擬似電極端子
9:カラーフィルタ(対向するガラス基板)
10:絶縁ゲート型トランジスタ
11:走査線
11A:(ゲート配線、ゲート電極)
12:信号線(ソース配線、ソース電極)
16:蓄積容量線
21:ドレイン電極
22:(透明導電性の)絵素電極
P22:擬似絵素電極
30,30A,30B,30C:ゲート絶縁層(第1のSiNx層)
31,31A,31B,31C:(不純物を含まない)第1の非晶質シリコン層
32:第2のSiNx層
32D:チャネル保護層(エッチストップ層、保護絶縁層)
33,33A,33B,33C:(不純物を含む)第2の非晶質シリコン層
34,34A:耐熱金属層(シリサイドも含む)
35,35A:低抵抗金属層(AL)
36,36A:中間導電層
37:(SiNxよりなる)パシベーション絶縁層
38:(絵素電極上の)開口部
50,51:蓄積容量形成領域
62:(ドレイン電極上の)開口部
63,63A:(走査線上の)開口部
64,64A:(信号線上の)開口部
65,65A:(蓄積容量線上の)開口部
73:走査線の一部
75:蓄積容量線の一部
76:走査線の側面に形成された絶縁層
78:絶縁層76を形成するための接続パターン
81A,81B,82A,82B,84A1〜84A4,84B
:(ハーフトーン露光で形成された)感光性樹脂パターン
91,91A,91B,91C:透明導電層
92:第1の金属層

Claims (16)

  1. 一主面上に少なくとも絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線と、ソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極を有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、
    透明導電層と低抵抗金属層との積層からなり信号線も兼ねるソース配線と、擬似絵素電極も兼ねるドレイン配線が不純物を含む第2の半導体層と耐熱金属層を介してチャネルとなる不純物を含まない第1の半導体層に接続され、
    第1の透明性絶縁基板上のパシベーション絶縁層に形成された開口部内の前記擬似絵素電極の低抵抗金属層が除去されて露出した透明導電層を絵素電極とすることを特徴とする液晶表示装置。
  2. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなる走査線が形成され、
    ゲート電極上に1層以上のゲート絶縁層を介して不純物を含まない第1の半導体層がゲート電極よりも幅太く島状に形成され、
    前記第1の半導体層上にゲート電極と重なるように不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、
    画像表示部外の領域で走査線上のゲート絶縁層に開口部が形成されて開口部内に走査線の一部が露出し、
    前記ソース電極上とゲート絶縁層上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上とゲート絶縁層上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、ゲート絶縁層上に前記開口部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
    前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする液晶表示装置。
  3. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなる走査線が形成され、
    ゲート電極上にはゲート電極よりも幅太く、走査線と信号線の交差点近傍には走査線よりも幅太く、ゲート絶縁層と不純物を含まない第1の半導体層との積層が島状に形成され、
    ゲート電極上の第1の半導体層上にはゲート電極と重なるように不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、走査線と信号線の交差点の第1の半導体層上には不純物を含む第2の半導体層と耐熱金属層との積層が島状に形成され、
    前記ソース電極上と、第1の透明性絶縁基板上と、走査線と信号線の交差点近傍の耐熱金属層上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、画像表示部外の領域で第1の透明性絶縁基板上に走査線の一部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
    前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする液晶表示装置。
  4. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなりその側面に絶縁層を有する走査線が形成され、
    前記走査線上に1層以上のゲート絶縁層が形成され、
    ゲート電極上のゲート絶縁層上に不純物を含まない第1の半導体層が島状に形成され、
    前記第1の半導体層上に不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、
    画像表示部外の領域で走査線上のゲート絶縁層に開口部が形成されて開口部内に走査線の一部が露出し、
    前記ソース電極上と第1の透明性絶縁基板上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、前記開口部上と開口部周辺の第1の半導体層と第2の半導体層と耐熱金属層との積層上に透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
    前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする液晶表示装置。
  5. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなりその側面に絶縁層を有する走査線が形成され、
    前記走査線上に1層以上のゲート絶縁層が形成され、
    ゲート電極上のゲート絶縁層上に不純物を含まない第1の半導体層が島状に形成され、
    前記第1の半導体層上に不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、
    画像表示部外の領域で走査線上のゲート絶縁層に開口部が形成されて開口部内に走査線の一部が露出し、
    前記ソース電極上と第1の透明性絶縁基板上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、前記開口部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
    前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする液晶表示装置。
  6. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなりその側面に絶縁層を有する走査線が形成され、
    前記走査線上に1層以上のゲート絶縁層が形成され、
    ゲート電極上のゲート絶縁層上に前記ゲート絶縁層よりもわずかに小さい不純物を含まない第1の半導体層が島状に形成され、
    前記第1の半導体層上に不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、
    画像表示部外の領域で走査線上のゲート絶縁層に開口部が形成されて開口部内に走査線の一部が露出し、
    前記ソース電極上と第1の透明性絶縁基板上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、前記開口部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
    前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする液晶表示装置。
  7. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなりその側面に絶縁層を有する走査線が形成され、
    ゲート電極上と、走査線と信号線の交差点近傍の走査線上にゲート絶縁層と不純物を含まない第1の半導体層との積層が島状に形成され、
    ゲート電極上の第1の半導体層上には不純物を含む第2の半導体層と耐熱金属層との積層からなる一対のソース・ドレイン電極が形成され、走査線と信号線の交差点の第1の半導体層上には不純物を含む第2の半導体層と耐熱金属層との積層が形成され、
    前記ソース電極上と、第1の透明性絶縁基板上と、走査線と信号線の交差点の耐熱金属層上に透明導電層と低抵抗金属層との積層からなる信号線と、前記ドレイン電極上と第1の透明性絶縁基板上にその周辺に低抵抗金属層を積層された透明導電性の絵素電極と、画像表示部外の領域で第1の透明性絶縁基板上に走査線の一部を含んで透明導電性の走査線の電極端子と、画像表示部外の領域で信号線の一部よりなる透明導電性の信号線の電極端子が形成され、
    前記絵素電極上と、前記走査線の電極端子上と信号線の電極端子上に開口部を有するパシベーション絶縁層が前記第1の透明性絶縁基板上に形成されていることを特徴とする液晶表示装置。
  8. 走査線の側面に形成された絶縁層が有機絶縁層であることを特徴とする請求項4、請求項5、請求項6及び請求項7に記載の液晶表示装置。
  9. 第1の金属層が陽極酸化可能な金属層よりなり走査線の側面に形成された絶縁層が陽極酸化層であることを特徴とする請求項4、請求項5、請求項6及び請求項7に記載の液晶表示装置。
  10. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなる走査線を形成する工程と、
    1層以上のゲート絶縁層と不純物を含まない第1の非晶質シリコン層と不純物を含む第2の非晶質シリコン層と耐熱金属層を順次被着する工程と、
    ゲート電極上にゲート電極よりも幅太く前記耐熱金属層と第2非晶質シリコン層と第1の非晶質シリコン層とからなる積層を島状に形成してゲート絶縁層を露出する工程と、
    画像表示部外の領域で走査線上のゲート絶縁層に開口部を形成して走査線の一部を露出する工程と、
    透明導電層と低抵抗金属層を被着後、低抵抗金属層と透明導電層と耐熱金属層と第2の非晶質シリコン層を選択的に除去し、ゲート絶縁層上にゲート電極と一部重なるように低抵抗金属層と透明導電層との積層からなるソース配線(信号線)及び擬似絵素電極となるドレイン配線と、前記開口部を含んで低抵抗金属層と透明導電層との積層からなる走査線の擬似電極端子と、画像表示部外の領域で信号線の一部よりなる信号線の擬似電極端子を形成する工程と、
    パシベーション絶縁層を被着後、前記擬似絵素電極上及び走査線と信号線の擬似電極端子上に開口部を形成し、前記開口部内のパシベーション絶縁層と低抵抗金属層を除去して前記開口部内に透明導電性の絵素電極及び透明導電性の走査線の電極端子と透明導電性の信号線の電極端子を露出する工程を有する液晶表示装置の製造方法。
  11. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなる走査線を形成する工程と、
    1層以上のゲート絶縁層と不純物を含まない第1の非晶質シリコン層と不純物を含む第2の非晶質シリコン層と耐熱金属層を順次被着する工程と、
    画像表示部外の領域で走査線上に開口部を有し、ゲート電極上の半導体層形成領域の膜厚が他の領域よりも厚い感光性樹脂パターンを形成する工程と、
    前記感光性樹脂パターンをマスクとして前記開口部内の耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層を除去してゲート絶縁層を露出する工程と、
    前記感光性樹脂パターンの膜厚を減少して前記耐熱金属層を露出する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンをマスクとしてゲート電極上にゲート電極よりも幅太く耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とからなる積層を島状に形成してゲート絶縁層を露出するとともに前記開口部内のゲート絶縁層を除去して走査線の一部を露出する工程と、
    透明導電層と低抵抗金属層を被着後、低抵抗金属層と透明導電層と耐熱金属層と第2の非晶質シリコン層を選択的に除去し、ゲート絶縁層上にゲート電極と一部重なるように低抵抗金属層と透明導電層との積層からなるソース配線(信号線)及び擬似絵素電極となるドレイン配線と、前記開口部を含んで低抵抗金属層と透明導電層との積層からなる走査線の擬似電極端子と、画像表示部外の領域で信号線の一部よりなる信号線の擬似電極端子を形成する工程と、
    パシベーション絶縁層を被着後、前記擬似絵素電極上及び走査線と信号線の擬似電極端子上に開口部を形成し、前記開口部内のパシベーション絶縁層と低抵抗金属層を除去して前記開口部内に透明導電性の絵素電極及び透明導電性の走査線の電極端子と透明導電性の信号線の電極端子を露出する工程を有する液晶表示装置の製造方法。
  12. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層よりなる走査線を形成する工程と、
    1層以上のゲート絶縁層と不純物を含まない第1の非晶質シリコン層と不純物を含む第2の非晶質シリコン層と耐熱金属層を順次被着する工程と、
    ゲート電極上にはゲート電極よりも幅太く、走査線と信号線の交差点近傍には走査線よりも幅太く前記耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とゲート絶縁層からなる積層を島状に形成して走査線を露出する工程と、
    透明導電層と低抵抗金属層を被着後、低抵抗金属層と透明導電層と耐熱金属層と第2の非晶質シリコン層を選択的に除去し、第1の透明性絶縁基板上にゲート電極と一部重なるように低抵抗金属層と透明導電層との積層からなるソース配線(信号線)及び擬似絵素電極となるドレイン配線と、画像表示部外の領域で走査線上に低抵抗金属層と透明導電層との積層からなる走査線の擬似電極端子と、画像表示部外の領域で信号線の一部よりなる信号線の擬似電極端子を形成する工程と、
    パシベーション絶縁層を被着後、前記擬似絵素電極上及び走査線と信号線の擬似電極端子上に開口部を形成し、前記開口部内のパシベーション絶縁層と低抵抗金属層を除去して前記開口部内に透明導電性の絵素電極及び透明導電性の走査線の電極端子と透明導電性の信号線の電極端子を露出する工程を有する液晶表示装置の製造方法。
  13. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層と1層以上のゲート絶縁層と不純物を含まない第1の非晶質シリコン層と不純物を含む第2の非晶質シリコン層と耐熱金属層を順次被着する工程と、
    走査線に対応し、画像表示部外の領域で走査線のコンタクト(開口部)上の膜厚が他の領域よりも薄い感光性樹脂パターンを形成する工程と、
    前記感光性樹脂パターンをマスクとして前記耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とゲート絶縁層と第1の金属層を順次食刻する工程と、
    前記感光性樹脂パターンの膜厚を減少して前記開口部内に耐熱金属層を露出する工程と、
    走査線の側面に絶縁層を形成する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記開口部内の耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とゲート絶縁層を食刻して走査線の一部を露出する工程と、
    ゲート電極上に耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とからなる積層を島状に形成してゲート絶縁層を露出するとともに、前記開口部を保護して開口部の周囲に耐熱金属層と第2非晶質シリコン層と第1の非晶質シリコン層を残す工程と、
    透明導電層と低抵抗金属層を被着後、低抵抗金属層と透明導電層と耐熱金属層と第2の非晶質シリコン層を選択的に除去し、第1の透明性絶縁基板上にゲート電極と一部重なるように低抵抗金属層と透明導電層との積層からなるソース配線(信号線)及び擬似絵素電極となるドレイン配線と、前記開口部上及びその周辺部上に低抵抗金属層と透明導電層との積層からなる走査線の擬似電極端子と、画像表示部外の領域で信号線の一部よりなる信号線の擬似電極端子を形成する工程と、
    パシベーション絶縁層を被着後、前記擬似絵素電極上及び走査線と信号線の擬似電極端子上に開口部を形成し、前記開口部内のパシベーション絶縁層と低抵抗金属層を除去して前記開口部内に透明導電性の絵素電極及び透明導電性の走査線の電極端子と透明導電性の信号線の電極端子を露出する工程を有する液晶表示装置の製造方法。
  14. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層と1層以上のゲート絶縁層と不純物を含まない第1の非晶質シリコン層と不純物を含む第2の非晶質シリコン層と耐熱金属層を順次被着する工程と、
    走査線に対応し、ゲート電極上の半導体層形成領域上の膜厚が他の領域よりも厚い感光性樹脂パターンを形成する工程と、
    前記感光性樹脂パターンをマスクとして前記耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とゲート絶縁層と第1の金属層を順次食刻する工程と、
    前記感光性樹脂パターンの膜厚を減少して前記耐熱金属層を露出する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンをマスクとしてゲート電極上に耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とからなる積層を島状に形成してゲート絶縁層を露出する工程と、
    走査線の側面に絶縁層を形成する工程と、
    画像表示部外の領域で走査線上に開口部を形成して前記開口部内に走査線の一部を露出する工程と、
    透明導電層と低抵抗金属層を被着後、低抵抗金属層と透明導電層と耐熱金属層と第2の非晶質シリコン層を選択的に除去し、第1の透明性絶縁基板上にゲート電極と一部重なるように低抵抗金属層と透明導電層との積層からなるソース配線(信号線)及び擬似絵素電極となるドレイン配線と、前記開口部上に低抵抗金属層と透明導電層との積層からなる走査線の擬似電極端子と、画像表示部外の領域で信号線の一部よりなる信号線の擬似電極端子を形成する工程と、
    パシベーション絶縁層を被着後、前記擬似絵素電極上及び走査線と信号線の擬似電極端子上に開口部を形成し、前記開口部内のパシベーション絶縁層と低抵抗金属層を除去して前記開口部内に透明導電性の絵素電極及び透明導電性の走査線の電極端子と透明導電性の信号線の電極端子を露出する工程を有する液晶表示装置の製造方法。
  15. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層と1層以上のゲート絶縁層と不純物を含まない第1の非晶質シリコン層と不純物を含む第2の非晶質シリコン層と耐熱金属層を順次被着する工程と、
    半導体層形成領域に耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とからなる積層を島状に形成してゲート絶縁層を露出する工程と、
    走査線に対応し、画像表示部外の領域で走査線のコンタクト(開口部)上の膜厚が他の領域よりも薄い感光性樹脂パターンを形成する工程と、
    前記感光性樹脂パターンをマスクとして少なくとも前記ゲート絶縁層と第1の金属層を順次食刻する工程と、
    前記感光性樹脂パターンの膜厚を減少して前記開口部内にゲート絶縁層を露出する工程と、
    走査線の側面に絶縁層を形成する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記開口部内のゲート絶縁層を除去して走査線の一部を露出する工程と、
    透明導電層と低抵抗金属層を被着後、低抵抗金属層と透明導電層と耐熱金属層と第2の非晶質シリコン層を選択的に除去し、第1の透明性絶縁基板上にゲート電極と一部重なるように低抵抗金属層と透明導電層との積層からなるソース配線(信号線)及び擬似絵素電極となるドレイン配線と、前記開口部上に低抵抗金属層と透明導電層との積層からなる走査線の擬似電極端子と、画像表示部外の領域で信号線の一部よりなる信号線の擬似電極端子を形成する工程と、
    パシベーション絶縁層を被着後、前記擬似絵素電極上及び走査線と信号線の擬似電極端子上に開口部を形成し、前記開口部内のパシベーション絶縁層と低抵抗金属層を除去して前記開口部内に透明導電性の絵素電極及び透明導電性の走査線の電極端子と透明導電性の信号線の電極端子を露出する工程を有する液晶表示装置の製造方法。
  16. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、少なくとも、
    第1の透明性絶縁基板の一主面上に1層以上の第1の金属層と1層以上のゲート絶縁層と不純物を含まない第1の非晶質シリコン層と不純物を含む第2の非晶質シリコン層と耐熱金属層を順次被着する工程と、
    走査線に対応し、かつゲート電極上と、走査線と信号線の交差点近傍の走査線上の膜厚が他の領域よりも厚い感光性樹脂パターンを形成する工程と、
    前記感光性樹脂パターンをマスクとして前記耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とゲート絶縁層と第1の金属層を順次食刻する工程と、
    前記感光性樹脂パターンの膜厚を減少して走査線上の耐熱金属層を露出する工程と、
    走査線の側面に絶縁層を形成する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンをマスクとして走査線上の耐熱金属層と第2の非晶質シリコン層と第1の非晶質シリコン層とゲート絶縁層を順次食刻して走査線を露出する工程と、
    透明導電層と低抵抗金属層を被着後、低抵抗金属層と透明導電層と耐熱金属層と第2の非晶質シリコン層を選択的に除去し、第1の透明性絶縁基板上にゲート電極と一部重なるように低抵抗金属層と透明導電層との積層からなるソース配線(信号線)及び擬似絵素電極となるドレイン配線と、画像表示部外の領域で走査線上に低抵抗金属層と透明導電層との積層からなる走査線の擬似電極端子と、画像表示部外の領域で信号線の一部よりなる信号線の擬似電極端子を形成する工程と、
    パシベーション絶縁層を被着後、前記擬似絵素電極上及び走査線と信号線の擬似電極端子上に開口部を形成し、前記開口部内のパシベーション絶縁層と低抵抗金属層を除去して前記開口部内に透明導電性の絵素電極及び透明導電性の走査線の電極端子と透明導電性の信号線の電極端子を露出する工程を有する液晶表示装置の製造方法。
JP2004313653A 2003-11-27 2004-10-28 液晶表示装置とその製造方法 Active JP4846227B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313653A JP4846227B2 (ja) 2003-11-27 2004-10-28 液晶表示装置とその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003396558 2003-11-27
JP2003396558 2003-11-27
JP2004313653A JP4846227B2 (ja) 2003-11-27 2004-10-28 液晶表示装置とその製造方法

Publications (2)

Publication Number Publication Date
JP2005181984A true JP2005181984A (ja) 2005-07-07
JP4846227B2 JP4846227B2 (ja) 2011-12-28

Family

ID=34797262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313653A Active JP4846227B2 (ja) 2003-11-27 2004-10-28 液晶表示装置とその製造方法

Country Status (1)

Country Link
JP (1) JP4846227B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481351B2 (en) 2008-12-19 2013-07-09 Sharp Kabushiki Kaisha Active matrix substrate manufacturing method and liquid crystal display device manufacturing method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185724A (ja) * 1985-02-13 1986-08-19 Sharp Corp 薄膜トランジスタの製造方法
JPH0653505A (ja) * 1992-07-29 1994-02-25 Sharp Corp 逆スタッガ型薄膜トランジスタ及びその製造方法
JPH06202147A (ja) * 1992-12-28 1994-07-22 Casio Comput Co Ltd 液晶表示装置用薄膜トランジスタ及びその製造方法
JPH08330592A (ja) * 1995-05-31 1996-12-13 Nec Corp 薄膜トランジスタおよび液晶表示装置
JPH095764A (ja) * 1995-06-20 1997-01-10 Hitachi Ltd 液晶表示基板
JPH0992838A (ja) * 1995-09-26 1997-04-04 Matsushita Electric Ind Co Ltd 薄膜トランジスタおよびその製造方法
JP2000002892A (ja) * 1998-04-17 2000-01-07 Toshiba Corp 液晶表示装置、マトリクスアレイ基板およびその製造方法
JP2000258799A (ja) * 1999-03-10 2000-09-22 Sharp Corp 液晶表示装置の製造方法
JP2001326360A (ja) * 2000-05-18 2001-11-22 Sharp Corp アクティブマトリクス基板の製造方法およびアクティブマトリクス基板および薄膜電界効果トランジスタの製造方法
JP2002090779A (ja) * 2000-09-20 2002-03-27 Hitachi Ltd 液晶表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185724A (ja) * 1985-02-13 1986-08-19 Sharp Corp 薄膜トランジスタの製造方法
JPH0653505A (ja) * 1992-07-29 1994-02-25 Sharp Corp 逆スタッガ型薄膜トランジスタ及びその製造方法
JPH06202147A (ja) * 1992-12-28 1994-07-22 Casio Comput Co Ltd 液晶表示装置用薄膜トランジスタ及びその製造方法
JPH08330592A (ja) * 1995-05-31 1996-12-13 Nec Corp 薄膜トランジスタおよび液晶表示装置
JPH095764A (ja) * 1995-06-20 1997-01-10 Hitachi Ltd 液晶表示基板
JPH0992838A (ja) * 1995-09-26 1997-04-04 Matsushita Electric Ind Co Ltd 薄膜トランジスタおよびその製造方法
JP2000002892A (ja) * 1998-04-17 2000-01-07 Toshiba Corp 液晶表示装置、マトリクスアレイ基板およびその製造方法
JP2000258799A (ja) * 1999-03-10 2000-09-22 Sharp Corp 液晶表示装置の製造方法
JP2001326360A (ja) * 2000-05-18 2001-11-22 Sharp Corp アクティブマトリクス基板の製造方法およびアクティブマトリクス基板および薄膜電界効果トランジスタの製造方法
JP2002090779A (ja) * 2000-09-20 2002-03-27 Hitachi Ltd 液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481351B2 (en) 2008-12-19 2013-07-09 Sharp Kabushiki Kaisha Active matrix substrate manufacturing method and liquid crystal display device manufacturing method

Also Published As

Publication number Publication date
JP4846227B2 (ja) 2011-12-28

Similar Documents

Publication Publication Date Title
KR100632097B1 (ko) 액정표시장치와 그 제조방법
US7894009B2 (en) Liquid crystal display device and a manufacturing method of the same
JP2005108912A (ja) 液晶表示装置とその製造方法
JP2004317685A (ja) 液晶表示装置とその製造方法
JP2005283690A (ja) 液晶表示装置とその製造方法
JP5064124B2 (ja) 表示装置用基板及びその製造方法、並びに、液晶表示装置及びその製造方法
JP2004319655A (ja) 液晶表示装置とその製造方法
JP5342731B2 (ja) 液晶表示装置とその製造方法
JP2005049667A (ja) 液晶表示装置とその製造方法
JP2005017669A (ja) 液晶表示装置とその製造方法
JP2005106881A (ja) 液晶表示装置とその製造方法
JP2005019664A (ja) 液晶表示装置とその製造方法
JP4846227B2 (ja) 液晶表示装置とその製造方法
JP4538219B2 (ja) 液晶表示装置とその製造方法
JP4538218B2 (ja) 液晶表示装置とその製造方法
JP2005215278A (ja) 液晶表示装置とその製造方法
JP2005215279A (ja) 液晶表示装置とその製造方法
JP4863667B2 (ja) 液晶表示装置とその製造方法
JP2005215276A (ja) 液晶表示装置とその製造方法
JP4871507B2 (ja) 液晶表示装置とその製造方法
JP2006267877A (ja) 液晶表示装置とその製造方法
KR100623820B1 (ko) 액정표시장치 및 그 제조방법
KR100692717B1 (ko) 액정표시장치와 그 제조방법
JP2002076363A (ja) 液晶表示装置
JP2001215530A (ja) 液晶画像表示装置と画像表示装置用半導体装置の製造方法

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070628

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110701

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250