JP2005168241A - 電気車制御装置 - Google Patents

電気車制御装置 Download PDF

Info

Publication number
JP2005168241A
JP2005168241A JP2003406239A JP2003406239A JP2005168241A JP 2005168241 A JP2005168241 A JP 2005168241A JP 2003406239 A JP2003406239 A JP 2003406239A JP 2003406239 A JP2003406239 A JP 2003406239A JP 2005168241 A JP2005168241 A JP 2005168241A
Authority
JP
Japan
Prior art keywords
motor
inverter
electric vehicle
motor type
inverter device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003406239A
Other languages
English (en)
Inventor
Kazuaki Yuki
和明 結城
Shinichi Toda
伸一 戸田
Toshiaki Yamada
敏明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003406239A priority Critical patent/JP2005168241A/ja
Publication of JP2005168241A publication Critical patent/JP2005168241A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】 インバータ装置に接続されるモータがいずれの種別であってもそれを自動的に判別し、その種別に応じた最適な駆動制御をする。
【解決手段】 この電気車制御装置は、インバータ主回路部1及びインバータ制御部2から成るインバータ装置によって電気車駆動用モータ3を駆動するもので、インバータ装置に接続されているモータ3の種別を判別するモータ種別判別手段6と、このモータ種別判別手段によって判別された現在インバータ装置に接続されているモータ種別に対応した制御パラメータを設定する制御パラメータ設定部7を備え、インバータ装置によってモータに所定の電圧を印加した際の電流値あるいはインバータ装置によって所定の電流を流した際の電圧値に基づいてモータ種別を判別する。
【選択図】 図1

Description

本発明は、複数種のモータと組み合わせ得るインバータ回路を備えた電気車制御装置に関する。
従来は、電気車用インバータ装置に接続される交流モータの種類は、電気車の種類ごとにある特定の一種に決められていた。その決められているモータと異なる別の種類のモータをインバータ装置に接続すると、モータの特性の差異により適正に制御することができずインバータ装置の動作中に過電流による保護動作が生じ、またモータの発生トルクが性能どおりに出力できず電気車の加速度、減速度が所定値どおりに得られないなどの障害が発生する場合がある。
このように、電気車の種類によって接続されるモータの種類は異なるので、電気車を保有する鉄道会社は、電気車の種類ごとにその電気車に対応するモータの予備を保有する必要があった。これにより、予備品が多くなったりモータの管理が煩雑になったりするなど、保守管理コストが増加する問題点があった。
このような問題点を改善するために、モータに電圧を印加して流れた電流値から接続されているモータ種別を判別し、判別されたモータ種別に対する制御パラメータを用いてモータを駆動する技術が提案されている。このように試験的にモータに電圧を印加し流れた電流値からモータ種別を特定する場合、モータ温度、ノイズ等の検出データのばらつき、出力電圧の精度など、試行条件が一致せず、モータ種別判別の信頼性を劣化させることが懸念され、モータ種別判別の信頼性向上が求められていた。
本発明は、このような従来の技術的課題に鑑みて、電気車のインバータ装置が複数種類のモータのいずれでもそのモータ種別を正確に判別し、判別したモータ種別に応じた最適な制御ができる電気車制御装置を提供することを目的とする。
請求項1の発明の電気車制御装置は、可変電圧可変周波数制御方式のインバータ主回路部及び当該インバータ主回路部を所定の制御パラメータを用いて制御するインバータ制御部とから成るインバータ装置と、前記インバータ装置に接続されているモータの種別を判別するモータ種別判別手段と、前記モータ種別判別手段によって判別された現在インバータ装置に接続されているモータ種別に対応した制御パラメータを前記インバータ制御部に設定する制御パラメータ設定部とを備え、前記モータ種別判別手段は、前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値に基づいて評価指標を演算する評価指標演算手段と、前記評価指標に基づき前記インバータ装置に接続されているモータの種別を決定するモータ種別決定手段とを有することを特徴とするものである。
請求項2の発明は、請求項1の電気車制御装置において、前記モータ種別判別手段は、前記インバータ装置に接続され得るモータに対応した規範データを格納する手段と、前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値に基づき供試データを取得する供試データ取得手段とを有し、前記モータ種別判別手段における評価指標演算手段は、前記規範データと供試データに基づいて評価指標を演算することを特徴とするものである。
請求項3の発明は、請求項2に記載の電気車制御装置において、前記規範データ及び供試データは、前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値に基づく時系列データであることを特徴とするものである。
請求項4の発明は、請求項3の電気車制御装置において、前記評価指標は、前記規範データと取得された供試データとの偏差の2乗積分値であることを特徴とするものである。
請求項5の発明は、請求項3の電気車制御装置において、前記モータ種別判別手段は、前記供試データを、時間軸・振幅軸を所定の係数で補正したデータを新たな供試データとする手段を有し、前記モータ種別判別手段における評価指標演算手段は、新たな供試データに基づき評価指標を再演算し、前記係数を変化させた中で最小の評価指標となったものを最終的な評価指標とすることを特徴とするものである。
請求項6の発明は、請求項1又は2の電気車制御装置において、前記モータ種別判別手段は、前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値に基づいてモータパラメータを推定するモータパラメータ推定手段を有し、前記モータ種別判別手段における評価指標演算手段は、当該推定されたモータパラメータに応じて前記評価指標を演算することを特徴とするものである。
請求項7の発明は、請求項6の電気車制御装置において、前記評価指標の演算に用いるモータパラメータには、抵抗分を含まないことを特徴とするものである。
請求項8の発明は、請求項1又は2の電気車制御装置において、前記モータ種別判別手段は、同一のモータに対するモータ種別の判別を複数回繰り返し、同一の結果であった場合に限り正しく判別できたと判断する手段を有することを特徴とするものである。
請求項9の発明は、請求項4の電気車制御装置において、前記印加する電圧あるいは電流はステップ状であることを特徴とするものである。
請求項10の発明は、請求項1又は2の電気車制御装置において、前記印加する電圧あるいは電流の位相を所定値に固定することを特徴とするものである。
請求項11の発明は、請求項1又は2の電気車制御装置において、前記モータ判別をモータが回転しないように拘束した状態で実施することを特徴とするものである。
請求項12の発明は、請求項1又は2の電気車制御装置において、前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値を取得する際、流れる電流をインバータ装置の過電流による保護レベルの50%以上に設定することを特徴とするものである。
請求項13の発明は、請求項1又は2の電気車制御装置において、前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値を取得する際、インバータ装置のスイッチング素子のスイッチング周波数を低くすることを特徴とするものである。
請求項14の発明は、請求項1又は2の電気車制御装置において、前記モータ種別判別手段は、外気温度、モータ温度又はインバータ素子温度の温度情報を取得する温度検出手段と、当該温度情報に基づき、前記供試データ、規範データ又は評価指標を補正する補正手段とを有することを特徴とするものである。
請求項15の発明の電気車制御装置は、可変電圧可変周波数制御方式のインバータ主回路部及び当該インバータ主回路部を所定の制御パラメータを用いて制御するインバータ制御部とから成るインバータ装置と、前記インバータ装置に接続されているモータの種別を判別するモータ種別判別手段と、前記モータ種別判別手段によって判別された現在インバータ装置に接続されているモータ種別に対応した制御パラメータを前記インバータ制御部に設定する制御パラメータ設定部とを備え、前記モータ種別判別手段は、外気温度、モータ温度又はインバータ素子温度などの温度情報を取得する温度検出手段と、当該温度情報に基づき前記インバータ装置に接続されているモータの種別を決定するモータ種別決定手段とを有することを特徴とするものである。
請求項16の発明の電気車制御装置は、可変電圧可変周波数制御方式のインバータ主回路部及び当該インバータ主回路部を所定の制御パラメータを用いて制御するインバータ制御部とから成るインバータ装置と、前記インバータ装置に接続されているモータの種別を判別するモータ種別判別手段と、前記モータ種別判別手段によって判別された現在インバータ装置に接続されているモータ種別に対応した制御パラメータを前記インバータ制御部に設定する制御パラメータ設定部とを備え、前記モータ種別判別手段を構成する一部の手段を、前記インバータ装置の外部に配置したことを特徴とするものである。
請求項17の発明の電気車制御装置は、可変電圧可変周波数制御方式のインバータ主回路部及び当該インバータ主回路部を所定の制御パラメータを用いて制御するインバータ制御部とから成るインバータ装置と、前記インバータ装置に接続されているモータの種別を判別するモータ種別判別手段と、前記モータ種別判別手段によって判別された現在インバータ装置に接続されているモータ種別に対応した制御パラメータを前記インバータ制御部に設定する制御パラメータ設定部とを備え、前記モータ種別判別手段を構成する一部の手段を、複数の電気車制御装置間で共有したことを特徴とするものである。
本発明によれば、インバータに接続されているモータの種別を自動的に、かつ正確に判別してそれに対応した駆動制御ができる。その結果、電気車駆動用モータとして複数種類のモータを任意に組み合わせて使用することができ、電気車間でモータの互換性が向上し、電気車毎に異なった多種類のモータを保管管理する必要が少なくなり、保守管理面でコスト低減が図れる。
以下、本発明の実施の形態を図に基づいて詳説する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態の電気車制御装置のブロック図である。インバータ1は、図示していない直流電圧源から電源供給され、可変電圧可変周波数の電圧を出力し、接続されたモータ3を駆動制御する。インバータ制御部2は、モータ3の速度やトルクを制御するため、インバータ1から所定電圧が出力されるように制御するものである。なお、請求項に示すインバータ装置は、主回路としてのインバータ1と、それに対する制御部であるインバータ制御部2とが対応する。
ここでインバータ1に接続されるモータ3としては、適応可能な複数種のモータがある。誘導モータ(IM)であっても特性の異なるものが接続されたり、誘導モータに代わり永久磁石同期モータ(PM)や永久磁石リラクタンス同期モータ(PRM)が接続されたりすることがある。
インバータ制御部2は、高速なトルク応答を実現するため、DQ軸回転座標系にて制御を行うベクトル制御が一般に適用され、図では特に、モータ3のロータ位置や速度を検出せずに制御する位置/速度センサレスベクトル制御系が採用されている。
このインバータ制御部2の構成を説明する。モータ3に流れる電流Iu,Iwは、電流検出器4によって検出され、座標変換器14によってDQ軸電流Id,Iqに変換される。電流指令設定部8では、運転指令や速度に応じたD軸電流指令IdRefとQ軸電流指令IqRefを生成出力する。出力電圧演算部9では、D軸電流指令IdRefにD軸電流Idが一致し、Q軸電流指令IqRefにQ軸電流Iqが一致するようにDQ軸出力電圧指令Vd0,Vq0を演算して出力する。座標変換器12では、DQ軸出力電圧指令Vd*,Vq*を3相電圧指令Vu*,Vv*,Vw*に変換して出力する。PWM制御部13では、3相電圧指令に基づいてゲート指令を生成し、インバータ1を駆動制御する。
インバータ出力周波数演算部17は、図2に詳しく示すように、誘起電圧演算部31とインバータ出力周波数制御部32とから構成される。誘起電圧演算部31では、DQ軸電圧指令Vd0,Vq0とDQ軸電流Id,IqとからD軸誘起電圧Edを演算出力する。インバータ出力周波数制御部32では、入力であるD軸誘起電圧Edが零となるようにインバータ出力周波数ω1を制御出力する。このインバータ出力周波数演算部17は、回転センサレスベクトル制御として公知な技術である。回転センサレスベクトル制御には他にも各種の方式があり、本実施の形態の構成に限定されるものではない。
モータ3の種別を判別し、判別されたモータに応じた最適なインバータ動作を供するために供試電圧印加部5、モータ種別判別部6及び制御パラメータ設定部7が備えられている。
供試電圧印加部5は供試位相設定部18と供試電圧設定部19から構成され、接続されたモータ3の種別を判別するためにモータ3に印加する電圧指令、電圧位相角を出力する。供試電圧設定部19から出力されたDQ軸電圧指令VdT,VqTは、インバータ制御部2の切替器10,11によってインバータ1へのDQ軸電圧指令値Vd*,Vq*となる。ここで、VdT=一定電圧Vd0[V]、VqT=0[V]と設定する。また、供試位相設定部18から出力された出力電圧位相角αは、切替器15を介してインバータ出力電圧位相角θに設定される。ここに、出力電圧位相角α=所定の一定値と設定する。なお、モータ3に電圧を印加する際、モータ3が動かないように機械的に拘束する。電気車には一般に機械式のブレーキ装置が備わっており、その機械式ブレーキをかけながら電圧を印加することで、容易に実現できる。
モータ種別判別部6は、供試データ取得部20、評価指標演算部21、モータ種別決定部22、規範データ格納部23から構成される。供試データ取得部20では、所定の電圧をモータ3に印加した際に流れるD軸電流Idを取得し、所定のサンプリングによって取得される時系列な供試データD(k)として記憶する。ただし、kは時間軸のインデックスである。規範データ格納部23には、インバータ1に接続され得るモータに関して、あらかじめ取得された時系列な規範データDr(k,m)が記憶されている。ここにkは時間軸のインデックス、mはモータ種別ごとに割り振られるIDナンバーである。
評価指標演算部21では、供試データD(k)と規範データDr(k,m)に基づき、評価指標C(m)を算出する。C(m)は、あるモータ種(ID=m)に対応する規範データDr(k,m)と供試データD(k)に基づき算出した評価指標であることを意味している。モータ種別決定部22では、全モータ種に対して算出された評価指標C(m)(m=1,…,Y)に基づき、現在接続されているモータ種別を決定する。
上記の供試データの取得から、モータ種別の決定までの処理のフローチャートを図3に示す。前述のように取得された時系列な供試データがD(k)である。供試データを取得した際のモータ温度と規範データを取得した際のモータ温度の差異の影響を低減するため、供試データを補正する。ここでは、係数A(i)によって供試データを次式に変換し、新たな供試データD'(k)を生成する。係数A(i)はモータ温度の差によって変動する抵抗変動率を表し、iは変動率に対応したインデックスである。
Figure 2005168241
ただし(int)xは、xを整数化する処理とする。この変換により、振幅及び時間軸を係数Aにて補正している。
新たな供試データD'(k)と規範データDr(k,j)(ただし、j=1,…,Y)に基づき、まず、あるモータ種ID=jに対する評価指標を算出する。ある温度変動(インデックスi)を仮定したとき、係数A(i)に基づき評価指標Ctmp(j,i)を次式で演算する。
Figure 2005168241
温度差を考慮した係数A(i)をi=1,…,Zと変化させて上記の評価指標を演算する。実用上の係数A(i)、すなわち抵抗変動の範囲としては、0.7≦A≦1.3程度である。想定されるすべて範囲で係数A(i)を変化させ、得られた評価指標Ctmp(j,i)の中から、最小のものを選ぶことで、あるモータ種ID=jに対する評価指標C(j)を決定できる。
Figure 2005168241
上記の過程を、接続され得る全てのモータ種ID=1,…,Yに対して繰り返し演算することで、接続され得る全モータに対する評価指標C(j)を演算できる。
モータ種別決定部22では、評価指標C(j)の中で最小の評価指標を算出し、これに相当するモータ種別を現在接続されているモータ種別として決定する。なお、最小の評価指標からモータ種別を決定する際、その指標が所定値以内であるか判断し、所定値以内であればモータ種を決定し、所定値以外であれば判別失敗とすることもできる。また、上述の電圧印加による供試データの取得からモータ種の決定までを、複数回繰り返して試行し、全て一致した結果である場合に限りモータ種を特定し、それ以外は失敗とすることもできる。
制御パラメータ設定部7は、図4のように構成できる。制御パラメータ格納部28には、接続され得る各モータに対する制御パラメータが記憶されている。ここで制御パラメータとは、モータパラメータ、制御ゲインなど、インバータ装置のソフトウェアで要求されるパラメータ群のことを指す。切替器27では、モータ種別判別部6で判別された現在接続されているモータ種別に対応し、パラメータ格納部28の中から適切な制御パラメータを選択する。制御パラメータ記憶部29では、切替器27により選択された制御パラメータを記憶する。インバータ制御部2は、通常動作を行う際、制御パラメータ記憶部29から制御パラメータを参照する。
この制御パラメータ設定部7は、図5のようにも構成できる。この図5では、判別された接続モータ種別をモータ種別記憶部30で記憶する。インバータ制御部2が動作する際は、モータ種別記憶部30が記憶したモータに応じた制御パラメータを制御パラメータ格納部28から切替器27によって参照する。
上記図4における制御パラメータ記憶部29や図5におけるモータ種別記憶部30は、インバータ装置の電源が切れようとも、次にモータ種別を判別する際まで、その内容を保持することが必要である。
次に、上記構成の第1の実施の形態の電気車制御装置の作用について説明する。モータを保守点検等で取り外し、新たなモータを取り付けた場合など、インバータ1に接続されたモータの種別を判別する際、供試電圧印加部5がインバータ制御部2に作用し、D軸電圧指令Vd*=Vd0、Q軸電圧指令Vq*=0を出力する。出力電圧位相θは、所定の固定値αであるため、モータ3に直流電圧を印加することになる。
モータ種別判別部6では、直流電圧の印加によって流れるモータ電流を取得する。本実施の形態では、モータ相電流をDQ軸座標系へと変換したDQ軸電流Id,Iqのうち、D軸電流Idを供試データ取得部20にて記憶する。規範データ格納部23には、同一な試験によってあらかじめ取得された規範データが、接続され得る全モータに関して記憶されている。評価指標演算部21では、まず、あるj番目のモータ規範データと取得された供試データとの偏差2乗積分値を演算し、評価指標C(j)を生成する。この評価指標は、規範データと供試データ、すなわち、電流応答がどの程度一致するかを表す指標である。この評価指標を、接続され得る全モータに対する規範データに対して演算し、演算された全評価指標C(i)の中から最も評価指標が小さい値となったものを抽出し、現に接続されているモータであると決定する。
制御パラメータ設定部7では、判別されたモータに対応したモータパラメータや制御ゲインなどの制御パラメータを選択する。この選択された制御パラメータを用いて、インバータ制御部2は通常のインバータ制御を行う。
以上により、モータ判別を行う場合に試験用の電圧を印加し、それによって流れた電流値とあらかじめ取得された規範電流波形とを比較し、もっとも一致したモータを特定することで現在接続されているモータを判別することができる。また、それに対応した制御パラメータをインバータ制御部2が参照することで、現に接続されているモータに最適な制御系を実現することができる。
また本実施の形態では、評価指標を電流応答と規範電流応答とを比較した偏差の2乗積分値としたが、これにより、検出した電流応答に重畳するノイズの影響を低減することが可能で、モータ種別判別の信頼性を向上することが可能である。
また本実施の形態では、試験のための供試電圧を印加する際、直流電圧を印加するようにしているが、これにより、モータ温度差により抵抗値が変動していた場合の影響を低減することができる。この理由を以下に説明する。
誘導モータのダイナミクスは、次式で記述できる。
Figure 2005168241
ここで、1次インダクタンスL1=2次インダクタンスL2=L、1次抵抗R1=2次抵抗R2=Rと仮定し、ステップ状の直流電圧を印加した際に流れる電流I1の応答は次式で近似できる。
Figure 2005168241
ここで、数5式を規範データ取得時のダイナミクスとする。モータ温度が変化したことを想定すると、規範データを取得時のモータ抵抗値をR、供試データ取得時の抵抗値をR'として書き直せばよい。
Figure 2005168241
2つの抵抗値には次式の関係があるとみなせば、数6式は数8式のように変形できる。
Figure 2005168241
Figure 2005168241
この数8式は、規範データの時間軸をA倍、振幅軸を1/A倍したものは供試データと一致することを表している。すなわち、所定の抵抗値の誘導モータに所定の直流電圧を印加した際に流れる電流の応答に対し、抵抗値がA倍に変動した場合の電流応答は、振幅が1/A倍、時間軸がA倍になることと等価である。当然、供試データからみた規範データの関係は、逆の係数になる。よって、規範データを取得した際のモータ温度と、供試データを取得した際のモータ温度との差により生じる応答の差異の影響を低減するため、係数倍Aにおいて供試データの振幅をA倍、時間軸を1/A倍した新たな供試データによって評価指標D'(k)を算出し、係数Aを想定される抵抗変動の範囲で繰り返し演算し、その中で最小の評価指標を抽出することで、温度変動の影響を低減したモータ判別が可能になる。
モータの種別判別は、必要に応じて随時行われる必要があり、モータの周囲温度は一意に管理できない。モータの抵抗値は温度によって変動するが、このモータインピーダンスの変化によって電流応答あるいは電圧応答には差異が生じる。しかしながら、本実施の形態のように、ステップ状の直流電圧を印加し、また供試データを補正することで、温度変動の影響を低減したモータ判別が可能になり、モータ判別の信頼性が向上する。
またさらに、本実施の形態では試験のための供試電圧を印加する出力電圧位相角を所定値αに固定している。インバータの出力電圧位相角がモータ判別の試行毎に異なると、インバータを構成するスイッチング素子や巻線に流れる電流値が変化する。これでは、インバータでもモータでも、位相角に対して完全に均一なインピーダンスは持ち得ない。よって、出力電圧位相角を固定し試行条件を同一にすることで、位相角に依存した誤差を低減し、モータ判別の信頼性が向上できる。
加えて、モータ種別判別のためにモータに所定の電圧を印加する際、モータ3のロータが回転しないように機械的に拘束した状態で試験を行うことで、同一の試験条件を実現できる。モータ3のロータに一切の外力が作用しない状態では、直流電圧の印加によって微小なトルクが発生して微小な回転をする場合やあるいはあらかじめ微小な回転状態が想定できる。ロータが回転している場合、モータのインピーダンスが変化するため、同一の電圧印加であっても電流応答には大きな差異が生じ得る。よって、常に同じ回転数、ここでは、停止した条件にてモータ種別の判別を行うことで、モータ種別の判別の信頼性が向上する。
さらに、本実施の形態では、図3のフローチャートのように供試電圧の印加からモータ種別の判別までを複数回試行するようにした。これは次の理由による。試行毎に、ノイズ等の影響で完全に同一な供試データ、すなわち電流応答は望めない。このため、一度きりの試行によってモータ判別を行うならばらつきによって誤判別する可能性があるからである。そこで上記のように判別を複数回繰り返し、複数回の判別結果を比較の上で最終的な判別を行うことで、モータ種別の判別の信頼性を向上することができる。
さらにまた、本実施の形態では、規範データを時系列なデータとして記憶している。接続され得るモータ種別が後になって増加した場合、それまでの評価指標では判別の信頼性が得られなくなる可能性がある。そこで時系列データを格納しておくことで、判別の信頼性を確保できる新たな評価指標を生成することが容易である。よって、将来的に、インバータ装置に接続され得るモータ種が増加する際、モータ種別の信頼性の劣化を抑制することが可能である。
またさらに、本実施の形態では、試験のための供試電圧を印加して流れる電流の大きさを過電流レベルの50%程度としている。一般に、モータのインピーダンスは回転数が小さい場合には非常に小さくなる。これは、微小電圧で大きな電流が流れることを表している。しかしながら、インバータ1のスイッチング素子には電圧降下があり、またデッドタイムによってインバータ1の出力電圧誤差が生じることは周知の事実である。よって、モータが停止した状態で直流を印加する場合、これらの出力電圧誤差の影響が大きく電流応答に現れ、モータの誤判別を引き起こす可能性がある。これに対し、出力電圧誤差の影響は、出力電圧の大きさが大きくなるとその影響度を低減できる。このことを踏まえ、本実施の形態では、インバータ装置が過電流にならず、発熱の点などで問題にならない範囲で大きな電流を流し、インバータの出力電圧、すなわち印加する直流電圧を大きくすることで、出力電圧誤差の影響を低減し、信頼性の高い判別を可能にしているのである。
加えて、上述したようにデッドタイムが判別の信頼性を低減する恐れがある。デッドタイムによる出力電圧誤差の影響は、スイッチング周波数が低いほど低減できる。そこで本実施の形態では、モータ種別判別のための供試電圧あるいは供試電流の印加の際には、インバータ装置のスイッチング周波数を通常時より低く設定することにより、出力電圧誤差の影響を低減し、信頼性の高い判別を可能にしているのである。
さらに加えて、本実施の形態では、電圧を印加した際に流れる電流に基づいて評価指標を演算しているが、電圧と電流の両方からインピーダンスを算出し、これを評価指標に用いても同様な作用効果を得ることができる。
図6に、本実施の形態の構成によるシミュレーション結果を示してある。図6(A)、図6(B)ともにインバータ制御部2及びインバータ1によって、供試モータ3である誘導モータに対し直流電圧を印加した場合のU相の電流波形である。接続され得るモータは2種あると仮定(第1種と第2種)し、供試モータは第1種のものとした。両図とも、供試データは同一であり、規範データが異なる。図6(A)の規範データは第1種のモータの電流応答であり、図6(B)の規範データは、第2種のモータの電流応答である。評価指標である電流偏差の2乗積分は図6(A)の場合は「63」、図6(B)の場合では「9417」である。この場合、評価指標の最も小さい第1種のモータであると判別する。これにより、正しいモータ種別が選択できることが確認できた。なお、規範データ、供試データとも第1種の誘導モータに対するものである図6(A)についても、規範データと供試データで差異があるのは、モータパラメータの製造ばらつき、温度差による抵抗値のばらつき、インバータの出力電圧誤差、検出ノイズなどを考慮しているためである。また、第1の実施の形態では規範データ及び供試データとして、DQ軸座標系上のD軸電流を用いているが、同シミュレーション結果のように、モータの相電流を用いても同様な作用効果が得られることが分かる。
(第2の実施の形態)
図7を用いて、本発明の第2の実施の形態の電気車制御装置について説明する。第2の実施の形態は、図1に示す第1の実施の形態とはモータの種別判別に温度情報を用いる点が異なる。なお、第1の実施の形態と共通する要素については共通の符号を用いて説明する。
電気車の編成のいずこかに設置された温度センサ24の情報は、車内LAN25によって伝送される。モータ種別判別部6の評価指標演算部21では、この温度情報を取り込み評価指標演算に用いる。第1の実施の形態では、供試データD(K)から係数Aを乗じて新たな供試データD'(k)をつくりだしているが、この係数Aは規範データと供試データとを取得した際のモータ温度の差異の全範囲を考慮したものであった。これに対して、本実施の形態によれば、取り込んだ温度情報によって係数Aの範囲を限定することができる。例えば、規範データを取得した際の温度をT0[K]、温度センサ24によって得られた温度をT1[K]、モータ抵抗値の温度係数をαとすれば、係数A、すなわち温度変動率は次式で演算できる。
Figure 2005168241
そこで、これを基準にして製造ばらつき程度の範囲を設定すればよい。
前述のように、モータ温度によって抵抗値は変動する。この抵抗値変動は電流応答の差異として現れるため、モータ種の判別の信頼性を低下させる要因となる。第1の実施の形態でも、温度変動に依存した抵抗値変動に、抵抗変動率に応じた係数Aを考慮し、供試データの変換を行っていたが、この場合、可能性のある温度範囲について係数Aを振って調査することが必要であった。このとき、元来、特性が異なる異種のモータの電流応答の近似度を広い範囲で係数Aを振って調査することで、同一モータと認識する可能性がある。本実施の形態では、温度センサからの温度情報に基づき係数Aを固定ないしは調査範囲を限定することでモータの誤判別の可能性を低減し、モータ判別の信頼性を向上させることができる。
電気車の編成内には、車内LANを含めた車両情報制御装置があり、編成内の各種機器の状態のモニタや指令など行っている。空調機器などに具備された温度情報を、車両情報制御装置を介してインバータ装置が取り込むことで実現できる。
なお、温度センサは、本実施の形態のように車内LAN等を介さず、インバータ装置自身に備えられるものでも、同様な作用効果がある。また、温度センサが電気車編成内に備わるものでなく、地上側などに備わるものであり、しかるべき通信手段によって車内に取り込まれるものであっても同様である。
(第3の実施の形態)
次に、本発明の第3の実施の形態の電気車制御装置について、図8を用いて説明する。本実施の形態は、第2の実施の形態に対してモータ種別判別部9の機能構成が異なる。そのその他の構成要素について、第1、第2の実施の形態と共通するものには共通の符号を用いて説明する。
モータパラメータ推定部26では、供試電圧の印加によって流れた電流と供試電圧に基づきモータのパラメータを推定する。電圧と電流からモータパラメータを推定する方式に関しては、特許第3029734号公報に記載された方式を使用する。しかしながら、谷も数々の方式があり、特に限定されるものではない。誘導モータに対するモータパラメータの推定では、1次抵抗R1、2次抵抗R2などの抵抗値、1次漏れインダクタンスl1、2次漏れインダクタンスl2、相互インダクタンスMなどのインダクタンスを推定する。同様に、規範データ格納部23には、接続され得る全モータの各モータパラメータ、1次抵抗、2次抵抗、1次漏れインダクタンス、2次漏れインダクタンス、相互インダクタンスが規範データとして格納されている。
評価指標演算部21では、例えば、次のように評価指標Cを演算する。取り込んだ温度情報に基づき、1次抵抗推定値R1hと2次抵抗推定値R2hを、規範データを取得した際の温度の抵抗値に換算する。換算後の1次抵抗推定値R1h'と2次抵抗推定値R2h'とを用いて、以下のような指標を演算する。
Figure 2005168241
本実施の形態の場合、第2の実施の形態とは評価指標が異なるだけであり、モータ種別決定部22では同様な処理を施すことで、接続されているモータ種別を判別できる。また本実施の形態の場合、第1の実施の形態、第2実施の形態と比べ、規範データがモータパラメータと記憶すべき点数が非常に少ない。よって、記憶容量に小さい制御装置においても実現可能である。
なお、本実施の形態において、温度センサ24の情報に基づき推定された抵抗値を補正する部分の作用効果は、第2実施の形態と同様である。
また、前記の評価指標演算において、係数A1とA2を少なくとも零として、指標に抵抗値が影響しないように設定することができる。これは、モータ種別判別に抵抗を考慮せず、インダクタンスの差異のみで行うことと等価である。このようにしてモータ温度によって変動する可能性がある抵抗を用いずにインダクタンスにて判別することにより、モータ判別の信頼性が向上する。またこのときには温度情報を用いることが不要であり、システムの複雑化をも回避できる。当然ならが、この場合、規範データとして抵抗分は不要であり、記憶容量の低減も期待できる。
(第4の実施の形態)
次に、図9を用いて本発明の第4の実施の形態の電気車制御装置について説明する。第1の実施の形態では、接続されたモータの種別を判別するために所定の電圧を印加した際に流れる電流値を供試データとして取得し、それに基づき評価指標を演算したのに対し、本実施の形態では、接続されたモータの種別を判別するために所定の電流を流した際に流れる電圧値を供試データとすることに差異がある。図9において、図1に示した第1の実施の形態と共通する要素には共通する符号を付して示してある。
第1の実施の形態の供試電圧印加部5に代わり、供試電流印加部34がある。供試電流印加部34の中には供試電流設定部33があり、モータを判別するために流すDQ軸電流の指令値IdT,IqTを設定する。ここでは、IdT=β[A],IqT=0[A]とする。この試験モードにおいて、切替器10,11ではIdT,IqTがその出力となるように切り替わる。出力電圧演算部9では、DQ軸電流指令IdRef,IqRef、すなわちIdT,IqTとフィードバックされたDQ軸電流Id,Iqとが一致するように出力電圧指令Vd0,Vq0を制御する。出力電圧演算部9は図10のように構成される。減算器35によって、D軸電流指令IdRefからD軸電流Idが減算され、PI制御器37へ入力される。PI制御器37は周知の技術であり、その入力が0になるようにD軸出力電圧指令Vd0を調整する。
図9の供試データ取得部20は、第1の実施の形態においてモータに流れるD軸電流を取得し供試データとしていたが、本実施の形態では、モータに印加されるD軸電圧指令Vd*を取得し供試データとする。
以上により、インバータ1に接続されているモータの種別を判別するため、出力電圧演算部9の作用により、供試電流設定部33にて指令した電流指令に一致した電流が流れる。このとき、モータ3に印加された電圧指令に基づき評価指標を演算する。第1の実施の形態では電圧を与えたときの電流値で評価したのを、本実施の形態では電流を与えたときの電圧値で評価する。電圧Vと電流Iとは、モータインピーダンスZによって、V=Z・Iという不可分な関係があり、第1の実施の形態と同様に、接続されたモータの種別判別が可能である。
特に、本実施の形態によれば、電流が所定値になるように電圧をモータインピーダンスに応じて制御調整する。モータ種別の判別は、一般にモータの回転を停止した状態で行われるが、このときの出力電圧はインバータの最大出力電圧に対し十分に小さく、余裕がある。一方、出力電圧誤差の影響を低減し判別の信頼性を向上するためには、大きな電流を流すことが望ましい。しかしながら、第1の実施の形態では、規範データの取得においてインバータの過電流レベルに近い電流を流すように印加電圧を設定しても、実際の供試モータでは特性の差異によって過電流となり、判別不能になることが起こり得る。これに対して本実施の形態のように電流値を所定値に制御すれば、過電流にならずに大きな電流を流すことが可能である。よって、第1の実施の形態よりも出力電圧誤差の影響を低減し、モータ判別の信頼性を向上させることができる。
(第5の実施の形態、第6の実施の形態)
図11は、本発明の第5の実施の形態のブロック図である。第1の電気車編成43は、図1に示す電気車制御装置39,40の2台を備えている。また、第2の電気車編成44においても同様で、電気車制御装置41,42を備えている。各電気車編成内には車内LAN46を備え、電気車編成内の電気車制御装置間でデータの授受を行える。また、電気車編成間もしかるべき通信手段を介して車外LAN45に接続され、データの授受を行える。車外LAN45には、モータ種別判別部47を備える。このモータ種別判別部47は、第1の実施の形態に示すモータ種別判別部6と同様な機能を有している。本明細書では、モータ種別判別部を含め電気車制御装置としているが、本実施の形態ではモータ種別判別部を複数の電気車制御装置間で共有するため、便宜的に電気車制御装置と分離して記載している。
また、図12は第6の実施の形態を示すものである。図11の第5の実施の形態と比べ,モータ種別判別部47は電気車編成内に備えられている。
以上の図11、図12のような構成によっても、以下の作用、効果を得る。インバータ装置(第1の実施の形態で示すインバータ1とインバータ制御部2)では、インバータ制御部2を実現するマイコン性能や記憶容量が制約されていて、高度な評価指標演算や詳細で情報量の大きい規範データを記憶することは困難である。インバータ装置でこれら機器の高性能化を図ると、コストアップや装置の大型化になる。よって、このモータ判別処理を別途かつ複数装置間で共有して集中的に行える高度な処理装置をインバータ装置の外部に備えることは、インバータ装置の小形化、低コスト化、モータ種別判別の信頼性の向上などの効果が期待できる。
なお、近年の電気車編成には、運転台や自動列車制御装置(ATO)からの運転指令を、各インバータ装置に指令する車両情報制御装置が備えられる場合があり、これらの装置にモータ種別判別機能を合わせ持つことで実現が可能である。
本発明の第1の実施の形態のブロック図。 上記実施の形態におけるインバータ出力周波数演算部のブロック図。 上記実施の形態によるモータ種別判別のフローチャート。 上記実施の形態における制御パラメータ設定部のブロック図。 上記実施の形態における制御パラメータ設定部の他の構成例のブロック図。 上記実施の形態のシミュレーション結果のグラフ。 本発明の第2の実施の形態のブロック図。 本発明の第3の実施の形態のブロック図。 本発明の第4の実施の形態のブロック図。 上記実施の形態における出力電圧演算部のブロック図。 本発明の第5の実施の形態のブロック図。 本発明の第6の実施の形態のブロック図。
符号の説明
1…インバータ
2…インバータ制御部
3…モータ
4…電流検出器
5…供試電圧印加部
6…モータ種別判別部
7…制御パラメータ設定部
8…電流指令設定部
9…出力電圧演算部
10…切替器
11…切替器
12…座標変換器
13…PWM制御部
14…座標変換器
15…切替器
16…積分器
17…インバータ出力周波数演算部
18…供試位相設定部
19…供試電圧設定部
20…供試データ取得部
21…評価指標演算部
22…モータ種別決定部
23…規範データ格納部
24…温度センサ
25…車内LAN
26…モータパラメータ推定部
27…切替器
28…制御パラメータ格納部
29…制御パラメータ記憶部
30…モータ種別記憶部
31…誘起電圧演算部
32…インバータ出力周波数制御部
33…供試電流設定部
34…供試電流印加部
35…減算器
36…減算器
37…PI制御器
38…PI制御器
39…電気車制御装置
40〜42…電気車制御装置
43,44…電気車編成
45…車外LAN
46…車内LAN
47…モータ種別判別部

Claims (17)

  1. 可変電圧可変周波数制御方式のインバータ主回路部及び当該インバータ主回路部を所定の制御パラメータを用いて制御するインバータ制御部とから成るインバータ装置と、
    前記インバータ装置に接続されているモータの種別を判別するモータ種別判別手段と、
    前記モータ種別判別手段によって判別された現在インバータ装置に接続されているモータ種別に対応した制御パラメータを前記インバータ制御部に設定する制御パラメータ設定部とを備え、
    前記モータ種別判別手段は、
    前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値に基づいて評価指標を演算する評価指標演算手段と、
    前記評価指標に基づき前記インバータ装置に接続されているモータの種別を決定するモータ種別決定手段とを有することを特徴とする電気車制御装置。
  2. 前記モータ種別判別手段は、前記インバータ装置に接続され得るモータに対応した規範データを格納する手段と、前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値に基づき供試データを取得する供試データ取得手段とを有し、
    前記モータ種別判別手段における評価指標演算手段は、前記規範データと供試データに基づいて評価指標を演算することを特徴とする請求項1に記載の電気車制御装置。
  3. 前記規範データ及び供試データは、前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値に基づく時系列データであることを特徴とする請求項2に記載の電気車制御装置。
  4. 前記評価指標は、前記規範データと取得された供試データとの偏差の2乗積分値であることを特徴とする請求項3に記載の電気車制御装置。
  5. 前記モータ種別判別手段は、前記供試データを、時間軸・振幅軸を所定の係数で補正したデータを新たな供試データとする手段を有し、
    前記モータ種別判別手段における評価指標演算手段は、新たな供試データに基づき評価指標を再演算し、前記係数を変化させた中で最小の評価指標となったものを最終的な評価指標とすることを特徴とする請求項3に記載の電気車制御装置。
  6. 前記モータ種別判別手段は、前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値に基づいてモータパラメータを推定するモータパラメータ推定手段を有し、
    前記モータ種別判別手段における評価指標演算手段は、当該推定されたモータパラメータに応じて前記評価指標を演算することを特徴とする請求項1又は2に記載の電気車制御装置。
  7. 前記評価指標の演算に用いるモータパラメータには、抵抗分を含まないことを特徴とする請求項6に記載の電気車制御装置。
  8. 前記モータ種別判別手段は、同一のモータに対するモータ種別の判別を複数回繰り返し、同一の結果であった場合に限り正しく判別できたと判断する手段を有することを特徴とする請求項1又は2記載の電気車制御装置。
  9. 前記印加する電圧あるいは電流はステップ状であることを特徴とする請求項4に記載の電気車制御装置。
  10. 前記印加する電圧あるいは電流の位相を所定値に固定することを特徴とする請求項1又は2に記載の電気車制御装置。
  11. 前記モータ判別をモータが回転しないように拘束した状態で実施することを特徴とする請求項1又は2に記載の電気車制御装置。
  12. 前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値を取得する際、流れる電流をインバータ装置の過電流による保護レベルの50%以上に設定することを特徴とする請求項1又は2に記載の電気車制御装置。
  13. 前記インバータ装置によって所定の電圧を印加した際の電流値あるいは前記インバータ装置によって所定の電流を流した際の電圧値を取得する際、インバータ装置のスイッチング素子のスイッチング周波数を低くすることを特徴とする請求項1又は2に記載の電気車制御装置。
  14. 前記モータ種別判別手段は、外気温度、モータ温度又はインバータ素子温度の温度情報を取得する温度検出手段と、当該温度情報に基づき、前記供試データ、規範データ又は評価指標を補正する補正手段とを有することを特徴とする請求項1又は2に記載の電気車制御装置。
  15. 可変電圧可変周波数制御方式のインバータ主回路部及び当該インバータ主回路部を所定の制御パラメータを用いて制御するインバータ制御部とから成るインバータ装置と、
    前記インバータ装置に接続されているモータの種別を判別するモータ種別判別手段と、
    前記モータ種別判別手段によって判別された現在インバータ装置に接続されているモータ種別に対応した制御パラメータを前記インバータ制御部に設定する制御パラメータ設定部とを備え、
    前記モータ種別判別手段は、外気温度、モータ温度又はインバータ素子温度などの温度情報を取得する温度検出手段と、当該温度情報に基づき前記インバータ装置に接続されているモータの種別を決定するモータ種別決定手段とを有することを特徴とする電気車制御装置。
  16. 可変電圧可変周波数制御方式のインバータ主回路部及び当該インバータ主回路部を所定の制御パラメータを用いて制御するインバータ制御部とから成るインバータ装置と、
    前記インバータ装置に接続されているモータの種別を判別するモータ種別判別手段と、
    前記モータ種別判別手段によって判別された現在インバータ装置に接続されているモータ種別に対応した制御パラメータを前記インバータ制御部に設定する制御パラメータ設定部とを備え、
    前記モータ種別判別手段を、前記インバータ装置の外部に配置したことを特徴とする電気車制御装置。
  17. 可変電圧可変周波数制御方式のインバータ主回路部及び当該インバータ主回路部を所定の制御パラメータを用いて制御するインバータ制御部とから成るインバータ装置と、
    前記インバータ装置に接続されているモータの種別を判別するモータ種別判別手段と、
    前記モータ種別判別手段によって判別された現在インバータ装置に接続されているモータ種別に対応した制御パラメータを前記インバータ制御部に設定する制御パラメータ設定部とを備え、
    前記モータ種別判別手段を、複数の電気車制御装置間で共有したことを特徴とする電気車制御装置。

JP2003406239A 2003-12-04 2003-12-04 電気車制御装置 Pending JP2005168241A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406239A JP2005168241A (ja) 2003-12-04 2003-12-04 電気車制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406239A JP2005168241A (ja) 2003-12-04 2003-12-04 電気車制御装置

Publications (1)

Publication Number Publication Date
JP2005168241A true JP2005168241A (ja) 2005-06-23

Family

ID=34728670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406239A Pending JP2005168241A (ja) 2003-12-04 2003-12-04 電気車制御装置

Country Status (1)

Country Link
JP (1) JP2005168241A (ja)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104874A (ja) * 2005-10-07 2007-04-19 Yaskawa Electric Corp 自動モータ判別機能付き電力変換装置
JP2007166877A (ja) * 2005-12-16 2007-06-28 Taiyo Ltd 電動アクチュエータの機種判別方法及び機種判別装置並びに電動アクチュエータ用コントローラ
JP2007336747A (ja) * 2006-06-16 2007-12-27 Oriental Motor Co Ltd ステッピングモータの制御方法および制御装置
JP2008029066A (ja) * 2006-07-19 2008-02-07 Yaskawa Electric Corp 電動機制御パラメータ設定装置と設定方法
JP2008240635A (ja) * 2007-03-27 2008-10-09 Ihi Corp 電動機付ターボチャージャ
WO2009158359A3 (en) * 2008-06-23 2010-04-01 Sntech, Inc. Data transfer between motors
US7795827B2 (en) 2008-03-03 2010-09-14 Young-Chun Jeung Control system for controlling motors for heating, ventilation and air conditioning or pump
US7915847B2 (en) 2007-11-28 2011-03-29 Young-Chun Jeung Method of constant RPM control for a ventilation system
US8004141B2 (en) 2005-04-29 2011-08-23 Sntech Inc. Two-phase brushless DC motor
US8033007B2 (en) 2007-05-11 2011-10-11 Sntech, Inc. Method of making rotor of brushless motor
US8138710B2 (en) 2008-08-14 2012-03-20 Sntech Inc. Power drive of electric motor
US8232755B2 (en) 2009-04-02 2012-07-31 Young-Chun Jeung Motor with circuits for protecting motor from input power outages or surges
WO2012101753A1 (ja) * 2011-01-25 2012-08-02 三菱電機株式会社 モータ制御装置
CN102707634A (zh) * 2011-03-18 2012-10-03 Ls产电株式会社 通过识别软件版本和逆变器类型的参数复制方法及键盘
US8299661B2 (en) 2007-05-11 2012-10-30 Sntech Inc. Rotor of brushless motor
JP2013198302A (ja) * 2012-03-21 2013-09-30 Toyota Industries Corp 機種判別システム
US8598833B2 (en) 2009-12-11 2013-12-03 Sntech Inc. Electrically communtated motor with data communication device
JP2015139347A (ja) * 2014-01-24 2015-07-30 ヤマハ発動機株式会社 モータの適正判定方法及び装置、並びにロボット装置
JP2017046469A (ja) * 2015-08-27 2017-03-02 コニカミノルタ株式会社 センサレスブラシレスモータの制御方法及び画像形成装置
JP2018011403A (ja) * 2016-07-12 2018-01-18 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、画像形成装置、および制御方法
WO2019093300A1 (ja) * 2017-11-09 2019-05-16 日本電産株式会社 ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ
JP2019129704A (ja) * 2018-01-26 2019-08-01 ザウラー スピニング ソリューションズ ゲー・エム・ベー・ハー ウント コー. カー・ゲーSaurer Spinning Solutions GmbH & Co. KG 電力変換器を設定するための方法および制御ユニット
WO2019181471A1 (ja) * 2018-03-23 2019-09-26 日本電産株式会社 ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ
WO2019189166A1 (ja) * 2018-03-28 2019-10-03 日本電産株式会社 ブラシレスdcモータの種類を識別する識別方法および識別装置
WO2019189167A1 (ja) * 2018-03-28 2019-10-03 日本電産株式会社 ブラシレスdcモータの種類を識別する識別方法および識別装置
JP2020044741A (ja) * 2018-09-19 2020-03-26 富士ゼロックス株式会社 画像形成装置及び画像形成プログラム
JP2020065434A (ja) * 2018-10-16 2020-04-23 キヤノン株式会社 モータ制御装置及びシート搬送装置
JP2020141864A (ja) * 2019-03-06 2020-09-10 株式会社サンメディカル技術研究所 医療用ポンプのモータ識別方法、医療用ポンプのモータ駆動方法、コントローラ及び補助人工心臓システム
CN114337453A (zh) * 2021-12-29 2022-04-12 深圳市汇川技术股份有限公司 驱动器机型自动识别方法、装置及驱动器
WO2023047468A1 (ja) * 2021-09-21 2023-03-30 ファナック株式会社 ダイナミックブレーキ回路を有するモータ駆動装置
JP7418126B2 (ja) 2020-02-06 2024-01-19 キヤノン株式会社 画像形成装置

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8004141B2 (en) 2005-04-29 2011-08-23 Sntech Inc. Two-phase brushless DC motor
JP2007104874A (ja) * 2005-10-07 2007-04-19 Yaskawa Electric Corp 自動モータ判別機能付き電力変換装置
JP4690189B2 (ja) * 2005-12-16 2011-06-01 株式会社Taiyo 電動アクチュエータの機種判別方法及び機種判別装置並びに電動アクチュエータ用コントローラ
JP2007166877A (ja) * 2005-12-16 2007-06-28 Taiyo Ltd 電動アクチュエータの機種判別方法及び機種判別装置並びに電動アクチュエータ用コントローラ
JP2007336747A (ja) * 2006-06-16 2007-12-27 Oriental Motor Co Ltd ステッピングモータの制御方法および制御装置
JP2008029066A (ja) * 2006-07-19 2008-02-07 Yaskawa Electric Corp 電動機制御パラメータ設定装置と設定方法
JP2008240635A (ja) * 2007-03-27 2008-10-09 Ihi Corp 電動機付ターボチャージャ
US8299661B2 (en) 2007-05-11 2012-10-30 Sntech Inc. Rotor of brushless motor
US8033007B2 (en) 2007-05-11 2011-10-11 Sntech, Inc. Method of making rotor of brushless motor
US7915847B2 (en) 2007-11-28 2011-03-29 Young-Chun Jeung Method of constant RPM control for a ventilation system
US8054018B2 (en) 2007-11-28 2011-11-08 Sntech Inc. Multi-level programming of motor for a ventilation system
US8134319B2 (en) 2007-11-28 2012-03-13 Sntech Inc. Compensation of motor control using current-RPM relation for a ventilation system
US8292595B2 (en) 2007-11-28 2012-10-23 Sntech, Inc. Method of constant airflow control for a ventilation system
US8287244B2 (en) 2007-11-28 2012-10-16 Sntech, Inc. Motor control apparatus for a ventilation system
US7812556B2 (en) 2008-03-03 2010-10-12 Young-Chun Jeung Phase logic circuits for controlling motors
US7795827B2 (en) 2008-03-03 2010-09-14 Young-Chun Jeung Control system for controlling motors for heating, ventilation and air conditioning or pump
US8072167B2 (en) 2008-03-03 2011-12-06 SN Tech Inc. Time delay logic of motor control
US8288976B2 (en) 2008-06-23 2012-10-16 Sntech, Inc. Optimization of motor operation using a test cycle
US8504646B2 (en) 2008-06-23 2013-08-06 Sntech, Inc. Data transfer between motors
WO2009158359A3 (en) * 2008-06-23 2010-04-01 Sntech, Inc. Data transfer between motors
US8138710B2 (en) 2008-08-14 2012-03-20 Sntech Inc. Power drive of electric motor
US8232755B2 (en) 2009-04-02 2012-07-31 Young-Chun Jeung Motor with circuits for protecting motor from input power outages or surges
US8368333B2 (en) 2009-04-02 2013-02-05 Young-Chun Jeung Motor with circuits for protecting motor from input power outages or surges
US8598833B2 (en) 2009-12-11 2013-12-03 Sntech Inc. Electrically communtated motor with data communication device
WO2012101753A1 (ja) * 2011-01-25 2012-08-02 三菱電機株式会社 モータ制御装置
CN102707634A (zh) * 2011-03-18 2012-10-03 Ls产电株式会社 通过识别软件版本和逆变器类型的参数复制方法及键盘
US8836468B2 (en) 2011-03-18 2014-09-16 Lsis Co., Ltd. Parameter copy method and keypad having parameter copy function by recognizing software versions and inverter types
JP2013198302A (ja) * 2012-03-21 2013-09-30 Toyota Industries Corp 機種判別システム
JP2015139347A (ja) * 2014-01-24 2015-07-30 ヤマハ発動機株式会社 モータの適正判定方法及び装置、並びにロボット装置
JP2017046469A (ja) * 2015-08-27 2017-03-02 コニカミノルタ株式会社 センサレスブラシレスモータの制御方法及び画像形成装置
JP2018011403A (ja) * 2016-07-12 2018-01-18 コニカミノルタ株式会社 永久磁石同期電動機の制御装置、画像形成装置、および制御方法
WO2019093300A1 (ja) * 2017-11-09 2019-05-16 日本電産株式会社 ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ
JP2019129704A (ja) * 2018-01-26 2019-08-01 ザウラー スピニング ソリューションズ ゲー・エム・ベー・ハー ウント コー. カー・ゲーSaurer Spinning Solutions GmbH & Co. KG 電力変換器を設定するための方法および制御ユニット
WO2019181471A1 (ja) * 2018-03-23 2019-09-26 日本電産株式会社 ブラシレスdcモータの種類を識別する識別方法、識別装置およびブラシレスdcモータ
WO2019189166A1 (ja) * 2018-03-28 2019-10-03 日本電産株式会社 ブラシレスdcモータの種類を識別する識別方法および識別装置
WO2019189167A1 (ja) * 2018-03-28 2019-10-03 日本電産株式会社 ブラシレスdcモータの種類を識別する識別方法および識別装置
JP2020044741A (ja) * 2018-09-19 2020-03-26 富士ゼロックス株式会社 画像形成装置及び画像形成プログラム
JP7163686B2 (ja) 2018-09-19 2022-11-01 富士フイルムビジネスイノベーション株式会社 画像形成装置及び画像形成プログラム
JP2020065434A (ja) * 2018-10-16 2020-04-23 キヤノン株式会社 モータ制御装置及びシート搬送装置
JP2020141864A (ja) * 2019-03-06 2020-09-10 株式会社サンメディカル技術研究所 医療用ポンプのモータ識別方法、医療用ポンプのモータ駆動方法、コントローラ及び補助人工心臓システム
JP7418126B2 (ja) 2020-02-06 2024-01-19 キヤノン株式会社 画像形成装置
WO2023047468A1 (ja) * 2021-09-21 2023-03-30 ファナック株式会社 ダイナミックブレーキ回路を有するモータ駆動装置
CN114337453A (zh) * 2021-12-29 2022-04-12 深圳市汇川技术股份有限公司 驱动器机型自动识别方法、装置及驱动器
CN114337453B (zh) * 2021-12-29 2023-11-21 深圳市汇川技术股份有限公司 驱动器机型自动识别方法、装置及驱动器

Similar Documents

Publication Publication Date Title
JP2005168241A (ja) 電気車制御装置
Mwasilu et al. Enhanced fault-tolerant control of interior PMSMs based on an adaptive EKF for EV traction applications
KR100986712B1 (ko) 모터구동시스템의 제어장치 및 방법
EP2380272B1 (en) Control system for ac motor
CN102957334B (zh) 用于控制多相逆变器的方法、系统和设备
US8664901B2 (en) Method and system for estimating electrical angular speed of a permanent magnet machine
US9722523B2 (en) Inverter vector driving system and method for estimating capacitance using the same
US9054626B2 (en) Motor control apparatus
US10778130B2 (en) Control apparatus for alternating-current rotary electric machine
US8174224B2 (en) Torque production in an electric motor in response to current sensor error
KR101622011B1 (ko) 3상 교류 모터 제어 방법 및 장치
JP5055836B2 (ja) 同期モーター用磁極位置センサーの位相ズレ検出装置および検出方法
US10254374B2 (en) Method of current sensor related torque error estimation for IPMSM e-drive system
JP2010119268A (ja) インバータの異常検出装置および異常検出方法
JP4921883B2 (ja) 電気車制御装置
JP4897521B2 (ja) 交流電動機の駆動制御装置
JP2000116176A (ja) 3相交流モータの制御装置
JP5996485B2 (ja) モータの駆動制御装置
KR102359356B1 (ko) 삼상 동기 전동기의 제어 장치, 및 그것을 사용하는 전동 파워 스티어링 장치
JP5288957B2 (ja) 抵抗値補償機能を有した電動機制御装置
JP5295693B2 (ja) 誘導電動機駆動装置
JP6451600B2 (ja) 電圧センサ異常診断装置
KR20200004634A (ko) 차량용 모터 제어 장치
US11327116B2 (en) Pulse pattern generation device
JP5482625B2 (ja) 回転機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522