JP2005154220A - 燃料改質システム - Google Patents

燃料改質システム Download PDF

Info

Publication number
JP2005154220A
JP2005154220A JP2003397688A JP2003397688A JP2005154220A JP 2005154220 A JP2005154220 A JP 2005154220A JP 2003397688 A JP2003397688 A JP 2003397688A JP 2003397688 A JP2003397688 A JP 2003397688A JP 2005154220 A JP2005154220 A JP 2005154220A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel
reforming
oxidation
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003397688A
Other languages
English (en)
Inventor
Hiroshi Ogawa
弘志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003397688A priority Critical patent/JP2005154220A/ja
Publication of JP2005154220A publication Critical patent/JP2005154220A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】改質触媒や水素分離膜の性能を効率良く回復できる燃料改質システムを提供する。
【解決手段】改質触媒を有し、改質反応により水素を含む改質ガスを生成する複数の改質器5a、5bと、改質ガス中の水素を選択的に透過する水素分離膜を有する複数の水素分離膜ユニット7a、7bと、を備える。また、改質器5と水素分離膜ユニット7とを連通する複数のラインA、Bと、を備える。さらに、改質器5に選択的に改質燃料を供給する燃料制御バルブ16a、16bと、ラインA、Bそれぞれに、酸化剤と還元剤を選択的に供給する酸素制御バルブ9c、9d、水素制御バルブ12e、12fと、を備える。改質運転時には、燃料制御バルブ16a、16bより改質器5a、5bに改質燃料を供給し、酸化・還元処理時には、複数のラインA、Bのうち少なくとも一つのラインに、酸化剤と還元剤を供給する。
【選択図】 図1

Description

本発明は、燃料改質システムに関する。特に、改質触媒で生成した改質ガス中の水素を、水素分離膜を用いて分離することにより燃料ガスを生成する燃料改質システムに関する。
従来の水素分離膜を用いた燃料改質システムとして、起動時に水素分離膜の温度に応じた起動制御を行うものが知られている。水素分離膜が低温状態にある場合には、改質器でリーン燃焼を起こさせ、水素の生成を抑制しつつ、暖機を促進させる。水素分離膜が水素脆化を生じない程度の温度に至った時点で改質を開始する。この際、水素分離膜を透過してきた水素に酸素を供給して燃焼させ、さらに暖機を促進させる。運転温度に至った時点でパージ側酸素の供給を停止して、水素の燃焼を停止し、定常運転に移行する(例えば、特許文献1、参照。)。
特開2003−95608号公報
しかしながら、上記背景技術に示したような燃料改質システムの制御においては、暖機を促進するために、水素分離膜を透過してきた水素に酸素を供給して燃焼させる際、水素分離膜の酸化が発生する。これにより、暖機後の水素分離膜の透過性能が低下し、燃料改質システムの性能が低下するという問題があった。また、水素分離膜にCO等が吸着することにより、水素透過性能が低下するという問題があった。一方、改質触媒を備えた改質器についても、触媒が酸化することにより反応効率が低下するという問題があった。
そこで本発明は、上記問題を鑑みて、改質触媒や水素分離膜の性能低下を効率良く回復することができる燃料改質システムを提供することを目的とする。
本発明は、改質触媒を有し、改質燃料を用いて水素を含有する改質ガスを生成する複数の改質部と、改質ガス中の水素を選択的に透過する水素分離膜を有する複数の水素分離膜ユニットと、前記改質部と前記水素分離膜ユニットとを連通する複数のラインと、を備える。さらに、前記改質部に選択的に改質燃料を供給する改質燃料供給手段と、前記ラインそれぞれの、前記改質器または前記水素分離膜の少なくとも一方に、酸化剤と還元剤を選択的に供給する酸化・還元剤供給手段と、を備える。改質運転時には、前記改質燃料供給手段より前記改質部に改質燃料を供給し、酸化・還元処理時には、前記複数のラインのうち少なくとも一つのラインの、前記改質部と前記水素分離膜ユニットの少なくとも一方に、酸化剤と還元剤を供給する。
酸化・還元処理時には、複数のラインのうち少なくとも一つのラインの、改質部と水素分離膜ユニットの少なくとも一方に、酸化剤と還元剤を供給して酸化・還元処理を施すことで、改質触媒または水素分離膜の性能低下を効率良く回復することができる。
第1の実施形態に用いる燃料改質システムの構成を図1に示す。
改質に先立って、改質反応に用いられる炭化水素系燃料と水とを蒸発させて燃料蒸気を生成する蒸発器4を備える。また、蒸発器4に、コントロールユニット1の信号に応じて流量制御した炭化水素系燃料を導入する第一燃料噴射弁2aと、水を導入する第一水噴射弁3aと、を備える。蒸発器4では、後述する燃焼器6から排出された比較的高温の燃焼ガスと、第一燃料噴射弁2a、第一水噴射弁3aから導入された燃料、水との間で熱交換を行うことにより、炭化水素系燃料、水を蒸発させて燃料蒸気を生成する。
また、蒸発器4で生成された燃料蒸気を改質することにより、水素リッチな改質ガスを生成する複数の改質器5、第一改質器5aと第二改質器5bを備える。また、蒸発器4から、それぞれの改質器5a、5bに導入する燃料蒸気の流量を調整する第一燃料制御バルブ16a、第二燃料制御バルブ16bを備える。さらに、改質器5a、5bに隣接して燃焼器6を備え、改質器5と燃焼器6との間で熱交換を行うことにより、燃料蒸気の改質反応に必要な熱を補うように構成する。
ここで、改質器5で行われるCnmの炭化水素系燃料と水の改質反応について説明する。一般的に、燃料の水蒸気改質反応として(1)式に示す反応が知られている。(2)式の反応はシフト反応と呼ばれ、一般的に低温では水素、高温ではCOを生成する方向に進行する。
nm+nH2O ⇒ nCO+(n+m/2)H2 ・・・(1)
CO+H2O ⇔ CO2+H2 ・・・(2)
改質器5において上記のような反応を生じることにより、燃料蒸気から水素リッチな改質ガスを生成する。
また、改質器5で生成した改質ガス中の水素を分離する水素分離膜ユニット7を備える。ここでは、第一改質器5aの下流側に第一水素分離膜ユニット7aを、第二改質器5bの下流側に第二水素分離膜ユニット7bを備える。水素分離膜ユニット7a、7bには、それぞれパラジウム等を主成分とし、選択的に水素を透過する水素分離膜を備える。
さらに、水素分離膜ユニット7で分離された高水素濃度の燃料ガスと、酸化剤ガスとしての空気を用いて発電を行う燃料電池8を備える。燃料電池8として、電解質に固体高分子電解質膜を用いる固体高分子型燃料電池を用いる。また、水素分離膜ユニット7から燃料電池8に導入する燃料ガス流量を調整する第三水素制御バルブ12cを備える。また、水素分離膜ユニット7から燃料電池8をバイパスして燃焼器6に導入する燃料ガス流量を調整する第四水素制御バルブ12dを備える。さらに、燃料電池8への空気の導入を調整する第一空気制御バルブ9aを備える。
ここで、燃料電池8において発生する電気化学反応を(3)〜(5)式に示す。
2 → 2H++2e- ・・・(3)
0.5O2+2H++2e- → H2O ・・・(4)
2+0.5O2 → H2O ・・・(5)
(3)式は陰極側、(4)式は陽極側における反応を示し、(5)式には、燃料電池8全体で生じる反応を示している。このような電池反応を促進するために、燃料電池8の陰極、陽極それぞれには、白金等の触媒を備える。
燃料電池8に、供給される燃料ガス中にCOが含まれると、このCOが白金触媒に吸着して触媒としての機能が低下するといった問題が生じる。この場合には、(4)式に示す陽極反応が阻害され、燃料電池8の発電効率が低下してしまう。これを避けるために、燃料電池8のような固体高分子型燃料電池で発電を行う場合には、CO除去器や水素分離膜等のCO除去手段を用いて、燃料ガス中のCOを所定値以下に低減する。本実施形態においては、前述した水素分離膜ユニット7を用いることにより、改質ガス中の水素のみを分離して、燃料電池8に供給される燃料ガスのCO濃度を低減する。なお、固体高分子型燃料電池では、供給されるガス中のCO濃度の許容値は、通常数十ppm程度である。
水素分離膜ユニット7で水素分離膜を透過しなかった排気ガス、および、燃料電池8の陽極から排出される余剰水素は、改質器5における改質反応に必要とされる熱量に応じて、選択的に燃焼器6に供給される。燃焼器6には、燃料を導入する第二燃料噴射弁2bを備え、改質器5で要求される熱量が急激に増大した場合にも、選択的に熱量を増大できるように構成する。
さらに、システムの始動時に、改質器5の暖機に用いる高温の燃焼ガスを生成する始動用燃焼器10を備える。また、始動用燃焼器10に導入する酸化剤ガスとしての空気流量を調整する第二空気制御バルブ9bと、導入する燃料ガス量を調整する第三燃料噴射弁2cを備える。さらに、始動用燃焼器10から改質器5a、5bそれぞれに導入する燃焼ガス流量を調整する第三空気制御バルブ9c、第四空気制御バルブ9dを備える。システム始動時には、始動用燃焼器10において生成した燃焼ガスを用いて改質器5a、5bを暖機し、さらに水素分離膜ユニット7a、7bに導入して暖機を行う。
ここで、本燃料改質システムにおいては、システム始動時に、第一改質器5aおよび第一水素分離膜ユニット7aを含むラインA、若しくは、第二改質器5bおよび第二水素分離ユニット7bを含むラインBのどちらか一方で酸化・還元処理を行う。ラインA、ラインBの一方に、所定の温度で酸素を含むガス、ここでは始動用燃焼器10で生成したリーン燃焼ガスを流通させることにより酸化処理を行い、その後、水素ガスを流通させることで還元処理を行う。
そこで、還元処理に用いる水素を貯蔵する水素保持装置11を備える。水素保持装置11としては、内部に水素吸蔵金属を備える水素吸蔵式や、水素タンク等の保持形式等を用いる。なお、水素ガスを保持できるものであれば、これに限らない。また、第一水素制御バルブ12aと圧送ポンプ13を備える。通常運転時に燃料電池8から余剰水素が排出された際に、第一水素制御バルブ12aを開とし、圧送ポンプ13を稼動させることで、水素保持装置11への水素充填を可能とする。なお、前述したように、燃料電池8から排出された排水素ガス(余剰水素)は、改質反応に必要な熱を生成するために燃焼器6にも導入される。そこで、必要な熱を生成するのに十分な量の排水素ガスを燃焼器6に導入し、さらに余剰分を第一水素制御バルブ12aを介して水素保持装置11に回収する。
また、水素保持装置11に保持された水素ガスを選択的に第一改質器5aに供給する第五水素制御バルブ12eと、選択的に第二改質器5bに供給する第六水素制御バルブ12fを備える。この第五水素バルブ12e、第六水素制御バルブ12fの開閉により、ラインA,ラインBにおける還元処理が制御される。さらに、水素分離膜ユニット7からの排気ガス中の水素濃度、酸素濃度を検出する水素センサ14、酸素センサ15を備える。
次に、酸化・還元処理により改質器5、水素分離膜ユニット7の性能が回復するメカニズムについて説明する。図2に、改質器5a、5b、水素分離膜ユニット7a、7bに酸化・還元処理を行う場合に起こる反応と、水素センサ14、酸素センサ15の出力例を示す。
改質器5の性能低下は、例えばCuを含む改質触媒を用いた場合に、燃料や改質ガス中の酸素成分(CH3OH、CO等)によりCuがCu2Oとなることにより引き起こされる。このCu2Oを直接還元することは難しい。そこで、性能低下を回復するために、Cu2Oを完全に酸化させてCuOとしてから、水素還元処理によりCuに復帰させる。
また、水素分離膜ユニット7の性能低下は、例えば水素分離膜としてパラジウム(Pd)膜、あるいはPdを含む合金膜を用いた場合に、COが水素分離膜に吸着することで引き起こされる。COは、所定の温度で酸素を供給することでCO2に変換して除去することが可能であるが、同時にPdが酸化されてPdOに変化してしまい、本来の水素透過性能が低下してしまう。そこで、性能を回復させるために、酸素を供給してCOを除去した後、酸化されたPdOを水素還元によりPdに復帰させる。また、本実施形態では特に記載しないが、従来の技術と同様に暖機時に水素分離膜を加熱するために水素の燃焼を行った場合には、水素分離膜が酸化されPdOを構成し、水素の透過性能が低下する可能性がある。そこで、暖機後にPdOを水素還元によりPdに復帰させることにより、水素分離膜の性能を回復させることができる。
なお、上述したような酸化・還元処理の終了は、水素分離膜ユニット7からの排気ガスの酸素濃度および水素濃度により判断することができる。ここでは、水素分離膜ユニット7からの排気ガスの酸素濃度、水素濃度を検出する酸素センサ15、水素センサ14の出力に応じて、酸化・還元処理の終了を判断する。酸素センサ15によりモニタする酸素濃度が既定の状態に達する、または、既定の状態をある程度の時間維持した後、酸化処理を終了する。ここでは、例えば図2に示すように、検知される酸素濃度は小さく、酸化が進むにつれて徐々に大きくなる。さらに、ラインA内が完全に酸化された際には、酸素濃度は一定値となる。そこで、酸素センサ15で検出される酸素濃度の変化率がゼロ、またはほぼゼロとなったら酸化処理が終了したと判断する。
その後、還元処理に移行し、水素センサ14によりモニタする水素濃度が既定の状態に達する、または既定の状態をある程度の時間維持した後、還元処理を終了する。還元が進むにつれて消費される水素の量は低減するが、これと同時に水素分離膜の性能が向上するので、燃料電池8側に透過する水素の量が増大する。そこで、還元処理が行われ、水素分離膜の性能が変化している際には、排気ガス中に含まれる水素濃度も変動する。例えば図2に示すように変化する。還元反応が終了すると、還元による水素の消費はなくなり、また水素分離膜の透過性も一定となるので、排気ガス中に含まれる水素濃度が一定となる。そこで、水素センサ14で検出された水素濃度の変化率がゼロ、またはゼロの近傍となった場合に還元処理が終了したと判断する。
次に、燃料電池システム始動時に行う酸化・還元処理の制御を図3のフローチャートを用いて説明する。なお、システム停止時には、全てのバルブが閉の状態となっているものとする。
酸化・還元処理を行うラインとして、始動制御毎にラインAとラインBを交互に選択するように制御する。また、一方のラインでは酸化・還元処理を行い、もう一方のラインでは改質反応、水素透過による燃料ガスの生成が行われるように制御する。
ステップS1において、第三水素制御バルブ12cを閉に維持した状態で、第四水素制御バルブ12dを開とする。つまり、改質器5、水素分離膜ユニット7を通ったガスが燃料電池8をバイパスして燃焼器6に導入されるように通路を切り替える。ステップS2では、第二空気制御バルブ9b、第三燃料噴射弁2cを開として、始動用燃焼器10で燃焼ガスの生成を開始する。ここでは、理論空燃比に近い燃焼とし、可能な限り空気を含まない燃焼ガスを生成する。ステップS3において、第三空気制御バルブ9c、第四空気制御バルブ9dを開として、ラインAとラインBの両方に燃焼ガスを流通させて暖機を行う。
ステップS4において、図示しない温度センサ等を用いることにより、改質器5および水素分離膜ユニット7の温度が既定値に達したか否かを判断する。ここで、既定値を、酸化・還元反応および改質反応を行うために必要な温度とし、例えば、300℃〜400℃程度とする。改質器5および水素分離膜ユニット7の温度が既定値に達していない場合には加熱を継続し、既定値に達したら暖機終了と判断してステップS5に進む。
ステップS5において、通算始動回数が奇数回であるか否かを判断する。通算始動回数が奇数回である場合にはステップS6に進み、ラインAの酸化・還元処理、および、ラインBの燃料ガスの生成を行う。
ステップS6において、第四空気制御バルブ9dを閉とする。これにより、始動用燃焼器10で生成された燃焼ガスは、第三空気制御バルブ9cを介して第一改質器5a側のみに導入される。次に、ステップS7で、第二空気制御バルブ9bおよび第三燃料噴射弁2cを調整して、始動用燃焼器10における燃焼をリーン燃焼に調整する。リーン燃焼により生成された酸素を含む燃焼ガスは、第一改質器5a側に導入され、ラインA側の酸化処理を開始する。
また、ステップS8において、改質反応を開始する。ここでは、第一燃料噴射弁2a、第一水噴射弁3aを開として蒸発器4で燃料蒸気を生成し、第二燃料制御バルブ16bを開とすることにより、蒸発燃料を第二改質器5b内に導入して改質反応を開始する。なお、燃料蒸気の生成に用いる熱量が不足する場合には、第二燃料噴射弁2bを介して燃焼器4に燃料を供給する。ステップS9において、燃料電池8への燃料の供給を開始する。ここでは、第三水素制御バルブ12cを開、第四水素制御バルブ12dを閉とすることにより、水素分離膜ユニット7で分離された水素ガスを燃料電池8に導入する。また、第一空気制御バルブ9aを開とすることにより、外部より燃料電池8への空気の導入を開始する。これにより、燃料電池8において、発電反応を開始する。なお、ステップS7〜S9の順番はこの限りではなく、任意の順序で行うことができる。
このように、ラインAにおいて酸化処理を、ラインBにおいて燃料ガスの生成を開始したら、ステップS10において、ラインA内の酸化が十分であるか否かを判断する。ここでは、水素分離膜ユニット7の下流側に配置した酸素センサ15の出力が、既定の状態を示しているか否かを判断する。ここでは、前述したように、酸素センサ15で検出される酸素濃度の変化率がゼロ、またはほぼゼロとなった状態を既定の状態とする。
酸素濃度が既定の状態となるまで酸化処理を継続し、既定の状態となったら、ステップS11に進む。ステップS11では、第二空気制御バルブ9b、第三燃料噴射弁2cを閉とすることにより始動用燃焼器10への燃料の供給を停止する。これにより、酸素を含むリーン燃焼ガスの生成を停止して酸化処理を終了する。また、第三空気制御バルブ9cを閉とすることにより、始動用燃焼器10と第一改質器5aとの間を遮断する。
次に、ステップS12に進み、ラインA内の還元処理を開始する。ここでは、第五水素制御バルブ12eを開とすることにより、水素保持装置11から第一改質器5aへ水素を供給し、還元処理を行う。なお、ラインB側では燃料ガスの生成が継続される。
ステップS13において、十分に還元が行われたか否かを判断する。ここでは、水素分離膜ユニット7の下流側に配置した水素センサ14の出力が既定の状態に達したか否かを判断する。ここでは、前述したように、水素センサ14で検出された水素濃度の変化率がゼロ、またはゼロの近傍となった状態を既定の状態とする。
水素濃度が既定の状態となるまで還元処理を継続し、既定の状態となったら、ステップS14に進む。ステップS14では、第五水素制御バルブ12eを閉とすることにより水素保持装置11からの水素の供給を停止する。また、第一燃料制御バルブ16aを開とすることにより、蒸発器4で生成した燃焼蒸気を第一改質器5aに導入して改質反応を開始し、通常運転に移行する。
一方、ステップS5において、通算始動回数が偶数回であると判断された場合には、ラインBの酸化・還元処理を行い、ラインAでは燃料ガスの生成を行う。以下、ラインAの酸化・還元処理を行う制御とほぼ同じであるので、ここでは簡単に説明する。
ステップS15において、第三空気制御バルブ9cを閉じることにより、始動用燃焼器10で生成した燃焼ガスを第二改質器5bのみに導入する。ステップS16で、第二空気制御バルブ9b、第三燃料噴射弁2cを調整して、始動用燃焼器10でリーン燃焼を開始する。ステップS17で、第一燃料噴射弁2a、第一水噴射弁3aを開とし、第一燃料制御バルブ16aを開として、蒸発器4で生成した燃料蒸気を第一改質器5aに導入し、改質反応を開始する。ステップS18で、第三水素制御バルブ12cを開、第四水素制御バルブ12dを閉、第一空気制御バルブ9aを開とすることで、燃料電池8へ燃料ガスおよび空気の供給を開始する。
このように、ラインAでは燃料ガスの生成を、ラインBでは酸化処理を開始したら、ステップS19において、酸化処理を終了するか否かを判断する。酸素センサ15の出力から、水素分離膜ユニット7からの排気ガス中の酸素濃度の変化率がゼロ、またはその近傍となったと判断されたら、酸化処理を終了すると判断してステップS20に進む。ステップS20では、第二空気制御バルブ9b、第三燃料噴射弁2cを閉として始動用燃焼器10における燃焼を停止し、第四空気制御バルブ9dを閉として始動用燃焼器10と第二改質器5bとの間を遮断することにより、酸化処理を終了する。
次に、ステップS21において、第六水素制御バルブ12fを開とすることにより、水素保持装置11から第二改質器5bへ水素を供給して還元処理を開始する。ステップS22において、還元処理が終了したか否かを判断する。水素センサ14の出力から、水素分離膜ユニット7からの排気ガス中の水素濃度の変化率がゼロ、またはその近傍であると判断されたら、還元処理を終了すると判断する。次に、ステップS23において、第六水素制御バルブ12fを閉とすることにより第二改質器5bへの水素の供給を停止する。また、第二燃料制御バルブ16bを開として、燃料蒸気を第二改質器5bに導入することにより改質反応を開始し、通常運転に移行する。
なお、ステップS10、S13、S19、S22における濃度変化による酸化・還元処理終了の判断に替わって、一定流量の酸素(空気)、水素を供給した場合に要する酸化・還元処理の時間を予め実験的に求めておき、この時間を経過したか否かにより、酸化・還元処理の終了を判断してもよい。
次に、本実施形態における効果について説明する。
改質触媒を有し、改質反応により水素を含む改質ガスを生成する複数の改質器5a、5bと、改質ガス中の水素を選択的に透過する水素分離膜を有する複数の水素分離膜ユニット7a、7bと、を備える。また、改質器5と水素分離膜ユニット7とを連通する複数のラインA、Bと、を備える。さらに、改質器5に選択的に改質燃料を供給する第一燃料制御バルブ16a、第二燃料制御バルブ16bと、ラインA、Bそれぞれの、改質器5a、5bまたは水素分離膜ユニット7a、7bの少なくとも一方に、酸化剤と還元剤を選択的に供給する第三酸素制御バルブ9c、第四酸素制御バルブ9d、第五水素制御バルブ12e、第六水素制御バルブ12fと、を備える。改質運転時には、第一燃料制御バルブ16a、第二燃料制御バルブ16bより改質器5a、5bに改質燃料を供給し、酸化・還元処理時には、複数のラインA、Bのうち少なくとも一つのラインの、改質器5と水素分離膜ユニット7の少なくとも一方に、酸化剤と還元剤を供給する。このように、少なくとも一つのラインの、改質器5または水素分離膜ユニット7の少なくとも一方で酸化・還元処理を行うことにより、改質触媒または水素分離膜の少なくとも一方の性能を回復することができる。ここでは、上流側の改質器5に酸化剤と還元剤を導入することにより、改質触媒および水素分離膜の酸化・還元処理を行い、性能を回復している。
特に、酸化・還元処理を行うラインとして、一部のラインを選択する。これにより、一回の還元処理に用いる水素の量を抑制することができ、水素保持装置11の容量を低減することができる。ここでは、始動回数によって酸化・還元処理を行うラインを切り替えることにより、特に還元を行う場合に必要な水素量を抑えることができ、水素保持装置11の容積を低減することができる。また、酸化・還元処理を行うラインとして、一部のラインを選択することにより、酸化・還元処理を行っていないラインでは、燃料ガスの生成を行うことができる。
また、酸化・還元処理時には、複数のラインA、Bのうち少なくとも一つのラインに、酸素リッチガスを供給して完全に酸化した後に、水素リッチガスを供給して還元を行う。これにより、改質触媒および水素分離膜の性能を効率良く回復させることができる。
また、酸化・還元処理時には、複数のラインA、Bのうち少なくとも一つのラインで、酸化・還元処理を行い、その他のラインでは、改質反応および水素の透過を行う。これにより、改質触媒や水素分離膜の性能を回復しつつ、燃料電池8に供給する燃料ガスを生成することができる。
システム始動時に、酸化・還元処理を行うので、始動後に所定の性能を得ることができる。このとき、一方のラインに酸化・還元処理を施している時にも、もう一方で改質反応を生じることができるので、起動運転の早い段階で燃料電池8に燃料ガスを供給することができ、発電を開始するまでの時間を短縮することができる。
改質器5、または水素分離膜ユニット7の下流側のガス濃度変化に応じて、酸化処理と還元処理を制御する。特に、ここでは、改質器5、または水素分離膜ユニット7の下流側において、ガスの酸素濃度および水素濃度の時間的変化がほぼゼロとなったときに酸化および還元の完了を判断する。これにより、確実に酸化・還元を完了させることができるとともに、酸化・還元処理にかかる時間を抑制することができる。
また、水素を保持する水素保持装置11を備え、水素保持装置11に貯蔵された水素を、複数のラインA、Bのうち少なくとも一つのラインに流通させることにより、還元処理を行う。これにより、水素ガスの生成が行われない、または少ない始動時に、還元処理を行うことができる。このとき、システム始動後に、水素保持装置11への水素充填を行うことで、燃料改質システムの始動・停止を繰り返した場合にも水素を確保することができ、システム始動毎に還元処理を行うことができる。また、水素保持装置11を備えることで、急激な負荷の増加等により、水素が必要となった場合に補充することができるので、燃料電池システムの応答性を向上することができる。
また、複数のラインA、Bのうち少なくとも一つのラインに、リーン燃焼ガスを流通させることにより酸化処理を行う。これにより、酸化処理時に、空気等に比べて温度が高い燃焼ガスを流通させるので、改質器5や水素分離膜ユニット7の温度の低下を抑制することができる。その結果、酸化処理終了直後に、燃料ガスの生成を開始することができる。
次に、第2の実施形態について説明する。燃料電池システムの構成を図4に示す。以下、第1の実施形態と異なる部分を中心に説明する。
酸化処理の終了を判断するために、第一水素分離膜ユニット7a、第二水素分離膜ユニット7bの下流側に、それぞれ第一酸素センサ15a、第二酸素センサ15bを備える。また、還元処理の終了を判断するために、第一水素分離膜ユニット7a、第二水素分離膜ユニット7bの下流側に、それぞれ第一水素流量計24a、第二水素流量計24bを備える。
このような燃料電池システムを、始動時に図3に示したフローチャートに従って制御することで、改質器5および水素分離膜ユニット7の酸化・還元処理を行う。ただし、ステップS10では、第一酸素センサ15aの出力からラインA内の酸化処理の終了判断を行い、ステップS19では、第二酸素センサ15bからラインBの酸化処理の終了判断を行う。また、ステップS13では、第一水素流量計24aの出力から、ラインAの還元処理の終了判断を行い、ステップS22では、第二水素流量計24bの出力から、ラインBの還元処理の終了判断を行う。
なお、ここでは水素流量計24を備えるが、還元処理時にラインAまたはラインBに供給されるガスが、水素100%のガスでない場合には、第1の実施形態と同様に水素センサ14を用い、水素濃度を検出してもよい。
さらに、始動燃焼器10から排出されるリーン燃焼ガスの酸素濃度を検出する図示しない酸素センサ15cを備え、酸素センサ15a、15bにより検出した酸素濃度が、酸素センサ15cで検出した酸素濃度と同じかそれ以上となったら、酸化処理は終了したと判断してもよい。
次に、本実施形態の効果について説明する。以下、第1の実施形態とは異なる効果のみを説明する。
複数の改質器5と水素分離膜ユニット7を備え、また改質器5と水素分離膜ユニット7連通するラインを複数備える。それぞれのラインの下流側に、酸素センサ15を備える。これにより、起動運転中に改質ガス中の水素濃度が安定しない場合においても、酸化処理の終了を正確に検知することができる。同様に、それぞれのラインの下流側に、水素センサ14を備える。これにより、起動運転中に改質ガス中の水素濃度が安定しない場合においても、還元処理の終了を正確に検知することができる。
また、還元が十分に行われたか否かをラインから排出された排気ガス中の水素流量を検出する水素流量計24の出力に応じて判断する。これにより、例えば水素保持装置11から100%の水素が供給されることにより水素濃度の変化が生じない場合にも、水素流量を測定することで還元反応が生じているか否かを判断することができる。
次に、第3の実施形態について説明する。本実施形態は、システム運転時に、ラインAまたはラインBに所定の温度で酸素および水素を含むガスを供給して、酸化・還元処理を施すことにより、改質器5および水素分離膜ユニット7の性能を回復する。以下、第1の実施形態と異なる部分を中心に説明する。
燃料電池システムの構成を図5に示す。
水素分離膜ユニット7から燃料電池8に供給される高水素濃度の燃料ガスを、選択的に改質器5側に分岐する第七水素制御バルブ12gを備える。第七水素制御バルブ12gを介して分岐された燃料ガスは、第三空気制御バルブ9cまたは第四空気制御バルブ9dを介して第一改質器5aまたは第二改質器5bに、選択的に供給される。また、水素保持装置11、圧送ポンプ13、第一水素制御バルブ12a、第五水素制御バルブ12e、第六水素制御バルブ12fを省略する。
次に、図6のフローチャートを用いて起動運転時の制御方法について説明する。なお、ここでは燃料電池システム停止時は、全てのバルブが閉じているものとする。
起動開始の指令を検知したら、ステップS31において、第四水素制御バルブ12dを開とする。つまり、改質器5、水素分離膜ユニット7を通過したガスが燃料電池8をバイパスして燃焼器6に導入されるように通路を切り替える。次に、ステップS32において、始動用燃焼器10における燃焼を開始するために、第二空気制御バルブ9bおよび第三燃焼噴射弁2cを開とする。このとき、始動用燃焼器10では、理論空燃比に近い燃焼を行い、可能な限り酸素を含まない高温の燃焼ガスを生成する。
ステップS33において、第三空気制御バルブ9cおよび第四空気制御バルブ9dを開とする。これにより、始動用燃焼器10で生成した高温の燃焼ガスが第一改質器5a、第二改質器5bに流通され、加熱が行われる。ステップS34において、改質器5および水素分離膜ユニット7の暖機が完了したか否かを判断する。ここでは、図示しない温度センサ等を用いることにより、改質器5および水素分離膜ユニット7の温度が既定値以上となっているか否かにより暖機終了を判断する。既定値としては、改質器5における改質反応を適切に行うことができる温度を用いる。改質器5および水素分離膜ユニット7の温度が既定値に達するまで暖機を継続し、既定値に達したらステップS35に進む。
ステップS35では、暖機運転から起動運転への移行を行う。つまり、第一燃料噴射弁2aおよび第一水噴射弁3aを開とすることにより蒸発器4へ燃料と水を供給し、燃料蒸気の生成を開始する。また、第一燃料制御バルブ16a、第二燃料制御バルブ16bを開とすることにより、生成した燃料蒸気を改質器5a、5bおよび水素分離膜ユニット7a、7bへ導入する。また、第二空気制御バルブ9bおよび第三燃料噴射弁2cを閉とすることにより、始動用燃焼器10における燃焼を終了する。第三空気制御バルブ9c、第四空気制御バルブ9dを閉とすることにより、始動用燃焼器10と改質器5a、5bとの間を遮断するように通路を切り替える。さらに、第一空気制御バルブ9aを開とすることにより燃料電池8へ空気を導入するとともに、第三水素制御バルブ12cを開、第四水素制御バルブ12dを閉とすることにより、燃料電池8へ水素ガスを導入して、通常運転を開始する。
一方、通常運転時には、改質器5および水素分離膜ユニット7の性能低下を回復するために、酸化・還元処理を行う。ここでは、所定時間毎に図7に示すフローを繰り返すことにより、必要に応じてラインAまたはラインBについて酸化・還元処理を行う。
なお、通常運転時には、第一燃料噴射弁2a、第一水噴射弁3a、第一空気制御バルブ9a、第三水素制御バルブ12c、第一燃料制御バルブ16a、第二燃料制御バルブ16bが開となり、その他が閉となっているものとする。
ステップS41において、水素センサ14の出力より、水素分離膜ユニット7からの排気ガス中の水素濃度を検出する。ステップS42において、検出した水素濃度が既定値外か否かを判断する。水素濃度が既定値内の場合には、改質器5および水素分離膜ユニット7の性能低下は認められないと判断することができるので、酸化・還元処理を行わずに本フローを終了する。一方、水素濃度が既定値外の場合には、ステップS43に進み、改質器5および水素分離膜ユニット7の性能を回復するために、酸化・還元処理を行う。なお、この既定値は、予め実験等により求めておく。
ステップS43において、第二空気制御バルブ9bおよび第三燃料噴射弁2cを開とすることにより、始動用燃焼器10でリーン燃焼ガスの生成を開始する。次に、ステップS44において、前回酸化処理を行ったラインがラインBであるか否かを判断する。前回の酸化処理がラインBで行われたと判断されたら、ステップS45に進み、ラインAの酸化処理を開始する。このときラインBでは、通常の改質運転が継続される。なお、この場合には、次回の酸化・還元処理のために、酸化処理を行ったラインがラインBでない旨をコントローラ1に記憶しておく。
ステップS45において、第三空気制御バルブ9cを開とすることにより、始動用燃焼器10で生成した酸素を含む燃焼ガスをラインAに供給する。また、ステップS46において、第一燃料制御バルブ16aを閉とすることにより、蒸発器4から第一改質器5aへの燃料蒸気の供給を停止する。これにより、改質反応を停止し、酸素を含む燃焼ガスを第一改質器5aおよび第一水素分離膜ユニット7aを含むラインAに流通させることにより、酸化処理を開始する。このとき、ラインB、つまり、第二改質器5b、第二水素分離膜ユニット7bでは、通常の改質運転が継続される。
次に、ステップS47において、水素分離膜ユニット7の下流の排気ガス側に配置した酸素センサ15の出力から、酸化処理が十分に行われたか否かを判断する。ここでは、第1の実施形態と同様に、酸素濃度の変化率がゼロ、またはその近傍となったら酸化処理が十分に行われたと判断し、ステップS48に進む。
ステップS48では、第二空気制御バルブ9bおよび第三燃料噴射弁2cを閉とすることにより、始動用燃焼器10における燃焼を停止して、酸化処理を終了する。次に、ステップS49において、還元処理を開始する。ここでは、第七水素制御バルブ12gを開とすることにより、水素分離膜ユニット7から燃料電池8に導入される燃料ガスの一部を、ラインA側に導入する。その結果、第一改質器5aおよび第一水素分離膜ユニット7a内に水素が流通し、還元処理が行われる。
次に、ステップS50において、水素分離膜ユニット7の下流の排気ガス側に配置した水素センサ15の出力から、還元処理が十分に行われたか否かを判断する。ここでは、第1の実施形態と同様に、水素濃度の変化率がゼロ、またはその近傍となったら還元処理が十分に行われたと判断し、ステップS51に進む。
ステップS51では、酸化・還元処理を終了して通常運転に移行する。ここでは、第七水素制御バルブ12g、第三空気制御バルブ9cを閉とすることにより、ラインAへの水素ガスの分岐を終了する。また、第一燃料制御バルブ16aを開とすることにより、蒸発器4で生成した燃料蒸気をラインA側に導入する。これにより、ラインA側の改質反応が再開され、通常運転に移行される。
一方、ステップS44において、前回酸化処理が行われたのがBラインではないと判断された場合には、ラインBについて酸化・還元処理を行い、ラインAにおいては通常の改質運転を行う。以下、ラインAの酸化・還元処理とほぼ同じとなるので、ここでは簡単に説明する。
ステップS52において、第四空気制御バルブ9dを開とし、リーン燃焼により生成された燃焼ガスをラインBに導入し、酸化処理を開始する。なお、この場合には、酸化処理を行ったラインがラインBである旨をコントローラ1に記憶しておく。また、ステップS53において、第二燃料制御バルブ16bを閉とすることにより、ラインBへの燃料蒸気の導入を停止して改質反応を停止する。ステップS54において、酸素センサ15で検出される酸素濃度より酸化処理が十分に行われたか否かを判断し、十分に行われたと判断されたら、ステップS55に進む。
ステップS55では、第二空気制御バルブ9b、第三燃料噴射弁2cを閉として始動用燃焼器10における燃焼を停止する。ステップS56で、第七水素制御バルブ12gを開とすることにより、燃料電池8に導入される水素の一部をラインB側に導入し、ラインBの還元処理を開始する。次に、ステップS57において、水素センサ14で検出された水素濃度より還元処理が十分に行われたか否かを判断し、十分に行われたと判断されたらステップS58に進む。ステップS58では、第七水素制御バルブ12g、第四空気制御バルブ9dを閉とすることにより、ラインBへの水素ガスの導入を終了し、還元処理を終了する。また、第二燃料制御バルブ16bを開とすることによりラインBへの燃料蒸気の導入し、ラインBにおける改質反応を再開することにより、通常運転に移行する。
さらに、コントローラ1によって、酸化・還元処理を行っている間、燃料改質システムへの要求負荷を監視する。酸化・還元処理を行っている際にシステムの要求により負荷が増加する場合など要求水素量が増える場合には、酸化・還元処理を行っていないラインのみで生成される水素量では不足する場合がある。そこで、要求負荷が所定値より大きくなったら、酸化・還元処理を中止するように制御する。このように制御することで、改質器5、水素分離膜ユニット7全体で水素を生成するとともに、還元処理における水素の消費を避けることができるので、システムの要求負荷に確実に応答することができる。
または、要求負荷の増加率が所定値より大きくなった場合には、酸化・還元処理を行っていないラインのみで応答するのが困難となる場合がある。そこで、要求負荷の増加率が所定値より大きくなった場合には、酸化・還元処理を中止するように制御する。このように制御することで、改質器5および水素分離膜ユニット7の応答性を向上することができるので、システムの要求負荷に確実に応答することができる。
このように、本実施形態においては、システムの運転時に、改質器5内の改質触媒と水素分離膜ユニット7の水素分離膜の酸化・還元処理を行い、通常運転で発生する性能劣化の回復を行っている。
次に、本実施形態の効果について説明する。以下、第1の実施形態と異なる効果についてのみ説明する。
システム始動後に、酸化・還元処理を行う。このように、システム運転中に酸化処理と還元処理を行う場合にも、複数のラインA、Bから選択的に行うことで、燃料電池8への燃料ガスの供給を継続することができる。
水素分離膜を透過した水素の少なくとも一部を、複数のラインA、Bのうち少なくとも一つのラインに流通させることにより、還元処理を行う。このように、システム運転中には、還元処理に用いる水素としてシステムで生成した水素を用いることができるので、水素保持装置11等を用いることなく還元処理を行うことができる。また、水素分離膜を透過した水素を用いることで、高濃度の水素ガスを用いることができ、効率良く還元処理を行うことができる。
また、システムの負荷に応じて酸化処理と還元処理の実行判断を行う。これにより、システムの負荷に応じた燃料電池8への水素供給が可能となり、酸化・還元処理を行うことにより発電量の不足が生じるのを避けることができる。
なお、ここでは改質器5および水素分離膜ユニット7を連通するラインを二つとし、酸化・還元を行う通路を交互に切り替えることとしたが、これらに限定されるものではない。ラインを三つ以上備えても良い。また、各ラインから排出される排気ガス中の水素濃度をそれぞれ検出し、異状が見られるラインを選択して酸化・還元処理を行っても良い。また、複数の改質器5および水素分離膜ユニット7を用いてもよいし、改質触媒および水素分離膜を複数に分割して用いてもよい。
また、ここではラインA、Bにそれぞれ改質器5、水素分離膜ユニット7を一つずつ備えているが、この限りではない。システム内に改質器5、水素分離膜ユニット7を三つ以上備えている場合には、ラインに複数の改質器5や水素分離膜ユニット7を備えても良い。
このように、本発明は、上記発明を実施するための最良の形態に限定されるわけではなく、特許請求の範囲に記載の技術思想の範囲内で、様々な変更を為し得ることはいうまでもない。
本発明は、複数の改質触媒および水素分離膜を用いた燃料改質システムに適用することができる。
第1の実施形態に用いる燃料電池システムの概略構成図である。 酸化・還元処理時の反応およびガス濃度を示す図である。 第1の実施形態における酸化・還元処理のフローチャートである。 第2の実施形態に用いる燃料電池システムの概略構成図である。 第3の実施形態に用いる燃料電池システムの概略構成図である。 第3の実施形態における起動制御のフローチャートである。 第3の実施形態における酸化・還元処理のフローチャートである。
符号の説明
5 改質器
5a 第一改質器
5b 第二改質器
7 水素分離膜ユニット
7a 第一水素分離ユニット
7b 第二水素分離ユニット
9c 第三空気制御バルブ(酸化・還元剤供給手段)
9d 第四空気制御バルブ(酸化・還元剤供給手段)
11 水素保持装置
12e 第五水素制御バルブ(酸化・還元剤供給手段)
12f 第六水素制御バルブ(酸化・還元剤供給手段)
14 水素センサ
15 酸素センサ
16a 第一燃料制御バルブ(改質燃料供給手段)
16b 第二燃料制御バルブ(改質燃料供給手段)
A、B ・・・ ライン

Claims (12)

  1. 改質触媒を有し、改質燃料を用いて水素を含有する改質ガスを生成する複数の改質部と、
    改質ガス中の水素を選択的に透過する水素分離膜を有する複数の水素分離膜ユニットと、
    前記改質部と前記水素分離膜ユニットとを連通する複数のラインと、を備え、
    さらに、前記改質部に選択的に改質燃料を供給する改質燃料供給手段と、
    前記ラインそれぞれの、前記改質部または前記水素分離膜ユニットの少なくとも一方に、酸化剤と還元剤を選択的に供給する酸化・還元剤供給手段と、を備え、
    改質運転時には、前記改質燃料供給手段より前記改質部に改質燃料を供給し、
    酸化・還元処理時には、前記複数のラインのうち少なくとも一つのラインの、前記改質部と前記水素分離膜ユニットの少なくとも一方に、酸化剤と還元剤を供給することを特徴とする燃料改質システム。
  2. 酸化・還元処理時には、前記複数のラインのうち少なくとも一つのラインに、酸素リッチガスを供給して完全に酸化した後に、水素リッチガスを供給して還元を行う請求項1に記載の燃料改質システム。
  3. 酸化・還元処理時には、前記複数のラインのうち少なくとも一つのラインで、酸化・還元処理を行い、その他のラインでは、改質反応および水素の透過を行う請求項1に記載の燃料改質システム。
  4. システム始動時に、前記酸化・還元処理を行う請求項3に記載の燃料改質システム。
  5. システム始動後に、前記酸化・還元処理を行う請求項3に記載の燃料改質システム。
  6. 前記改質部、または前記水素分離膜ユニットの下流側のガス濃度変化に応じて、前記酸化処・還元処理を制御する請求項1から5のいずれか一つに記載の燃料改質システム。
  7. 前記改質部、または前記水素分離膜ユニットの下流側において、ガスの酸素濃度および水素濃度の時間的変化がほぼゼロとなったときに酸化および還元の完了を判断する請求項6に記載の燃料改質システム。
  8. 水素を保持する水素保持装置を備え、
    前記水素保持装置に貯蔵された水素を、前記複数のラインのうち少なくとも一つのラインに流通させることにより、還元処理を行う請求項4に記載の燃料改質システム。
  9. システム始動後に、前記水素保持装置への水素充填を行う請求項8に記載の燃料改質システム。
  10. 前記水素分離膜を透過した水素の少なくとも一部を、前記複数のラインのうち少なくとも一つのラインに流通させることにより、還元処理を行う請求項5に記載の燃料改質システム。
  11. システムの負荷に応じて前記酸化処理と還元処理の実行判断を行う請求項5に記載の燃料改質システム。
  12. 前記複数のラインのうち少なくとも一つのラインに、リーン燃焼ガスを流通させることにより酸化処理を行う請求項1から9に記載の燃料改質システム。
JP2003397688A 2003-11-27 2003-11-27 燃料改質システム Pending JP2005154220A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003397688A JP2005154220A (ja) 2003-11-27 2003-11-27 燃料改質システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003397688A JP2005154220A (ja) 2003-11-27 2003-11-27 燃料改質システム

Publications (1)

Publication Number Publication Date
JP2005154220A true JP2005154220A (ja) 2005-06-16

Family

ID=34722777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003397688A Pending JP2005154220A (ja) 2003-11-27 2003-11-27 燃料改質システム

Country Status (1)

Country Link
JP (1) JP2005154220A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001799A (ja) * 2005-06-22 2007-01-11 Toyota Central Res & Dev Lab Inc 水素燃料供給システム
JP2007059175A (ja) * 2005-08-24 2007-03-08 Casio Comput Co Ltd 電源システム及びその制御方法
JP2008052927A (ja) * 2006-08-22 2008-03-06 Toyota Motor Corp 燃料電池システム
JP2010111543A (ja) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd 水素生成装置
EP2521210A3 (de) * 2011-05-05 2015-01-14 ThyssenKrupp Marine Systems GmbH Verfahren zum Betreiben einer Reformer-Brennstoffzellenanlage
WO2017164471A1 (ko) * 2016-03-24 2017-09-28 에스퓨얼셀(주) 연료 전지 시스템 및 그 구동 방법
US11999621B2 (en) 2023-02-15 2024-06-04 H2 Powertech, Llc Systems and methods for increasing the hydrogen permeance of hydrogen-separation membranes in situ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001799A (ja) * 2005-06-22 2007-01-11 Toyota Central Res & Dev Lab Inc 水素燃料供給システム
JP2007059175A (ja) * 2005-08-24 2007-03-08 Casio Comput Co Ltd 電源システム及びその制御方法
JP2008052927A (ja) * 2006-08-22 2008-03-06 Toyota Motor Corp 燃料電池システム
JP2010111543A (ja) * 2008-11-06 2010-05-20 Nissan Motor Co Ltd 水素生成装置
EP2521210A3 (de) * 2011-05-05 2015-01-14 ThyssenKrupp Marine Systems GmbH Verfahren zum Betreiben einer Reformer-Brennstoffzellenanlage
WO2017164471A1 (ko) * 2016-03-24 2017-09-28 에스퓨얼셀(주) 연료 전지 시스템 및 그 구동 방법
US11999621B2 (en) 2023-02-15 2024-06-04 H2 Powertech, Llc Systems and methods for increasing the hydrogen permeance of hydrogen-separation membranes in situ

Similar Documents

Publication Publication Date Title
CA2602239C (en) Fuel cell heating device and method for operating said fuel cell heating device
US7056480B2 (en) Fuel reforming system
JP2003243020A (ja) 燃料電池システム
JP2006128016A (ja) 燃料電池システム
JP4463846B2 (ja) 水素製造発電システム
JP2001189165A (ja) 燃料電池システム、該燃料電池システムの停止方法及び立ち上げ方法
JP4531800B2 (ja) 水素製造発電システム及びその停止方法
JP4923371B2 (ja) 水素分離膜を備える水素生成装置の起動方法
JP2005154220A (ja) 燃料改質システム
JP5735606B2 (ja) 燃料電池システムの停止保管方法
JP2004207135A (ja) 燃料電池発電システム
JP2004288562A (ja) 燃料電池発電システム
JP2002128505A (ja) 水素抽出装置
JP5154174B2 (ja) 燃料電池システム及びその運転方法
JP2005259663A (ja) 燃料電池発電方法および燃料電池発電システム
JP4610875B2 (ja) 燃料電池システム
JP2001118594A (ja) 水素分離膜を用いた燃料電池システム及びその制御方法
JP2007250454A (ja) 燃料電池発電装置及びその運転停止方法
JP4741568B2 (ja) 水素製造発電システムの水素製造方法
JP2005158340A (ja) 燃料改質システム
JP2005289765A (ja) 燃料改質システム
JP2008230867A (ja) 燃料改質装置
EP4273298A1 (en) Method for the start-up of an electrolysis system
JP2005206457A (ja) 水素生成装置、水素生成装置を用いた燃料電池システム
JP2006261030A (ja) 燃料電池発電システム