JP2005128496A - 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ - Google Patents
電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ Download PDFInfo
- Publication number
- JP2005128496A JP2005128496A JP2004217148A JP2004217148A JP2005128496A JP 2005128496 A JP2005128496 A JP 2005128496A JP 2004217148 A JP2004217148 A JP 2004217148A JP 2004217148 A JP2004217148 A JP 2004217148A JP 2005128496 A JP2005128496 A JP 2005128496A
- Authority
- JP
- Japan
- Prior art keywords
- photosensitive member
- layer
- image forming
- electrophotographic photosensitive
- titanyl phthalocyanine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Abstract
【解決手段】 導電性支持体上に、少なくとも電荷ブロッキング層、モアレ防止層および感光層を順に積層してなる電子写真感光体において、該感光層中にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含むことを特徴とする。また上記感光体を用いた画像形成装置並びにプロセスカートリッジである。
【選択図】 図17
Description
このような点に鑑み、過去には導電性支持体と感光層の間に下引き層や中間層を設ける技術が提案されてきた。例えば、特許文献1には硝酸セルロース系樹脂中間層が、特許文献2にはナイロン系樹脂中間層が、特許文献3にはマレイン酸系樹脂中間層が、特許文献4にはポリビニルアルコール樹脂中間層がそれぞれ開示されている。
前者の構成を詳しく述べると、上述したような支持体の欠陥をカバーするため、導電性支持体1上に抵抗の低いフィラーを分散した導電性の層2を設け、その上に前記樹脂層3を設けたものである。これらは例えば特許文献19〜27等に記載されている。これらは本質的に下層である導電層が導電性支持体1における電極の役割を果たすため、樹脂中間層単独の構成と上述した感光体の静電的な欠点は変わらない。唯一、導電層がフィラー分散膜で構成されるため、この層による書き込み光の散乱によりモアレ防止機能は付与される。このような構成の場合、下層が導電層であるため、感光体帯電時には感光体表面に帯電された極性とは逆極性の電荷が下層(導電層)と上層(樹脂中間層)との界面まで到達することにより、感光体の動作が成立する。しかしながら、導電層の抵抗がそれほど低くない場合、電極からの電荷注入が十分に行われず、繰り返し使用時に下層が抵抗成分となって残留電位を非常に上昇させてしまう。特に、この構成の目的の1つである導電性支持体の欠陥のカバーを行うためには下層を十分に厚くする(10μm以上)ことが必須であり、この問題は顕著である。
また、特許文献28〜30には、導電層と中間層、およびチタニルフタロシアニン結晶を含有する感光層を積層した感光体が開示されている。しかしながら、チタニルフタロシアニンの結晶型および一次粒子サイズを適切にコントロールしないと、熱キャリアの影響による地汚れ発生を低減できるものでは無かった。
また、上記感光体を用い、繰り返し画像形成(出力)を行っても異常画像発生の少ない画像形成装置を提供することにある。具体的には、地汚れや濃度低下といったネガ・ポジ現像使用時の最大の課題を解決した高耐久で、安定動作が可能な画像形成装置を提供することにある。
更には、上記感光体を用い、高耐久で取扱いが良好な画像形成装置用プロセスカートリッジを提供することにある。
(1)本発明に係る電子写真感光体は、導電性支持体上に、少なくとも電荷ブロッキング層、モアレ防止層および感光層を順に積層してなる電子写真感光体において、該感光層中にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含むことを特徴とする。
(4)本発明に係る電子写真感光体は、前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均粒子サイズが0.1μm以下の不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを水の存在下で有機溶媒により結晶変換を行ない、結晶変換後の一次粒子の平均粒子サイズが0.25μmより大きく成長する前に、有機溶媒より結晶変換後のチタニルフタロシアニンを分別、濾過されたものであることを特徴とする上記(1)又は(2)に記載のものである。
(5)本発明に係る電子写真感光体は、前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする上記(1)乃至(4)の何れか一に記載のものである。
(6)本発明に係る電子写真感光体は、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される不定形チタニルフタロシアニンがアシッドペースト法により作製され、十分にイオン交換水で洗浄され、洗浄後のイオン交換水のpHが6〜8の間及び/又はイオン交換水の比伝導度が8以下であることを特徴とする上記(1)乃至(5)の何れか一に記載のものである。
(7)本発明に係る電子写真感光体は、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される有機溶媒量が不定形チタニルフタロシアニンの30倍(重量比)以上であることを特徴とする上記(1)乃至(6)の何れか一に記載のものである。
(8)本発明に係る電子写真感光体は、前記電荷ブロッキング層が絶縁性材料からなり、その膜厚が2.0μm未満であることを特徴とする上記(1)乃至(7)の何れか一に記載のものである。
(9)本発明に係る電子写真感光体は、前記絶縁性材料がポリアミドからなることを特徴とする上記(8)に記載のものである。
(10)本発明に係る電子写真感光体は、前記モアレ防止層が無機顔料とバインダー樹脂を含有し、両者の容積比が1/1乃至3/1の範囲であることを特徴とする上記(1)乃至(9)の何れか一に記載のものである。
(11)本発明に係る電子写真感光体は、前記バインダー樹脂が熱硬化型樹脂であることを特徴とする上記(10)に記載のものである。
(12)本発明に係る電子写真感光体は、前記熱硬化型樹脂がアルキッド/メラミン樹脂の混合物であることを特徴とする上記(11)に記載のものである。
(13)本発明に係る電子写真感光体は、前記アルキッド樹脂とメラミン樹脂の混合比が、5/5〜8/2(重量比)の範囲であることを特徴とする上記(12)に記載のものである。
(14)本発明に係る電子写真感光体は、前記無機顔料が酸化チタンであることを特徴とする上記(10)乃至(13)の何れか一に記載のものである。
(15)前記酸化チタンが平均粒径の異なる2種類の酸化チタンであり、一方の酸化チタン(T1)の平均粒径を(D1)とし、他方の酸化チタン(T2)の平均粒径を(D2)とした場合、0.2<(D2/D1)≦0.5の関係を満たすことを特徴とする上記(14)に記載のものである。
(16)前記酸化チタン(T2)の平均粒径(D2)が、0.05μm<D2<0.2μmであることを特徴とする上記(15)に記載のものである。
(17)前記平均粒径の異なる2種の酸化チタンの混合比率(重量比)が、0.2≦T2/(T1+T2)≦0.8であることを特徴とする上記(15)又は(16)に記載のものである。
(19)本発明に係る電子写真感光体は、前記保護層に比抵抗1010Ω・cm以上の無機顔料または金属酸化物を含有することを特徴とする上記(18)に記載のものである。
(20)本発明に係る電子写真感光体は、前記金属酸化物が、比抵抗1010Ω・cm以上のアルミナ、酸化チタン、シリカのいずれかであることを特徴とする上記(19)に記載のものである。
(21)本発明に係る電子写真感光体は、前記金属酸化物が、比抵抗1010Ω・cm以上のα−アルミナであることを特徴とする上記(20)に記載のものである。
(22)本発明に係る電子写真感光体は、前記保護層に高分子電荷輸送物質を含有することを特徴とする上記(18)乃至(21)の何れか一に記載のものである。
(23)本発明に係る電子写真感光体は、前記保護層のバインダー樹脂が、架橋構造を有することを特徴とする上記(18)乃至(21)の何れか一に記載のものである。
(24)本発明に係る電子写真感光体は、前記架橋構造を有するバインダー樹脂の構造中に、電荷輸送部位を有することを特徴とする上記(23)に記載のものである。
(26)本発明に係る画像形成装置は、少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成要素を複数配列したことを特徴とする上記(25)に記載のものである。
(27)本発明に係る画像形成装置は、前記画像形成装置の帯電手段に、接触帯電方式を用いることを特徴とする上記(25)又は(26)の何れかに記載のものである。
(28)本発明に係る画像形成装置は、帯電手段として、非接触の近接配置方式を用いることを特徴とする上記(25)又は(26)の何れかに記載のものである。
(29)本発明に係る画像形成装置は、前記帯電手段に用いられる帯電部材と感光体間の空隙が100μm以下であることを特徴とする上記(28)に記載のものである。
(30)本発明に係る画像形成装置は、前記画像形成装置の帯電手段として、交流重畳電圧印加を行うことを特徴とする上記(27)乃至(29)の何れか一に記載のものである。
(32)本発明に係る画像形成装置用プロセスカートリッジは、少なくとも帯電手段、露光手段、現像手段、クリーニング手段から選ばれる1つの手段と、電子写真感光体とが一体となった画像形成装置用プロセスカートリッジにおいて、該電子写真感光体が上記(1)乃至(24)の何れか一に記載の電子写真感光体であることを特徴とする。
また、上記感光体を用い、繰り返し画像形成(出力)を行っても異常画像発生の少ない画像形成装置が提供される。具体的には、地汚れや濃度低下といったネガ・ポジ現像使用時の最大の課題を解決した高耐久で、安定動作が可能な画像形成装置が提供される。
更には、上記感光体を用い、高耐久で取扱いが良好な画像形成装置用プロセスカートリッジが提供される。
本発明の電子写真感光体は、導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、および感光層を順に形成してなる電子写真感光体であって、該感光層中にCuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3°にピークを有さず、一次粒子の平均サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有するものである。
従って、両者の技術は未完成の技術であり、上述のような特定結晶型を有するチタニルフタロシアニン結晶を感光層に用い、電荷ブロッキング層、モアレ防止層の順に積層した中間層を有する感光体を作製した場合、高感度と静電的な安定性は発現されるものの、本発明の目的である地汚れ耐久性の向上と帯電部材による絶縁破壊防止に関しては、満足のいくものではなかった。
そこで、前記特定結晶型を有するチタニルフタロシアニン結晶の粒子サイズを、以下に示すような方法にて0.25μm以下に制御するような技術を更に組み合わせることにより、本発明の目的を達成できることが分かった。
初めにチタニルフタロシアニン結晶の合成粗品の合成法について述べる。フタロシアニン類の合成方法は古くから知られており、Moser等による非特許文献1および2、特許文献35等に記載されている。
例えば、第1の方法として、無水フタル酸類、金属あるいはハロゲン化金属及び尿素の混合物を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この場合、必要に応じてモリブデン酸アンモニウム等の触媒が併用される。第2の方法としては、フタロニトリル類とハロゲン化金属を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この方法は、第1の方法で製造できないフタロシアニン類、例えば、アルミニウムフタロシアニン類、インジウムフタロシアニン類、オキソバナジウムフタロシアニン類、オキソチタニウムフタロシアニン類、ジルコニウムフタロシアニン類等に用いられる。第3の方法は、無水フタル酸あるいはフタロニトリル類とアンモニアを先ず反応させて、例えば1,3−ジイミノイソインドリン類等の中間体を製造し、次いでハロゲン化金属と高沸点溶媒中で反応させる方法である。第4の方法は、尿素等存在下で、フタロニトリル類と金属アルコキシドを反応させる方法である。特に、第4の方法はベンゼン環への塩素化(ハロゲン化)が起こらず、電子写真用材料の合成法としては、極めて有用な方法であり、本発明においては極めて有効に使用される。
具体的な方法としては、上記の合成粗品を10〜50倍量の濃硫酸に溶解し、必要に応じて不溶物を濾過等により除去し、これを硫酸の10〜50倍量の充分に冷却した水もしくは氷水にゆっくりと投入し、チタニルフタロシアニンを再析出させる。析出したチタニルフタロシアニンを濾過した後、イオン交換水で洗浄・濾過を行ない、濾液が中性になるまで充分にこの操作を繰り返す。最終的に、綺麗なイオン交換水で洗浄した後、濾過を行ない、固形分濃度で5〜15wt%程度の水ペーストを得る。
この際、イオン交換水で十分に洗浄し、可能な限り濃硫酸を残さないことが重要である。具体的には、洗浄後のイオン交換水が以下のような物性値を示すことが好ましい。即ち、硫酸の残存量を定量的に表せば、洗浄後のイオン交換水のpHや比伝導度で表すことが出来る。pHで表す場合には、pHが6〜8の範囲であることが望ましい。この範囲であることにより、感光体特性に影響を与えない硫酸残存量であると判断出来る。このpH値は市販のpHメーターで簡便的に測定することが出来る。また比伝導度で表せば、8以下であることが望ましい。この範囲であれば、感光体特性に影響を与えない硫酸残存量であると判断出来る。この比伝導度は市販の電気伝導率計で測定することが可能である。比伝導度の下限値は、洗浄に使用するイオン交換水の比伝導度ということになる。いずれの測定においても、上記範囲を逸脱する範囲では、硫酸の残存量が多く、感光体の帯電性が低下したり、光感度が悪化したりするので望ましくない。
このように作製したものが本発明に用いる不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)である。この際、この不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有するものであることが好ましい。特に、その回折ピークの半値巾が1゜以上であることがより好ましい。更に、一次粒子の平均粒子サイズが0.1μm以下であることが好ましい。
結晶変換は、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さないチタニルフタロシアニン結晶に変換する工程である。
この際、使用される有機溶媒は、所望の結晶型を得られるものであれば、いかなる有機溶媒も使用できるが、特にテトラヒドロフラン、トルエン、塩化メチレン、二硫化炭素、オルトジクロロベンゼン、1,1,2−トリクロロエタンの中から選ばれる1種を選択すると、良好な結果が得られる。これら有機溶媒は単独で用いることが好ましいが、これらの有機溶媒を2種以上混合する、あるいは他の溶媒と混合して用いることも可能である。結晶変換に使用される前記有機溶媒の量は、不定形チタニルフタロシアニンの重量の10倍以上、好ましくは30倍以上の重量であることが望ましい。これは、結晶変換を素早く十分に起こさせると共に、不定形チタニルフタロシアニンに含まれる不純物を十分に取り除く効果が発現されるからである。尚、ここで使用する不定形チタニルフタロシアニンは、アシッド・ペースト法により作製するものであるが、上述のように硫酸を十分に洗浄したものを使用することが望ましい。硫酸が残存するような条件で結晶変換を行うと、結晶粒子中に硫酸イオンが残存し、出来上がった結晶を水洗処理のような操作をしても完全には取り除くことが出来ない。硫酸イオンが残存した場合には、感光体の感度低下、帯電性低下を引き起こすなど、好ましい結果を得られない。例えば、特許文献36(比較例)には、硫酸に溶解したチタニルフタロシアニンをイオン交換水と共に有機溶媒に投入し結晶変換を行う方法が記載されている。この際、本発明で得られるチタニルフタロシアニン結晶のX線回折スペクトルに類似した結晶を得ることが出来るが、チタニルフタロシアニン中の硫酸イオン濃度が高く、光減衰特性(光感度)が悪いものであるため、本発明のチタニルフタロシアニンの製造方法としては良好なものではない。この理由は、先に述べたとおりである。
感光層に含有されるチタニルフタロシアニン結晶の粒子サイズをコントロールするための方法は、大きく2つの方法が挙げられる。1つはチタニルフタロシアン結晶粒子を合成する際に、0.25μmより大きい粒子を含まない結晶を合成する方法であり、いま1つはチタニルフタロシアニン結晶を分散した後、0.25μmより大きい粗大粒子を取り除いてしまう方法である。勿論、両者を併用して用いることはより大きな効果を併せ持つものである。
チタニルフタロシアニン結晶の粒子サイズをより細かくするために、本発明者らが観察したところによれば、前述の不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、一次粒径が0.1μm以下(そのほとんどが0.01〜0.05μm程度)であるが(図3参照、スケール・バーは0.2μmである)、結晶変換の際に際しては、結晶成長と共に結晶が変換されることが分かった。通常、この種の結晶変換においては、原料の残存をおそれて充分な結晶変換時間を確保し、結晶変換が十二分に行なわれた後に、濾過を行ない、所望の結晶型を有するチタニルフタロシアニン結晶を得るものである。このため、原料として充分に小さな一次粒子を有する原料を用いているにもかかわらず、結晶変換後の結晶としては一次粒子の大きな結晶(概ね0.3〜0.5μm)を得ているものである(図4参照、スケール・バーは0.2μmである)。
また、上述のように結晶粒子サイズと結晶変換時間は比例関係にあるため、所定の反応(結晶変換)が完了したら、反応を直ちに停止させる方法も有効な手段である。上述のように結晶変換を行なった後、直ちに結晶変換の起こりにくい溶媒を大量に添加することが前記手段として挙げられる。結晶変換の起こりにくい溶媒としては、アルコール系、エステル系などの溶媒が挙げられる。これらの溶媒を結晶変換溶媒に対して、10倍程度加えることにより、結晶変換を停止することができる。
このように作製されたチタニルフタロシアニン結晶を分散するにあたっては、合成後のチタニルフタロシアニンの一次粒子が小さいため、図4に示すような粗大粒子を含むチタニルフタロシアニンを分散するような強いシェアを与えずとも所望の分散(平均粒子サイズを、0.25μm以下、好ましくは0.2μm以下にすること)が可能である。この結果、前述の如き、過度の分散によって粒子の一部が所望の結晶型でない結晶型へと転移し易い結果を生むことはない。
この2種類の分散液の平均粒径並びに粒度分布を公知の方法に従って、市販の粒度分布測定装置(堀場製作所製:超遠心式自動粒度分布測定装置、CAPA700)により測定した。その結果を図8に示す。図8における「A」が図6に示す分散液に対応し、「B」が図7に示す分散液に対応する。両者を比較すると、粒度分布に関してはほとんど差が認められない。また、両者の平均粒径値は、「A」が0.29μm、「B」が0.28μmと求められ、測定誤差を加味した上では、両者に全くの差異が認められない。
従って、公知の平均粒径(粒子サイズ)の規定だけでは、微量な粗大粒子の残存を検出できずに、昨今の高解像度のネガ・ポジ現像には対応できていないことが理解される。この微量な粗大粒子の存在は、塗工液を顕微鏡レベルで観察することにより、初めて認識できたものである。
このような結晶変換方法を採用することにより、一次平均粒子サイズの小さな(0.25μm以下、好ましくは0.2μm以下)チタニルフタロシアニン結晶を得ることができる。特許文献33に記載された技術に加えて、必要に応じて上述のような技術(微細なチタニルフタロシアニン結晶を得るための結晶変換方法)を併用することは、本発明の効果を高めるために有効な手段である。
その後、分別されたチタニルフタロシアニン結晶は、必要に応じて加熱乾燥される。加熱乾燥に使用する乾燥機は、公知のものがいずれも使用可能であるが、大気下で行なう場合には送風型の乾燥機が好ましい。更に、乾燥速度を早め、本発明の効果をより顕著に発現させるために減圧下の乾燥も非常に有効な手段である。特に、高温で分解する、あるいは結晶型が変化するような材料に対しては有効な手段である。特に10mmHgよりも真空度が高い状態で乾燥することが有効である。
分散液の作製に関しては一般的な方法が用いられ、前記チタニルフタロシアニン結晶を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、ビーズミル、超音波などを用いて分散することで得られるものである。この際、バインダー樹脂は感光体の静電特性などにより、また溶媒は顔料へのぬれ性、顔料の分散性などにより選択すればよい。
この際、濾過される分散液の粒子サイズが大きすぎたり、粒度分布が広すぎたりする場合には、濾過によるロスが大きくなったり、濾過の目詰まりを生じて濾過が不可能になったりする場合がある。このため、濾過前の分散液においては、平均粒子サイズが0.3μm以下で、その標準偏差が0.2μm以下に到達するまで分散を行った方が望ましい。平均粒子サイズが0.3μm以上である場合には濾過によるロスが大きくなり、標準偏差が0.2μm以上である場合には濾過時間が非常に長くなったりする不具合点を生じる場合がある。
図9は、本発明に用いられる電子写真感光体の構成例を示す断面図であり、導電性支持体1上に、電荷ブロッキング層5、モアレ防止層6、特定の結晶型を有し特定平均粒子サイズ以下のチタニルフタロシアニン結晶を含有する感光層4が順に積層された構成をとっている。
導電性支持体1としては、体積抵抗1010Ω・cm以下の導電性を示すもの、例えば、アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を、蒸着またはスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいは、アルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらを、押し出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研摩などの表面処理した管などを使用することができる。また、エンドレスニッケルベルト、エンドレスステンレスベルトも導電性支持体として用いることができる。
電荷ブロッキング層5は、感光体帯電時に電極(導電性支持体1)に誘起される逆極性の電荷が、支持体から感光層に注入するのを防止する機能を有する層である。負帯電の場合には正孔注入防止、正帯電の場合には電子注入防止の機能を有する。電荷ブロッキング層としては、酸化アルミ層に代表される陽極酸化被膜、SiOに代表される無機系の絶縁層、特許文献37に記載されるような金属酸化物のガラス質ネットワークから形成される層、特許文献38に記載されるようなポリフォスファゼンからなる層、特許文献39に記載されるようなアミノシラン反応生成物からなる層、この他には絶縁性の結着剤樹脂からなる層、硬化性の結着剤樹脂からなる層等が挙げられる。中でも湿式塗工法で形成可能な絶縁性の結着樹脂あるいは硬化性の結着樹脂から構成される層が良好に使用できる。電荷ブロッキング層は、その上にモアレ防止層や感光層を積層するものであるから、これらを湿式塗工法で設ける場合には、これらの塗工溶媒により塗膜が侵されない材料あるいは構成からなることが肝要である。
中でも、成膜性、環境安定性、溶剤耐性の点などから、ポリアミドが最も良好に用いられる。
また、整流性のある導電性高分子や、帯電極性に合わせてアクセプター(ドナー)性の樹脂・化合物などを加えて、基体からの電荷注入を制抑するなどの機能を持たせても良い。
また、電荷ブロッキング層5の膜厚は0.1μm以上2.0μm未満、好ましくは0.3μm以上1.0μm以下程度が適当である。電荷ブロッキング層5が厚くなると、帯電と露光の繰返しによって、特に低温低湿で残留電位の上昇が著しく、また、膜厚が薄すぎるとブロッキング性の効果が小さくなる、また電荷ブロッキング層5には、必要に応じて硬化(架橋)に必要な薬剤、溶剤、添加剤、硬化促進材等を加えて、常法により、ブレード塗工、浸漬塗工法、スプレーコート、ビートコート、ノズルコート法などにより基体上に形成される。塗布後は乾燥や加熱、光等の硬化処理により乾燥あるいは硬化させる。
モアレ防止層6は、レーザー光のようなコヒーレント光による書き込みを行う際に、感光層内部での光干渉によるモアレ像の発生を防止する機能を有する層である。基本的には、前記書き込み光の光散乱を起こす機能を有する。このような機能を発現するために、モアレ防止層は屈折率の大きな材料を有することが有効である。一般には、無機顔料とバインダー樹脂を含有し、無機顔料がバインダー樹脂に分散された構成からなる。特に、無機顔料の中でも白色の顔料が有効に使用され、例えば、酸化チタン、フッ化カルシウム、酸化カルシウム、酸化珪素、酸化マグネシウム、酸化アルミニウムなどが良好に用いられる。中でも、隠蔽力の大きな酸化チタンが最も有効に使用出来る。
バインダー樹脂としては、熱硬化型樹脂が良好に使用される。特に、アルキッド/メラミン樹脂の混合物が最も良好に使用される。この際、アルキッド/メラミン樹脂の混合比は、モアレ防止層の構造及び特性を決定する重要な因子である。両者の比(重量比)が5/5〜8/2の範囲が良好な混合比の範囲として挙げることが出来る。5/5よりもメラミン樹脂がリッチであると、熱硬化の際に体積収縮が大きくなり塗膜欠陥を生じやすくなったり、感光体の残留電位を大きくする方向にあり望ましくない。また、8/2よりもアルキッド樹脂がリッチであると、感光体の残留電位低減には効果があるものの、バルク抵抗が低くなりすぎて地汚れが悪くなる方向になり望ましくない。
モアレ防止層6においては、無機顔料とバインダー樹脂の容積比が重要な特性を決定する。このため、無機顔料とバインダー樹脂の容積比が1/1乃至3/1の範囲であることが重要である。両者の容積比が1/1未満である場合には、モアレ防止能が低下するだけでなく、繰り返し使用における残留電位の上昇が大きくなる場合が存在する。一方、容積比が3/1以上の領域ではバインダー樹脂における結着能が劣るだけでなく、塗膜の表面性が悪化し、上層の感光層の成膜性に悪影響を与える場合がある。この影響は感光層が積層タイプで構成され、電荷発生層のような薄層を形成する場合に深刻な問題になり得るものである。また容積比が3/1以上の場合には、無機顔料表面をバインダー樹脂が覆い尽くせない場合が存在し、電荷発生物質と直接接触することで、熱キャリア生成の確率が大きくなり、地汚れに対して悪影響を与える場合がある。
更に、モアレ防止層には、平均粒径の異なる2種類の酸化チタンを用いることで、導電性基体に対する隠蔽力を向上させモアレを抑制することが可能となるとともに、異常画像の原因となるピンホールをなくすことができる。このためには、用いる2種の酸化チタンの平均粒径の比が一定の範囲内(0.2<D2/D1≦0.5)にあることが重要である。本発明で規定する範囲外の粒径比の場合、すなわち一方の酸化チタン(T1)の平均粒径に対する他方の酸化チタン(T2)の平均粒径の比が小さすぎる場合(0.2>D2/D1)は、酸化チタン表面での活性が増加し電子写真感光体としたときの静電的安定性が著しく損なわれるようになる。また、一方の酸化チタン(T1)の平均粒径に対する他方の酸化チタン(T2)の平均粒径の比が大きすぎる場合(D2/D1>0.5)は、導電性基体に対する隠蔽力が低下し、モアレや異常画像に対する抑制力が低下する。ここで言う平均粒径は、水系で強分散を行なったときに得られる粒度分布測定から得られる。
また、粒径の小さい方の酸化チタン(T2)の平均粒径(D2)の大きさが重要な因子であり、0.05μm<D2<0.20μmであることが重要である。0.05μmよりも小さい場合には隠蔽力が低下し、モアレを発生させる場合がある。一方、0.20μmよりも大きな場合には、モアレ防止層の酸化チタンの充填率を低下させ、地汚れ抑制効果が十分に発揮出来ない。
また、2種の酸化チタンの混合比率(重量比)も重要な因子である。T2/(T1+T2)が0.2よりも小さい場合には、酸化チタンの充填率がそれほど大きくなく、地汚れ抑制効果が十分に発揮出来ない。一方、0.8よりも大きな場合には、隠蔽力が低下し、モアレを発生させる場合がある。従って、0.2≦T2/(T1+T2)≦0.8であることが重要である。
また、モアレ防止層の膜厚は1〜10μm、好ましくは2〜5μmとするのが適当である。膜厚が1μm未満では効果の発現性が小さく、10μmを越えると残留電位の蓄積を生じるので望ましくない。
電荷発生層7は、電荷発生物質として、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さないチタニルフタロシアニン結晶が良好に用いられ、更に26.3°にピークを有さず、結晶合成時あるいは分散濾過処理により、平均粒子サイズを0.25μm以下にし、粗大粒子の存在しないチタニルフタロシアン結晶を主成分とする層である。
電荷発生層7は、前記顔料を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これを導電性支持体1上に塗布し、乾燥することにより形成される。
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジエン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。中でも、環境への負荷低減等の意図から、非ハロゲン系溶媒の使用は望ましいものである。具体的には、テトラヒドロフランやジオキソラン、ジオキサン等の環状エーテルやトルエン、キシレン等の芳香族系炭化水素、及びそれらの誘導体が良好に用いられる。
また、電荷輸送層8に使用される高分子電荷輸送物質として、上述の高分子電荷輸送物質の他に、電荷輸送層8の成膜時には電子供与性基を有するモノマーあるいはオリゴマーの状態で、成膜後に硬化反応あるいは架橋反応をさせることで、最終的に2次元あるいは3次元の架橋構造を有する重合体も含むものである。
更に電荷輸送層の構成として、架橋構造からなる電荷輸送層も有効に使用される。架橋構造の形成に関しては、1分子内に複数個の架橋性官能基を有する反応性モノマーを使用し、光や熱エネルギーを用いて架橋反応を起こさせ、3次元の網目構造を形成するものである。この網目構造がバインダー樹脂として機能し、高い耐摩耗性を発現するものである。
また、上記反応性モノマーとして、全部もしくは一部に電荷輸送能を有するモノマーを使用することは非常に有効な手段である。このようなモノマーを使用することにより、網目構造中に電荷輸送部位が形成され、電荷輸送層としての機能を十分に発現することが可能となる。電荷輸送能を有するモノマーとしては、トリアリールアミン構造を有する反応性モノマーが有効に使用される。
このような網目構造を有する電荷輸送層は、耐摩耗性が高い反面、架橋反応時に体積収縮が大きく、あまり厚膜化するとクラックなどを生じる場合がある。このような場合には、電荷輸送層を積層構造として、下層(電荷発生層側)には低分子分散ポリマーの電荷輸送層を使用し、上層(表面側)に架橋構造を有する電荷輸送層を形成しても良い。
その他の電子供与性基を有する重合体としては、公知単量体の共重合体や、ブロック重合体、グラフト重合体、スターポリマーや、また、例えば特許文献40〜42等に開示されているような電子供与性基を有する架橋重合体などを用いることも可能である。
また、感光体の保護層9に用いられるフィラ−材料のうち有機性フィラ−材料としては、ポリテトラフルオロエチレンのようなフッ素樹脂粉末、シリコ−ン樹脂粉末、a−カ−ボン粉末等が挙げられ、無機性フィラ−材料としては、銅、スズ、アルミニウム、インジウムなどの金属粉末、シリカ、酸化錫、酸化亜鉛、酸化チタン、酸化インジウム、酸化アンチモン、酸化ビスマス、アンチモンをド−プした酸化錫、錫をド−プした酸化インジウム等の金属酸化物、チタン酸カリウムなどの無機材料が挙げられる。特に、フィラーの硬度の点からは、この中でも無機材料を用いることが有利である。特に、シリカ、酸化チタン、アルミナが有効に使用できる。
また、使用するフィラーの体積平均粒径は、0.1μm〜2μmの範囲が良好に使用され、好ましくは0.3μm〜1μmの範囲である。この場合、平均粒径が小さすぎると耐摩耗性が十分に発揮されず、大きすぎると塗膜の表面性が悪くなったり、塗膜そのものが形成できなかったりするからである。
尚、本発明におけるフィラーの平均粒径とは、特別な記載のない限り体積平均粒径であり、超遠心式自動粒度分布測定装置:CAPA−700(堀場製作所製)により求めたものである。この際、累積分布の50%に相当する粒子径(Median系)として算出されたものである。また、同時に測定される各々の粒子の標準偏差が1μm以下であることが重要である。これ以上の標準偏差の値である場合には、粒度分布が広すぎて、本発明の効果が顕著に得られなくなってしまう場合がある。
ここで、本発明におけるフィラーのpHは、ゼータ電位から等電点におけるpH値を記載した。この際、ゼータ電位の測定は、大塚電子(株)製レーザーゼータ電位計にて測定した。
フィラーの誘電率は以下のように測定した。上述のような比抵抗の測定と同様なセルを用い、荷重をかけた後に、静電容量を測定し、これより誘電率を求めた。静電容量の測定は、誘電体損測定器(安藤電気)を使用した。
これらフィラ−材料は、適当な分散機を用いることにより分散できる。また、保護層の透過率の点から使用するフィラーは1次粒子レベルまで分散され、凝集体が少ない方が好ましい。
保護層9の形成法としては通常の塗布法が採用される。なお保護層9の厚さは0.1〜10μm程度が適当である。また、以上のほかに真空薄膜作成法にて形成したa−C、a−SiCなど公知の材料を保護層9として用いることができる。
図12は、本発明の画像形成プロセスおよび画像形成装置を説明するための概略図であり、下記に示すような変形例も本発明の範疇に属するものである。
図12において、感光体11は導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、感光層が設けられてなり、感光層にはCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有してなる。感光体11はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
図12における画像形成装置は次のように動作される。感光体11に帯電ローラ13より所定の帯電が施され、入力信号に応じた書き込み光が画像露光部15より行われ、書き込みが行われた感光体表面の電荷が消去され、静電潜像が形成される。この静電潜像に、現像ユニット16によりトナーが現像され、トナー像が形成される。
この感光体上に現像されたトナー像は、転写紙19に転写される。即ち、レジストローラ18により転写部に送られた転写紙19に、転写チャージャ20により転写紙の裏側(感光体の反対側)よりバイアスが印加され、感光体表面よりトナーが転写紙に転写される。この際、必要に応じて転写前チャージャ17が併用されても良い。更に、分離チャージャ21,分離爪22により転写紙19は感光体表面より引き離され、図示しない定着部に送られ、トナー像が転写紙上に定着される。
一方、転写されずに感光体表面に残留したトナーは、ファーブラシ24及び/又はクリーニングブレード25により感光体表面より引き離される(感光体表面がクリーニングされる)。この際、必要に応じてクリーニング前チャージャ23が併用される。
最後に、除電ランプ12により感光体表面電荷が消去される。この後、引き続き、次回の工程に進む。
なお画像形成装置には、帯電ローラ13、転写前チャージャ17、転写チャージャ20、分離チャージャ21、クリーニング前チャージャ23には、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャー)、帯電ローラ、転写ローラを始めとする公知の手段が用いられる。
ここでいう接触方式の帯電部材とは、感光体表面に帯電部材の表面が接触するタイプのものであり、帯電ローラ、帯電ブレード、帯電ブラシの形状がある。中でも帯電ローラや帯電ブラシが良好に使用される。
図13に示す近接帯電機構は以下のように動作される。感光体11の画像形成領域33に対して適切な帯電電位を与えるため、金属シャフト上に導電性ゴム等によりローラ部材を形成した帯電ローラ13を用いる。この際、帯電部材表面と感光体表面が適切な空隙を有するように、感光体非画像形成領域34に当接する帯電部材表面にギャップ形成部材31を設ける。このギャップ形成部材31が感光体非画像形成領域34の部分に当接することで、画像形成領域33における感光体表面と帯電ローラ表面の適切な空隙が維持される。この状態において、帯電部材13に適切なバイアスを印加することにより、感光体表面には適切な帯電が施されるものである。
このような接触方式の帯電部材あるいは非接触帯電方式の帯電部材を用いた場合、感光体の絶縁破壊を生じやすいという欠点を有している。しかしながら、本発明に用いられる感光体は、電荷ブロッキング層とモアレ防止層の積層構成からなる中間層を有し、更に感光層には電荷発生物質の粗大粒子が含有されていないため、感光体の耐圧性が極めて高い。このため、感光体の絶縁破壊に対する耐性が高く、上記帯電部材のメリット(帯電ムラ防止)が生かせるものである。
これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、また600〜800nmの長波長光を有するため、前述の電荷発生材料であるフタロシアニン顔料が高感度を示すことから良好に使用される。
かかる光源等は、図12に示される工程の他に光照射を併用した転写工程、除電工程、クリーニング工程、あるいは前露光などの工程を設けることにより、感光体に光が照射される。
これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られ、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。
かかる現像手段には、公知の方法が適用されるし、また、除電手段にも公知の方法が用いられる。
図14に示す電子写真プロセスは以下のように動作される。感光体41は、駆動ローラー42a,42bにより駆動され、帯電チャージャ43による帯電、光源44による像露光、現像(図示せず)、転写チャージャ45を用いる転写、像露光源46によるクリーニング前露光、ブラシ47によるクリーニング、除電光源48による除電が繰返し行なわれる。図14においては、感光体41(勿論支持体が透光性である)に支持体側より画像露光の光照射が行なわれる。
一方、光照射工程は、像露光、クリーニング前露光、除電露光が図示されているが、他に転写前露光、像露光のプレ露光、およびその他公知の光照射工程を設けて、感光体に光照射を行なうこともできる。
図16は、本発明のタンデム方式のフルカラー電子写真装置を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。
図16において、符号61C,61M,61Y,61Kはドラム状の感光体であり、感光体61は導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、感光層が設けられてなり、感光層にはCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有してなる。
まず、本発明に用いた電荷発生材料の合成例について述べる。
(比較合成例1)
特許文献33に準じて、顔料を作製した。すなわち、1,3−ジイミノイソインドリン29.2gとスルホラン200mlを混合し、窒素気流下でチタニウムテトラブトキシド20.4gを滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行なった。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶をろ過、ついで洗浄液が中性になるまで水洗いを繰り返し(洗浄後のイオン交換水のpH値は6.8であった)、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。得られたこのウェットケーキ(水ペースト)40gをテトラヒドロフラン200gに投入し、4時間攪拌を行なった後、濾過を行ない、乾燥して、チタニルフタロシアニン粉末を得た。これを顔料1とする。
上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は33倍である。尚、比較合成例1の原材料には、ハロゲン化物を使用していない。
(X線回折スペクトル測定条件)
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°〜40°
時定数:2秒
特許文献47の実施例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1gをポリエチレングリコール50gに加え、100gのガラスビーズと共に、サンドミルを行なった。結晶転移後、希硫酸、水酸化アンモニウム水溶液で順次洗浄し、乾燥して顔料を得た。これを顔料2とする。比較合成例2の原材料には、ハロゲン化物を使用していない。
特許文献48の実施例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1gをイオン交換水10gとモノクロルベンゼン1gの混合溶媒中で1時間撹拌(50℃)した後、メタノールとイオン交換水で洗浄し、乾燥して顔料を得た。これを顔料3とする。比較合成例3の原材料には、ハロゲン化物を使用していない。
特許文献49の製造例に記載の方法に準じて、顔料を作製した。すなわち、フタロジニトリル9.8gと1−クロロナフタレン75mlを撹拌混合し、窒素気流下で四塩化チタン2.2mlを滴下する。滴下終了後、徐々に200℃まで昇温し、反応温度を200℃〜220℃の間に保ちながら3時間撹拌して反応を行なった。反応終了後、放冷し130℃になったところ熱時ろ過し、次いで1−クロロナフタレンで粉体が青色になるまで洗浄、次にメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後、乾燥し顔料を得た。これを顔料4とする。比較合成例4の原材料には、ハロゲン化物を使用している。
特許文献50の合成例1に記載の方法に準じて、顔料を作製した。すなわち、α型TiOPc5部を食塩10gおよびアセトフェノン5gと共にサンドグラインダーにて100℃にて10時間結晶変換処理を行なった。これをイオン交換水及びメタノールで洗浄し、希硫酸水溶液で精製し、イオン交換水で酸分がなくなるまで洗浄した後、乾燥して顔料を得た。これを顔料5とする。比較合成例5の原材料には、ハロゲン化物を使用している。
特許文献51の実施例1に記載の方法に準じて、顔料を作製した。すなわち、O−フタロジニトリル20.4部、四塩化チタン部7.6部をキノリン50部中で200℃にて2時間加熱反応後、水蒸気蒸留で溶媒を除き、2%塩化水溶液、続いて2%水酸化ナトリウム水溶液で精製し、メタノール、N,N−ジメチルホルムアミドで洗浄後、乾燥し、チタニルフタロシアニンを得た。このチタニルフタロシアニン2部を5℃の98%硫酸40部の中に少しずつ溶解し、その混合物を約1時間、5℃以下の温度を保ちながら攪拌する。続いて硫酸溶液を高速攪拌した400部の氷水中に、ゆっくりと注入し、析出した結晶を濾過する。結晶を酸が残量しなくなるまで蒸留水で洗浄し、ウエットケーキを得る。そのケーキをTHF100部中で約5時間攪拌を行ない、ろ過、THFによる洗浄を行ない乾燥後、顔料を得た。これを顔料6とする。比較合成例6の原材料には、ハロゲン化物を使用している。
特許文献52の合成例2に記載の方法に準じて、顔料を作製した。すなわち、左記の比較合成例1で作製したウェットケーキ10部を塩化ナトリウム15部とジエチレングリコール7部に混合し、80℃の加熱下で自動乳鉢により60時間ミリング処理を行なった。次に、この処理品に含まれる塩化ナトリウムとジエチレングリコールを完全に除去するために充分な水洗を行なった。これを減圧乾燥した後にシクロヘキサノン200部と直径1mmのガラスビーズを加えて、30分間サンドミルにより処理を行ない、顔料を得た。これを顔料7とする。比較合成例7の原材料には、ハロゲン化物を使用していない。
特許文献36のチタニルフタロシアニン結晶体の製造方法に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン58g、テトラブトキシチタン51gをα−クロロナフタレン300mL中で210℃にて5時間反応後、α−クロロナフタレン、ジメチルホルムアミド(DMF)の順で洗浄した。その後、熱DMF、熱水、メタノールで洗浄、乾燥して50gのチタニルフタロシアニンを得た。チタニルフタロシアニン4gを0℃に冷却した硫酸400g中に加え、引き続き0℃、1時間撹拌した。フタロシアニンが完全に溶解したことを確認した後、0℃に冷却した水800mL/トルエン800mL混合液中に添加した。室温で2時間撹拌後、析出したフタロシアニン結晶体を混合液より濾別し、メタノール、水の順で洗浄した。洗浄水の中性を確認した後、洗浄水よりフタロシアニン結晶体を濾別し、乾燥して、2.9gのチタニルフタロシアニン結晶体を得た。これを顔料8とする。比較合成例8の原材料には、ハロゲン化物を使用していない。
比較合成例1の方法に従って、チタニルフタロシアニン顔料の水ペーストを合成し、次のように結晶変換を行ない、比較合成例1よりも一次粒子の小さなフタロシアニン結晶を得た。
比較合成例1で得られた結晶変換前の水ペースト60部にテトラヒドロフラン400部を加え、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行なった。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶8.5部を得た。これを顔料9とする。合成例1の原材料には、ハロゲン化物を使用していない。上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は44倍である。
上述のように観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定する。測定した30個体の長径の算術平均を求めて、平均粒子サイズとした。
以上の方法により求められた比較合成例1における水ペースト中の平均粒子サイズは、0.06μmであった。
表1から、比較合成例1で作製された顔料1は、平均粒子サイズが大きいだけでなく、粗大粒子を含んでいる。これに対し、合成例1で作製された顔料9は、平均粒子サイズが小さいだけでなく、個々の1次粒子の大きさもほぼ揃っていることが分かる。
比較合成例1で作製した顔料1を下記組成の処方にて、下記に示す条件にて分散を行い、電荷発生層用塗工液として、分散液を作製した。
チタニルフタロシアニン顔料(顔料1) 15部
ポリビニルブチラール(積水化学製:BX−1) 10部
2−ブタノン 280部
市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノンおよび顔料を全て投入し、ローター回転数1200r.p.m.にて30分間分散を行ない、分散液を作製した(分散液1とする)。
(分散液作製例2〜9)
分散液作製例1で使用した顔料1に変えて、それぞれ比較合成例2〜8及び合成例1で作製した顔料2〜9を使用して、分散液作製例1と同じ条件にて分散液を作製した(顔料番号に対応して、それぞれ分散液2〜9とする)。
(分散液作製例10)
分散液作製例1で作製した分散液1を、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行なった(分散液10とする)。
分散液作製例10で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−3−CS(有効孔径3μm)に変えた以外は、分散液作製例10と同様に加圧濾過を行ない、分散液を作製した(分散液11とする)。
(分散液作製例12)
分散液作製例10で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−5−CS(有効孔径5μm)に変えた以外は、分散液作製例10と同様に加圧濾過を行ない、分散液を作製した(分散液12とする)。
(分散液作製例13)
分散液作製例1における分散条件を下記の通り変更して、分散を行った(分散液13とする)。
ローター回転数:1000r.p.m.にて20分間分散を行った。
(分散液作製例14)
分散液作製例13で作製した分散液をアドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行なった。濾過の途中でフィルターが目詰まりを起こして、全ての分散液を濾過することが出来なかった。このため以下の評価は未実施である。
以上のように作製した分散液中の顔料粒子の粒度分布を、堀場製作所:CAPA−700にて測定した。結果を表3に示す。
直径60mmのアルミニウムシリンダー(JIS1050)に、下記組成の電荷ブロッキング層塗工液、モアレ防止層塗工液、電荷発生層塗工液、および電荷輸送層塗工液を、順次塗布・乾燥し、0.5μmの電荷ブロッキング層、3.5μmのモアレ防止層、電荷発生層、23μmの電荷輸送層を形成し、積層感光体を作製した(感光体1とする)。なお、電荷発生層の膜厚は、780nmにおける電荷発生層の透過率が20%になるように調整した。電荷発生層の透過率は、下記組成の電荷発生層塗工液を、ポリエチレンテレフタレートフィルムを巻き付けたアルミシリンダーに感光体作製と同じ条件で塗工を行ない、電荷発生層を塗工していないポリエチレンテレフタレートフィルムを比較対照とし、市販の分光光度計(島津:UV−3100)にて、780nmの透過率を評価した。
◎電荷ブロッキング層
アルコール可溶性ナイロン(東レ:アミランCM8000) 4部
メタノール 70部
n−ブタノール 30部
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 84部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
先に作製した分散液1を用いた。
◎電荷輸送層塗工液
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
(比較例2〜10および実施例1〜3)
比較例1で使用した電荷発生層塗工液(分散液1)をそれぞれ、分散液2〜13に変更した以外は、比較例1と同様に感光体を作製した。なお、電荷発生層の膜厚は、比較例1と同様に、すべての塗工液を用いた場合に780nmの透過率が20%になるように調整した。実施例番号と使用した分散液の対応は、表4に示す。
実施例1において、電荷ブロッキング層を設けない以外は、実施例1と同様に感光体を作製した。
(比較例12)
実施例1において、モアレ防止層を設けない以外は、実施例1と同様に感光体を作製した。
(比較例13)
実施例1において、電荷ブロッキング層とモアレ防止層の塗工順序を入れ替えた以外は、実施例1と同様に感光体を作製した。
実施例1において、電荷ブロッキング層の膜厚を0.3μmとした以外は、実施例1と同様に感光体を作製した。
(実施例5)
実施例1において、電荷ブロッキング層の膜厚を1.0μmとした以外は、実施例1と同様に感光体を作製した。
(実施例6)
実施例1において、電荷ブロッキング層の膜厚を2.0μmとした以外は、実施例1と同様に感光体を作製した。
(実施例7)
実施例1において、電荷ブロッキング層の膜厚を0.1μmとした以外は、実施例1と同様に感光体を作製した。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 252部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 300部
上記組成で、無機顔料とバインダー樹脂の容積比は、3/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 120部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 150部
上記組成で、無機顔料とバインダー樹脂の容積比は、0.7/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 336部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 350部
上記組成で、無機顔料とバインダー樹脂の容積比は、4/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
実施例1において、電荷ブロッキング層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎電荷ブロッキング層塗工液
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 500部
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化亜鉛(SAZEX4000:堺化学製) 110部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 120部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 84部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 22.4部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 28部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、4/6重量比である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 84部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 28部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 23.3部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、5/5重量比である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 84部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 39.2部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 14部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、7/3重量比である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 84部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 44.8部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 9.3部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、8/2重量比である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 84部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 50.4部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 4.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、9/1重量比である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 84部
アルコール可溶性ナイロン(東レ:アミランCM8000) 24部
メタノール 300部
n−ブタノール 130部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 42部
酸化チタン(PT−401M:石原産業社製、平均粒径:0.07μm) 42部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.28、両者の混合比は0.5である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 75.6部
酸化チタン(PT−401M:石原産業社製、平均粒径:0.07μm) 8.4部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.28、両者の混合比は0.1である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 8.4部
酸化チタン(PT−401M:石原産業社製、平均粒径:0.07μm)75.6部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.28、両者の混合比は0.9である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 42部
酸化チタン(TTO−F1:石原産業社製、平均粒径:0.04μm) 42部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.16、両者の混合比は0.5である。
実施例1において、モアレ防止層塗工液を下記組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 42部
酸化チタン(A−100:石原産業社製、平均粒径:0.15μm) 42部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.6、両者の混合比は0.5である。
以上のように作製した実施例1〜23及び比較例1〜13の電子写真感光体を図12に示す電子写真装置に搭載し、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)、帯電部材として接触方式の帯電ローラ、転写部材として転写ベルトを用い、下記の帯電条件にて、書き込み率6%のチャートを用い、連続20万枚印刷を行った。その後の白ベタおよびハーフトーン画像を出力、評価し、地汚れの有無、モアレの有無、画像濃度を確認した(試験環境は、22℃−55%RHである)。尚、地汚れ画像評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。以上の結果を表4に示す。
帯電条件:
DCバイアス:−950V
ACバイアス:2.0kV(Peak to peak)、周波数:1.5kHz
実施例1における電荷輸送層塗工液を以下の組成のものに変更した以外は、実施例1と同様に感光体を作製した。
◎電荷輸送層塗工液
下記組成の高分子電荷輸送物質(重量平均分子量:約135000) 10部
(実施例48)
実施例1における電荷輸送層の膜厚を18μmとし、電荷輸送層上に下記組成の保護層塗工液を塗布乾燥し、5μmの保護層を設けた以外は実施例1と同様に感光体を作製した。
◎保護層塗工液
ポリカーボネート(TS2050:帝人化成社製、
粘度平均分子量:5万) 10部
下記構造式の電荷輸送物質 7部
平均一次粒径:0.4μm) 4部
シクロヘキサノン 500部
テトラヒドロフラン 150部
実施例48における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、実施例48と同様に感光体を作製した。
酸化チタン微粒子(比抵抗:1.5×1010Ω・cm、
平均一次粒径:0.5μm) 4部
(実施例50)
実施例48における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、実施例48と同様に感光体を作製した。
酸化錫−酸化アンチモン粉末(比抵抗:106Ω・cm、
平均1次粒径0.4μm) 4部
実施例1における電荷輸送層の膜厚を18μmとし、電荷輸送層上に下記組成の保護層塗工液を塗布乾燥し、5μmの保護層を設けた以外は実施例1と同様に感光体を作製した。
◎保護層塗工液
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
実施例1における電荷輸送層の膜厚を18μmとし、電荷輸送層上に下記組成の保護層塗工液を塗布乾燥し、5μmの保護層を設けた以外は実施例1と同様に感光体を作製した。
◎保護層塗工液
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
酸化防止剤(サノール LS2626:三共化学社製) 1部
ポリカルボン酸化合物 BYK P104:ビックケミー社製 0.4部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
以上のように作製した実施例1および47〜52の電子写真感光体を図1に示す電子写真装置に搭載し、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)として、帯電部材として帯電部材として図13に示すような帯電ローラの両端部に厚さ50μmの絶縁テープを巻き付けた近接配置用の帯電部材(感光体と帯電部材表面間の空隙が50μm)を用い、下記の帯電条件にて、書き込み率6%のチャートを用い、連続20万枚印刷を行った。その後、白ベタおよびハーフトーン画像の出力を行い、地汚れの有無、モアレの有無及び画像濃度を確認した(試験環境は、22℃−55%RHである)。尚、地汚れの評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。また、20万枚印刷後の感光層の摩耗量(保護層を有する場合は保護層の摩耗量)を測定した。以上の結果を表5に示す。
帯電条件:
DCバイアス:−900V
ACバイアス:2.0kV(Peak to peak)、周波数:2.0kHz
実施例53において20万枚の通紙試験の後、30℃−90%RH環境下でハーフトーン画像を出力し、画像評価を行なった。
(実施例61)
実施例53における帯電部材を近接配置用帯電部材からスコロトロン・チャージャーに変更し、感光体非画像部の表面電位を実施例53と同じ(−900V)にあわせるようにセッティングした。これ以外の条件を変更せずに、実施例53と同様に20万枚の通紙試験を行なった。通紙試験の後、実施例60と同様に30℃−90%RH環境下でハーフトーン画像を出力し、画像評価を行なった。
実施例53における帯電部材を近接配置用帯電部材から接触用帯電部材(空隙なし)に変更し、帯電条件を実施例53と同じ条件にセッティングした。これ以外の条件を変更せずに、実施例53と同様に20万枚の通紙試験を行なった。通紙試験の後、実施例60と同様に30℃−90%RH環境下でハーフトーン画像を出力し、画像評価を行なった。
(実施例63)
実施例62における帯電条件を以下のように変更した以外は、実施例62と同様に評価を行なった。
帯電条件:
DCバイアス:−1600V(初期状態の感光体非画像部の表面電位が−900V)
ACバイアス:なし
(実施例64)
実施例53における帯電条件を以下のように変更した以外は、実施例53と同様に評価を行なった。20万枚の通紙試験の後、実施例60と同様に30℃−90%RH環境下でハーフトーン画像を出力し、画像評価を行なった。
帯電条件:
DCバイアス:−1600V(初期状態の感光体非画像部の表面電位が−900V)
ACバイアス:なし
実施例53で使用した帯電部材(近接帯電ローラ)のギャップを70μmに変更した以外は、実施例53と同様に評価を行なった。20万枚の通紙試験の後、実施例43と同様に30℃−90%RH環境下でハーフトーン画像を出力し、画像評価を行なった。
(実施例66)
実施例53で使用した帯電部材(近接帯電ローラ)のギャップを100μmに変更した以外は、実施例53と同様に評価を行なった。20万枚の通紙試験の後、実施例53と同様に30℃−90%RH環境下でハーフトーン画像を出力し、画像評価を行なった。
(実施例67)
実施例53で使用した帯電部材(近接帯電ローラ)のギャップを150μmに変更した以外は、実施例53と同様に評価を行なった。20万枚の通紙試験の後、実施例53と同様に30℃−90%RH環境下でハーフトーン画像を出力し、画像評価を行なった。
(実施例68)
実施例54において20万枚の通紙試験の後、30℃−90%RH環境下でハーフトーン画像を出力し、画像評価を行なった。
(実施例69)
実施例55において20万枚の通紙試験の後、30℃−90%RH環境下でハーフトーン画像を出力し、画像評価を行なった。
以上の実施例60〜69における評価結果を表6に示す。
比較例1のアルミシリンダーを直径30mmのものに変え、比較例1と同じ組成の感光体を作製した。
(比較例28)
比較例4のアルミシリンダーを直径30mmのものに変え、比較例4と同じ組成の感光体を作製した。
(比較例29)
比較例5のアルミシリンダーを直径30mmのものに変え、比較例5と同じ組成の感光体を作製した。
(実施例70)
実施例1のアルミシリンダーを直径30mmのものに変え、実施例1と同じ組成の感光体を作製した。
実施例2のアルミシリンダーを直径30mmのものに変え、実施例2と同じ組成の感光体を作製した。
(比較例30)
比較例11のアルミシリンダーを直径30mmのものに変え、比較例11と同じ組成の感光体を作製した。
(比較例31)
比較例12のアルミシリンダーを直径30mmのものに変え、比較例12と同じ組成の感光体を作製した。
(比較例32)
比較例13のアルミシリンダーを直径30mmのものに変え、比較例13と同じ組成の感光体を作製した。
以上のように作製した実施例70〜71および比較例27〜32の電子写真感光体を、帯電部材と共に1つの電子写真装置用プロセスカートリッジに装着し、更に図16に示すフルカラー電子写真装置に搭載した。4つの画像形成要素は以下に示すプロセス条件にてフルカラー画像20万枚通紙試験を行った。この後に、地汚れの有無の確認、及びハーフトーン画像評価を実施した
(試験環境は、22℃−55%RHである)。なお、文字抜け、地汚れ評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。以上の結果を表7に示す。
帯電条件:DCバイアス −800V、
ACバイアス 1.8kV(peak to peak)、
周波数 2.0kHz
帯電部材:実施例53に使用したものと同じ
書き込み:780nmのLD(ポリゴン・ミラー使用)
転写条件:75μA、60μAの2条件
比較合成例1における結晶変換溶媒を塩化メチレンから2−ブタノンに変更した以外は、比較合成例1と同様に処理を行ない、チタニルフタロシアニン結晶を得た。
比較合成例1の場合と同様に、比較合成例9で作製したチタニルフタロシアニン結晶のXDスペクトルを測定した。これを図19に示す。図19より、比較合成例9で作製されたチタニルフタロシアニン結晶のXDスペクトルにおける最低角は、比較合成例1で作製されたチタニルフタロシアニンの最低角(7.3°)とは異なり、7.5°に存在することが判る。
比較合成例1で得られた顔料(最低角7.3°)に特許文献54に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例1のX線回折スペクトルを図20に示す。
比較合成例9で得られた顔料(最低角7.5°)に特許文献54に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例2のX線回折スペクトルを図21に示す。
図20のスペクトルにおいては、低角側に7.3°と7.5°の2つの独立したピークが存在し、少なくとも7.3°と7.5°のピークは異なるものであることが判る。一方、図21のスペクトルにおいては、低角側のピークは7.5°のみに存在し、図20のスペクトルとは明らかに異なっている。
以上のことから、本願発明のチタニルフタロシアニン結晶における最低角ピークである7.3°は、公知のチタニルフタロシアニン結晶における7.5°のピークとは異なるものであることが判る。
2 フィラー分散層
3 樹脂層
4 感光層
5 電荷ブロッキング層
6 モアレ防止層
7 電荷発生層
8 電荷輸送層
9 保護層
11,41,51,61C,61M,61Y,61K 感光体
12 除電ランプ
13,53 帯電ローラ
15,54 画像露光部
16 現像ユニット
17 転写前チャージャ
18 レジストローラ
19 転写紙
20,45 転写チャージャ
21 分離チャージャ
22 分離爪
23 クリーニング前チャージャ
24 ファーブラシ
25 クリーニングブレード
47,55 クリーニングブラシ
31 ギャップ形成部材
32 芯金
33 画像形成領域
34 非画像形成領域
42a、42b 駆動ローラ
43 帯電チャージャ
44 像露光源
46 クリーニング前露光
48 除電光源
56 現像ローラ
57 転写ローラ
62C,62M,62Y,62K 帯電部材
63C,63M,63Y,63K レーザー光
64C,64M,64Y,64K 現像部材
65C,65M,65Y,65K クリーニング部材
66C,66M,66Y,66K 画像形成要素
71C,71M,71Y,71K 転写ブラシ
Claims (32)
- 導電性支持体上に、少なくとも電荷ブロッキング層、モアレ防止層および感光層を順に積層してなる電子写真感光体において、該感光層中にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含むことを特徴とする電子写真感光体。
- 前記感光層が電荷発生層と電荷輸送層の積層構成からなることを特徴とする請求項1に記載の電子写真感光体。
- 前記チタニルフタロシアニン結晶の平均粒子サイズが0.3μm以下で、その標準偏差が0.2μm以下になるまで分散を行ない、その後有効孔径が3μm以下のフィルターにて濾過を行なった分散液を使用し、感光層あるいは電荷発生層を塗工したことを特徴とする請求項1又は2の何れかに記載の電子写真感光体。
- 前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均粒子サイズが0.1μm以下の不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを水の存在下で有機溶媒により結晶変換を行ない、結晶変換後の一次粒子の平均粒子サイズが0.25μmより大きく成長する前に、有機溶媒より結晶変換後のチタニルフタロシアニンを分別、濾過されたものであることを特徴とする請求項1又は2に記載の電子写真感光体。
- 前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする請求項1乃至4の何れか一に記載の電子写真感光体。
- 前記チタニルフタロシアニン結晶の結晶変換に際して、使用される不定形チタニルフタロシアニンがアシッドペースト法により作製され、十分にイオン交換水で洗浄され、洗浄後のイオン交換水のpHが6〜8の間及び/又はイオン交換水の比伝導度が8以下であることを特徴とする請求項1乃至5の何れか一に記載の電子写真感光体。
- 前記チタニルフタロシアニン結晶の結晶変換に際して、使用される有機溶媒量が不定形チタニルフタロシアニンの30倍(重量比)以上であることを特徴とする請求項1乃至6の何れか一に記載の電子写真感光体。
- 前記電荷ブロッキング層が絶縁性材料からなり、その膜厚が2.0μm未満であることを特徴とする請求項1乃至7の何れか一に記載の電子写真感光体。
- 前記絶縁性材料がポリアミドであることを特徴とする請求項8に記載の電子写真感光体。
- 前記モアレ防止層が無機顔料とバインダー樹脂を含有し、両者の容積比が1/1乃至3/1の範囲であることを特徴とする請求項1乃至9の何れか一に記載の電子写真感光体。
- 前記バインダー樹脂が熱硬化型樹脂であることを特徴とする請求項10に記載の電子写真感光体。
- 前記熱硬化型樹脂がアルキッド/メラミン樹脂の混合物であることを特徴とする請求項11に記載の電子写真感光体。
- 前記アルキッド樹脂とメラミン樹脂の混合比が、5/5〜8/2(重量比)の範囲であることを特徴とする請求項12に記載の電子写真感光体。
- 前記無機顔料が酸化チタンであることを特徴とする請求項10乃至13の何れか一に記載の電子写真感光体。
- 前記酸化チタンが平均粒径の異なる2種類の酸化チタンであり、一方の酸化チタン(T1)の平均粒径を(D1)とし、他方の酸化チタン(T2)の平均粒径を(D2)とした場合、0.2<(D2/D1)≦0.5の関係を満たすことを特徴とする請求項14に記載の電子写真感光体。
- 前記酸化チタン(T2)の平均粒径(D2)が、0.05μm<D2<0.2μmであることを特徴とする請求項15に記載の電子写真感光体。
- 前記平均粒径の異なる2種の酸化チタンの混合比率(重量比)が、0.2≦T2/(T1+T2)≦0.8であることを特徴とする請求項15又は16に記載の電子写真感光体。
- 前記感光層上に保護層を有することを特徴とする請求項1乃至17の何れか一に記載の電子写真感光体。
- 前記保護層に比抵抗1010Ω・cm以上の無機顔料または金属酸化物を含有することを特徴とする請求項18に記載の電子写真感光体。
- 前記金属酸化物が、比抵抗1010Ω・cm以上のアルミナ、酸化チタン、シリカのいずれかであることを特徴とする請求項19に記載の電子写真感光体。
- 前記金属酸化物が、比抵抗1010Ω・cm以上のα−アルミナであることを特徴とする請求項20に記載の電子写真感光体。
- 前記保護層に高分子電荷輸送物質を含有することを特徴とする請求項18乃至21の何れか一に記載の電子写真感光体。
- 前記保護層のバインダー樹脂が、架橋構造を有することを特徴とする請求項18乃至21の何れか一に記載の電子写真感光体。
- 前記架橋構造を有するバインダー樹脂の構造中に、電荷輸送部位を有することを特徴とする請求項23に記載の電子写真感光体。
- 少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体を具備してなる画像形成装置において、該電子写真感光体が請求項1乃至24の何れか一に記載のものであることを特徴とする画像形成装置。
- 少なくとも帯電手段、露光手段、現像手段、転写手段、及び電子写真感光体からなる画像形成要素を複数配列したことを特徴とする請求項25に記載の画像形成装置。
- 前記画像形成装置の帯電手段に、接触帯電方式を用いることを特徴とする請求項25又は26の何れかに記載の画像形成装置。
- 前記画像形成装置の帯電手段に、非接触の近接配置方式を用いることを特徴とする請求項25又は26の何れかに記載の画像形成装置。
- 前記帯電手段に用いられる帯電部材と感光体間の空隙が100μm以下であることを特徴とする請求項28に記載の画像形成装置。
- 前記画像形成装置の帯電手段として、交流重畳電圧印加を行うことを特徴とする請求項27乃至29の何れか一に記載の画像形成装置。
- 前記画像形成装置が、感光体と少なくとも帯電手段、露光手段、現像手段、クリーニング手段から選ばれる1つの手段とが一体となった装置本体と着脱自在なカートリッジを搭載していることを特徴とする請求項25乃至30の何れか一に記載の画像形成装置。
- 少なくとも帯電手段、露光手段、現像手段、クリーニング手段から選ばれる1つの手段と、電子写真感光体とが一体となった画像形成装置用プロセスカートリッジにおいて、該電子写真感光体が請求項1乃至24の何れか一に記載の電子写真感光体であることを特徴とする画像形成装置用プロセスカートリッジ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004217148A JP4201746B2 (ja) | 2003-09-30 | 2004-07-26 | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342515 | 2003-09-30 | ||
JP2004217148A JP4201746B2 (ja) | 2003-09-30 | 2004-07-26 | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005128496A true JP2005128496A (ja) | 2005-05-19 |
JP4201746B2 JP4201746B2 (ja) | 2008-12-24 |
Family
ID=34655740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004217148A Expired - Fee Related JP4201746B2 (ja) | 2003-09-30 | 2004-07-26 | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4201746B2 (ja) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006330580A (ja) * | 2005-05-30 | 2006-12-07 | Ricoh Co Ltd | 画像形成装置 |
JP2006337706A (ja) * | 2005-06-02 | 2006-12-14 | Ricoh Co Ltd | 画像形成装置 |
JP2006343654A (ja) * | 2005-06-10 | 2006-12-21 | Ricoh Co Ltd | 画像形成装置 |
JP2007024917A (ja) * | 2005-07-12 | 2007-02-01 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007033868A (ja) * | 2005-07-27 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007034211A (ja) * | 2005-07-29 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007033679A (ja) * | 2005-07-25 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007034274A (ja) * | 2005-06-23 | 2007-02-08 | Ricoh Co Ltd | 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ |
JP2007033812A (ja) * | 2005-07-26 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007034210A (ja) * | 2005-07-29 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007047467A (ja) * | 2005-08-10 | 2007-02-22 | Ricoh Co Ltd | 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ |
JP2007047564A (ja) * | 2005-08-11 | 2007-02-22 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007052255A (ja) * | 2005-08-18 | 2007-03-01 | Ricoh Co Ltd | 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ |
JP2007052091A (ja) * | 2005-08-16 | 2007-03-01 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007102191A (ja) * | 2005-09-12 | 2007-04-19 | Ricoh Co Ltd | 静電潜像担持体及びその製造方法、並びに画像形成方法、画像形成装置及びプロセスカートリッジ |
JP2007108670A (ja) * | 2005-09-15 | 2007-04-26 | Ricoh Co Ltd | 電子写真感光体、画像形成装置、フルカラー画像形成装置及びプロセスカートリッジ |
JP2007108671A (ja) * | 2005-09-15 | 2007-04-26 | Ricoh Co Ltd | 電子写真感光体、画像形成装置及びプロセスカートリッジ |
JP2007156122A (ja) * | 2005-12-06 | 2007-06-21 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007155874A (ja) * | 2005-12-01 | 2007-06-21 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007156123A (ja) * | 2005-12-06 | 2007-06-21 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007164008A (ja) * | 2005-12-16 | 2007-06-28 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007163905A (ja) * | 2005-12-15 | 2007-06-28 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007161992A (ja) * | 2005-11-16 | 2007-06-28 | Kyocera Mita Corp | チタニルフタロシアニン結晶、その製造方法、及び電子写真感光体 |
JP2007212886A (ja) * | 2006-02-10 | 2007-08-23 | Ricoh Co Ltd | 静電潜像担持体及びその製造方法、並びに画像形成方法、画像形成装置及びプロセスカートリッジ |
JP2007286536A (ja) * | 2006-04-20 | 2007-11-01 | Ricoh Co Ltd | 電子写真感光体、画像形成装置及びプロセスカートリッジ |
JP2007298568A (ja) * | 2006-04-27 | 2007-11-15 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2008122740A (ja) * | 2006-11-14 | 2008-05-29 | Ricoh Co Ltd | 電子写真感光体、画像形成装置及びプロセスカートリッジ |
JP2008224785A (ja) * | 2007-03-09 | 2008-09-25 | Ricoh Co Ltd | 画像形成装置及びプロセスカートリッジ |
US7824830B2 (en) | 2004-12-20 | 2010-11-02 | Ricoh Company Limited | Coating liquid and electrophotographic photoreceptor prepared using the coating liquid |
US7871747B2 (en) | 2005-09-13 | 2011-01-18 | Ricoh Company, Ltd. | Electrophotographic photoconductor having charge blocking and moire preventing layers |
US8192905B2 (en) | 2006-04-20 | 2012-06-05 | Ricoh Company, Ltd. | Electrophotographic photoconductor, image forming apparatus, and process cartridge |
JP2012246487A (ja) * | 2005-11-16 | 2012-12-13 | Kyocera Document Solutions Inc | チタニルフタロシアニン結晶、及び電子写真感光体 |
CN111492309A (zh) * | 2017-12-20 | 2020-08-04 | 旭化成株式会社 | 感光性树脂层叠体 |
-
2004
- 2004-07-26 JP JP2004217148A patent/JP4201746B2/ja not_active Expired - Fee Related
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7824830B2 (en) | 2004-12-20 | 2010-11-02 | Ricoh Company Limited | Coating liquid and electrophotographic photoreceptor prepared using the coating liquid |
JP2006330580A (ja) * | 2005-05-30 | 2006-12-07 | Ricoh Co Ltd | 画像形成装置 |
JP2006337706A (ja) * | 2005-06-02 | 2006-12-14 | Ricoh Co Ltd | 画像形成装置 |
JP2006343654A (ja) * | 2005-06-10 | 2006-12-21 | Ricoh Co Ltd | 画像形成装置 |
JP4719617B2 (ja) * | 2005-06-23 | 2011-07-06 | 株式会社リコー | 画像形成装置 |
JP2007034274A (ja) * | 2005-06-23 | 2007-02-08 | Ricoh Co Ltd | 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ |
JP2007024917A (ja) * | 2005-07-12 | 2007-02-01 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP4523503B2 (ja) * | 2005-07-12 | 2010-08-11 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP4523507B2 (ja) * | 2005-07-25 | 2010-08-11 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007033679A (ja) * | 2005-07-25 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP4699832B2 (ja) * | 2005-07-26 | 2011-06-15 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007033812A (ja) * | 2005-07-26 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007033868A (ja) * | 2005-07-27 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP4567545B2 (ja) * | 2005-07-27 | 2010-10-20 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007034210A (ja) * | 2005-07-29 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP4523510B2 (ja) * | 2005-07-29 | 2010-08-11 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP4523511B2 (ja) * | 2005-07-29 | 2010-08-11 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007034211A (ja) * | 2005-07-29 | 2007-02-08 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007047467A (ja) * | 2005-08-10 | 2007-02-22 | Ricoh Co Ltd | 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ |
JP4570155B2 (ja) * | 2005-08-10 | 2010-10-27 | 株式会社リコー | 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ |
JP4568658B2 (ja) * | 2005-08-11 | 2010-10-27 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007047564A (ja) * | 2005-08-11 | 2007-02-22 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP4568659B2 (ja) * | 2005-08-16 | 2010-10-27 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007052091A (ja) * | 2005-08-16 | 2007-03-01 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
US7960081B2 (en) | 2005-08-18 | 2011-06-14 | Ricoh Company, Ltd. | Electrophotographic photoreceptor having N-alkoxymethylated nylon intermediate layer, and image forming apparatus having the electrophotographic photoreceptor |
JP4570045B2 (ja) * | 2005-08-18 | 2010-10-27 | 株式会社リコー | 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ |
JP2007052255A (ja) * | 2005-08-18 | 2007-03-01 | Ricoh Co Ltd | 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ |
JP2007102191A (ja) * | 2005-09-12 | 2007-04-19 | Ricoh Co Ltd | 静電潜像担持体及びその製造方法、並びに画像形成方法、画像形成装置及びプロセスカートリッジ |
US7871747B2 (en) | 2005-09-13 | 2011-01-18 | Ricoh Company, Ltd. | Electrophotographic photoconductor having charge blocking and moire preventing layers |
US8227156B2 (en) | 2005-09-13 | 2012-07-24 | Ricoh Company, Ltd. | Electrophotographic photoconductor, image forming apparatus, image forming method, and process cartridge |
JP2007108671A (ja) * | 2005-09-15 | 2007-04-26 | Ricoh Co Ltd | 電子写真感光体、画像形成装置及びプロセスカートリッジ |
JP2007108670A (ja) * | 2005-09-15 | 2007-04-26 | Ricoh Co Ltd | 電子写真感光体、画像形成装置、フルカラー画像形成装置及びプロセスカートリッジ |
JP2007161992A (ja) * | 2005-11-16 | 2007-06-28 | Kyocera Mita Corp | チタニルフタロシアニン結晶、その製造方法、及び電子写真感光体 |
JP2012246487A (ja) * | 2005-11-16 | 2012-12-13 | Kyocera Document Solutions Inc | チタニルフタロシアニン結晶、及び電子写真感光体 |
JP4615426B2 (ja) * | 2005-12-01 | 2011-01-19 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007155874A (ja) * | 2005-12-01 | 2007-06-21 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007156122A (ja) * | 2005-12-06 | 2007-06-21 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007156123A (ja) * | 2005-12-06 | 2007-06-21 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP4615429B2 (ja) * | 2005-12-06 | 2011-01-19 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP4615433B2 (ja) * | 2005-12-15 | 2011-01-19 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007163905A (ja) * | 2005-12-15 | 2007-06-28 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP4615434B2 (ja) * | 2005-12-16 | 2011-01-19 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007164008A (ja) * | 2005-12-16 | 2007-06-28 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2007212886A (ja) * | 2006-02-10 | 2007-08-23 | Ricoh Co Ltd | 静電潜像担持体及びその製造方法、並びに画像形成方法、画像形成装置及びプロセスカートリッジ |
JP4607027B2 (ja) * | 2006-02-10 | 2011-01-05 | 株式会社リコー | 静電潜像担持体及びその製造方法、並びに画像形成方法、画像形成装置及びプロセスカートリッジ |
JP2007286536A (ja) * | 2006-04-20 | 2007-11-01 | Ricoh Co Ltd | 電子写真感光体、画像形成装置及びプロセスカートリッジ |
JP4722758B2 (ja) * | 2006-04-20 | 2011-07-13 | 株式会社リコー | 電子写真感光体、画像形成装置及びプロセスカートリッジ |
US8192905B2 (en) | 2006-04-20 | 2012-06-05 | Ricoh Company, Ltd. | Electrophotographic photoconductor, image forming apparatus, and process cartridge |
JP4676918B2 (ja) * | 2006-04-27 | 2011-04-27 | 株式会社リコー | 画像形成装置及び画像形成方法 |
JP2007298568A (ja) * | 2006-04-27 | 2007-11-15 | Ricoh Co Ltd | 画像形成装置及び画像形成方法 |
JP2008122740A (ja) * | 2006-11-14 | 2008-05-29 | Ricoh Co Ltd | 電子写真感光体、画像形成装置及びプロセスカートリッジ |
JP2008224785A (ja) * | 2007-03-09 | 2008-09-25 | Ricoh Co Ltd | 画像形成装置及びプロセスカートリッジ |
CN111492309A (zh) * | 2017-12-20 | 2020-08-04 | 旭化成株式会社 | 感光性树脂层叠体 |
CN111492309B (zh) * | 2017-12-20 | 2023-12-12 | 旭化成株式会社 | 感光性树脂层叠体 |
Also Published As
Publication number | Publication date |
---|---|
JP4201746B2 (ja) | 2008-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4201746B2 (ja) | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ | |
JP4300279B2 (ja) | チタニルフタロシアニン結晶、チタニルフタロシアニン結晶の製造方法、電子写真感光体、電子写真方法、電子写真装置および電子写真装置用プロセスカートリッジ | |
JP3891485B2 (ja) | 電子写真装置 | |
EP1521126A1 (en) | Electrophotographic photoreceptor, method for manufacturing the electrophotographic photoreceptor, and image forming apparatus and process cartridge using the electrophotographic photoreceptor | |
JP4283213B2 (ja) | 画像形成装置及び画像形成方法 | |
JP4343052B2 (ja) | 電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ | |
JP4257854B2 (ja) | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ | |
JP4404358B2 (ja) | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ | |
JP3917087B2 (ja) | 分散液の作製方法、電子写真感光体、画像形成装置および画像形成装置用プロセスカートリッジ | |
JP3919191B2 (ja) | 電子写真装置 | |
JP3917082B2 (ja) | 分散液の作製方法、電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ | |
JP3834003B2 (ja) | 分散液の作製方法、電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ | |
JP4201753B2 (ja) | 画像形成装置 | |
JP3867121B2 (ja) | 電子写真装置 | |
JP4230340B2 (ja) | 画像形成装置 | |
JP2005189822A (ja) | 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ | |
JP4230895B2 (ja) | 画像形成装置 | |
JP4377315B2 (ja) | 画像形成装置 | |
JP4207210B2 (ja) | 画像形成装置及び画像形成方法 | |
JP4209759B2 (ja) | 画像形成装置 | |
JP4237607B2 (ja) | 画像形成装置 | |
JP4208148B2 (ja) | 画像形成装置及び画像形成方法 | |
JP2005165027A (ja) | 画像形成装置 | |
JP4209313B2 (ja) | 画像形成装置 | |
JP4480078B2 (ja) | 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080815 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080822 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081007 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4201746 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |