JP4615429B2 - 画像形成装置及び画像形成方法 - Google Patents
画像形成装置及び画像形成方法 Download PDFInfo
- Publication number
- JP4615429B2 JP4615429B2 JP2005351525A JP2005351525A JP4615429B2 JP 4615429 B2 JP4615429 B2 JP 4615429B2 JP 2005351525 A JP2005351525 A JP 2005351525A JP 2005351525 A JP2005351525 A JP 2005351525A JP 4615429 B2 JP4615429 B2 JP 4615429B2
- Authority
- JP
- Japan
- Prior art keywords
- charge
- layer
- image forming
- electrostatic latent
- latent image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Discharging, Photosensitive Material Shape In Electrophotography (AREA)
- Photoreceptors In Electrophotography (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
Description
アナログからデジタルへの変換は、ポジ・ポジ現像からネガ・ポジ現像に推移したとも言え、この大きな違いは、原稿に対して全面に光を照射し、これを感光体に照射していたことから、文字等の情報分だけを感光体に書き込むことに変化した点が挙げられる。これは、上述のように書き込み率が低いため、書き込み光源の寿命を考慮して、原稿情報部分(全体の10%以下程度)だけの使用に留めれば、光源の出力時間が1/10になることを利用している。
従って、帯電前の感光体表面電位(表面電荷)を如何に均一化するかが鍵であり、除電工程は高画質化のためには非常に重要な役割を担うようになってきた。
以上のことから、画像形成装置における除電工程には、光除電を用いることが現時点ではベストな選択であると言える。
即ち、ポジ・ポジ現像においては、転写後の光除電においては、通常感光体全面に光照射がなされるものの、文字等の書き込み部に対応した領域のみが実質的に除電される。このため、感光体の全面積に対して、高々10%程度の領域である。
即ち、従来用いられてきたポジ・ポジ現像とネガ・ポジ現像においては、感光体の表面電荷を打ち消す割合が全く異なる(逆の履歴になる)ことを意味しており、ポジ・ポジ現像の場合に比べて、除電による影響は、最低10倍程度は異なることになる。しかしながら、感光体への除電工程での影響(特に除電光波長など)に関する検討は、あまり行われておらず、従来のまま使用されてきたのが実情である。
更に、特許文献12には、フタロシアニン化合物を含有する感光体に対して、蛍光灯による除電を行うことが記載されている。
これらを解決するためのアプローチ方法は色々あると考えられるが、両者に共通して言えることは、これら画像形成装置に使用される感光体の静電疲労による劣化を如何に小さくするかと言える。具体的には、繰り返し使用時の残留電位(露光部電位)の上昇を如何に抑えるかということである。
画像形成装置における繰り返し使用において、感光体の静電特性以外の形状・物性に影響をなるべく与えないように、現像、転写およびクリーニング部材を外した状態で、帯電、書き込み、除電だけを印加する状態で、感光体の静電疲労試験を実施した。
(1)書き込み光による書き込み率を変化させ、その際の感光体通過電荷量を測定した。
(2)書き込みを行わず、除電光のみで表面電荷を消去して、感光体の通過電荷量を測定した。
(1)感光体の残留電位上昇は、感光体の通過電荷量に依存する。書き込み率を変えた場合でも、通過電荷量で整理すると残留電位上昇量が一様に揃う。
(2)感光体の通過電荷量は、画像形成1サイクルにおける光照射量に依存する。書き込み、除電に依らず、光照射量(正確には感光体光吸収量)に依存する。
(3)ネガ・ポジ現像の場合には、光照射量のうち、大半は光除電により照射量が与えられる。
この状態で静電疲労試験を実施すると、感光体の残留電位上昇量が非常に小さくなり、書き込み率に依存した大きさになり、除電の影響は全く現れなくなった。
(4)除電前に感光体表面電位を低下させておくと、残留電位上昇が起こりにくくなる。言い換えれば、除電突入時に感光体表面電位が低ければ、除電光の照射は、残留電位上昇に寄与しない。
(5)逆バイアスを印加し、除電前に感光体表面電位を低下させた場合でも、上記(1)と同じく、感光体通過電荷量で残留電位上昇量が整理できる。
(1)〜(5)から、残留電位上昇は感光体の通過電荷量に依存するが、そのほとんどが除電工程にて生成されており、除電工程を如何に制御するかが、残留電位上昇をコントロールする一つの鍵となる。
従って、ターゲットとする画像形成装置に搭載される感光体の通過電荷量は、極端に大きく変化せず、光照射量に大きく依存することになる。
(1)電荷輸送層あるいは保護層に光の一部が吸収されてしまうため、電荷発生層に十分な光が届かない場合が存在し、光量を非常に大きくしなければならない場合が存在した。
(2)電荷輸送層あるいは保護層に含有される電荷輸送物質が除電光を吸収した結果、電荷輸送物質が劣化し、感光体の静電特性に影響を与える場合が存在した。
上述のような知見を得て、本発明者は本発明を完成するに至った。
本発明者は、特定の保護層を使用することにより、これを用いた感光体の繰り返し使用における静電特性の劣化を大きく制御できることを見いだした。
(1)静電潜像担持体と、該静電潜像担持体上に静電潜像を形成する静電潜像形成手段と、該静電潜像をトナーを用いて現像して可視像を形成する現像手段と、該可視像を記録媒体に転写する転写手段と、記録媒体に転写された転写像を定着させる定着手段と、静電潜像担持体の残留電荷を光除電する除電手段とを少なくとも有する画像形成装置であって、前記除電手段が500nm未満の波長領域にのみ発光強度を有する光を照射する除電手段であると共に、画像書き込み光源が655nmもしくは780nmのレーザーダイオードであり、前記静電潜像担持体が、支持体と、該支持体上に少なくとも電荷発生層と電荷輸送層とからなる感光層、更に感光層上に保護層を有し、該電荷発生層中に有機電荷発生物質を含有し、かつ保護層が比抵抗1010Ω・cm以上の無機顔料及び金属酸化物から選択される少なくともいずれかと電荷輸送物質を含むことを特徴とする画像形成装置。
(3)前記アゾ顔料のCp1とCp2が互いに異なるものであることを特徴とする前記第(2)項に記載の画像形成装置。
(7)前記電荷ブロッキング層が絶縁性材料からなり、その膜厚が2.0μm未満、0.3μm以上であることを特徴とする前記第(6)項に記載の画像形成装置。
(8)前記モアレ防止層が無機顔料とバインダー樹脂を含有し、両者の容積比が1/1乃至3/1の範囲であることを特徴とする前記第(6)項又は第(7)項に記載の画像形成装置。
(10)静電潜像担持体と、静電潜像形成手段、現像手段、除電手段及びクリーニング手段から選択される1つ以上の手段とが一体となり、装置本体と着脱自在なプロセスカートリッジを搭載していることを特徴とする前記第(1)項乃至第(9)項のいずれかに記載の画像形成装置。
従って、本発明における除電光としての500nmよりも短波長の除電光とは、500nm以上の長波長側の光を含まない光であることを示している(以降、500nm未満の除電光と記す場合がある)。
図2には、有機材料(有機電荷発生物質)の光キャリア発生機構を示す。ここまでに知られている有機材料の光キャリア発生機構は、そのほとんどが図2に示すような2段階(光励起→中間体の生成→フリーキャリアの生成)からなる反応に基づく。この際、有機電荷発生物質は光吸収し、より高い励起状態に励起されるものの、中間体の生成はある一定のエネルギーレベルから起こる。この一定のエネルギーレベルが、最低励起一重項状態(S1)である。基底状態(S0)と最低励起一重項状態(S1)の間よりも小さなエネルギー(長い波長の光)を照射された場合には、光キャリアはほとんど生成しない。
このモデルは、有機系感光体の光キャリア発生効率の波長依存性がない結果から、支持されている。
光励起により、バンドギャップに相当するエネルギーを得た電子は、価電子帯で自由に動けることが出来、フリーキャリアとして存在する。この際、伝導帯の領域では、直接イオン化して、フリーキャリアになるのが特徴である。従って、図2のようにエネルギーギャップよりも大きなエネルギーを得た場合、キャリア発生効率(イオン解離効率)が向上するが、余剰エネルギーは生じない。この点が、有機系感光体の光キャリア発生機構と大きく異なる点である。
このような無機系のモデルは、無機系感光体のキャリア発生効率が励起光に対する波長依存性を示す結果からも支持されている。
即ち、上述のように除電工程における光キャリア発生において、有機系感光体の場合には除電光波長に対するキャリア発生量は変わらないが(量子効率の波長依存性がない)、キャリア1つが発生した際の余剰エネルギーが波長依存性を有する。つまり、除電光波長が短いほど、感光体内部に発生する余剰エネルギー量が多くなる。
従って、本発明のように500nmよりも短波長の除電光を照射した場合に、有機系感光体では、従来のような可視光領域の除電を行う場合と比較して、キャリア発生量が変わらないものの、余剰エネルギーを多く獲得することが出来る。この余剰エネルギーを利用して、感光層内にトラップされた電荷を脱トラップする活性化エネルギーとして利用するものである。
本発明の画像形成装置は、少なくとも電荷発生層と電荷輸送層からなる積層感光層及び保護層を有する静電潜像担持体における電荷発生層に有機電荷発生物質を含有し、かつ保護層が比抵抗1010Ω・cm以上の無機顔料及び金属酸化物から選択される少なくともいずれかと電荷輸送物質含有する静電潜像担持体と、静電潜像形成手段と、現像手段と、転写手段と、定着手段、500nmよりも短波長の光源を有する除電手段とを少なくとも有してなり、更に必要に応じて適宜選択したその他の手段、例えば、クリーニング手段、リサイクル手段、制御手段等を有してなる。
前記静電潜像担持体としては、電荷発生層に有機電荷発生物質を含有し、かつ保護層が比抵抗1010Ω・cm以上の無機顔料及び金属酸化物から選択される少なくともいずれかと電荷輸送物質含有することを必須要件とする以外は、その材質、形状、構造、大きさ、等について特に制限はなく、公知のものの中から適宜選択することができる。前記支持体としては、導電性を有する導電性支持体が好ましい。
図4は、本発明に用いられる電子写真感光体の構成例を示す断面図であり、支持体(31)上に、電荷発生物質として少なくとも有機電荷発生物質を主成分とする電荷発生層(35)と、電荷輸送物質を主成分とする電荷輸送層(37)とが積層され、更に電荷輸送層上に比抵抗1010Ω・cm以上の無機顔料及び金属酸化物から選択される少なくともいずれかと電荷輸送物質含有する保護層(41)を積層した構成をとっている。
中でも、中間層に酸化チタンを含有する場合、本発明の効果を顕著にするものであり、最も有効に使用できる。また、この酸化チタンを含有する中間層が以降に示す電荷発生層と接触した状態で存在する場合には、最も効果が顕著になり、その感光体構成が最も適当である。
中でも、成膜性、環境安定性、溶剤耐性の点などから、ポリアミドが最も良好に用いられる。
また、整流性のある導電性高分子や、帯電極性に合わせてアクセプター(ドナー)性の樹脂・化合物などを加えて、基体からの電荷注入を制抑するなどの機能を持たせても良い。
また、モアレ防止層の膜厚は1〜10μm、好ましくは2〜5μmとするのが適当である。膜厚が1μm未満では効果の発現性が小さく、10μmを越えると残留電位の蓄積を生じるので望ましくない。
電荷発生層35は、電荷発生物質としての有機電荷発生物質を主成分とする層である。有機電荷発生物質を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これを導電性支持体上に塗布し、乾燥することにより形成される。
有機電荷発生物質としては、公知の材料を用いることができる。例えば、金属フタロシアニン、無金属フタロシアニン等のフタロシアニン系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾール骨格を有するアゾ顔料、トリフェニルアミン骨格を有するアゾ顔料、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料、フルオレノン骨格を有するアゾ顔料、オキサジアゾール骨格を有するアゾ顔料、ビススチルベン骨格を有するアゾ顔料、ジスチリルオキサジアゾール骨格を有するアゾ顔料、ジスチリルカルバゾール骨格を有するアゾ顔料、ペリレン系顔料、アントラキノン系または多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾール系顔料などが挙げられる。これらの電荷発生物質は、単独または2種以上の混合物として用いることができる。
即ち、出来る限り粒子を微細にした分散液を作製後、適当なフィルターで濾過してしまう方法である。分散液の作製に関しては一般的な方法が用いられ、有機電荷発生物質を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、ビーズミル、超音波などを用いて分散することで得られるものである。この際、バインダー樹脂は感光体の静電特性などにより、また溶媒は顔料へのぬれ性、顔料の分散性などにより選択すればよい。
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジエン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
電荷輸送物質の量は結着樹脂100重量部に対し、20〜300重量部、好ましくは40〜150重量部が適当である。また、電荷輸送層の膜厚は5〜100μm程度とすることが好ましい。
また、トリアリールアミン骨格を有する電荷輸送物質の中でも、下記(III)式で表される電荷輸送物質は特に有効に使用される。
本発明に用いられる有効な保護層としては、比抵抗1010Ω・cm以上の無機顔料及び金属酸化物から選択される少なくともいずれかと電荷輸送物質を含む構成からなるものである。
保護層中のフィラー濃度は使用するフィラー種により、また感光体を使用する電子写真プロセス条件によっても異なるが、保護層の最表層側において全固形分に対するフィラーの比で5重量%以上、好ましくは10重量%以上、50重量%以下、好ましくは30重量%以下程度が良好である。また、使用するフィラーの体積平均粒径は、0.1μm〜2μmの範囲が良好に使用され、好ましくは0.3μm〜1μmの範囲である。この場合、平均粒径が小さすぎると耐摩耗性が充分に発揮されず、大きすぎると塗膜の表面性が悪くなったり、塗膜そのものが形成できなかったりするからである。
もう一つの理由としては、フィラー、特に金属酸化物の表面における帯電性の違いによるものである。通常、液体中に分散している粒子はプラスあるいはマイナスに帯電しており、それを電気的に中性に保とうとして反対の電荷を持つイオンが集まり、そこで電気二重層が形成されることによって粒子の分散状態は安定化している。粒子から遠ざかるに従いその電位(ゼータ電位)は徐々に低くなり、粒子から充分に離れて電気的に中性である領域の電位はゼロとなる。したがって、ゼータ電位の絶対値の増加によって粒子の反発力が高くなることによって安定性は高くなり、ゼロに近づくに従い凝集しやすく不安定になる。一方、系のpH値によってゼータ電位は大きく変動し、あるpH値において電位はゼロとなり等電点を持つことになる。したがって、系の等電点からできるだけ遠ざけて、ゼータ電位の絶対値を高めることによって分散系の安定化が図られることになる。
ここで、本発明におけるフィラーのpHは、ゼータ電位から等電点におけるpH値を記載した。この際、ゼータ電位の測定は、大塚電子(株)製レーザーゼータ電位計にて測定した。
フィラーの誘電率は以下のように測定した。上述のような比抵抗の測定と同様なセルを用い、荷重をかけた後に、静電容量を測定し、これより誘電率を求めた。静電容量の測定は、誘電体損測定器(安藤電気)を使用した。
これらフィラー材料は、適当な分散機を用いることにより分散できる。また、保護層の透過率の点から使用するフィラーは一次粒子レベルまで分散され、凝集体が少ないほうが好ましい。
このような保護層の形成法としては通常の塗布法が採用される。尚、上述した保護層の厚さは0.1〜10μm程度が適当である。
保護層の透過率は電荷輸送層と同様な方法で測定される。即ち、感光体に使用する保護層を単独で形成し、これを市販の分光光度計により分光吸収スペクトルを測定する。スペクトルから画像形成装置に使用する除電光の波長における透過率を求めることにより得られる。
この様な場合に透過率は、電荷輸送層と保護層を積層した状態の塗膜を上述のように分光吸収スペクトルを測定することにより求めることが出来る。
(フェノール系化合物)
2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2'−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2,2'−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4,4'−チオビス−(3−メチル−6−t−ブチルフェノール)、4,4'−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3',5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3'−ビス(4'−ヒドロキシ−3'−t−ブチルフェニル)ブチリックアシッド]クリコ−ルエステル、トコフェロール類など。
N−フェニル−N'−イソプロピル−p−フェニレンジアミン、N,N'−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N−sec−ブチル−p−フェニレンジアミン、N,N'−ジ−イソプロピル−p−フェニレンジアミン、N,N'−ジメチル−N,N'−ジ−t−ブチル−p−フェニレンジアミンなど。
(ハイドロキノン類)
2,5−ジ−t−オクチルハイドロキノン、2,6−ジドデシルハイドロキノン、2−ドデシルハイドロキノン、2−ドデシル−5−クロロハイドロキノン、2−t−オクチル−5−メチルハイドロキノン、2−(2−オクタデセニル)−5−メチルハイドロキノンなど。
ジラウリル−3,3'−チオジプロピオネート、ジステアリル−3,3'−チオジプロピオネート、ジテトラデシル−3,3'−チオジプロピオネートなど。
(有機燐化合物類)
トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2,4−ジブチルフェノキシ)ホスフィンなど。
これら化合物は、ゴム、プラスチック、油脂類などの酸化防止剤として知られており、市販品を容易に入手できる。本発明における酸化防止剤の添加量は、添加する層の総重量に対して0.01〜10重量%である。
前記静電潜像の形成は、例えば、前記静電潜像担持体の表面を一様に帯電させた後、像様に露光することにより行うことができ、前記静電潜像形成手段により行うことができる。
前記静電潜像形成手段は、例えば、前記静電潜像担持体の表面を一様に帯電させる帯電器と、前記静電潜像担持体の表面を像様に露光する露光器とを少なくとも備える。
前記帯電器としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、導電性又は半導電性のロール、ブラシ、フィルム、ゴムブレード等を備えたそれ自体公知の接触帯電器、コロトロン、スコロトロン等のコロナ放電を利用した非接触帯電器(感光体表面と帯電器との間に100μm以下の空隙を有する近接方式の非接触帯電器を含む)、などが挙げられる。
<数式(1)>
電界強度(V/μm)=SV/G
ただし、前記数式(1)中、SVは、現像位置における静電潜像担持体の未露光部における表面電位の絶対値(V)を表す。Gは、少なくとも感光層(電荷発生層及び電荷輸送層)を含む感光層の膜厚(μm)を表す。
使用する光源(書き込み光)の解像度により、形成される静電潜像ひいてはトナー像の解像度が決定され、解像度が高いほど鮮明な画像が得られる。しかしながら、解像度を高くして書き込みを行うとそれだけ書き込みに時間がかかることになるため、書き込み光源が1つであると書き込みがドラム線速(プロセス速度)の律速になってしまう。従って、書き込み光源が1つの場合には2400dpi程度の解像度が上限となる。書き込み光源が複数の場合には、それぞれが書き込み領域を負担すれば良く、実質的には「2400dpi×書き込み光源個数」が上限となる。これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、良好に使用される。
前記現像は、前記静電潜像をトナーを用いて現像して可視像を形成することにより行うことができる。前記トナーは、感光体の帯電極性と同極性のトナーを用いられ、反転現像(ネガ・ポジ現像)によって、静電潜像が現像される。また、トナーのみで現像を行う1成分方式と、トナー及びキャリアからなる2成分現像剤を使用した2成分方式の2通りの方法があるが、いずれの場合にも良好に使用できる。
前記転写手段は、前記可視像を記録媒体に転写する手段であるが、感光体表面から記録媒体に可視像を直接転写する方法と、中間転写体を用い、該中間転写体上に可視像を一次転写した後、該可視像を前記記録媒体上に二次転写する方法がある。いずれの態様も良好に使用することができるが、高画質化に際して転写による悪影響が大きいような場合には、転写回数が少ない前者(直接転写)の方法が好ましい。
この通過電荷量とは、感光体の膜厚方向を流れる電荷量に相当する。感光体の画像形成装置中の動作として、メイン帯電器により所望の帯電電位に帯電され(ほとんどの場合負帯電される)、原稿に応じた入力信号に基づき光書き込みが行われる。この際、書き込みが行われた部分は光キャリアが発生し、表面電荷を中和する(電位減衰する)。この時、光キャリア発生量に依存した電荷量が感光体膜厚方向に流れる。一方、光書き込みが行われない領域(非書き込み部)は、現像工程及び転写工程を経て、除電工程に進む(必要に応じて、その前にクリーニング工程が施される)。ここで、感光体の表面電位がメイン帯電により施された電位に近い状態(暗減衰分は除く)であると、光書き込みが行われた領域とほぼ同じ量の電荷量が感光体膜厚方向に流れることになる。一般的に、現在の原稿は書き込み率が低いため、この方式であると、繰り返し使用における感光体の通過電荷量は除電工程で流れる電流がほとんどと言うことになる(書き込み率が10%であるとすると、除電工程で流れる電流は、全体の9割を占めることになる)。
以上のような制御を加えることは、本発明における効果を顕著なものとして、有効に使用できるものである。
前記定着は、記録媒体に転写された可視像を、定着装置を用いて定着され、各色のトナーに対し前記記録媒体に転写する毎に行ってもよいし、各色のトナーに対しこれを積層した状態で一度に同時に行ってもよい。
前記定着装置としては、特に制限はなく、目的に応じて適宜選択することができるが、公知の加熱加圧手段が好適である。前記加熱加圧手段としては、加熱ローラと加圧ローラとの組み合わせ、加熱ローラと加圧ローラと無端ベルトとの組み合わせ、などが挙げられる。前記加熱加圧手段における加熱は、通常、80℃〜200℃が好ましい。なお、本発明においては、目的に応じて、前記定着工程及び定着手段と共にあるいはこれらに代えて、例えば、公知の光定着器を用いてもよい。
前記除電手段としては、500nm未満(好ましくは480nm未満、より好ましくは450nm未満)の波長を有し、前記静電潜像担持体に対し除電を行うことが出来れば良く、公知の除電器の中から適宜選択することができ、例えば、半導体レーザー(LD)、エレクトロルミネッセンス(EL)等が好適に挙げられる。
半導体レーザー(LD)、エレクトロルミネッセンス(EL)等の光源には、500nm未満に発振波長を有する半導体レーザー(LD)、エレクトロルミネッセンス(EL)等、あるいは蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、キセノンランプ等と発光が500nm未満に制限できるような適当な光学フィルターと組み合わせたもの等を用いることができる。前記光学フィルターとは、所望の波長域の光(500nm未満)のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
また、上記材料を用いたLEDランプ等も上市されており、これらも有効に使用することが出来る。
前記クリーニング手段としては、特に制限はなく、前記静電潜像担持体上に残留する前記電子写真トナーを除去することができればよく、公知のクリーナの中から適宜選択することができ、例えば、磁気ブラシクリーナ、静電ブラシクリーナ、磁気ローラクリーナ、ブレードクリーナ、ブラシクリーナ、ウエブクリーナ等が好適に挙げられる。
前記リサイクル手段は、前記クリーニング手段により除去した前記電子写真用カラートナーを前記現像手段にリサイクルさせる工程であり、例えば、公知の搬送手段等が挙げられる。
前記制御手段は、前記各工程を制御する工程であり、制御手段により好適に行うことができる。
前記制御手段としては、前記各手段の動きを制御することができる限り特に制限はなく、目的に応じて適宜選択することができ、例えば、シークエンサー、コンピュータ等の機器が挙げられる。
図10は、本発明の画像形成装置を説明するための概略図であり、後に示すような変形例も本発明の範疇に属するものである。
図10において、静電潜像担持体としての感光体(1)は支持体上に少なくとも有機系電荷発生物質を含有する電荷発生層と、電荷輸送物質が含有される電荷輸送層からなる積層感光層と、比抵抗1010Ω・cm以上の無機顔料及び金属酸化物から選択される少なくともいずれかと電荷輸送物質含有する保護層が設けられてなる。感光体(1)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
また上述のように発振波長が、450nmより短波長のレーザー光を用いることは有効な手段である。
現像ユニット(6)では、感光体の帯電極性と同極性のトナーが使用され、反転現像(ネガ・ポジ現像)によって、静電潜像が現像される。先の画像露光部に使用する光源によっても異なるが、近年使用するデジタル光源の場合には、一般的に画像面積率が低いことに対応して、書込部分にトナー現像を行う反転現像方式が光源の寿命等を考慮すると有利である。また、トナーのみで現像を行う1成分方式と、トナー及びキャリアからなる2成分現像剤を使用した2成分方式の2通りの方法があるが、いずれの場合にも良好に使用できる。
このような転写部材は、構成上、本発明の構成を満足できるものであれば、公知のものを使用することができる。
また、前述のように転写電流を制御することで、転写後の感光体表面電位(書き込み光の未露光部)を低下させておくことは、画像形成1サイクルあたりの感光体通過電荷量を低減することが出来、本発明においては有効に使用される。
半導体レーザー(LD)、エレクトロルミネッセンス(EL)等の光源には、500nm未満に発振波長を有する半導体レーザー(LD)、エレクトロルミネッセンス(EL)等、あるいは蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、キセノンランプ等と発光が500nm未満に制限できるような適当な光学フィルターと組み合わせたもの等を用いることができる。前記光学フィルターとは、所望の波長域の光(500nm未満)のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
使用する波長の下限値としては、感光体に使用される電荷輸送層や保護層の透過率によって異なるが、概ね300〜350nmが下限となる。
また、現像ユニット(6)により感光体(1)上に現像されたトナーは、転写紙(9)に転写されるが、感光体(1)上に残存するトナーが生じた場合、ファーブラシ(14)及びクリーニングブレード(15)により、感光体より除去される。クリーニングは、クリーニングブラシだけで行われることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。
図11において、符号(16Y)、(16M)、(16C)、(16K)はドラム状の感光体であり、感光体は支持体上に少なくとも有機系電荷発生物質を含有する電荷発生層と、電荷輸送物質が含有される電荷輸送層からなる積層感光層と、比抵抗1010Ω・cm以上の無機顔料及び金属酸化物から選択される少なくともいずれかと電荷輸送物質含有する保護層が設けられてなる。
また、転写部で転写されずに各感光体(16Y)、(16M)、(16C)、(16K)上に残った残留トナーは、クリーニング装置(20Y)、(20M)、(20C)、(20K)で回収される。
なお、図11の例では画像形成要素は転写紙搬送方向上流側から下流側に向けて、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の色の順で並んでいるが、この順番に限るものではなく、色順は任意に設定されるものである。また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素((25Y)、(25M)、(25C))が停止するような機構を設けることは本発明に特に有効に利用できる。
まず、本発明に用いたアゾ顔料及びチタニルフタロシアニン結晶の合成方法について述べる。以下の実施例で使用するアゾ顔料は、特公平60−29109号公報及び特許第3026645号公報に記載の方法に準じて作製したものである。また、チタニルフタロシアニン結晶は、以下に示すように特開2001−19871号公報及び特開2004−83859号公報に準じて作製した。
(合成例1)
特開2001−19871号公報、合成例1に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン29.2gとスルホラン200mlを混合し、窒素気流下でチタニウムテトラブトキシド20.4gを滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行った。反応終了後、放冷した後、析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、次にメタノールで数回洗浄し、更に80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶を濾過し、次いで、洗浄液が中性になるまでイオン交換水(pH:7.0、比伝導度:1.0μS/cm)により水洗いを繰り返し(洗浄後のイオン交換水のpH値は6.8、比伝導度は2.6μS/cmであった)、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。得られたこのウェットケーキ(水ペースト)40gをテトラヒドロフラン200gに投入し、4時間攪拌を行った後、濾過を行い、乾燥して、チタニルフタロシアニン粉末を得た。これを顔料1とする。
前記ウェットケーキの固形分濃度は、15質量%であった。結晶変換溶媒は、前記ウェットケーキに対する質量比で33倍の量を用いた。なお、合成例1の原材料には、ハロゲン含有化合物を使用していない。
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°〜40°
時定数:2秒
−チタニルフタロシアニン結晶の合成−
特開2004−83859号公報、実施例1の方法に従って、チタニルフタロシアニン顔料の水ペーストを合成し、次のように結晶変換を行い、先の合成例1よりも一次粒子の小さなフタロシアニン結晶を得た。
先の合成例1で得られた結晶変換前の水ペースト60質量部にテトラヒドロフラン400質量部を加え、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行った。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶8.5質量部を得た。これを顔料2とする。合成例2の原材料には、ハロゲン含有化合物を使用していない。前記ウェットケーキの固形分濃度は、15質量%であった。結晶変換溶媒は、前記ウェットケーキに対する質量比で44倍の量を用いた。
上述のように観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定する。測定した30個体の長径の算術平均を求めて、平均粒子径とした。以上の方法により求められた合成例1における水ペースト(ウェットケーキ)中の平均粒子径は、0.06μmであった。
合成例1で作製した顔料1を下記組成の処方にて、下記に示す条件にて分散を行い電荷発生層用塗工液として、分散液を作製した。
チタニルフタロシアニン顔料(顔料1) 15部
ポリビニルブチラール(積水化学製:BX−1) 10部
2−ブタノン 280部
市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノン及び顔料を全て投入し、ローター回転数1200r.p.m.にて30分間分散を行い、分散液を作製した。これを分散液1とした。
分散液作製例1で使用した顔料1に変えて、それぞれ合成例2で作製した顔料2を使用して、分散液作製例1と同じ条件にて分散液を作製した。これを分散液2とした。
(分散液作製例3)
分散液作製例1で作製した分散液1を、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行った。濾過に際しては、ポンプを使用し、加圧状態で濾過を行った。これを分散液3とした。
(分散液作製例4)
分散液作製例3で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−3−CS(有効孔径3μm)に変えた以外は、分散液作製例3と同様に加圧濾過を行い分散液を作製した。これを分散液4とした。
下記組成の処方にて、下記に示す条件にて分散を行い、電荷発生層用塗工液として、分散液を作製した。
下記構造のアゾ顔料 5部
シクロヘキサノン 250部
2−ブタノン 100部
ボールミル分散機に直径10mmのPSZボールを用い、ポリビニルブチラールを溶解した溶媒およびアゾ顔料を全て投入し、回転数85r.p.m.にて7日間分散を行ない、分散液を作製した(分散液5とする)。
分散液作製例5で使用したアゾ顔料を下記構造のものに変更した以外は、分散液作製例5と同様に分散液を作製した(分散液6とする)。
φ30mmのアルミドラム(JIS 1050)上に、下記組成の中間層塗工液、電荷発生層塗工液、電荷輸送層塗工液および保護層塗工液を、順次塗布・乾燥し、3.5μmの中間層、0.5μmの電荷発生層、22μmの電荷輸送層、3μmの保護層を形成し、積層感光体を作製した(電子写真感光体1とする)。
◎中間層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 112部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 260部
先に作製した分散液1を用いた。
◎電荷輸送層塗工液
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
以上のように作製した電子写真感光体1を図10に示すような画像形成装置に搭載し、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)、帯電部材としてスコロトロン帯電器、転写部材として転写ベルトを用い、除電光源として428nmLED(ローム製:半値幅65nm)を用いた。試験前のプロセス条件が下記になるように設定し、書き込み率6%のチャート(A4全面に対して、画像面積として6%相当の文字が平均的に書かれている)を用い、連続5万枚印刷を行った。
感光体帯電電位(未露光部電位): −900V
現像バイアス: −650V(ネガ・ポジ現像)
除電後表面電位(書き込み光未露光部): −100V
測定方法としては、図10に示す現像部位置に、表面電位計を搭載し、感光体を−900Vに帯電した後、上記半導体レーザーでベタ書込みを行ない、現像部位における未露光部表面電位及び露光部電位を測定した。結果を表3に示す。
実施例1における除電光源として、472nmLED(星和電機製:半値幅15nm)に変更した以外は、実施例1と同様に評価を行った。除電後の感光体表面電位が、実施例1の場合と同じになるように、除電光量を調整した。結果を表3に示す。
実施例1における除電光源として、502nmLED(星和電機製:半値幅15nm)に変更した以外は、実施例1と同様に評価を行った。除電後の感光体表面電位が、実施例1の場合と同じになるように、除電光量を調整した。結果を表3に示す。
(比較例2)
実施例1における除電光源として、591nmLED(ローム製:半値幅15nm)に変更した以外は、実施例1と同様に評価を行った。除電後の感光体表面電位が、実施例1の場合と同じになるように、除電光量を調整した。結果を表3に示す。
実施例1における除電光源として、630nmLED(ローム製:半値幅20nm)に変更した以外は、実施例1と同様に評価を行った。除電後の感光体表面電位が、実施例1の場合と同じになるように、除電光量を調整した。結果を表3に示す。
(比較例4)
実施例1における除電光源として、蛍光灯(図1に示す発光スペクトルを有する)に変更した以外は、実施例1と同様に評価を行った。除電後の感光体表面電位が、実施例1の場合と同じになるように、除電光量を調整した。結果を表3に示す。
(比較例5)
実施例1における除電光源として、428nmLED(ローム製:半値幅65nm)及び630nmLED(ローム製:半値幅20nm)の2つを用いてほぼ同等の光量を同時に照射するように変更した以外は、実施例1と同様に評価を行った。除電後の感光体表面電位が、実施例1の場合と同じになるように、除電光量を調整した。結果を表3に示す。
また、発光分布が広く、500nm以上の長波長光の成分を含む場合(比較例4)では、実施例ほどの明確な効果が得られていない。また、露光波長の異なる2種類の光源を用いた場合(比較例5)では、短波長光源による除電の効果が低減されていることが分かる。
感光体作製例1において、電荷発生層塗工液として、先に作製した分散液2を用いた以外は、感光体作製例1と同様に感光体を作製した(電子写真感光体2とする)。
実施例1において、使用した電子写真感光体1の代わりに、電子写真感光体2を用いた以外は、実施例1と同様に評価を行った。結果を表4に示す。
(実施例4)
実施例2において、使用した電子写真感光体1の代わりに、電子写真感光体2を用いた以外は、実施例2と同様に評価を行った。結果を表4に示す。
比較例1において、使用した電子写真感光体1の代わりに、電子写真感光体2を用いた以外は、比較例1と同様に評価を行った。結果を表4に示す。
(比較例7)
比較例2において、使用した電子写真感光体1の代わりに、電子写真感光体2を用いた以外は、比較例2と同様に評価を行った。結果を表4に示す。
比較例3において、使用した電子写真感光体1の代わりに、電子写真感光体2を用いた以外は、比較例3と同様に評価を行った。結果を表4に示す。
(比較例9)
比較例4において、使用した電子写真感光体1の代わりに、電子写真感光体2を用いた以外は、比較例4と同様に評価を行った。結果を表4に示す。
(比較例10)
比較例5において、使用した電子写真感光体1の代わりに、電子写真感光体2を用いた以外は、比較例5と同様に評価を行った。結果を表4に示す。
また、発光分布が広く、500nm以上の長波長光の成分を含む場合(比較例9)では、実施例ほどの明確な効果が得られていない。また、露光波長の異なる2種類の光源を用いた場合(比較例10)では、短波長光源による除電の効果が低減されていることが分かる。
感光体作製例1における電荷発生層塗工液(分散液1)を、分散液3に変更した以外は、感光体作製例1と同様に感光体を作製した(電子写真感光体3とする)。
(感光体作製例4)
感光体作製例1における電荷発生層塗工液(分散液1)を、分散液4に変更した以外は、感光体作製例1と同様に感光体を作製した(電子写真感光体4とする)。
実施例1と同じ条件で、電子写真感光体1の代わりに電子写真感光体3を用いて評価を行った。また、5万枚の画像出力後に、白ベタの画像を出力して、地汚れの評価を実施した。実施例1及び3の結果と併せて表5に示す。
(実施例6)
実施例1と同じ条件で、電子写真感光体1の代わりに電子写真感光体4を用いて評価を行った。また、5万枚の画像出力後に、白ベタの画像を出力して、地汚れの評価を実施した。結果を表5に示す。
感光体作製例1における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、感光体作製例1と同様に感光体を作製した(電子写真感光体5とする)。
酸化チタン微粒子 4部
(比抵抗:1.5×1010Ω・cm、平均一次粒径:0.5μm)
(感光体作製例6)
感光体作製例1における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、感光体作製例1と同様に感光体を作製した(電子写真感光体6とする)。
酸化錫−酸化アンチモン粉末 4部
(比抵抗:106Ω・cm、平均1次粒径0.4μm)
感光体作製例1における保護層塗工液を以下の組成のものに変更した以外は、感光体作製例1と同様に感光体を作製した(電子写真感光体7とする)。
◎保護層塗工液
ポリカーボネート(TS2050:帝人化成社製) 10部
アルミナ微粒子 4部
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
感光体作製例5における保護層塗工液を下記組成のものに変更した以外は、感光体作製例5と同様に電子写真感光体を作製した(電子写真感光体8とする)。
◎保護層塗工液
下記構造式の高分子電荷輸送物質 17部
(重量平均分子量:約140000)
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
感光体作製例1における保護層塗工液を下記組成のものに変更した以外は、感光体作製例1と同様に電子写真感光体を作製した(電子写真感光体9とする)。
◎保護層塗工液
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
酸化防止剤(サノール LS2626:三共化学社製) 1部
ポリカルボン酸化合物(BYK P104:ビックケミー社製) 0.4部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
以上のように作製した電子写真感光体5を図10に示すような画像形成装置に搭載し、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)、帯電部材としてスコロトロン帯電器、転写部材として転写ベルトを用い、除電光源として428nmLED(ローム製:半値幅65nm)を用いた。試験前のプロセス条件が下記になるように設定し、書き込み率6%のチャートを用い、連続5万枚印刷を行ない、実施例1との比較を行った。
感光体帯電電位(未露光部電位): −900V
現像バイアス: −650V(ネガ・ポジ現像)
除電後表面電位(書き込み光未露光部): −100V
(1)表面電位測定
評価は、5万枚の画像印刷前後における感光体露光部電位を測定した。
測定方法としては、図10に示す現像部位置に、表面電位計を搭載し、感光体を−900Vに帯電した後、上記半導体レーザーでベタ書込みを行ない、現像部位における未露光部表面電位及び露光部電位を測定した。結果を表6に示す。
また、5万枚の画像出力後(表面電位測定終了後)に、白ベタの画像を出力して、地汚れの評価を実施した(22℃−50%RH)。地汚れ評価は、前述の4段階のランク評価にて、評価を実施した。結果を表6に示す。
更に、地汚れ評価後に、低温低湿環境下(10℃、15%RH)で、図15に示すようなテストチャートを用い、実施例1と同じ条件下で、黒ベタ部から白ベタ部の方向で画像出力し、連続50枚の印刷を実施し、クリーニング性の評価を実施した。この際、50枚目の白ベタ部の画像を目視にて評価した。評価は4段階にて行ない、極めて良好なもの(クリーニング不良全くなし)を◎、良好なもの(うっすらと黒スジが入るレベル、長手方向で1〜2カ所)を○、やや劣るもの(うっすらと黒スジが入るレベル、長手方向で3〜4カ所)を△、非常に悪いもの(明確に黒スジが入るレベル)を×で表わした。結果を表6に示す。
先のクリーニング性試験に引き続き、高温高湿環境(30℃−90%RH)にて、更に1000枚の通紙試験(先の6%チャーと使用)を行い、1000枚通紙後に1ドット画像評価(独立ドットを書き込んだ画像を出力)を実施した。1ドット画像を光学顕微鏡で観察し、ドット輪郭の明確さをランク評価した。ランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。結果を表6に示す。
感光体初期膜厚を測定し、上記(1)〜(4)の試験を全て終了した後に再び膜厚を測定した。全ての試験前後における膜厚の差(摩耗量)を評価した。尚、膜厚の測定は、感光体長手方向の両端5cmを除き、1cm間隔に測定し、その平均値を膜厚とした。
実施例7と同じ条件で、上述のように作製した電子写真感光体6〜9を評価した。結果を表6に示す。表6には実施例番号に対応する使用した電子写真感光体番号も併せて記載する。
感光体作製例1における中間層を、電荷ブロッキング層とモアレ防止層の積層構成とした。それぞれの下記組成の電荷ブロッキング層塗工液、モアレ防止層塗工液を塗布乾燥して、1.0μmの電荷ブロッキング層、3.5μmのモアレ防止層とした以外は、感光体作製例1と同様に感光体を作製した(電子写真感光体10とする)。
◎電荷ブロッキング層塗工液
N−メトキシメチル化ナイロン(鉛市:ファインレジンFR−101) 4部
メタノール 70部
n−ブタノール 30部
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
感光体作製例10において、電荷ブロッキング層の膜厚を0.3μmとした以外は、感光体作製例10と同様に感光体を作製した(電子写真感光体11とする)。
(感光体作製例12)
感光体作製例10において、電荷ブロッキング層の膜厚を1.8μmとした以外は、感光体作製例10と同様に感光体を作製した(電子写真感光体12とする)。
感光体作製例10において、電荷ブロッキング層塗工液を下記組成のものに変更した以外は、感光体作製例10と同様に感光体を作製した(電子写真感光体13とする)。
◎電荷ブロッキング層塗工液
アルコール可溶性ナイロン(東レ:アミランCM8000) 4部
メタノール 70部
n−ブタノール 30部
感光体作製例10において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例10と同様に感光体を作製した(電子写真感光体14とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 252部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、3/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
感光体作製例10において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例10と同様に感光体を作製した(電子写真感光体15とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 84部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
以上のように作製した電子写真感光体10〜15を、実施例7と同じ条件下で5万枚のランニング試験を行った(評価方法、項目も同じ)。結果を実施例1の場合と比較して、表7に示す。
実施例1において、画像露光光源を407nmの半導体レーザー(日亜化学製)に変更した以外は、実施例1と同様に評価を行った。結果を実施例1の場合と併せて表8に示す。
また、直径60μmの1ドット画像を形成し、実施例1の場合と比較(ドット形成状態を、150倍の顕微鏡にて観察)を行った。
感光体作製例1における電荷発生層塗工液(分散液1)を分散液5に変更し、電荷輸送層塗工液、保護層塗工液を以下の組成のものに変更した以外は、感光体作製例1と同様に電子写真感光体を作製した(電子写真感光体16とする)。
◎電荷輸送層塗工液
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
(比抵抗:2.5×1012Ω・cm、平均一次粒径:0.4μm)
シクロヘキサノン 500部
テトラヒドロフラン 150部
先に作製した電子写真感光体16を図12に示すようなプロセスカートリッジに装着し、図11に示すような画像形成装置に搭載し、画像露光光源を655nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)、帯電部材として接触ローラー帯電器、転写部材として転写ベルトを用い、除電光源として428nmLED(ローム製:半値幅65nm)を用いた。試験前のプロセス条件が下記になるように設定し、書き込み率6%のチャート(A4全面に対して、画像面積として6%相当の文字が平均的に書かれている)を用い、連続5万枚印刷を行った。
感光体帯電電位(未露光部電位): −900V
現像バイアス: −650V(ネガ・ポジ現像)
除電後表面電位(書き込み光未露光部): −100V
測定方法としては、図12に示す現像部位置に、表面電位計を搭載し、感光体を−900Vに帯電した後、上記半導体レーザーでベタ書込みを行ない、現像部位における未露光部表面電位及び露光部電位を測定した。結果を表9に示す。
また、5万枚の印刷前後において、ISO/JIS−SCID画像N1(ポートレート)を出力して、カラー色の再現性について評価した。
実施例17における除電光源として、472nmLED(星和電機製:半値幅15nm)に変更した以外は、実施例17と同様に評価を行った。除電後の感光体表面電位が、実施例17の場合と同じになるように、除電光量を調整した。結果を表9に示す。
実施例17における除電光源として、502nmLED(星和電機製:半値幅15nm)に変更した以外は、実施例17と同様に評価を行った。除電後の感光体表面電位が、実施例17の場合と同じになるように、除電光量を調整した。結果を表9に示す。
(比較例14)
実施例17における除電光源として、591nmLED(ローム製:半値幅15nm)に変更した以外は、実施例17と同様に評価を行った。除電後の感光体表面電位が、実施例17の場合と同じになるように、除電光量を調整した。結果を表9に示す。
実施例17における除電光源として、630nmLED(ローム製:半値幅20nm)に変更した以外は、実施例17と同様に評価を行った。除電後の感光体表面電位が、実施例17の場合と同じになるように、除電光量を調整した。結果を表9に示す。
(比較例16)
実施例17における除電光源として、蛍光灯(図1に示す発光スペクトルを有する)に変更した以外は、実施例17と同様に評価を行った。除電後の感光体表面電位が、実施例17の場合と同じになるように、除電光量を調整した。結果を表9に示す。
(比較例17)
実施例17における除電光源として、428nmLED(ローム製:半値幅 65nm)及び630nmLED(ローム製:半値幅20nm)の2つを用いてほぼ同等の光量を同時に照射するように変更した以外は、実施例17と同様に評価を行った。除電後の感光体表面電位が、実施例17の場合と同じになるように、除電光量を調整した。結果を表9に示す。
また、発光分布が広く、500nm以上の長波長光の成分を含む場合(比較例16)では、実施例ほどの明確な効果が得られていない。また、露光波長の異なる2種類の光源を用いた場合(比較例17)では、短波長光源による除電の効果が低減されていることが分かる。
テストチャートの結果から、実施例17、18の場合には、5万枚印刷後においても、初期とほぼ同等の画像を出力したが、比較例13〜17の場合には、5万枚印刷後に、カラーバランスが多少崩れた画像になった。
感光体作製例16における電荷発生層塗工液(分散液5)を分散液6に変更した以外は、感光体作製例16と同様に電子写真感光体を作製した(電子写真感光体17とする)。
実施例17において、使用した電子写真感光体16の代わりに、電子写真感光体17を用いた以外は、実施例17と同様に評価を行った。結果を表10に示す。
(実施例20)
実施例18において、使用した電子写真感光体16の代わりに、電子写真感光体17を用いた以外は、実施例18と同様に評価を行った。結果を表10に示す。
比較例13において、使用した電子写真感光体16の代わりに、電子写真感光体17を用いた以外は、比較例13と同様に評価を行った。結果を表10に示す。
(比較例19)
比較例14において、使用した電子写真感光体16の代わりに、電子写真感光体17を用いた以外は、比較例14と同様に評価を行った。結果を表10に示す。
比較例15において、使用した電子写真感光体16の代わりに、電子写真感光体17を用いた以外は、比較例15と同様に評価を行った。結果を表10に示す。
(比較例21)
比較例16において、使用した電子写真感光体16の代わりに、電子写真感光体17を用いた以外は、比較例16と同様に評価を行った。結果を表10に示す。
(比較例22)
比較例17において、使用した電子写真感光体16の代わりに、電子写真感光体17を用いた以外は、比較例17と同様に評価を行った。結果を表10に示す。
また、発光分布が広く、500nm以上の長波長光の成分を含む場合(比較例21)では、実施例ほどの明確な効果が得られていない。また、露光波長の異なる2種類の光源を用いた場合(比較例22)では、短波長光源による除電の効果が低減されていることが分かる。
テストチャートの結果から、実施例19、20の場合には、5万枚印刷後においても、初期とほぼ同等の画像を出力したが、比較例18〜22の場合には、5万枚印刷後に、カラーバランスが多少崩れた画像になった。
また、表9に記載した実施例17の露光部表面電位と、表10に記載の実施例19の露光部表面電位を比較すると、実施例17の露光部表面電位の方が低い。実施例17に使用したアゾ顔料のカップラー成分の非対称化が高感度化に寄与していることが分かる。
実施例17において、画像露光光源を407nmの半導体レーザー(日亜化学製)に変更した以外は、実施例17と同様に評価を行った。結果を実施例17の場合と併せて表11に示す。
また、直径60μmの1ドット画像を形成し、実施例17の場合と比較(ドット形成状態を、150倍の顕微鏡にて観察)を行った。
2 除電ランプ
3 帯電器
5 画像露光部
6 現像ユニット
8 レジストローラ
9 転写紙
10 転写チャージャー
11 分離チャージャー
12 分離爪
14 ファーブラシ
15 クリーニングブレード
16Y、16M、16C、16K 感光体
17Y、17M、17C、17K 帯電部材
18Y、18M、18C、18K 露光部
19Y、19M、19C、19K 現像部材
20Y、20M、20C、20K クリーニング部材
21Y、21M、21C、21K 転写ブラシ
22 転写搬送ベルト
23 レジストローラ
24 定着装置
25Y、25M、25C、25K 画像形成要素
26 転写紙
27Y、27M、27C、27K 除電部材
31 導電性支持体
35 電荷発生層
37 電荷輸送層
39 中間層
41 保護層
43 電荷ブロッキング層
45 モアレ防止層
101 感光体
102 帯電手段
103 露光
104 現像手段
105 転写体
106 転写手段
107 クリーニング手段
108 除電手段
Claims (12)
- 静電潜像担持体と、該静電潜像担持体上に静電潜像を形成する静電潜像形成手段と、該静電潜像をトナーを用いて現像して可視像を形成する現像手段と、該可視像を記録媒体に転写する転写手段と、記録媒体に転写された転写像を定着させる定着手段と、静電潜像担持体の残留電荷を光除電する除電手段とを少なくとも有する画像形成装置であって、前記除電手段が500nm未満の波長領域にのみ発光強度を有する光を照射する除電手段であると共に、画像書き込み光源が655nmもしくは780nmのレーザーダイオードであり、前記静電潜像担持体が、支持体と、該支持体上に少なくとも電荷発生層と電荷輸送層とからなる感光層、更に感光層上に保護層を有し、該電荷発生層中に有機電荷発生物質を含有し、かつ保護層が比抵抗1010Ω・cm以上の無機顔料及び金属酸化物から選択される少なくともいずれかと電荷輸送物質を含むことを特徴とする画像形成装置。
- 前記有機電荷発生物質が下記(I)式で表されるアゾ顔料であることを特徴とする請求項1に記載の画像形成装置。
- 前記アゾ顔料のCp1とCp2が互いに異なるものであることを特徴とする請求項2に記載の画像形成装置。
- 前記有機電荷発生物質がCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、最も低角側の回折ピークとして7.3゜にピークを有し、該7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さないチタニルフタロシアニン結晶であることを特徴とする請求項1に記載の画像形成装置。
- 前記保護層に含有される電荷輸送物質が、下記(III)式で表される電荷輸送物質であることを特徴とする請求項1乃至4のいずれかに記載の画像形成装置。
- 前記潜像担持体において、支持体と電荷発生層の間に中間層が設けられ、該中間層が電荷ブロッキング層とモアレ防止層からなることを特徴とする請求項1乃至5のいずれかに記載の画像形成装置。
- 前記電荷ブロッキング層が絶縁性材料からなり、その膜厚が2.0μm未満、0.3μm以上であることを特徴とする請求項6に記載の画像形成装置。
- 前記モアレ防止層が無機顔料とバインダー樹脂を含有し、両者の容積比が1/1乃至3/1の範囲であることを特徴とする請求項6又は7に記載の画像形成装置。
- 少なくとも静電潜像担持体、静電潜像形成手段、現像手段、転写手段、及び除電手段を有する画像形成要素を複数備えたことを特徴とする請求項1乃至8のいずれかに記載の画像形成装置。
- 静電潜像担持体と、静電潜像形成手段、現像手段、除電手段及びクリーニング手段から選択される1つ以上の手段とが一体となり、装置本体と着脱自在なプロセスカートリッジを搭載していることを特徴とする請求項1乃至9のいずれかに記載の画像形成装置。
- 静電潜像担持体上に静電潜像を形成する静電潜像形成工程と、該静電潜像をトナーを用いて現像して可視像を形成する現像工程と、該可視像を記録媒体に転写する転写工程と、記録媒体に転写された転写像を定着させる定着工程と、静電潜像担持体の残留電荷を光除電する除電工程とを少なくとも有する画像形成方法であって、前記除電工程が500nm未満の波長領域にのみ発光強度を有する光を照射する除電工程であると共に、画像書き込み光源が655nmもしくは780nmのレーザーダイオードであり、前記静電潜像担持体が、支持体と、該支持体上に少なくとも電荷発生層と電荷輸送層とからなる感光層、更に感光層上に保護層を有し、該電荷発生層中に有機電荷発生物質を含有し、かつ保護層が比抵抗1010Ω・cm以上の無機顔料及び金属酸化物から選択される少なくともいずれかと電荷輸送物質を含むことを特徴とする画像形成方法。
- 少なくとも静電潜像形成工程、現像工程、転写工程、及び除電工程を有する画像形成工程を複数備えたことを特徴とする請求項11に記載の画像形成方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351525A JP4615429B2 (ja) | 2005-12-06 | 2005-12-06 | 画像形成装置及び画像形成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005351525A JP4615429B2 (ja) | 2005-12-06 | 2005-12-06 | 画像形成装置及び画像形成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007156122A JP2007156122A (ja) | 2007-06-21 |
JP4615429B2 true JP4615429B2 (ja) | 2011-01-19 |
Family
ID=38240569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005351525A Expired - Fee Related JP4615429B2 (ja) | 2005-12-06 | 2005-12-06 | 画像形成装置及び画像形成方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4615429B2 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003057926A (ja) * | 2001-08-08 | 2003-02-28 | Ricoh Co Ltd | 画像形成装置、プロセスカートリッジおよび画像形成方法 |
JP2004045996A (ja) * | 2002-07-15 | 2004-02-12 | Canon Inc | 電子写真方法及び電子写真画像形成装置 |
JP2005070749A (ja) * | 2003-08-06 | 2005-03-17 | Ricoh Co Ltd | 電子写真感光体、及びそれを用いたプロセスカートリッジ、画像形成装置 |
JP2005128496A (ja) * | 2003-09-30 | 2005-05-19 | Ricoh Co Ltd | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ |
JP2005181991A (ja) * | 2003-11-26 | 2005-07-07 | Canon Inc | 電子写真装置 |
JP2005189828A (ja) * | 2003-12-01 | 2005-07-14 | Ricoh Co Ltd | 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ |
-
2005
- 2005-12-06 JP JP2005351525A patent/JP4615429B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003057926A (ja) * | 2001-08-08 | 2003-02-28 | Ricoh Co Ltd | 画像形成装置、プロセスカートリッジおよび画像形成方法 |
JP2004045996A (ja) * | 2002-07-15 | 2004-02-12 | Canon Inc | 電子写真方法及び電子写真画像形成装置 |
JP2005070749A (ja) * | 2003-08-06 | 2005-03-17 | Ricoh Co Ltd | 電子写真感光体、及びそれを用いたプロセスカートリッジ、画像形成装置 |
JP2005128496A (ja) * | 2003-09-30 | 2005-05-19 | Ricoh Co Ltd | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ |
JP2005181991A (ja) * | 2003-11-26 | 2005-07-07 | Canon Inc | 電子写真装置 |
JP2005189828A (ja) * | 2003-12-01 | 2005-07-14 | Ricoh Co Ltd | 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ |
Also Published As
Publication number | Publication date |
---|---|
JP2007156122A (ja) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4807848B2 (ja) | 画像形成装置及び画像形成方法 | |
JP4610006B2 (ja) | 画像形成装置及び画像形成方法 | |
JP2006023527A (ja) | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ | |
JP4657153B2 (ja) | 画像形成装置及び画像形成方法 | |
EP2146251B1 (en) | Electrophotographic photoconductor, image forming apparatus using the same, and process cartridge | |
JP4676921B2 (ja) | 画像形成装置及び画像形成方法 | |
JP4615426B2 (ja) | 画像形成装置及び画像形成方法 | |
JP4615434B2 (ja) | 画像形成装置及び画像形成方法 | |
JP2007010759A (ja) | 画像形成装置及び画像形成方法 | |
JP4223671B2 (ja) | 電子写真感光体、電子写真方法、電子写真装置および電子写真装置用プロセスカートリッジ | |
JP3831672B2 (ja) | 電子写真感光体及び電子写真装置 | |
JP4676918B2 (ja) | 画像形成装置及び画像形成方法 | |
JP4825691B2 (ja) | 画像形成装置 | |
JP3753988B2 (ja) | 電子写真感光体及び電子写真装置 | |
JP4615429B2 (ja) | 画像形成装置及び画像形成方法 | |
JP4523510B2 (ja) | 画像形成装置及び画像形成方法 | |
US9864322B2 (en) | Image forming apparatus | |
JP2006259063A (ja) | 画像形成装置及び画像形成方法 | |
JP4615433B2 (ja) | 画像形成装置及び画像形成方法 | |
JP2007127764A (ja) | 画像形成装置及び画像形成方法 | |
JP4926451B2 (ja) | 画像形成装置及び画像形成方法 | |
JP4926417B2 (ja) | 画像形成装置及び画像形成方法 | |
JP5032912B2 (ja) | 電子写真感光体、これを用いた画像形成装置及び画像形成装置用プロセスカートリッジ | |
JP4567545B2 (ja) | 画像形成装置及び画像形成方法 | |
JP4825692B2 (ja) | 画像形成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100714 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101008 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101020 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4615429 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |