JP2005125705A - プロトン伝導性フィルムの製造法 - Google Patents

プロトン伝導性フィルムの製造法 Download PDF

Info

Publication number
JP2005125705A
JP2005125705A JP2003366056A JP2003366056A JP2005125705A JP 2005125705 A JP2005125705 A JP 2005125705A JP 2003366056 A JP2003366056 A JP 2003366056A JP 2003366056 A JP2003366056 A JP 2003366056A JP 2005125705 A JP2005125705 A JP 2005125705A
Authority
JP
Japan
Prior art keywords
group
film
water
sulfonic acid
proton conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003366056A
Other languages
English (en)
Inventor
Yoshinori Kono
至紀 河野
Yoshihiro Mori
好弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2003366056A priority Critical patent/JP2005125705A/ja
Publication of JP2005125705A publication Critical patent/JP2005125705A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

【課題】
上記のような従来技術における問題点を解決しようとするものであって、プロトン伝導性フィルムの製造に際し用いた有機溶媒を水にて抽出する際に、抽出時間を短縮することが可能なフィルムの製造方法を提供する。
【解決手段】
プロトン伝導性重合体が水に可溶な有機溶媒に溶解された溶液を用い流延法により成膜し、
得られた未乾燥フィルムを水に浸漬して、有機溶剤を抽出除去したのち、
フィルムを乾燥するプロトン伝導性フィルムを製造する方法であり、
前記溶剤抽出する際に、水に超音波を加えながら行うことを特徴とするプロトン伝導性フィルムの製造方法。
【選択図】 なし

Description

本発明は、フィルムの製造の際に用いた有機溶媒の残存量が少ないプロトン伝導性フィルムの製造方法に関する。
プロトン伝導性フィルムを作製する方法としては、例えば重合体を有機溶媒に溶解し基体上に流延して成膜し、次いで得られたフィルムを乾燥する溶液流延法がある。溶液流延法によりフィルムを成形するに際し、プロトン伝導性重合体のような極性の高いイオン交換基を有する重合体は、溶解させる有機溶媒として極性の高い非プロトン系双極子溶媒が用いられる。この極性溶媒は高沸点のために、成膜後、フィルムを乾燥する際に完全に除去できず、得られたプロトン伝導性フィルム中に残存して熱的性質が損なわれたりするという問題があった。また、極性溶媒がプロトン伝導性フィルム中に高濃度に存在すると、燃料電池の電解質として使用したときに安定な発電開始までに時間がかかりすぎたり、発電過程での熱変化で溶媒が除去され、結果として、収縮応力がかかるため、フィルム中に残留ひずみが生じ、刺激条件によってはフィルムにクラックが入りセルが変形したりするなどの問題が起きることがある。
このため、プロトン伝導性フィルムを製造したのち、有機溶媒を除去することが望まれていた。
有機溶媒の除去には水に浸漬させることが有効であるが、浸漬時間を長くする必要があった。浸漬時間を長くすればそれだけ、設備コストが高くなるとともに、フィルム表面に皺や傷が形成されやすいという問題点があった。
本発明は、上記のような従来技術における問題点を解決しようとするものであって、プロトン伝導性フィルムの製造に際し用いた有機溶媒を水にて抽出する際に、抽出時間を短縮することが可能なフィルムの製造方法を提供しようとするものである。
(1)本発明に係るプロトン伝導性フィルムの製造方法は、フィルムに残存した有機溶媒の
除去工程において、超音波を加えながら行うことを特徴とするものである。
すなわち、プロトン伝導性重合体が水に可溶な有機溶媒に溶解された溶液を用い流延法により成膜し、
得られた未乾燥フィルムを水に超音波を加えながら浸漬したのち、
フィルムを乾燥することを特徴とするものである。
(2)上記プロトン伝導性重合体がスルホン酸を導入したポリマーである。
(3)上記プロトン伝導性重合体がスルホン化ポリアリーレンであることを特徴とする。
本発明によれば、フィルム中の残留溶媒を、水を用いて抽出する際の抽出時間を低減することができるので、プロトン伝導性フィルム製造における量産性を改善することができる。
以下、本発明に係るプロトン伝導性フィルムの製造方法について具体的に説明する。
スルホン化ポリアリーレンなどのプロトン伝導性重合体を水に可溶な有機溶剤に溶解して溶液とした後、キャスティングにより基体上に流延し、フィルム状に成形するキャスティング法などにより、フィルムを製造する(この方法を流延法という)。
ここで、上記基体としては、通常の溶液キャスティング法に用いられる基体であれば特に限定されず、例えばプラスティック製、金属製などの基体が用いられ、好ましくは、例えばポリエチレンテレフタレート(PET)フィルムなどの熱可塑性樹脂からなる基体である。
プロトン伝導性重合体を溶解させる水に可溶な有機溶媒としては、例えばN−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、γ−ブチロラクトン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジメチル尿素などの非プロトン系極性溶媒が挙げられ、非プロトン系溶媒は、1種単独であるいは2種以上を併用することができる。
プロトン伝導性重合体を溶解させる水に可溶な溶媒として上記非プロトン系極性溶媒とアルコールの混合物を用いることができる。アルコールとしては、例えばメタノール、エタノール、プロピルアルコール、1−プロピルアルコール、sec−ブチルアルコール、t
−ブチルアルコールなどが挙げられ、特にメタノールが幅広い組成範囲で溶液粘度を下げる効果があり好ましい。アルコールは、1種単独であるいは2種以上を併用することができる。
溶媒として非プロトン系極性溶剤とアルコールとの混合物を用いる場合には、非プロトン系極性溶剤が95〜25重量%、好ましくは75〜25重量%、アルコールが5〜75重量%、好ましくは25〜75重量%(ただし、合計は100重量%)からなる。アルコールの量が上記範囲内にあると、溶液粘度を下げる効果に優れる。
プロトン伝導性重合体を溶解させた溶液のポリマー濃度は、プロトン伝導性重合体の分子量にもよるが、通常、5〜40重量%、好ましくは7〜25重量%である。5重量%未満では、厚膜化し難く、また、ピンホールが生成しやすい。一方、40重量%を超えると、溶液粘度が高すぎてフィルム化し難く、また、表面平滑性に欠けることがある。
なお、溶液粘度は、プロトン伝導性重合体の分子量や、ポリマー濃度にもよるが、通常、2,000〜100,000mPa・s、好ましくは3,000〜50,000mPa・sである。前記下限未満では、成膜中の溶液の滞留性が悪く、基体から流れてしまうことがある。一方、前記上限を超えると、粘度が高すぎて、ダイからの押し出しができず、流延法によるフィルム化が困難となることがある。
上記のようにして成膜した後、得られた未完走フィルムを水に浸漬する。未完走フィルムを水に浸漬することにより、未完走フィルム中の有機溶媒を水と置換することができ、得られるプロトン伝導性未完走フィルムの残留溶媒量を低減することができる。
未完走フィルムを水に浸漬する際は、枚葉を水に浸漬するバッチ方式であっても良いし、通常得られる基板フィルム(例えば、PET)上に成膜された状態の積層フィルムのまま水に浸漬させて、巻き取っていく連続方法でも適用できる。バッチ方式の場合は、処理フィルムを枠にはめるなどの方式が処理されたフィルムの表面の皺形成が抑制されるので好都合である。
本発明では、水に浸漬する際、水に超音波を照射する。超音波としては、特に制限され
るもののではないが、通常20kHz〜3MHz、好適には20kHz〜100kHzの超音波を照射する。超音波洗浄する際には、フィルムを浸漬する浸漬槽に超音波発振子を設置し、外部の超音波発振機によって、超音波を発生させ、水を媒体としてフィルムに照射する。
このような超音波発振装置としては、単一周波超音波発振器、多周波超音波発振器、周波数可変超音波発振器などが使用される。
超音波を照射することで、有機溶媒の抽出時間を短縮することができる。
超音波照射時間としては、その出力に応じて適宜選択されるが、通常5〜120分、好適には10〜30分、照射されることが望ましい。(なお、超音波照射時間が、実質的に、水中への浸漬時間(抽出時間)となるが、超音波を照射前後に、水中に浸漬させてもよい。)
超音波を照射しない場合、水中への浸漬時間は、初期の残存溶媒量や接触比、処理温度にもよるが、通常10分〜240分の範囲である。好ましくは30分〜100分の範囲であるが、本発明によれば、水中への浸漬時間は、そのおよそ1/3に減らすことが可能となる。また、超音波を照射することで、より短い浸漬時間であっても、十分に有機溶媒を抽出することができる。また、超音波を照射することで、フィルムの浸漬時間を短くすることが出来、フィルムの皺及び傷の形成を抑制することができる。
フィルムを水に浸漬する際には、フィルム1重量部に対し、水が10重量部以上、好ましくは30重量部以上の接触比となるようにすることがよい。
未乾燥フィルムを水に浸漬する際の水の温度は、好ましくは5〜80℃の範囲である。高温ほど、有機溶媒と水との置換速度は速くなるが、フィルムの吸水量も大きくなるので、乾燥後に得られるプロトン伝導性フィルムの表面状態が荒れる懸念がある。通常、置換速度と取り扱いやすさから10〜60℃の温度範囲が好都合である。
なお、成膜後、未乾燥フィルムを水に浸漬する前に、未乾燥フィルムを予備乾燥してもよい。予備乾燥は、未乾燥フィルムを通常50〜150℃の温度で、0.1〜10時間保持することにより行われる。
水に超音波照射下で浸漬した後、フィルムを30〜100℃、好ましくは50〜80℃で、10〜180分、好ましくは15〜60分乾燥し、次いで、50〜150℃で、常圧下〜0.1mmHgの減圧下、0.5〜24時間、乾燥することにより、プロトン伝導性フィルムを得ることができる。
本発明の方法により得られるプロトン伝導性フィルムは、その乾燥膜厚が、通常10〜100μm、好ましくは10〜80μmである。
(スルホン化ポリアリーレン)
本発明で用いられるスルホン化ポリアリーレンとしては、(スルホン酸基を有するポリアリーレン)
本発明に使用されるスルホン酸基を有するポリアリーレンは、下記一般式(A)で表される繰り返し構成単位と、下記一般式(B)で表される繰り返し構成単位とを含んでおり、下記一般式(C)で表される重合体である。
Figure 2005125705
式中、Aは2価の電子吸引性基を示し、具体的には−CO−、−SO2−、−SO−、
−CONH−、−COO−、−(CF2l−(ここで、lは1〜10の整数である)、−C(CF32−などが挙げられる。Bは2価の電子供与基または直接結合を示し、電子供与基の具体例としては、−(CH2)−、−C(CH32−、−O−、−S−、−CH=
CH−、−C≡C―および
Figure 2005125705
などが挙げられる。なお、電子吸引性基とは、ハメット(Hammett)置換基常数がフェニ
ル基のm位の場合、0.06以上、p位の場合、0.01以上の値となる基をいう。
Arは−SO3Hで表される置換基を有する芳香族基を示し、芳香族基として具体的には
フェニル基、ナフチル基、アントラセニル基、フェナンチル基などが挙げられる。これらの基のうち、フェニル基、ナフチル基が好ましい。
mは0〜10、好ましくは0〜2の整数、nは0〜10、好ましくは0〜2の整数を示し、kは1〜4の整数を示す。
Figure 2005125705
式(B)中、R1〜R8は互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、フッ素置換アルキル基、アリル基、アリール基およびシアノ基からなる群より選ばれた少なくとも1種の原子または基を示す。
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基などが挙げられ、メチル基、エチル基などが好ましい。
フッ素置換アルキル基としては、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられ、トリフルオロメチル基、ペンタフルオロエチル基などが好ましい。
アリル基としては、プロペニル基などが挙げられ、
アリール基としては、フェニル基、ペンタフルオロフェニル基などが挙げられる。
Wは単結合または2価の電子吸引性基を示し、Tは単結合または2価の有機基を示す。
式(B)において、pは0または正の整数であり、上限は通常100、好ましくは10〜80である。
Figure 2005125705
(式(C)中、W、T、A,B、Ar、m、n、k、pおよびR1〜R8は、それぞれ上記一般式(A)および(B)中のW、T、A,B、Ar、m、n、k、pおよびR1〜R8と同義である。)
本発明で用いられるスルホン酸基を有するポリアリーレンは、式(A)で表される繰り返し構成単位を0.5〜100モル%、好ましくは10〜99.999モル%の割合で、式(B)で表される繰り返し構成単位を99.5〜0モル%、好ましくは90〜0.001モル%の割合で含有している。
(スルホン酸基を有するポリアリーレンの製造方法)
スルホン酸基を有するポリアリーレンは、上記一般式(A)で表される構造単位となりうるスルホン酸エステル基を有するモノマーと、上記一般式(B)で表される構造単位となりうるオリゴマーとを共重合させ、スルホン酸エステル基を有するポリアリーレンを製造し、このスルホン酸エステル基を有するポリアリーレンを加水分解して、スルホン酸エステル基をスルホン酸基に変換することにより合成することができる。
また、スルホン酸基を有する重合体は、上記一般式(A)で表される骨格を有しスルホン酸基、スルホン酸エステル基を有しない構造単位と、上記一般式(B)の構造単位からなるポリアリーレンを予め合成し、この重合体をスルホン化することにより合成することもできる。
上記一般式(A)の構造単位となりうるモノマー(例えば下記一般式(D)で表されるモノマー、モノマー(D)ともいう。)と、上記一般式(B)の構造単位となりうるオリゴマー(例えば下記一般式(E)で表されるオリゴマー、オリゴマー(E)ともいう。)とを共重合させてスルホン酸エステル基を有するポリアリーレンを合成する場合には、モノマー(D)としては、例えば下記一般式(D)で表されるスルホン酸エステルが用いられる。
Figure 2005125705
式(D)中、Xはフッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、−OSO2Z(
ここで、Zはアルキル基、フッ素置換アルキル基またはアリール基を示す。)から選ばれる原子または基を示し、A、B、Ar、m、nおよびkは、それぞれ上記一般式(A)中のA、B、Ar、m、nおよびkと同義である。Raは炭素原子数1〜20、好ましくは
4〜20の炭化水素基を示し、具体的には、メチル基、エチル基、n−プロピル基、iso−プロピル基、tert-ブチル基、iso-ブチル基、n−ブチル基、sec−ブチル基、ネ
オペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、シクロペンチルメチル基、シクロヘキシルメチル基、アダマンチル基、アダマンタンメチル基、2−エチルヘキシル基、ビシクロ[2.2.1]へプチル基、ビシクロ[2.2.1]へプチルメチル基、テトラヒドロフルフリル基、2−メチルブチル基、3,3−ジメチル−2,4−ジオキソランメチル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基などの直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、5員の複素環を有する炭化水素基などが挙げられる。これらのうちn−ブチル基、ネオペンチル基、テトラヒドロフルフリル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基が好ましく、さらにはネオペンチル基が好ましい。
Arは−SO3bで表される置換基を有する芳香族基を示し、芳香族基として具体的にはフェニル基、ナフチル基、アントラセニル基、フェナンチル基などが挙げられる。これらの基のうち、フェニル基、ナフチル基が好ましい。
置換基−SO3bは、芳香族基に1個または2個以上置換しており、置換基−SO3bが2個以上置換している場合には、これらの置換基は互いに同一でも異なっていてもよい。
ここで、Rbは炭素原子数1〜20、好ましくは4〜20の炭化水素基を示し、具体的
には上記炭素原子数1〜20の炭化水素基などが挙げられる。これらのうちn−ブチル基、ネオペンチル基、テトラヒドロフルフリル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基が好ましく、さらにはネオペンチル基が好ましい。
mは0〜10、好ましくは0〜2の整数、nは0〜10、好ましくは0〜2の整数を示し、kは1〜4の整数を示す。
式(D)で表されるスルホン酸エステルの具体例としては、以下の様な化合物が挙げられる。
Figure 2005125705
Figure 2005125705
Figure 2005125705
Figure 2005125705
Figure 2005125705
Figure 2005125705
Figure 2005125705
Figure 2005125705
また、上記一般式(D)で表される本発明に係る芳香族スルホン酸エステル誘導体として、上記化合物において塩素原子が臭素原子に置き換わった化合物、上記化合物において−CO−が−SO2−に置き換わった化合物、上記化合物において塩素原子が臭素原子に
置き換わり、かつ−CO−が−SO2−に置き換わった化合物なども挙げられる。
一般式(D)中のRb基は1級のアルコール由来で、β炭素が3級または4級炭素であ
ることが、重合工程中の安定性に優れ、脱エステル化によるスルホン酸の生成に起因する重合阻害や架橋を引き起こさない点で好ましく、さらには、これらのエステル基は1級アルコール由来でβ位が4級炭素であることが好ましい。
また、上記一般式(D)で表されるモノマー(D)と同様の骨格を有しスルホン酸基、スルホン酸エステル基を有しない化合物の具体例としては、下記の様な化合物が挙げられる。
Figure 2005125705
上記化合物において塩素原子が臭素原子に置き換わった化合物、上記化合物において−CO−が−SO2−に置き換わった化合物、上記化合物において塩素原子が臭素原子に置
き換わり、かつ−CO−が−SO2−に置き換わった化合物なども挙げられる。
オリゴマー(E)としては、例えば下記一般式(E)で表される化合物が用いられる。
Figure 2005125705
式(E)中、R'およびR''は互いに同一でも異なっていてもよく、フッ素原子を除く
ハロゲン原子または−OSO2Z(ここで、Zはアルキル基、フッ素置換アルキル基また
はアリール基を示す。)で表される基を示す。Zが示すアルキル基としてはメチル基、エ
チル基などが挙げられ、フッ素置換アルキル基としてはトリフルオロメチル基などが挙げられ、アリール基としてはフェニル基、p−トリル基などが挙げられる。
1〜R8は互いに同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基、フッ素置換アルキル基、アリル基、アリール基およびシアノ基からなる群より選ばれた少なくとも1種の原子または基を示す。
アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基などが挙げられ、メチル基、エチル基などが好ましい。
フッ素置換アルキル基としては、トリフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基などが挙げられ、トリフルオロメチル基、ペンタフルオロエチル基などが好ましい。
アリル基としては、プロペニル基などが挙げられ、
アリール基としては、フェニル基、ペンタフルオロフェニル基などが挙げられる。
Wは単結合または2価の電子吸引性基を示し、電子吸引基としては、上述したものと同様のものが挙げられる。
Tは単結合または2価の有機基であって、電子吸引性基であっても電子供与基であってもよい。電子吸引性基および電子供与性基としては、上述したものと同様のものが挙げられる。
pは0または正の整数であり、上限は通常100、好ましくは10〜80である。
上記一般式(E)で表される化合物として具体的には、p=0の場合、例えば4,4'−ジクロロベンゾフェノン、4,4'−ジクロロベンズアニリド、ビス(クロロフェニル)ジフルオロメタン、2,2−ビス(4−クロロフェニル)ヘキサフルオロプロパン、4−ク
ロロ安息香酸−4−クロロフェニル、ビス(4−クロロフェニル)スルホキシド、ビス(4−クロロフェニル)スルホン、2,6−ジクロロベンゾニトリル、9,9−ビス(4−ヒドロキシフェニル)フルオレンが挙げられる。これらの化合物において塩素原子が臭素原子またはヨウ素原子に置き換わった化合物、さらにこれらの化合物において4位に置換したハロゲン原子の少なくとも1つ以上が3位に置換した化合物などが挙げられる。
またp=1の場合、上記一般式(E)で表される具体的な化合物としては、例えば4,
4'−ビス(4−クロロベンゾイル)ジフェニルエーテル、4,4'−ビス(4−クロロベ
ンゾイルアミノ)ジフェニルエーテル、4,4'−ビス(4−クロロフェニルスルホニル)ジフェニルエーテル、4,4'−ビス(4−クロロフェニル)ジフェニルエーテルジカルボキシレート、4,4'−ビス〔(4−クロロフェニル)−1,1,1,3,3,3−ヘキサフル
オロプロピル〕ジフェニルエーテル、4,4'−ビス〔(4−クロロフェニル)テトラフルオロエチル〕ジフェニルエーテル、これらの化合物において塩素原子が臭素原子またはヨウ素原子に置き換わった化合物、さらにこれらの化合物において4位に置換したハロゲン原子が3位に置換した化合物、さらにこれらの化合物においてジフェニルエーテルの4位に置換した基の少なくとも1つが3位に置換した化合物などが挙げられる。
さらに上記一般式(E)で表される化合物としては、2,2−ビス[4−{4−(4−
クロロベンゾイル)フェノキシ}フェニル]−1,1,1,3,3,3−ヘキサフルオロプロ
パン、ビス[4−{4−(4−クロロベンゾイル)フェノキシ}フェニル]スルホン、および下記式で表される化合物が挙げられる。
Figure 2005125705
上記一般式(E)で表される化合物は、例えば以下に示す方法で合成することができる。
まず電子吸引性基で連結されたビスフェノールを対応するビスフェノールのアルカリ金属塩とするために、N−メチル−2−ピロリドン、N,N-ジメチルアセトアミド、スルホラン、ジフェニルスルホン、ジメチルスルホキサイドなどの誘電率の高い極性溶媒中でリチウム、ナトリウム、カリウムなどのアルカリ金属、水素化アルカリ金属、水酸化アルカリ金属、アルカリ金属炭酸塩などを加える。
通常、アルカリ金属はフェノールの水酸基に対し、過剰気味で反応させ、通常、1.1〜2倍当量を使用する。好ましくは、1.2〜1.5倍当量の使用である。この際、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、オクタン、クロロベンゼン、ジオキサン、テトラヒドロフラン、アニソール、フェネトールなどの水と共沸する溶媒を共存させて、電子吸引性基で活性化されたフッ素、塩素等のハロゲン原子で置換された芳香族ジハライド化合物、例えば、4,4'−ジフルオロベンゾフェノン、4,4'−ジクロロベンゾフェノン、4,4'−クロロフルオロベンゾフェノン、ビス(4−クロロフェニル)スルホン、ビス(4−フルオロフェニル)スルホン、4−フルオロフェニル−4'−クロロ
フェニルスルホン、ビス(3−ニトロ−4−クロロフェニル)スルホン、2,6−ジクロ
ロベンゾニトリル、2,6−ジフルオロベンゾニトリル、ヘキサフルオロベンゼン、デカ
フルオロビフェニル、2,5−ジフルオロベンゾフェノン、1,3−ビス(4−クロロベンゾイル)ベンゼンなどを反応させる。反応性から言えば、フッ素化合物が好ましいが、次の芳香族カップリング反応を考慮した場合、末端が塩素原子となるように芳香族求核置換反応を組み立てる必要がある。活性芳香族ジハライドはビスフェノールに対し、2〜4倍モル、好ましくは2.2〜2.8倍モルの使用である。芳香族求核置換反応の前に予め、ビスフェノールのアルカリ金属塩としていてもよい。反応温度は60℃〜300℃で、好ましくは80℃〜250℃の範囲である。反応時間は15分〜100時間、好ましくは1時間〜24時間の範囲である。最も好ましい方法としては、下記式で示される活性芳香族ジハライドとして反応性の異なるハロゲン原子を一個ずつ有するクロロフルオロ体を用いることであり、フッ素原子が優先してフェノキシドと求核置換反応が起きるので、目的の活性化された末端クロロ体を得るのに好都合である。
Figure 2005125705
(式中、Wは一般式(E)に関して定義した通りである。)
または特開平2−159号公報に記載のように求核置換反応と親電子置換反応を組み合わせ、目的の電子吸引性基、電子供与性基からなる屈曲性化合物の合成方法がある。
具体的には電子吸引性基で活性化された芳香族ビスハライド、例えば、ビス(4−クロロフェニル)スルホンをフェノールとで求核置換反応させてビスフェノキシ置換体とする。次いで、この置換体を例えば、4−クロロ安息香酸クロリドとのフリーデルクラフト反応から目的の化合物を得る。ここで用いる電子吸引性基で活性化された芳香族ビスハライドは上記で例示した化合物が適用できる。フェノール化合物は置換されていてもよいが、耐熱性や屈曲性の観点から、無置換化合物が好ましい。なお、フェノールの置換反応にはアルカリ金属塩とするのが、好ましく、使用可能なアルカリ金属化合物は上記に例示した化合物を使用できる。使用量はフェノール1モルに対し、1.2〜2倍モルである。反応
に際し、上述した極性溶媒や水との共沸溶媒を用いることができる。ビスフェノキシ化合物を塩化アルミニウム、三フッ化ホウ素、塩化亜鉛などのルイス酸のフリーデルクラフト反応の活性化剤存在下に、アシル化剤として、クロロ安息香酸クロライドを反応させる。クロロ安息香酸クロライドはビスフェノキシ化合物に対し、2〜4倍モル、好ましくは2.2〜3倍モルの使用である。フリーデルクラフト活性化剤は、アシル化剤のクロロ安息香酸などの活性ハライド化合物1モルに対し、1.1〜2倍当量使用する。反応時間は15分〜10時間の範囲で、反応温度は−20℃から80℃の範囲である。使用溶媒は、フリーデルクラフト反応に不活性な、クロロベンゼンやニトロベンゼンなどを用いることができる。
また、一般式(E)において、pが2以上である化合物は、例えば、一般式(E)において電子供与性基Tであるエーテル性酸素の供給源となるビスフェノールと、電子吸引性基Wである、>C=O、−SO2−および>C(CF32から選ばれる少なくとも1種の
基とを組み合わせた化合物、具体的には2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−ヒドロキシフェニル)ケト
ン、2,2−ビス(4−ヒドロキシフェニル)スルホンなどのビスフェノールのアルカリ
金属塩と、過剰の4,4−ジクロロベンゾフェノン、ビス(4−クロロフェニル)スルホンなどの活性芳香族ハロゲン化合物との置換反応をN−メチル−2−ピロリドン、N,N−
ジメチルアセトアミド、スルホランなどの極性溶媒存在下で前記単量体の合成手法に順次重合して得られる。
このような化合物の例示としては、下記式で表される化合物などを挙げることができる。
Figure 2005125705
上記において、pは0または正の整数であり、上限は通常100、好ましくは10〜80である。
本発明に係るポリアリーレン中の上記一般式(A)で表される繰り返し構成単位の含有割合は、特に限定されないが、好ましくは0.5〜100モル%、より好ましくは10〜99.999モル%である。また、本発明に係るポリアリーレン中の上記一般式(B)で表される繰り返し構成単位の含有割合は、好ましくは0〜99.5モル%、より好ましくは0.001〜90モル%である。
スルホン酸エステル基を有するポリアリーレン(C)はモノマー(D)とオリゴマー(E)を触媒の存在下に反応させることにより合成されるが、この際使用される触媒は、遷移金属化合物を含む触媒系であり、この触媒系としては、(1)遷移金属塩および配位子となる化合物(以下、「配位子成分」という。)、または配位子が配位された遷移金属錯体(銅塩を含む)、ならびに(2)還元剤を必須成分とし、さらに、重合速度を上げるために、「塩」を添加してもよい。
ここで、遷移金属塩としては、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、ニッケルアセチルアセトナートなどのニッケル化合物;塩化パラジウム、臭化パラジウム、ヨウ化パラジウムなどのパラジウム化合物;塩化鉄、臭化鉄、ヨウ化鉄などの鉄化合物;塩化コバルト、臭化コバルト、ヨウ化コバルトなどのコバルト化合物などが挙げられる。これらのうち特に、塩化ニッケル、臭化ニッケルなどが好ましい。
また、配位子成分としては、トリフェニルホスフィン、2,2'−ビピリジン、1,5−
シクロオクタジエン、1,3−ビス(ジフェニルホスフィノ)プロパンなどが挙げられる
。これらのうち、トリフェニルホスフィン、2,2'−ビピリジンが好ましい。上記配位子成分である化合物は、1種単独で、あるいは2種以上を併用することができる。
さらに、配位子が配位された遷移金属錯体としては、例えば、塩化ニッケルビス(トリフェニルホスフィン)、臭化ニッケルビス(トリフェニルホスフィン)、ヨウ化ニッケルビス(トリフェニルホスフィン)、硝酸ニッケルビス(トリフェニルホスフィン)、塩化ニッケル(2,2'−ビピリジン)、臭化ニッケル(2,2'−ビピリジン)、ヨウ化ニッケル(2,2'−ビピリジン)、硝酸ニッケル(2,2'−ビピリジン)、ビス(1,5−シク
ロオクタジエン)ニッケル、テトラキス(トリフェニルホスフィン)ニッケル、テトラキス(トリフェニルホスファイト)ニッケル、テトラキス(トリフェニルホスフィン)パラジウムなどが挙げられる。これらのうち、塩化ニッケルビス(トリフェニルホスフィン)、塩化ニッケル(2,2'−ビピリジン)が好ましい。
上記触媒系に使用することができる還元剤としては、例えば、鉄、亜鉛、マンガン、アルミニウム、マグネシウム、ナトリウム、カルシウムなどが挙げられる。これらのうち、亜鉛、マグネシウム、マンガンが好ましい。これらの還元剤は、有機酸などの酸に接触させることにより、より活性化して用いることができる。
また、上記触媒系において使用することのできる「塩」としては、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、硫酸ナトリウムなどのナトリウム化合物、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、硫酸カリウムなどのカリウム化合物;フッ化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、硫酸テトラエチルアンモニウムなどのアンモニウム化合物などが挙げられる。これらのうち、臭化ナトリウム、ヨウ化ナトリウム、臭化カリウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウムが好ましい。
各成分の使用割合は、遷移金属塩または遷移金属錯体が、上記モノマーの総計((D)+(E)、以下同じ)1モルに対し、通常、0.0001〜10モル、好ましくは0.01〜0.5モルである。0.0001モル未満では、重合反応が十分に進行しないことがあり、一方、10モルを超えると、分子量が低下することがある。
触媒系において、遷移金属塩および配位子成分を用いる場合、この配位子成分の使用割合は、遷移金属塩1モルに対し、通常、0.1〜100モル、好ましくは1〜10モルで
ある。0.1モル未満では、触媒活性が不十分となることがあり、一方、100モルを超えると、分子量が低下することがある。
また、還元剤の使用割合は、上記モノマーの総計1モルに対し、通常、0.1〜100モル、好ましくは1〜10モルである。0.1モル未満では、重合が十分進行しないことがあり、100モルを超えると、得られる重合体の精製が困難になることがある。
さらに、「塩」を使用する場合、その使用割合は、上記モノマーの総計1モルに対し、通常、0.001〜100モル、好ましくは0.01〜1モルである。0.001モル未満では、重合速度を上げる効果が不十分であることがあり、100モルを超えると、得られる重合体の精製が困難となることがある。
モノマー(D)とオリゴマー(E)とを反応させる際に使用することのできる重合溶媒としては、例えばテトラヒドロフラン、シクロヘキサノン、ジメチルスルホキシド、N,
N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリド
ン、γ−ブチロラクトン、N,N'−ジメチルイミダゾリジノンなどが挙げられる。これらのうち、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N'−ジメチルイミダゾリジノンが好ましい。これらの重合溶媒は、十分に乾燥してから用いることが好ましい。
重合溶媒中における上記モノマーの総計の濃度は、通常、1〜90重量%、好ましくは5〜40重量%である。
また、重合する際の重合温度は、通常、0〜200℃、好ましくは50〜120℃である。また、重合時間は、通常、0.5〜100時間、好ましくは1〜40時間である。
モノマー(D)を用いて得られたスルホン酸エステル基を有するポリアリーレンは、スルホン酸エステル基を加水分解して、スルホン酸基に変換することによりスルホン酸基を有するポリアリーレンとすることができる。
加水分解は、
(1)少量の塩酸を含む過剰量の水またはアルコールに、上記スルホン酸エステル基を有するポリアリーレンを投入し、5分間以上撹拌する方法
(2)トリフルオロ酢酸中で上記スルホン酸エステル基を有するポリアリーレンを80〜120℃程度の温度で5〜10時間程度反応させる方法
(3)スルホン酸エステル基を有するポリアリーレン中のスルホン酸エステル基(−SO3R)1モルに対して1〜3倍モルのリチウムブロマイドを含む溶液、例えばN−メチル
−2−ピロリドンなどの溶液中で上記ポリアリーレンを80〜150℃程度の温度で3〜10時間程度反応させた後、塩酸を添加する方法
などを挙げることができる。
スルホン酸基を有するポリアリーレンは、上記一般式(D)で表されるモノマー(D)と同様の骨格を有しスルホン酸エステル基を有しないモノマーと上記一般式(E)で表されるオリゴマー(E)を共重合させることによりポリアリーレン系共重合体を予め合成し、このポリアリーレン系共重合体をスルホン化することにより合成することもできる。この場合、上記合成方法に準じた方法によりスルホン酸基を有しないポリアリーレンを製造した後、スルホン化剤を用い、スルホン酸基を有しないポリアリーレンにスルホン酸基を導入することによりスルホン酸基を有するポリアリーレンを得ることができる。
このスルホン化の反応条件としては、スルホン酸基を有しないポリアリーレンを、無溶
剤下、あるいは溶剤存在下で、スルホン化剤を用い、常法によりスルホン酸基を導入することにより得ることができる。
スルホン酸基を導入する方法としては、例えば、上記スルホン酸基を有しないポリアリーレンを、無水硫酸、発煙硫酸、クロルスルホン酸、硫酸、亜硫酸水素ナトリウムなどの公知のスルホン化剤を用いて、公知の条件でスルホン化することができる〔Polymer Preprints,Japan,Vol.42,No.3,p.730(1993);Polymer Preprints,Japan,Vol.43,No.3,p.736(1994);Polymer Preprints,Japan,Vol.42,No.7,p.2490〜2492(1993)〕。
すなわち、このスルホン化の反応条件としては、上記スルホン酸基を有しないポリアリーレンを、無溶剤下、あるいは溶剤存在下で、上記スルホン化剤と反応させる。溶剤としては、例えばn−ヘキサンなどの炭化水素溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶剤、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドのような非プロトン系極性溶剤のほか、テトラクロロエタン、ジクロロエタン、クロロホルム、塩化メチレンなどのハロゲン化炭化水素などが挙げられる。反応温度は特に制限はないが、通常、−50〜200℃、好ましくは−10〜100℃である。また、反応時間は、通常、0.5〜1,000時間、好ましくは1〜200時間である。
本発明で用いられるスルホン酸基を有するポリアリーレン中の上記一般式(A)で表される繰り返し構成単位の含有割合は、特に限定されないが、好ましくは0.5〜100モル%、より好ましくは10〜99.999モル%である。また、本発明で用いられるポリアリーレン中の上記一般式(B)で表される繰り返し構成単位の含有割合は、好ましくは99.5〜0モル%、より好ましくは90〜0.001モル%である。
上記のような方法により製造されるスルホン酸基を有するポリアリーレン(C)中の、スルホン酸基量は通常0.3〜5meq/g、好ましくは0.5〜3meq/g、さらに好ましくは0.8〜2.8meq/gである。0.3meq/g未満では、プロトン伝導度が低く実用的ではない。一方、5meq/gを超えると、耐水性が大幅に低下してしまうことがあるため好ましくない。
上記のスルホン酸基量は、例えばモノマー(D)とオリゴマー(E)の種類、使用割合、組み合わせを変えることにより、調整することができる。
このようにして得られるスルホン酸基を有するポリアリーレンの分子量は、ゲルパーミエションクロマトグラフィ(GPC)によるポリスチレン換算重量平均分子量で、1万〜100万、好ましくは2万〜80万である。
スルホン酸基を有するポリアリーレンには、老化防止剤、好ましくは分子量500以上のヒンダードフェノール系化合物を含有させて使用してもよく、老化防止剤を含有することで電解質としての耐久性をより向上させることができる。
本発明で使用することのできるヒンダードフェノール系化合物としては、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロオネート](商品名:IRGANOX 245)、1,6−ヘキサンジオール−ビス[3−(3,5−
ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 259)
、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−3,5−トリアジン(商品名:IRGANOX 565)、ペンタエリスリチルーテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 1010)、2,2−チオ−ジエチレンビス[3−(3,5−ジ−t−ブチル−4−
ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 1035)、オクタデシル−3−(
3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)(商品名:IRGANOX 1076)、N,N−ヘキサメチレンビス(3,5−ジ−t−ブチルー4−ヒドロキシ−ヒドロシンナマミド)(IRGAONOX 1098)、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4-ヒドロキシベンジル)ベンゼン(商品名:IRGANOX 1330)、トリス−
(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト(商品名:IRGANOX 3114)、3,9−ビス[2−〔3−(3−t−ブチル−4−ヒドロキシ−5−メチル
フェニル)プロピオニルオキシ〕−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン(商品名:Sumilizer GA-80)などを挙げることができる。
本発明において、スルホン酸基を有するポリアリーレン100重量部に対してヒンダードフェノール系化合物は0.01〜10重量部の量で使用することが好ましい。
実施例
以下に実施例を挙げ、本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
なお実施例中の残存N−メチル−2−ピロリドン(以下、NMPと略す)量の測定については、以下のようにして求めた。
(残存NMP量)
プロトン伝導性スルホン化ポリマー膜をDMSO−d6に溶解し、1H−NMR(DM
SO−d6溶液)128回積算測定する。ポリマーのピーク強度とNMPのピーク強度の比から、ポリマー100重量部当たりのNMPの重量を残存NMP量(単位:重量部)とした。
また、スルホン化ポリアリーレンとして、2,5−ジクロロ−4'−(4−フェノキシフェノキシベンゾフェノン)と4,4−ジクロロベンゾフェノンと2,2−ビス(4−ヒドロキシフェニル)1,1,1,3,3,3−ヘキサフルオロプロパンから得られる4−クロロベ
ンゾイル末端のオリゴマー(数平均分子量11,200)から得られる共重合体(数平均
分子量50,000)のスルホン化ポリマー(スルホン酸当量2.08ミリ当量/g)を
用いた。
[実施例1]
NMPとメタノールからなる混合溶媒(重量比1/1)に、プロトン伝導性スルホン化ポリマーを15重量%溶解し、PETフィルム上に流延して、120℃の熱風循環式オーブンにて1時間予備乾燥させることにより厚み50μmの膜を得た。
作製した膜から、20mmの幅、50mmの長さに切り出し、浸漬用フィルムを作製した。前記フィルムを20mLのスクリュー瓶に収容し、そこにイオン交換水を17mL注入した。このスクリュー瓶を超音波洗浄機に収容し、前記イオン交換水に80Wで38kHzの超音波を照射し、5、10、20分後にフィルムを取り出した。引き続き、80℃で10分間乾燥し、フィルムに残存した水分を蒸発させた。
[比較例1]
実施例と同様の大きさのフィルムを切り出し、これらを20mLのスクリュー瓶に収容し、そこにイオン交換水を17mL注入した。このスクリュー瓶を超音波を照射することなく規定時間(5,10,30,60分)静置した後に、フィルムを取り出した。引き続き、80℃で10分間乾燥し、フィルムに残存した水分を蒸発させた。
実施例及び比較例のフィルムについて、各浸漬時間におけるフィルムの残留溶媒量を測定した。
その結果を図1に示す。
図1から明らかなように、本実施例により得られたフィルムは、比較例に比べて短時間でも充分に溶媒を抽出できることがわかった。従って、本発明によれば、除去工程に必要な時間を短縮することができる。これは、溶媒に超音波を加えながら抽出を行ったためである。
本発明に係る実施例及び比較例のフィルム中の残留溶媒の低減結果を示すグラフである。

Claims (3)

  1. プロトン伝導性重合体が水に可溶な有機溶媒に溶解された溶液を用い流延法により成膜し、
    得られた未乾燥フィルムを水に超音波を加えながら浸漬したのち、
    フィルムを乾燥することを特徴とするプロトン伝導性フィルムの製造方法。
  2. 上記プロトン伝導性重合体がスルホン酸を導入したポリマーであることを特徴とする請求項1に記載のプロトン伝導性フィルムの製造方法。
  3. 上記プロトン伝導性重合体がスルホン化ポリアリーレンであることを特徴とする請求項1に記載のプロトン伝導性フィルムの製造方法。
JP2003366056A 2003-10-27 2003-10-27 プロトン伝導性フィルムの製造法 Pending JP2005125705A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003366056A JP2005125705A (ja) 2003-10-27 2003-10-27 プロトン伝導性フィルムの製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003366056A JP2005125705A (ja) 2003-10-27 2003-10-27 プロトン伝導性フィルムの製造法

Publications (1)

Publication Number Publication Date
JP2005125705A true JP2005125705A (ja) 2005-05-19

Family

ID=34644523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003366056A Pending JP2005125705A (ja) 2003-10-27 2003-10-27 プロトン伝導性フィルムの製造法

Country Status (1)

Country Link
JP (1) JP2005125705A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007819A1 (en) * 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
WO2008066186A1 (fr) 2006-11-27 2008-06-05 Sumitomo Chemical Company, Limited Procédé de production d'une membrane électrolytique polymère et membrane électrolytique polymère

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007819A1 (en) * 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
WO2008066186A1 (fr) 2006-11-27 2008-06-05 Sumitomo Chemical Company, Limited Procédé de production d'une membrane électrolytique polymère et membrane électrolytique polymère

Similar Documents

Publication Publication Date Title
JP4131216B2 (ja) ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
EP1575115B1 (en) Polymer electrolyte and proton conductive membrane
JP4788136B2 (ja) プロトン伝導膜およびその製造方法
JP2005166557A (ja) 高分子電解質複合膜およびその製造法、ならびにそれを用いた固体高分子型燃料電池
JP2005197235A (ja) プロトン伝導膜
JP4019855B2 (ja) プロトン伝導膜の製造方法
JP4356547B2 (ja) スルホン化ポリマーおよび固体高分子電解質
JP4876410B2 (ja) 直接メタノール型燃料電池用プロトン伝導膜
JP4139967B2 (ja) ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2005036125A (ja) ポリアリーレンおよびその製造方法
JP4665396B2 (ja) ミクロ相分離構造によりメタノール透過抑制が改良されたプロトン伝導膜
JP2005125705A (ja) プロトン伝導性フィルムの製造法
JP2005239833A (ja) スルホン酸基を有するポリアリーレンおよびそれからなるプロトン伝導膜ならびにスルホン酸基を有するポリアリーレンの製造方法
JP2005135652A (ja) 高分子電解質組成物およびプロトン伝導膜
JP2005232315A (ja) 高分子電解質およびプロトン伝導膜
JP2006176682A (ja) アルキル基側鎖を有する化合物およびスルホン化ポリマー
JP2005112985A (ja) 疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
JP2005336310A (ja) プロトン酸基を有する重合体、高分子固体電解質およびプロトン伝導膜
JP2005220193A (ja) 重合体組成物およびプロトン伝導膜
JP2005190675A (ja) 固体高分子電解質膜および固体高分子電解質型燃料電池
JP2006172861A (ja) 燃料電池用膜−電極接合体
JP2005259580A (ja) プロトン伝導膜の簡易な製造方法
JP2005248128A (ja) ポリアリーレン組成物およびプロトン伝導膜
JP2005171027A (ja) プロトン伝導膜の製造方法
JP4512843B2 (ja) 酸塩基複合型高分子電解質膜