JP2005106047A - 排気浄化装置 - Google Patents

排気浄化装置 Download PDF

Info

Publication number
JP2005106047A
JP2005106047A JP2004085414A JP2004085414A JP2005106047A JP 2005106047 A JP2005106047 A JP 2005106047A JP 2004085414 A JP2004085414 A JP 2004085414A JP 2004085414 A JP2004085414 A JP 2004085414A JP 2005106047 A JP2005106047 A JP 2005106047A
Authority
JP
Japan
Prior art keywords
fuel
temperature
injection nozzle
addition
fuel addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004085414A
Other languages
English (en)
Inventor
Tatsumasa Sugiyama
辰優 杉山
Tsutomu Inoue
力 井上
Morio Narita
守男 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004085414A priority Critical patent/JP2005106047A/ja
Publication of JP2005106047A publication Critical patent/JP2005106047A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

【課題】触媒への燃料供給を行うための噴射ノズルの噴射孔付近におけるデポジットの生成を的確に抑制する。
【解決手段】ディーゼルエンジン2の排気ポート30に設けられた添加弁68においては、噴射ノズルの噴射孔周りにデポジットが生成される。これを抑制するために、添加弁68による燃料添加終了からの経過時間を計測し、その経過時間が所定時間に達したとき噴射ノズルからの強制的な燃料添加を実行する。これにより、噴射ノズルからの燃料添加が少なくとも上記所定時間に対応した間隔で行われ、上記デポジットの生成が抑制されるようになる。ただし、上記デポジットの生成状況は噴射ノズルにおける噴射孔付近の温度によって変わってくるため、噴射孔付近の温度に影響を及ぼすパラメータに応じて、上記所定時間が可変とされたり、上記強制的な燃料添加の際の燃料添加量が可変とされたりする。
【選択図】 図1

Description

本発明は、内燃機関の排気浄化装置に関するものである。
従来より、内燃機関の排気系には窒素酸化物(NOx )や微粒子(パティキュレート)に関する排気浄化を行うための触媒が設けられており、こうした触媒の排気浄化作用を改善するために同触媒への燃料供給を行うことが提案されている。
例えば、NOx に関する排気浄化を行う触媒については、排気中の酸素濃度が濃いときに排気中のNOx を吸蔵し、排気中の未燃燃料成分(HC)が多く酸素濃度が薄いときに触媒に吸蔵されたNOx をHCやCOによりN2 、CO2 、及びH2 Oに還元するものが用いられる。こうした触媒では、同触媒のNOx 吸蔵量が許容値を越え、同触媒のNOx に関する排気浄化作用が落ち込まないよう、吸蔵されたNOx を還元してNOx 吸蔵量を減らすNOx 還元制御が行われる。NOx 還元制御では触媒への燃料供給が行われ、これにより吸蔵されたNOx が燃料成分(HC)等と反応して還元される。
また、上記のようなNOx 吸蔵還元型の触媒においては、本来はNOx が吸蔵されるべきところに硫黄酸化物(SOx )等の硫黄分も吸蔵され、同触媒におけるNOx の吸蔵能力が低下するおそれがある。こうした触媒では、上記NOx 吸蔵能力の低下に伴い触媒のNOx に関する排気浄化作用が落ち込まないよう、吸蔵された硫黄分を触媒から離脱させるS被毒回復制御も行われる。なお、触媒から硫黄分を離脱させるのには、触媒温度を600℃程度まで昇温した状態で、同触媒を例えば理論空燃比よりもややリッチな空燃比の雰囲気中に曝すのが有効である。このことを考慮し、S被毒回復制御では触媒への燃料供給が行われる。そして、触媒への燃料供給に伴い、燃料と酸素とが反応する時の熱で触媒の昇温が行われるとともに、同触媒がリッチ空燃比の雰囲気に曝されるようになる。その結果、吸蔵された硫黄分が触媒から離脱させられる。
一方、パティキュレートに関する排気浄化を行う触媒は、排気中に存在する煤を主成分とする微粒子(パティキュレート)を補集するものである。従って、触媒へのパティキュレートの堆積が進むと、そのパティキュレートによって触媒が目詰まりして捕集能力が低下する。こうした触媒では、上記目詰まりによって触媒のパティキュレートに関する排気浄化作用が落ち込まないよう、補集されたパティキュレートを酸化させて触媒からの焼失を図るPM再生制御が行われる。なお、触媒からパティキュレートを焼失させるには、触媒温度を600℃程度まで上昇させる必要がある。このため、PM再生制御でも、触媒への燃料供給が行われる。これにより、燃料と酸素との反応時の熱で触媒の昇温が行われ、補集されたパティキュレートが燃焼して触媒からCO2 とH2Oとして排出されるようになる。
以上のように、触媒の排気浄化作用の低下を抑制するためのNOx 還元制御、S被毒回復制御、及びPM再生制御では、触媒への燃料の供給が行われることなる。こうした触媒への燃料供給を行うために、特許文献1では、排気ポートに燃料を噴射する噴射ノズルが設けられている。そして、この噴射ノズルからの燃料添加により、NO還元制御、S被毒回復制御、及びPM再生制御を行うための触媒への燃料供給が実現される。
特開2001−280125公報
上記噴射ノズルにおいては、その先端が排気通路に露出していることから排気中のパティキュレートが付着する。また、噴射ノズルからの燃料添加後においては、同ノズルの噴射孔付近に燃料の後だれが生じる。これらパティキュレートや燃料の後だれが生じた状態で噴射ノズルからの燃料添加が長期間行われないと、パティキュレートや燃料の後だれが噴射ノズル周りの温度(排気温度)の上昇に伴い変質して固化し、いわゆるデポジットとなって噴射孔の開口面積を小さくしてしまう。このように噴射ノズルの噴射孔の開口面積が小さくなると、必要な量の燃料を供給することができないばかりでなく、燃料の供給そのものが不可能になるおそれがある。
本発明はこのような実情に鑑みてなされたものであって、その目的は、触媒への燃料供給を行うための噴射ノズルの噴射孔付近におけるデポジットの生成を的確に抑制することのできる排気浄化装置を提供することにある。
以下、上記目的を達成するための手段及びその作用効果について記載する。
上記目的を達成するため、請求項1記載の発明では、排気通路の触媒上流に燃料を添加する噴射ノズルを備える排気浄化装置において、前記噴射ノズルによる燃料添加が終了した時点からの経過時間を計測し、その経過時間が所定時間に達したとき前記噴射ノズルからの強制的な燃料添加を実行する制御手段を備えた。 噴射ノズルからの燃料添加が行われると、添加燃料の気化に伴って噴射ノズルから気化熱が奪われるため、同ノズルから噴射孔周りの温度が低下する。また、上記添加燃料は霧状となって噴射ノズル周りに存在するようになり、この霧状の燃料が気化することで、噴射ノズルの噴射孔周りの雰囲気温度が低下する。加えて、気化した燃料は噴射ノズルの噴射孔付近で断熱層を形成するため、その噴射孔付近が高温の排気に直接曝されることはなくなる。こうした噴射ノズルからの燃料添加により、同ノズルの噴射孔付近の温度を低くすることができ、噴射孔付近の燃料の後だれやパティキュレートが変質、固化するのを抑え、噴射孔付近でのデポジットの生成を抑制することができる。また、上記噴射ノズルからの燃料添加による燃料は、同ノズルの噴射孔付近の燃料の後だれやパティキュレートを溶解するため、これによっても噴射孔付近のデポジットの生成を抑制することができる。上記構成によれば、噴射ノズルからの燃料添加が終了した時点からの経過時間が所定時間に達したとき、噴射ノズルからの強制的な燃料添加が行われるため、噴射ノズルからの燃料添加が少なくとも上記所定時間に対応する間隔で行われることとなる。このため、噴射ノズルからの燃料添加の間隔が過度に長くなり、それに伴い同ノズルの噴射孔周りにデポジットが生成されるのを抑制することができる。
なお、上記所定時間については、噴射ノズルの噴射孔周りでデポジットが生成されるおそれのある燃料添加間隔に対応する時間よりも短い時間とすることが好ましい。
請求項2記載の発明では、請求項1記載の発明において、前記所定時間は、前記噴射ノズルの噴射孔付近の温度に影響を及ぼすパラメータが前記温度を高くする側に変化するほど、短くされるものとした。
噴射ノズルの噴射孔付近でのデポジットの生成は、その噴射孔付近の温度が高くなるほど進むようになる。しかし、上記構成によれば、その温度に影響を及ぼすパラメータが同温度を高くする側に変化するほど、噴射ノズルからの燃料添加の間隔を短くすることができる。噴射ノズルからの燃料添加の間隔が短くなるほど、同燃料添加が頻繁に行われることから、噴射孔付近の温度が低下し易くなるとともに、噴射孔付近での燃料の後だれやパティキュレートの溶解が進むようになる。従って、上記パラメータが変化したとしても、それに対応して噴射ノズルからの燃料添加の頻度を変え、無駄な燃料添加を行うことなく上記デポジット生成の的確な抑制を図ることができる。
請求項3記載の発明では、請求項2記載の発明において、前記パラメータには内燃機関の吸入空気量が含まれ、同吸入空気量が多くなるほど前記所定時間が短くされるものとした。
吸入空気量は内燃機関の駆動に用いられる燃料量の変化に応じて変化するものであり、上記燃料量が増えるほど多量になるという傾向を示すことから、吸入空気量が多くなるほど排気温度が上昇して噴射ノズルの噴射孔周りの温度は高くなる。上記構成によれば、吸入空気量が多くなるほど、噴射ノズルからの燃料添加が行われる間隔が短くなる。このため、噴射ノズルからの燃料添加の頻度を、吸入空気量の変化に対応して、無駄な燃料添加を行うことなく上記デポジットの生成を抑制するのに適切な頻度とすることができる。
請求項4記載の発明では、請求項2又は3記載の発明において、前記パラメータには内燃機関の冷却水温、吸入空気温、及び外気温のうちの少なくとも一つが含まれ、それら温度が高くなるほど前記所定時間が短くされるものとした。
内燃機関の冷却水温、吸入空気温、及び外気温については、それら温度が高くなるほど、排気温度が上昇して噴射ノズルの噴射孔周りの温度は高くなる。上記構成によれば、冷却水温、吸入空気温、及び外気温が高くなるほど、噴射ノズルからの燃料添加が行われる間隔が短くなる。このため、噴射ノズルからの燃料添加の頻度を、冷却水温、吸入空気温、及び外気温の変化に対応して、無駄な燃料添加を行うことなく上記デポジットの生成を抑制するのに適切な頻度とすることができる。
請求項5記載の発明では、請求項2〜4のいずれかに記載の発明において、前記所定時間は、その長さが触媒床温の上限によって決まる限界値よりも短くならないようにされるものとした。
噴射ノズルからの燃料添加の間隔が短くなり、その燃料添加の頻度が高くなると、触媒に流れ込む燃料が多くなり、同触媒床温が燃料成分と酸素との反応により上昇するようになる。しかし、上記構成によれば、噴射ノズルからの燃料添加の間隔が触媒昇温を上限まで上昇させるほど短くされることはないため、この触媒床昇の上昇に伴い触媒の排気浄化作用が低下してしまうのを抑制することができる。
請求項6記載の発明では、請求項1〜5のいずれかに記載の発明において、前記制御手段は、前記噴射ノズルからの強制的な燃料添加を行う際の燃料添加量を、前記噴射ノズルの噴射孔付近の温度に影響を及ぼすパラメータが前記温度を高くする側に変化するほど多くするものとした。
噴射ノズルからの燃料添加を行う際の燃料添加量が多くなるほど、噴射孔付近の温度が低下し易くなるとともに、噴射孔付近での燃料の後だれやパティキュレートの溶解が進むようになる。上記構成によれば、噴射ノズルの噴射孔付近の温度に影響を及ぼすパラメータが同温度を高くする側に変化するほど、それに対応して噴射ノズルからの強制的な燃料添加が行われる際の燃料添加量を多くすることができるため、無駄な燃料添加を行うことなく上記デポジット生成の的確な抑制を図ることができる。
請求項7記載の発明では、請求項6記載の発明において、前記パラメータには内燃機関の吸入空気量が含まれ、同吸入空気量が多くなるほど前記燃料添加量が多くされるものとした。
噴射ノズルの噴射孔周りの温度については、吸入空気量が多くなるほど高くなるという傾向を示す。上記構成によれば、噴射ノズルからの燃料添加量を吸入空気量の増量に応じて多くすることができるため、その燃料添加量を無駄な燃料添加を行うことなく上記デポジットの生成を抑制するのに適切な値とすることができる。
請求項8記載の発明では、請求項6又は7記載の発明において、前記パラメータには内燃機関の冷却水温、吸入空気温、及び外気温のうちの少なくとも一つが含まれ、それら温度が高くなるほど前記燃料添加量が多くされるものとした。
噴射ノズルの噴射孔周りの温度については、内燃機関の冷却水温、吸入空気温、及び外気温が高温になるほど高くなる。上記構成によれば、噴射ノズルからの燃料添加量を冷却水温、吸入空気温、及び外気温の上昇に応じて多くすることができるため、その燃料添加量を無駄な燃料添加を行うことなく上記デポジットの生成を抑制するのに適切な値とすることができる。
請求項9記載の発明では、請求項6〜8のいずれかに記載の発明において、前記燃料添加量については、その量が触媒床温の上限によって決まる限界値よりも多くならないようにされるものとした。
噴射ノズルからの燃料添加量が多くなると、触媒に流れ込む燃料も多くなり、同触媒床温が燃料成分と酸素との反応により上昇するようになる。しかし、上記構成によれば、噴射ノズルからの燃料添加量が触媒昇温を上限まで上昇させるほど多くされることはないため、この触媒床昇の上昇に伴い触媒の排気浄化作用が低下してしまうのを抑制することができる。
請求項10記載の発明では、請求項1〜9のいずれかに記載の発明において、前記制御手段は、排気温度が所定値以上であるとき、前記噴射ノズルからの強制的な燃料添加を禁止するものとした。
上記構成によれば、噴射ノズルからの強制的な燃料添加に伴い、触媒床温度が燃料成分と酸素との反応により過度に高くなるのを抑制することができる。
なお、上記所定値としては、例えば触媒床温を上限まで上昇させるおそれのある値を採用することができる。この場合、噴射ノズルからの強制的な燃料添加によって触媒床温度が上限を越えて高くなり、同触媒の排気浄化作用が低下するのを抑制することができるようになる。
請求項11記載の発明では、請求項1〜10のいずれかに記載の発明において、前記制御手段は、排気温度が触媒の活性化温度よりも高い値であることを条件に、前記噴射ノズルからの強制的な燃料添加を行うものとした。
上記構成によれば、触媒が活性化温度まで昇温していないときに、噴射ノズルからの強制的な燃料添加が行われるのを回避し、その燃料添加によって触媒に流れ込んだ燃料成分が酸素と反応しきらずに外部に排出されてしまうのを抑制することができる。
請求項12記載の発明では、請求項1〜11のいずれかに記載の発明において、前記制御手段は、前記噴射ノズルによる燃料添加が終了した後、内燃機関の燃焼モードが通常燃焼モードから同モードよりも高いEGR率で燃焼を行う低温燃焼モードに切り換えられることに基づき、前記経過時間が前記所定時間に達していなくても前記噴射ノズルからの強制的な燃料添加を実行するものとした。
低温燃焼モードから通常燃焼モードに切り換えられるときには、EGR率の低減が行われるが、その際のEGR率の変化には応答遅れが生じる。このEGR率の変化の応答遅れによって同EGR率が十分に低減されぬまま、低温燃焼モードから通常燃焼モードに切り換えられると、EGR量が適正値よりも過多になって内燃機関のスモーク排出量が多くなり、噴射ノズルの噴射孔周りにデポジットが付着する。しかし、上記構成によれば、噴射ノズルによる燃料添加終了後、低温燃焼モードから通常燃焼モードに切り換えられることに基づき、噴射ノズルからの強制的な燃料添加が実行されるため、上記デポジットが噴射孔周りに堆積するのを抑制することができる。
請求項13記載の発明では、請求項12記載の発明において、前記制御手段は、前記噴射ノズルによる燃料添加が終了した後、通常燃焼モードから低温燃焼モードに切り換えられた回数をカウントし、その回数が規定回数以上になったとき前記噴射ノズルからの強制的な燃料添加を実行するものとした。
低温燃焼モードから通常燃焼モードへの切り換えは、通常、触媒床温がそれほど高くならない内燃機関の低負荷運転領域にて行われる。このため、仮に低温燃焼モードから通常燃焼モードへの切り換え毎に噴射ノズルからの強制的な燃料添加が行われると、触媒床温が低く触媒の活性が停滞している状態にあって反応しきれないほどの燃料が触媒に添加される。この場合、触媒でのパティキュレートの燃焼に悪影響が及び、触媒入り口でのパティキュレートの堆積を招くおそれがある。しかし、上記構成によれば、前記噴射ノズルによる燃料添加が終了した後、通常燃焼モードから低温燃焼モードに切り換えられた回数が規定回数以上になったとき、噴射ノズルからの強制的な燃料添加が実行されるため、上記規定回数を適宜設定することで触媒に反応しきれないほどの燃料が添加されるのを抑制することができる。
[第1実施形態]
以下、本発明を車両用ディーゼルエンジンの排気浄化装置に適用した第1実施形態を図1〜図8に従って説明する。
図1に示されるように、ディーゼルエンジン2は複数気筒、ここでは4気筒#1,#2,#3,#4からなる。各気筒#1〜#4の燃焼室4は吸気弁6にて開閉される吸気ポート8及び吸気マニホールド10を介してサージタンク12に連結されている。そしてサージタンク12は、吸気経路13を介して、インタークーラ14及び過給機、ここではターボチャージャ16のコンプレッサ16aの出口側に連結されている。コンプレッサ16aの入口側はエアクリーナ18に連結されている。そして、吸気経路13において、サージタンク12とインタークーラ14との間の部分にはスロットル弁22が配置され、コンプレッサ16aとエアクリーナ18との間の部分には吸入空気量センサ24、及び吸気温センサ26が配置されている。
各気筒#1〜#4の燃焼室4は排気弁28にて開閉される排気ポート30及び排気マニホールド32を介してターボチャージャ16の排気タービン16bの入口側に連結され、排気タービン16bの出口側は排気経路34に接続されている。尚、排気タービン16bは排気マニホールド32において第4気筒#4側から排気を導入している。
この排気経路34には、排気浄化触媒が収納されている3つの触媒コンバータ36,38,40が配置されている。最上流の第1触媒コンバータ36にはNOx 吸蔵還元触媒が収納されている。このNOx 吸蔵還元触媒により、ディーゼルエンジンの通常の運転時において排気が酸化雰囲気(リーン)にある時には、NOx はNOx 吸蔵還元触媒に吸蔵される。そして還元雰囲気(ストイキあるいはリッチ)ではNOx 吸蔵還元触媒に吸蔵されたNOx がNOとして離脱しHCやCOにより還元される。このことによりNOx の浄化を行っている。
そして中間に配置された第2触媒コンバータ38にはモノリス構造に形成された壁部を有するフィルタが収納され、この壁部の微小孔を排気が通過するように構成されている。このフィルタ表面にNOx 吸蔵還元触媒がコーティングされているので、前述したごとくにNOx の浄化が行われる。更に、フィルタ表面には排気中のパティキュレート(PM)が捕捉されるので、酸化雰囲気ではNOx 吸蔵時に発生する活性酸素によりPMの酸化が開始され、更に周囲の過剰酸素によりPM全体が酸化される。還元雰囲気(ストイキあるいはリッチ)ではNOx 吸蔵還元触媒から発生する大量の活性酸素によりPMの酸化が促進される。このことによりNOx の浄化と共に、PMの浄化も実行している。
最下流の第3触媒コンバータ40は、酸化触媒が収納され、ここではHCやCOが酸化されて浄化される。
尚、第1触媒コンバータ36の上流には第1空燃比センサ42が、第1触媒コンバータ36と第2触媒コンバータ38との間には第1排気温センサ44が配置されている。又、第2触媒コンバータ38と第3触媒コンバータ40との間において、第2触媒コンバータ38の近くには第2排気温センサ46が、第3触媒コンバータ40の近くには第2空燃比センサ48が配置されている。
上記第1空燃比センサ42と第2空燃比センサ48とは、それぞれの位置で排気成分に基づいて排気の空燃比を検出し、空燃比に比例した電圧信号をリニアに出力するセンサである。又、第1排気温センサ44と第2排気温センサ46とはそれぞれの位置で排気温を検出するものである。
各気筒#1〜#4に配置されて、各燃焼室4内に直接燃料を噴射する燃料噴射弁58は、燃料供給管58aを介してコモンレール60に連結されている。このコモンレール60内へは電気制御式の吐出量可変燃料ポンプ62から燃料が供給され、燃料ポンプ62からコモンレール60内に供給された高圧燃料は各燃料供給管58aを介して各燃料噴射弁58に分配供給される。
更に、燃料ポンプ62からは別途、低圧燃料が燃料供給管66を介して添加弁68に供給されている。この添加弁68は第4気筒#4の排気ポート30に設けられて、排気タービン16b側に向けて燃料を還元剤として噴射するものである。この還元剤の噴射により、排気を一時的に還元雰囲気として第1触媒コンバータ36及び第2触媒コンバータ38に吸蔵されているNOx を還元浄化し、更に第2触媒コンバータ38ではPMの浄化も同時に実行する。
電子制御ユニット(以下、「ECU」と称する)70はCPU、ROM、RAM等を備えたデジタルコンピュータと、各装置を駆動するための駆動回路とを主体として構成されている。そしてECU70は前述した吸入空気量センサ24、吸気温センサ26、第1空燃比センサ42、第1排気温センサ44、第2排気温センサ46、第2空燃比センサ48、及びスロットル開度センサ22aの信号を読み込んでいる。更にアクセルペダル72の踏み込み量を検出するアクセル開度センサ74、及びディーゼルエンジン2の冷却水温度を検出する冷却水温センサ76から信号を読み込んでいる。更に、クランク軸78の回転数を検出するエンジン回転数センサ80、クランク軸78の回転位相あるいは吸気カムの回転位相を検出して気筒判別を行う気筒判別センサ82から信号を読み込んでいる。
そしてこれらの信号から得られるエンジン運転状態に基づいて、ECU70はディーゼルエンジン2の運転制御、例えば燃料噴射弁58による燃料噴射時期や燃料噴射量制御、及びモータ22bによるスロットル開度制御等を実行する。また、ECU70は、触媒に対する制御処理を実行する触媒制御モードを、PM再生制御モード、S被毒回復制御モード、NOx 還元制御モード、及び通常制御モードといった四種類のモードの間で切り換え、現在の触媒制御モードに応じて添加弁68による排気系への燃料添加が行われるよう同添加弁68を駆動制御する。
なお、PM再生制御モードとは、添加弁68からの燃料添加を継続的に繰り返して触媒床温を高温化(例えば600〜700℃)とし、第2触媒コンバータ38内に堆積しているPMを燃焼させてCO2とH2Oにして排出するモードである。S被毒回復制御モードとは、添加弁68からの燃料添加を継続的に繰り返して触媒床温を高温化(例えば600〜700℃)するとともに排気の空燃比をストイキあるいはリッチとし、第1触媒コンバータ36及び第2触媒コンバータ38内のNOx 吸蔵還元触媒から硫黄分を放出させるモードである。NOx 還元制御モードとは、添加弁68からの比較的時間をおいた間欠的な燃料添加により、第1触媒コンバータ36及び第2触媒コンバータ38内のNOx 吸蔵還元触媒に吸蔵されたNOx を、N2、CO2及びH2Oに還元して放出するモードである。こ
れらPM再生制御モード、S被毒回復制御モード、及びNOx 還元制御モードについては、それぞれ実行要求があったときに行われることとなるが、各モードの実行要求が重なったときには、PM再生制御モード→S被毒回復制御モード→NOx 還元制御モードの順で優先して行われることとなる。また、以上の各モード以外の状態が通常制御モードとなり、この通常制御モードでは添加弁68からの燃料添加はなされない。
ここで、上記添加弁68について図2を参照して説明する。
図2は、添加弁68の噴射ノズル68aを拡大して示す断面図である。同図からわかるように添加弁68の噴射ノズル68aについては、上記排気ポート30に形成された穴91内に収容された状態となっており、同ノズル68aの排気下流寄りの部分(図中右寄りの部分)には燃料を下流側に向けて噴射するための噴射孔68bが設けられている。また、穴91の内周面には、噴射ノズル68aの排気上流寄りの部分(図中左寄りの部分)を覆うように保護カバー92が突出形成されている。この保護カバー92により噴射ノズル68aが排気ポート30を流れる排気に曝されにくくなる。
排気ポート30を流れる排気には煤等のPMが含まれており、このPMが添加弁68からの燃料添加直後に噴射ノズル68aの近傍を通過すると、同ノズル68a付近に存在しているミスト状の燃料が上記PMに付着し、同PMの粒径が大きくなる。そして、噴射ノズル68aの近傍に位置しているPMは、排気脈動に伴い同ノズル68aに向けて流され、噴射ノズル68aの噴射孔68b周りに付着するようになる。また、噴射ノズル68aの噴射孔68b周りには燃料添加後の燃料の後だれが生じる。これらPMや燃料の後だれは、噴射ノズル68a周りの温度(排気温度)の上昇に伴い変質して固化し、いわゆるデポジットとなって噴射孔68bの開口面積を小さくしてしまう。
こうした噴射ノズル68a周りでのデポジットの生成については、添加弁68からの燃料添加が行われているときには促進せず、同燃料添加が長期間行われていないときに促進することとなる。これは、添加弁68からの燃料添加が行われるときには、噴射ノズル68aの噴射孔68b付近の温度が低くされて上記PMや燃料の後だれが固化しにくくなるとともに、噴射される燃料によって噴射孔68b周りのPMや燃料の後だれが溶解されるためである。なお、添加弁68からの燃料添加によって噴射ノズル68aの噴射孔68b付近の温度が低くなるのは、添加燃料の気化に伴って噴射ノズル68aから気化熱が奪われるとともに、噴射孔68b付近が気化燃料による断熱層に覆われて高温の排気に直接曝されることがなくなるためである。
従って、添加弁68からの燃料添加が行われない通常制御モードで上記デポジットの生成が進むのは勿論のこと、PM再生制御モード、S被毒回復制御モード、及びNOx
還元制御モードであっても、添加弁68からの燃料添加の間隔が長い場合には上記デポジットの生成が進むこととなる。そして、このようにデポジットの生成が進むことで、添加弁68からの燃料添加を行おうとするときに支障を来すおそれがある。
そこで本実施形態では、添加弁68(噴射ノズル68a)による前回の燃料添加が終了した時点からの経過時間を計測し、触媒制御モードがいずれのモードの場合であれ、上記経過時間が所定時間に達したときに噴射ノズル68aからの強制的な燃料添加を実行する。このため、噴射ノズル68aからの燃料添加が少なくとも上記所定時間に対応する間隔で行われるようになり、その間隔が過度に長くなることに伴い同ノズル68aの噴射孔68b周りでデポジットが生成されるのを抑制することができる。
図3は、上述した噴射ノズル68aからの強制的な燃料添加を実行するための噴射ノズル浄化ルーチンを示すフローチャートである。同ルーチンは、ECU70を通じて、例えば所定時間毎の時間割り込みにて実行される。
噴射ノズル浄化ルーチンにおいては、まず上記デポジットの生成を抑制するための添加弁68からの強制的な燃料添加を行う条件である浄化実行条件が成立しているか否かが判断される(S101)。浄化実行条件が成立しているか否かは、例えば以下の(1)及び(2)の条件が両方とも成立しているか否かに基づいて行われる。
(1)排気温度が触媒の許容上限温度(例えば700℃)よりも低い値であること。
(2)排気温度が触媒の活性化温度よりも高い値であること。
ここで、浄化実行条件として、上記(1)の条件が含まれているのは、触媒床温が高いときに上記デポジットの生成を抑制するための添加弁68からの強制的な燃料添加が行われ、同触媒床温が許容上限値を越えて上昇しないようにするためである。また、浄化実行条件として、上記(2)の条件が含まれているのは、触媒床温が触媒の活性化温度よりも低いときに上記デポジットの生成を抑制するための添加弁68からの強制的な燃料添加が行われ、燃料成分が触媒で反応せずに同触媒を通過して外部に排出されるのを防止するためである。
浄化実行条件が成立しているときには(S101:YES)、噴射ノズル68aからの強制的な燃料添加を実行可能である旨の判断がなされ、ステップS102以降の処理が行われる。ステップS102〜S107の処理は、前回の噴射ノズル68aからの燃料添加が終了した時点からの経過時間が上記デポジット生成のおそれのある時間に達したか否かを判断するための閾値である添加インターバルTfin を算出するためのものである。
この添加インターバルTfin は、以下の式(1)に基づき算出された後に、ガード値Gmin での下限ガードを行うことで得られる値である。
Tfin =Tbs・(1−Kga1・Kthw1 ) …(1)
Tfin :添加インターバル
Tbs :インターバルベース値
Kga1 :吸気量補正係数
Kthw1 :水温補正係数
式(1)のインターバルベース値Tbsは、ステップS102の処理で、エンジン回転数と、エンジン負荷に対応するパラメータ、例えばディーゼルエンジン2の駆動に用いられる燃料の量(燃料噴射弁58による燃料噴射量)とに基づき、図5のマップを参照して算出される。なお、ここでは、エンジン負荷に対応するパラメータとして、燃料噴射弁58による燃料噴射量を用いているが、これに代えてアクセル踏込量を採用してもよい。上記のように算出されるインターバルベース値Tbsは、燃料噴射量(エンジン負荷)とエンジン回転数とに応じた最適な添加インターバルの理論上の値であって、エンジン高回転になるほど、またエンジン高負荷になるほど短い値とされるようになる。ここで、エンジン高回転高負荷になるほどディーゼルエンジン2の排気温度は高くなり、噴射ノズル68aの噴射孔68b付近においてデポジットの生成が進みやすくなる。従って、上記のようにインターバルベース値Tbsを算出することで、上記デポジットの生成が進み易くなるエンジン高回転高負荷ほど、添加インターバルTfin が短くされるようになる。
式(1)の吸気量補正係数Kga1は、上記インターバルベース値Tbsを吸入空気量に応じて補正するものであって、ステップS103の処理において吸入空気量に基づき図6のマップを参照して算出される。このように算出される吸気量補正係数Kga1は、例えば吸入空気量の少ない領域では「0」にされるとともに、吸入空気量の多い領域で「0」よりも大きく且つ「1.0」未満の値とされる。従って、インターバルベース値Tbsを吸気量補正係数Kga1等で補正した値である上記添加インターバルTfin は、吸入空気量が多い領域で短い値へと補正されるようになる。ここで、吸入空気量は、燃料噴射弁58による燃料噴射量の変化に応じて変化するものであり、上記燃料噴射量が増えるほど多量になるという傾向を示すものである。このことから、吸入空気量が多くなるにつれて、排気温度が上昇して噴射ノズル68aの噴射孔68b周りの温度は高くなり、上記デポジットの生成は進み易くなる。このため、吸入空気量に応じて変化する上記吸気量補正係数Kga1での補正を行うことで、上記デポジットの生成が進み易くなる吸入空気量多量時ほど、添加インターバルTfin が短くされるようになる。
式(1)の水温補正係数Kthw1 は、上記インターバルベース値Tbsをディーゼルエンジン2のエンジン温度に対応して変化する冷却水温に応じて補正するものであって、ステップS104の処理において冷却水温に基づき図7のマップを参照して算出される。このように算出される水温補正係数Kthw1 は、冷却水温(エンジン温度)が高くなるほど大きくなって「1.0」に近い値にされる。従って、インターバルベース値Tbsを水温補正係数Kthw1 等で補正した値である上記添加インターバルTfin は、冷却水温が高くなるほど短い値へと補正されるようになる。ここで、冷却水温は排気温度に影響を及すものであって、冷却水温が高くなるほど排気温度が高くなって噴射ノズル68aの噴射孔68b周りの温度が高くなり、上記デポジットの生成が進み易くなる。このため、冷却水温に応じて変化する上記水温補正係数Kthw1 での補正を行うことで、上記デポジットの生成が進み易くなる冷却水温高温時ほど、添加インターバルTfin が短くされるようになる。
式(1)に基づき算出された添加インターバルTfin に対しては、ステップS106,S107の処理により下限ガードが行われる。即ち、ステップS106の処理ではエンジン回転数に基づき図8のマップを参照してガード値Gmin (限界値)が算出され、ステップS107の処理では上記添加インターバルTfin とガード値Gmin との大きい方が新たな添加インターバルTfin に設定される。上記ガード値Gmin は、触媒床温を許容上限温度まで上昇させるおそれのある噴射ノズル68aからの燃料添加の間隔に対応した値として算出される。従って、このガード値Gmin によって下限ガードされた添加インターバルTfin は、触媒床温を許容上限温度まで上昇させるおそれのない噴射ノズル68aの燃料添加の間隔に対応した値となる。
添加インターバルTfin の下限ガードが行われた後、ステップS108以降の処理が行われる。S108,S109の処理は、上記デポジットの生成を抑制するための噴射ノズル68aからの強制的な燃料添加を行うためのものである。
この一連の処理では、まず前回の添加弁68からの燃料添加終了からの経過時間が、上記デポジット生成のおそれのある時間に達したか否かを判断するための閾値である添加インターバルTfin 以上であるか否かが判断される(S108)。ここで肯定判定であれば、ECU70を通じて添加弁68が駆動制御され、噴射ノズル68aからの予め定められた燃料添加量τ分の燃料添加が強制的に行われる。こうした強制的な燃料添加によって、触媒制御モードがいずれのモードであったとしても、噴射ノズル68aからの燃料添加が少なくとも添加インターバルTfin 毎に実行されることとなる。
例えば、PM再生制御モード、S被毒回復制御モード、及びNOx 還元制御モードでは、触媒への燃料供給のために噴射ノズル68aからの断続的な燃料添加が行われるが、その燃料添加の合間にステップS108,S109の処理に基づく強制的な燃料添加が行われる場合がある。即ち、触媒への燃料供給のための断続的な燃料添加の間隔が上記添加インターバルTfin よりも長くなると、ステップS108,S109の処理に基づき噴射ノズル68aからの燃料添加量τ分の強制的な燃料添加が行われる。このため、上記各モードにおいて噴射ノズル68aからの燃料添加の間隔が過度に長くなり、上記デポジットが生成されることは抑制される。
一方、通常制御モードでは、触媒に燃料を供給するための噴射ノズル68aからの添加は行われないことから、ステップS108,109の処理に基づき、図4に示されるように添加インターバルTfin 毎に噴射ノズル68aからの燃料添加量τ分の強制的な燃料添加が行われる。このため、通常制御モードにおいても、噴射ノズル68aからの強制的な燃料添加により、上記デポジットの生成は抑制されるようになる。
以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)上記浄化実行条件の成立時には、触媒制御モードがいずれのモードであっても、上述した噴射ノズル68aからの強制的な燃料添加により、同ノズル68aからの燃料添加が少なくとも添加インターバルTfin 毎には実行される。このため、噴射ノズル68aからの燃料添加の間隔が過度に長くなり、それに伴い同ノズル68aの噴射孔68b周りにデポジットが生成されるのを抑制することができる。また、上記デポジットの生成は、噴射ノズル68aの噴射孔68b付近の温度が高くなるほど行われ易くなる。しかし、その温度に影響を及ぼすパラメータが同温度を高くする側に変化するほど、上記添加インターバルTfin が短くされるようになる。この添加インターバルTfin が短くなるほど、噴射ノズル68aからの燃料添加が頻繁に行われることから、同ノズル68aの噴射孔68b周りでデポジットが生成されにくくなる。従って、上記パラメータが変化したとしても、それに対応して噴射ノズル68aからの燃料添加の頻度を変え、無駄な燃料添加を行うことなく上記デポジットの生成を抑制することができる。
(2)上記パラメータとして、エンジン回転数及びエンジン負荷、吸入空気量、並びに冷却水温が用いられる。エンジン回転数及びエンジン負荷については、それらが大となるほどディーゼルエンジン2の駆動に用いられる燃料量が多くなって排気温度が高くなり、噴射ノズル68aの噴射孔68b周りの温度が高くなる。このことに対応してインターバルベース値Tbsの算出が行われるため、同インターバルベース値Tbsの補正後の値である添加インターバルTfin はエンジン高回転高負荷ほど短くなる。また、吸入空気量については、その増加がディーゼルエンジン2の駆動に用いられる燃料量の増加に対応するものであることから、吸入空気量が増加するほど噴射ノズル68aの噴射孔68b周りの温度が高くなるという傾向がある。このことに対応して吸気量補正係数Kga1によるインターバルベース値Tbsの補正が行われ、添加インターバルTfin が吸入空気量の多い領域で短くなるようにされる。更に、冷却水温については、その値が高くなるほど排気温度が上昇して噴射ノズル68aの噴射孔68b周りの温度が高くなる。このことに対応して水温補正係数Kthw1 によるインターバルベース値Tbsの補正が行われ、添加インターバルTfin が冷却水温の上昇に伴って短くなるようにされる。以上のように、上記各パラメータが噴射ノズル68aの噴射孔68b周りの温度を高くする側に変化して当該噴射孔68b周りでデポジットが生成され易くなる状況ほど、添加インターバルTfin が短くされるようになり、上記デポジットの生成を的確に抑制することができるようになる。
(3)上記添加インターバルTfin が短くなると、噴射ノズル68aからの燃料添加の間隔が短くなり、その燃料添加の頻度が高くなるため、触媒に流れ込む燃料が多くなって、触媒床温が燃料成分と酸素との反応により上昇するようになる。しかし、上記添加インターバルTfin は、触媒床温を許容上限温度まで上昇させるおそれのある噴射ノズル68aからの燃料添加の間隔に対応した値として算出されるガード値Gmin を用いて下限ガードされる。このため、上述した強制的な燃料添加が行われるときの噴射ノズル68aからの燃料添加の間隔が、触媒床温を上限まで上昇させるほど短くされることはなくなり、この触媒床温の上昇に伴い排気浄化作用が低下してしまうのを抑制することができる。
(4)上記浄化実行条件のうちの「排気温度が触媒の許容上限温値よりも低い値であること」という条件からわかるように、排気温度が触媒の許容上限温度付近に上昇しているときには、噴射ノズル68aからの強制的な燃料添加は禁止される。従って、この燃料添加によって触媒が許容上限温度を越えて昇温してしまい、排気浄化性能が低下するのを抑制することができる。
(5)また、上記浄化実行条件のうちの「排気温度が触媒の活性化温度よりも高い値であること」という条件からわかるように、排気温度が触媒の活性化温度に達していないときにも、上記デポジットの生成を抑制するための添加弁68からの燃料添加が行われることはない。従って、この燃料添加によって触媒に流れ込んだ燃料成分が酸素で反応せずに同触媒を通過して外部に排出されてしまうのを抑制することができる。
[第2実施形態]
次に、本発明の第2実施形態を図9に従って説明する。
この実施形態は、上記デポジットの生成を抑制するための添加弁68による強制的な燃料添加に関し、その燃料添加量を噴射ノズル68aの噴射孔68b付近の温度に関係するパラメータに応じて可変とすることで、無駄な燃料添加を行うことなく上記デポジット生成の的確な抑制を可能とするものである。なお、この強制的な燃料添加については前回の添加弁68による燃料添加の終了時点からの経過時間が所定時間(添加インターバル)に達したときに行われるが、当該所定時間を本実施形態では一定時間としている。
図9は、この実施形態の噴射ノズル浄化ルーチンを示すフローチャートである。同ルーチンにおいては、ステップS201で浄化実行条件が成立している旨判断されると(S201:YES)、ステップS202以降の処理が行われる。ステップS202〜S207の処理は、上述した添加弁68による強制的な燃料添加が行われる際の燃料添加量τfin を算出するためのものである。
この燃料添加量τfin は、以下の式(2)に基づき算出された後に、ガード値Gmax での上限ガードを行うことで得られる値である。
τfin =τbs・(1+Kga2・Kthw2) …(2)
τfin :燃料添加量
τbs :燃料量ベース値
Kga2 :吸気量補正係数
Kthw2 :水温補正係数
式(2)の燃料量ベース値τbsは、ステップS202の処理で、エンジン回転数とディーゼルエンジン2の駆動に用いられる燃料の量(燃料噴射弁58による燃料噴射量)とに基づき算出される。この燃料量ベース値τbsは、燃料噴射量(エンジン負荷)とエンジン回転数とに応じた最適な燃料添加量の理論上の値であって、エンジン高回転になるほど、またエンジン高負荷になるほど大きい値とされるようになる。このように燃料量ベース値τbsを算出することで、上記デポジットの生成が進み易くなるエンジン高回転高負荷ほど、燃料添加量τfin が多くされるようになる。
式(2)の吸気量補正係数Kga2は、上記燃料量ベース値τbsを吸入空気量に応じて補正するものであって、ステップS203の処理において吸入空気量に基づき算出される。このように算出される吸気量補正係数Kga2は、例えば吸入空気量の少ない領域では「0」にされるとともに、吸入空気量の多い領域で「0」よりも大きい値とされる。従って、燃料量ベース値τbsを吸気量補正係数Kga2等で補正した値である上記燃料添加量τfin は、上記デポジットの生成が進み易くなる吸入空気量多量時ほど大きい値になる。
式(2)の水温補正係数Kthw2 は、上記燃料量ベース値τbs を冷却水温に応じて補正するものであって、ステップS204の処理で冷却水温に基づき算出される。このように算出される水温補正係数Kthw2 は、冷却水温(エンジン温度)が高くなるほど大きくなって「1.0」に近い値にされる。従って、燃料量ベース値τbsを水温補正係数Kthw2 等で補正した値である上記燃料添加量τfin は、上記デポジットの生成が進み易くなる冷却水温高温時ほど大きい値になる。
式(2)に基づき算出された燃料添加量τfin に対しては、ステップS206,S207の処理により上限ガードが行われる。即ち、ステップS206の処理ではエンジン回転数に基づきガード値Gmax (限界値)が算出され、ステップS207の処理では上記燃料添加量τfin とガード値Gmax との小さい方が新たな燃料添加量τfin に設定される。上記ガード値Gmax は、触媒床温を許容上限温度まで上昇させるおそれのある噴射ノズル68aからの燃料添加量に対応した値として算出される。従って、このガード値Gmax によって上限ガードされた燃料添加量τfin は、触媒床温を許容上限温度まで上昇させるおそれのない噴射ノズル68aの燃料添加量に対応した値となる。
燃料添加量τfin の上限ガードが行われた後、ステップS208以降の処理が行われる。S208,S209の処理は、上記デポジットの生成を抑制するための噴射ノズル68aからの強制的な燃料添加を行うためのものである。
この一連の処理では、まず前回の添加弁68からの燃料添加終了からの経過時間が、上記デポジット生成のおそれのある時間に達したか否かを判断するための閾値である添加インターバルT以上であるか否かが判断される(S108)。なお、この添加インターバルTについては一定値が採用される。そして、ここで肯定判定であれば、ECU70を通じて添加弁68が駆動制御され、噴射ノズル68aから燃料添加量τfin の燃料添加が強制的に行われる。即ち、噴射ノズル68aから添加される燃料の量が燃料添加量τfin となるよう同ノズル68aの燃料添加時間が制御される。こうした強制的な燃料添加によって、触媒制御モードがいずれのモードであったとしても、噴射ノズル68aからの燃料添加が少なくとも添加インターバルT毎に実行されることとなる。
以上詳述した本実施形態によれば、第1実施形態の(4)及び(5)の効果が得られるとともに、以下に示す効果が得られるようになる。
(6)上記浄化実行条件の成立時には、触媒制御モードがいずれのモードであっても、上述した噴射ノズル68aからの燃料添加量τfin 分の強制的な燃料添加により、同ノズル68aからの燃料添加が少なくとも添加インターバルT毎には実行される。このため、噴射ノズル68aからの燃料添加の間隔が過度に長くなり、それに伴い同ノズル68aの噴射孔68b周りにデポジットが生成されるのを抑制することができる。また、上記デポジットの生成は、噴射ノズル68aの噴射孔68b付近の温度が高くなるほど行われ易くなる。しかし、その温度に影響を及ぼすパラメータが同温度を高くする側に変化するほど、それに対応して上記燃料添加量τfin を大きくして、噴射ノズル68aからの強制的な燃料添加が行われる際の燃料添加量を多くすることができるため、無駄な燃料添加を行うことなく上記デポジット生成の的確な抑制を図ることができる。
(7)上記燃料添加量τfin は、燃料量ベース値τbsの算出の仕方からわかるように、エンジン高回転高負荷ほど大きくなるようにされる。また、上記燃料添加量τfin は、吸気量補正係数Kga2による燃料量ベース値τbsの補正に基づき、吸入空気量の多い領域で大きくなるようにされる。更に、上記燃料添加量τfin は、水温補正係数Kthw1 による燃料量ベース値τbsの補正に基づき、冷却水温の上昇に伴って大きくなるようにされる。以上のように、上記各パラメータが噴射ノズル68aの噴射孔68b周りの温度を高くする側に変化して当該噴射孔68b周りでデポジットが生成され易くなる状況ほど、上記燃料添加量τfin が大きくされるようになり、上記デポジットの生成を的確に抑制することができるようになる。
(8)上記燃料添加量τfin が大きくなると、噴射ノズル68aからの強制的な燃料添加が行われる際の燃料添加量が多くなるため、触媒に流れ込む燃料が多くなって、触媒床温が燃料成分と酸素との反応により上昇するようになる。しかし、上記燃料添加量τfin は、触媒床温を許容上限温度まで上昇させるおそれのある噴射ノズル68aからの燃料添加量に対応した値として算出されるガード値Gmax を用いて上限ガードされる。このため、上述した強制的な燃料添加が行われるときの噴射ノズル68aからの燃料添加量が、触媒床温を上限まで上昇させるほど多くされることはなくなり、この触媒床温の上昇に伴い排気浄化作用が低下してしまうのを抑制することができる。
[第3実施形態]
次に、本発明の第3実施形態について図10〜図14を参照して説明する。
この実施形態のディーゼルエンジン2では、NOx エミッションの改善等を意図して、排気の一部を吸気中に再循環させる排気再循環(以下、「EGR」と称す)が行われる。ここで、EGRを実行可能な構造とされたディーゼルエンジン2を図10に示す。同図に示されるように、上記ディーゼルエンジン2においては、排気マニホールド32にEGR経路20のEGRガス吸入口20bが開口するとともに、サージタンク12にEGR経路20のEGRガス供給口20aが開口している。また、EGR経路20の途中にはEGRガス吸入口20b側から、EGRガスを改質するための鉄系EGR触媒52が配置され、更にEGRガスを冷却するためのEGRクーラ54が設けられている。尚、EGR触媒52はEGRクーラ54の詰まりを防止する機能も有している。そしてEGRガス供給口20a側にはEGR弁56が配置されている。このEGR弁56の開度調節によりEGRガス供給口20aから吸気系へのEGRガス供給量の調節が可能となる。
ECU70は、EGR弁56内のEGR開度センサの信号を読み込むとともに、各種センサの信号から得られるエンジン運転状態に基づいてEGR弁56の開度制御を実行する。こうしたEGR弁56の開度制御と上記スロットル弁22の開度制御とに基づき、燃焼室4に導入される吸気に占める再循環排気の比率であるEGR率を調節するEGR制御が行われる。
ところで、ディーゼルエンジンに代表される希薄燃焼内燃機関では通常、EGR率の増加に伴い混合気の酸素量が低下するため、スモーク排出量は増加する傾向にある。ところが、高効率のEGRクーラ54の採用や大量EGRの導入、燃料噴射時期の適合等を通じて好適な条件を設定すると、EGR率を大幅に増大させることで、スモーク排出量が急激に低減されるようになる。
図11には、そうした内燃機関における空燃比及びEGR率とスモーク排出量との関係が示されている。同図に示すように、一般の希薄燃焼内燃機関が運転される希薄空燃比の状態からEGR率を増大させて空燃比をリッチ化してゆくと、EGR率の増加に伴いスモーク排出量は増加してゆく。ただし、EGR率をさらに増加させてゆき、空燃比を理論空燃比近傍までリッチ化してゆくと、スモーク排出量は一端ピークを迎えた後、急激に減少するようになる。これは、大量EGR導入により燃焼室3内での混合気の燃焼温度の上昇を緩慢にすることで、その燃焼温度が煤の生成温度以下に抑制されることに起因する。またそうした条件下では、NOx の生成も抑えられるため、スモーク排出量とNOx 排出量との同時低減が可能となる。更に、同図に示すように、そうした条件下ではHC排出量が増大して上記NOx 触媒での参加反応が促進されることから、触媒床温を上昇させてNOx 触媒の活性化が可能ともなる。
そこでこのディーゼルエンジン2では、図11の領域Iのようなスモーク排出量がピークとなるEGR率よりも高いEGR率で燃焼を行う低温燃焼モードと、図11の領域IIのようなスモーク排出量がピークとなるEGR率よりも高いEGR率で燃焼を行う通常燃焼モードとを選択的に切換えつつ運転を行うようにしている。こうした燃焼モードの切り換えは、エンジン運転条件や排気浄化制御上の要求等に応じて行われ、このディーゼルエンジン2での低温燃焼モードでの運転は、主に低負荷・中高回転運転領域で実行されている。そして低温燃焼モードでは、EGR率が例えば65%以上の高率に設定される。
ディーゼルエンジン2では、上記通常燃焼モードと低温燃焼モードとの間の燃焼モードの切り換えに際し、各モードで要求されるEGR率の違いに対応して大幅なEGR率の変更が必要とされる。このため、例えば図12(a)に示される低温燃焼モードから通常燃焼モードへの切り換え時(タイミングT1)には、通常燃焼モードでのEGR率の要求に合わせてEGR率が大幅に低減させられることになる。こうしたEGR率の低減は、EGR制御を行う際の目標EGR率を、図12(b)に実線で示されるように低温燃焼モードに対応する値から通常燃焼モードに対応する値へと変更することによって実現される。
しかし、目標EGR率を上記のように変化させたとしても、EGR経路20を通じての排気の流通には時間を要することから、上記目標EGR率の変化に対し実際のEGR率の変化には図12(b)に破線で示される遅れが生じる。そして、実際のEGR率が通常燃焼モードで要求される値まで低減されないまま、燃焼モードが通常制御モードに切り換えられると、実際のEGR率が同モードでのEGR率の要求値よりも大となり、スモーク排出量が多くなる。
従って、噴射ノズル68aからの燃料添加が終了してからの次回の燃料添加が行われるまでの間に、低温燃焼モードから通常燃焼モードへの切り換えが行われると、スモーク排出量の増大が生じて噴射ノズル68aの噴射孔68b周りへのデポジットの付着に繋がる。特に、燃焼モードの切り換えが行われる低負荷運転領域でディーゼルエンジン2が定常運転されている場合には、燃焼モードの切り換えが頻繁になることから、所定の燃料添加から次回の燃料添加までの添加インターバルでの低温燃焼モードから通常燃焼モードへの切り換えも多くなる。その結果、スモーク排出量の増加が顕著になり、噴射孔68b周りへの上記デポジットの付着も無視できない問題となる。
そこで本実施形態では、噴射ノズル68aからの燃料添加を低温燃焼モードから高温燃焼モードへの切り換えも考慮して実行する。以下、燃焼モードの切り換えに基づく上記燃料添加の実行手順について、燃料補助添加ルーチンを示す図13及び図14のフローチャートを参照して説明する。この燃料補助添加ルーチンは、ECU70を通じて、例えば所定時間毎の時間割り込みにて実行される。
同ルーチンにおいては、浄化実行条件成立時(図13のS301:YES)、低温燃焼モードから通常燃焼モードへの切り換えが行われると(S302:YES)、カウンタCがインクリメントされる(S303)。このカウンタCは、噴射ノズル68aからの燃料添加毎に「0」にリセットされ、同燃料添加終了後の低温燃焼モードから通常燃焼モードへの切り換え回数を表すものとなる。なお、カウンタCのリセットは、例えば第1実施形態の噴射ノズル浄化ルーチン(図3)での燃料添加、或いは第2実施形態の噴射ノズル浄化ルーチン(図9)での燃料添加が行われたとき(S304:YES)、ステップS305の処理によって行われる。
続いて、カウンタCが規定値X(本実施形態では「2」)以上であるか否かが判断される(図14のS306)。ここで肯定判定であれば、燃料添加後の低温燃焼モードから通常燃焼モードへの切り換え回数が二回以上であることになり、続くステップS307で噴射ノズル68aからの燃料の強制添加が行われる。この燃料添加が行われたときにもカウンタCはリセットされる(S308)。
こうした燃料添加については、前回の燃料添加終了後の経過時間が添加インターバルT,Tfinに達しているか否かにかかわりなく強制的に実行される。これにより、燃焼モードの切り換えに起因する上記噴射孔68b周りへのデポジットの堆積を抑制することができるようになる。なお、上記燃料添加の際の燃料添加量としては、例えば第1実施形態の燃料添加量τ、或いは第2実施形態の燃料添加量τfin 等を採用することができる。
以上詳述した本実施形態によれば、第1及び第2実施形態の効果に加えて、以下に示す効果が得られるようになる。
(9)噴射ノズル68aからの燃料添加が終了した後、ディーゼルエンジン2の燃焼モードが低温燃焼モードから通常燃焼モードに切り換えられることに基づき、上記燃料添加の終了時点からの経過時間が添加インターバルT,Tfin に達していなくても、噴射ノズル68aからの強制的な燃料添加を実行するようにした。このため、低温燃焼モードから通常燃焼モードへの切り換え時、EGR率の低減遅れに起因してスモーク排出量が多くなり、噴射ノズル68aの噴射孔68b周りにデポジットが付着したとしても、上記噴射ノズル68aからの強制的な燃料添加によって当該デポジットの堆積を抑制することができる。
(10)燃焼モードの切り換えは、通常、触媒床温がそれほど高くならない低負荷運転領域にて行われるため、仮に低温燃焼モードから通常燃焼モードへの切り換え毎に上記燃料添加を行ったとすると、触媒床温が低く触媒の活性が停滞している状態で、反応しきれないほどの燃料が触媒に添加されることとなる。この場合、触媒でのPMの燃焼に悪影響が及び、触媒コンバータ入り口でのPMの堆積を招くおそれがある。しかし、上記燃料添加は、低温燃焼モードから通常燃焼モードへの切り換え回数が規定回数(規定値Xに対応)以上になったときに行われる。このため、当該規定回数を適宜設定(本実施形態では二回に設定)することで、触媒に反応しきれないほどの燃料が添加されるのを抑制することができる。
[その他の実施形態]
なお、上記各実施形態は、例えば以下のように変更することもできる。
・浄化実行条件を適宜変更してもよい。例えば、浄化実行条件のうちの(1)及び(2)の条件のうちの一方を省略したりしてもよい。
・添加インターバルTfin の下限ガードに用いられるガード値Gmin 、及び燃料添加量τfin の上限ガードに用いられるガード値Gmax については、マップを参照して求める以外に、所定の計算式を用いて求めてもよい。
・噴射ノズル68aの噴射孔68b付近の温度に影響を及ぼすパラメータとしては、他に外気温度や吸入空気温度をあげることができる。外気温度及び吸入空気温度については、それらの値が高くなるほど排気温度が上昇するため、噴射ノズル68aの噴射孔68b周りにデポジットが生成され易くなる。従って、外気温度及び吸入空気温度が高くなるほど、添加インターバルTfin が小さくなるようインターバルベース値Tbsを補正したり、燃料添加量τfin が大きくなるよう燃料量ベース値τbsを補正したりしてもよい。
・第1実施形態での添加インターバルTfin の可変と第2実施形態での燃料添加量τfin の可変とを組み合わせて実施してもよい。
・第3実施形態において、燃焼モードの切り換えに基づき強制的な燃料添加を実施する際の燃料添加量は、第1実施形態の燃料添加量τや第2実施形態の燃料添加量τfin とは異なる値であってもよい。
・第3実施形態での上記規定回数(規定値X)については、「三回」以上という複数回数を選択してもよい。
第1実施形態の排気浄化装置が適用されるディーゼルエンジンの全体構成を示す略図。 上記噴射ノズルを示す拡大断面図。 第1実施形態での噴射ノズルの浄化手順を示すフローチャート。 噴射ノズルの噴射孔周りでのデポジットの生成を抑制するための添加弁からの燃料添加の添加態様を示すタイムチャート。 噴射間隔指令値Tbsの算出に用いられるマップ 吸気量補正係数Kga1の算出に用いられるマップ。 水温補正係数Kthw1 の算出に用いられるマップ。 ガード値Gmin の算出に用いられるマップ。 第2実施形態での噴射ノズルの浄化手順を示すフローチャート。 第3実施形態の排気浄化装置が適用されるディーゼルエンジンの全体構成を示す略図。 空燃比及びEGR率とスモーク排出量及びHC排出量との関係を示すグラフ。 (a)及び(b)は、低温燃焼モードから通常燃焼モードへの変化に伴う、目標EGR率及び実際のEGR率の変化態様を示すタイムチャート。 燃焼モードの切り換えに基づく燃料添加の実行手順を示すフローチャート。 燃焼モードの切り換えに基づく燃料添加の実行手順を示すフローチャート。
符号の説明
2…ディーゼルエンジン、4…燃焼室、6…吸気弁、8…吸気ポート、10…吸気マニホールド、12…サージタンク、13…吸気経路、14…インタークーラ、16…ターボチャージャ、16a…コンプレッサ、16b…排気タービン、18…エアクリーナ、20…EGR経路、20a…EGRガス供給口、20b…EGRガス吸入口、22…スロットル弁、22a…スロットル開度センサ、22b…モータ、24…吸入空気量センサ、26…吸気温センサ、28…排気弁、30…排気ポート、32…排気マニホールド、34…排気経路、36…第1触媒コンバータ、38…第2触媒コンバータ、40…第3触媒コンバータ、42…第1空燃比センサ、44…第1排気温センサ、46…第2排気温センサ、48…第2空燃比センサ、52…EGR触媒、54…EGRクーラ、56…EGR弁、58…燃料噴射弁、58a…燃料供給管、60…コモンレール、62…燃料ポンプ、66…燃料供給管、68…添加弁、68a…噴射ノズル、68b…噴射孔、70…ECU(制御手段)、72…アクセルペダル、74…アクセル開度センサ、76…冷却水温センサ、78…クランク軸、80…エンジン回転数センサ、82…気筒判別センサ、91…穴、92…保護カバー。

Claims (13)

  1. 排気通路の触媒上流に燃料を添加する噴射ノズルを備える排気浄化装置において、
    前記噴射ノズルによる燃料添加が終了した時点からの経過時間を計測し、その経過時間が所定時間に達したとき前記噴射ノズルからの強制的な燃料添加を実行する制御手段を備える
    ことを特徴とする排気浄化装置。
  2. 前記所定時間は、前記噴射ノズルの噴射孔付近の温度に影響を及ぼすパラメータが前記温度を高くする側に変化するほど、短くされる
    請求項1記載の排気浄化装置。
  3. 前記パラメータには内燃機関の吸入空気量が含まれ、同吸入空気量が多くなるほど前記所定時間が短くされる
    請求項2記載の排気浄化装置。
  4. 前記パラメータには内燃機関の冷却水温、吸入空気温、及び外気温のうちの少なくとも一つが含まれ、それら温度が高くなるほど前記所定時間が短くされる
    請求項2又は3記載の排気浄化装置。
  5. 前記所定時間は、その長さが触媒床温の上限によって決まる限界値よりも短くならないようにされる
    請求項2〜4のいずれかに記載の排気浄化装置。
  6. 前記制御手段は、前記噴射ノズルからの強制的な燃料添加を行う際の燃料添加量を、前記噴射ノズルの噴射孔付近の温度に影響を及ぼすパラメータが前記温度を高くする側に変化するほど多くする
    請求項1〜5のいずれかに記載の排気浄化装置。
  7. 前記パラメータには内燃機関の吸入空気量が含まれ、同吸入空気量が多くなるほど前記燃料添加量が多くされる
    請求項6記載の排気浄化装置。
  8. 前記パラメータには内燃機関の冷却水温、吸入空気温、及び外気温のうちの少なくとも一つが含まれ、それら温度が高くなるほど前記燃料添加量が多くされる
    請求項6又は7記載の排気浄化装置。
  9. 前記燃料添加量については、その量が触媒床温の上限によって決まる限界値よりも多くならないようにされる
    請求項6〜8のいずれかに記載の排気浄化装置。
  10. 前記制御手段は、排気温度が所定値以上であるとき、前記噴射ノズルからの強制的な燃料添加を禁止する
    請求項1〜9のいずれかに記載の排気浄化装置。
  11. 前記制御手段は、排気温度が触媒の活性化温度よりも高い値であることを条件に、前記噴射ノズルからの強制的な燃料添加を行う
    請求項1〜10のいずれかに記載の排気浄化装置。
  12. 前記制御手段は、前記噴射ノズルによる燃料添加が終了した後、内燃機関の燃焼モードが通常燃焼モードから同モードよりも高いEGR率で燃焼を行う低温燃焼モードに切り換えられることに基づき、前記経過時間が前記所定時間に達していなくても前記噴射ノズルからの強制的な燃料添加を実行する
    請求項1〜11のいずれかに記載の排気浄化装置。
  13. 前記制御手段は、前記噴射ノズルによる燃料添加が終了した後、通常燃焼モードから低温燃焼モードに切り換えられた回数をカウントし、その回数が規定回数以上になったとき前記噴射ノズルからの強制的な燃料添加を実行する
    請求項12記載の排気浄化装置。
JP2004085414A 2003-09-08 2004-03-23 排気浄化装置 Pending JP2005106047A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085414A JP2005106047A (ja) 2003-09-08 2004-03-23 排気浄化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003315186 2003-09-08
JP2004085414A JP2005106047A (ja) 2003-09-08 2004-03-23 排気浄化装置

Publications (1)

Publication Number Publication Date
JP2005106047A true JP2005106047A (ja) 2005-04-21

Family

ID=34554153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085414A Pending JP2005106047A (ja) 2003-09-08 2004-03-23 排気浄化装置

Country Status (1)

Country Link
JP (1) JP2005106047A (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109850A1 (ja) * 2005-04-08 2006-10-19 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置
WO2007029784A1 (ja) * 2005-09-09 2007-03-15 Toyota Jidosha Kabushiki Kaisha 燃料添加装置
JP2007146810A (ja) * 2005-11-30 2007-06-14 Toyota Motor Corp 内燃機関の排気システム
JP2008180177A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009007999A (ja) * 2007-06-27 2009-01-15 Toyota Motor Corp 内燃機関の制御装置
JP2009013842A (ja) * 2007-07-03 2009-01-22 Toyota Motor Corp エンジンの排気浄化装置
JP2009133211A (ja) * 2007-11-28 2009-06-18 Toyota Motor Corp 内燃機関の制御装置
JP2009228593A (ja) * 2008-03-24 2009-10-08 Toyota Industries Corp 内燃機関における燃料噴射制御装置
DE102009002257A1 (de) 2008-04-08 2009-10-29 DENSO CORPORATION, Kariya-shi Abgasreinigungsvorrichtung einer Brennkraftmaschine
JP2009540185A (ja) * 2006-11-14 2009-11-19 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 反応剤ドーズ弁の作動方法及びこの方法の実施のための装置
WO2011158328A1 (ja) * 2010-06-15 2011-12-22 トヨタ自動車株式会社 内燃機関の制御装置
US8122707B2 (en) 2007-06-01 2012-02-28 GM Global Technology Operations LLC Injection anti-coking system for particulate filters
JP2014114786A (ja) * 2012-12-12 2014-06-26 Volvo Lastvagnar Aktiebolag エンジンの排気管噴射装置
WO2014103505A1 (ja) * 2012-12-25 2014-07-03 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2015004285A (ja) * 2013-06-19 2015-01-08 株式会社日本自動車部品総合研究所 内燃機関の制御装置
WO2015132646A1 (en) 2014-03-05 2015-09-11 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
JP2016142229A (ja) * 2015-02-04 2016-08-08 ボッシュ株式会社 燃料噴射制御装置
US20160281573A1 (en) * 2013-09-12 2016-09-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2017020347A (ja) * 2015-07-07 2017-01-26 株式会社日本自動車部品総合研究所 内燃機関の制御装置
DE102008039586B4 (de) * 2008-03-26 2017-10-19 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verkokung entgegenwirkendes Einspritzsystem für Partikelfilter

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109850A1 (ja) * 2005-04-08 2006-10-19 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置
EP1923547A4 (en) * 2005-09-09 2009-02-18 Toyota Motor Co Ltd FUEL ADDITION APPARATUS
WO2007029784A1 (ja) * 2005-09-09 2007-03-15 Toyota Jidosha Kabushiki Kaisha 燃料添加装置
EP1923547A1 (en) * 2005-09-09 2008-05-21 Toyota Jidosha Kabushiki Kaisha Fuel addition apparatus
US7607292B2 (en) 2005-09-09 2009-10-27 Toyota Jidosha Kabushiki Kaisha Fuel addition apparatus
JP4650241B2 (ja) * 2005-11-30 2011-03-16 トヨタ自動車株式会社 内燃機関の排気システム
JP2007146810A (ja) * 2005-11-30 2007-06-14 Toyota Motor Corp 内燃機関の排気システム
JP2009540185A (ja) * 2006-11-14 2009-11-19 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 反応剤ドーズ弁の作動方法及びこの方法の実施のための装置
JP2008180177A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 内燃機関の排気浄化システム
US8122707B2 (en) 2007-06-01 2012-02-28 GM Global Technology Operations LLC Injection anti-coking system for particulate filters
JP2009007999A (ja) * 2007-06-27 2009-01-15 Toyota Motor Corp 内燃機関の制御装置
JP2009013842A (ja) * 2007-07-03 2009-01-22 Toyota Motor Corp エンジンの排気浄化装置
JP2009133211A (ja) * 2007-11-28 2009-06-18 Toyota Motor Corp 内燃機関の制御装置
JP2009228593A (ja) * 2008-03-24 2009-10-08 Toyota Industries Corp 内燃機関における燃料噴射制御装置
DE102008039586B4 (de) * 2008-03-26 2017-10-19 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verkokung entgegenwirkendes Einspritzsystem für Partikelfilter
JP2009270567A (ja) * 2008-04-08 2009-11-19 Denso Corp 内燃機関の排気浄化装置
DE102009002257A1 (de) 2008-04-08 2009-10-29 DENSO CORPORATION, Kariya-shi Abgasreinigungsvorrichtung einer Brennkraftmaschine
WO2011158328A1 (ja) * 2010-06-15 2011-12-22 トヨタ自動車株式会社 内燃機関の制御装置
JP5316712B2 (ja) * 2010-06-15 2013-10-16 トヨタ自動車株式会社 内燃機関の制御装置
JP2014114786A (ja) * 2012-12-12 2014-06-26 Volvo Lastvagnar Aktiebolag エンジンの排気管噴射装置
JP2014125897A (ja) * 2012-12-25 2014-07-07 Toyota Motor Corp 内燃機関の排気浄化装置
CN104884756A (zh) * 2012-12-25 2015-09-02 丰田自动车株式会社 内燃机的排气净化装置
CN104884756B (zh) * 2012-12-25 2017-07-18 丰田自动车株式会社 内燃机的排气净化装置
WO2014103505A1 (ja) * 2012-12-25 2014-07-03 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2015004285A (ja) * 2013-06-19 2015-01-08 株式会社日本自動車部品総合研究所 内燃機関の制御装置
US20160281573A1 (en) * 2013-09-12 2016-09-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US9926826B2 (en) 2013-09-12 2018-03-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
WO2015132646A1 (en) 2014-03-05 2015-09-11 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
JP2016142229A (ja) * 2015-02-04 2016-08-08 ボッシュ株式会社 燃料噴射制御装置
JP2017020347A (ja) * 2015-07-07 2017-01-26 株式会社日本自動車部品総合研究所 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP2005106047A (ja) 排気浄化装置
JP4120523B2 (ja) 内燃機関の排気還流制御装置
EP1867854B1 (en) Exhaust purifier for internal combustion engine
JP4248427B2 (ja) 内燃機関排気浄化装置の粒子状物質再生制御装置
JP2006029239A (ja) 排気浄化フィルタ過熱防止装置
JP4314135B2 (ja) 車載内燃機関の排気浄化装置
JP4544011B2 (ja) 内燃機関排気浄化装置
JP3788350B2 (ja) 内燃機関の排気浄化装置
JP2008138619A (ja) 内燃機関の排気浄化装置
JP4367369B2 (ja) 内燃機関排気浄化装置
JP3962386B2 (ja) 内燃機関の排気浄化装置
JP5720135B2 (ja) 排気ガス浄化システム
JP2005076508A (ja) エンジンの排気還流装置
JP4329455B2 (ja) 排気浄化触媒の過多硫黄被毒回復制御装置
JP2008144726A (ja) 内燃機関の排気浄化装置
JP4311169B2 (ja) 内燃機関の排気浄化装置
JP3820990B2 (ja) 内燃機関の排気浄化装置
JP4069043B2 (ja) 内燃機関の排気浄化装置
WO2006098511A1 (ja) 粒子状物質酸化速度算出装置、粒子状物質堆積量算出装置及び内燃機関排気浄化装置
JP2005240587A (ja) ディーゼル機関の排気浄化装置
JP4415760B2 (ja) 内燃機関のegr制御装置
JP2004340069A (ja) 内燃機関の排気浄化システム
JP5487723B2 (ja) パティキュレートフィルタの再生方法
JP2006291818A (ja) 内燃機関の排気浄化装置
JP2004218520A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090728