JP2009270567A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2009270567A
JP2009270567A JP2009079806A JP2009079806A JP2009270567A JP 2009270567 A JP2009270567 A JP 2009270567A JP 2009079806 A JP2009079806 A JP 2009079806A JP 2009079806 A JP2009079806 A JP 2009079806A JP 2009270567 A JP2009270567 A JP 2009270567A
Authority
JP
Japan
Prior art keywords
addition
fuel
internal combustion
combustion engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009079806A
Other languages
English (en)
Other versions
JP5142048B2 (ja
Inventor
Masakuni Yokoyama
正訓 横山
Atsushi Kawamura
淳 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009079806A priority Critical patent/JP5142048B2/ja
Priority to DE102009002257A priority patent/DE102009002257A1/de
Publication of JP2009270567A publication Critical patent/JP2009270567A/ja
Application granted granted Critical
Publication of JP5142048B2 publication Critical patent/JP5142048B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】燃料添加弁を装備しつつリッチ燃焼を実行してNOx触媒に吸蔵されたNOxの還元を行うシステムにおいて、リッチ燃焼期間中やリッチ燃焼からリーン燃焼への切り替え時に発生する煤による燃料添加弁の詰まりを解消できる内燃機関の排気浄化装置を提供する。
【解決手段】リッチ燃焼からリーン燃焼へ切り替えられて次のリッチ燃焼が開始されていない間(S10:YesかつS20:Yes)であり、NOx触媒の温度が所定値より低い場合(S40:Yes)に、燃料添加弁から燃料を微小量噴射する(S50)。これにより、リッチ燃焼中あるいはリッチ燃焼からリーン燃焼への切り替え時に発生した煤による燃料添加弁の噴孔の詰まりが解消される。
【選択図】図2

Description

本発明は内燃機関の排気浄化装置に関する。
ディーゼルエンジン等では、排気中の窒素酸化物(NOx)を浄化する目的で排気管の途中に吸蔵還元型NOx触媒(NOx触媒、Lean NOx Trap、LNT)を配置する場合がある。LNTには、ディーゼルエンジンにおいて基本となるリーン雰囲気でNOxが吸蔵され、間隔を置いてリッチ雰囲気に切り替えることにより吸蔵されていたNOxが無害な窒素に還元されて放出される。
リッチ雰囲気を形成する手法として排気燃料添加と呼ばれる手法がある。この手法では排気管に燃料添加弁(添加弁)を設置して、燃料添加弁から排気管に燃料を噴射(添加)することによりリッチ雰囲気を形成してLNTに還元剤である未燃燃料が供給される。
添加弁が装備されている場合、添加弁において燃料を噴射する噴孔が詰まる場合がある。詰まりの原因としては排気中の煤や、燃料中のデポジット成分がある。下記特許文献1では、排気中の煤は燃焼の適合で減らし、デポジット成分による詰まりが発生しないように燃料添加弁から燃料を噴射して噴孔の温度を低下させている。
特開2005−106047号公報
リッチ雰囲気を形成するための手法としては、排気燃料添加以外にリッチ燃焼と呼ばれる手法がある。この手法では筒内におけるメイン噴射での噴射量を増量することによりリッチガスを排出する。リッチ燃焼は排気燃料添加よりも少ない燃料で効率的にNOxが浄化できる等の利点を有するが、リッチ燃焼に適した運転条件や走行状態が限定されるという問題点がある。したがってリッチ燃焼と燃料添加弁とを並存させて運転条件に応じて両手法を切り替えることにより、それぞれに適した運転条件で両手法を用いれば好適である。
リッチ燃焼を実行する場合、リッチ燃焼期間中やリーン燃焼からリッチ燃焼およびリッチ燃焼からリーン燃焼への燃焼切り替え時に大量の煤が発生する。したがってリッチ燃焼と燃料添加弁とが並存するシステムでは、この煤が燃料添加弁の噴孔に詰まる可能性がある。燃料添加弁の噴孔に詰まりが発生すれば、燃料添加弁への噴射の指令値と実際の噴射量とがずれる可能性がある。上記特許文献1を含めて従来技術ではこうしたリッチ燃焼による煤が燃料添加弁の噴孔を詰まらせる問題は考慮されていない。
そこで本発明が解決しようとする課題は、上記問題点に鑑み、燃料添加弁を装備しつつリッチ燃焼を実行してNOx触媒に吸蔵されたNOxの還元を行うシステムにおいて、リッチ燃焼期間中やリッチ燃焼からリーン燃焼への切り替え時に発生する煤による燃料添加弁の詰まりを解消できる内燃機関の排気浄化装置を提供することである。
課題を解決するための手段及び発明の効果
上記課題を解決するために、本発明の内燃機関の排気浄化装置は、排気通路にNOxを吸蔵し還元するためのNOx触媒を備えた内燃機関の排気浄化装置であって、前記排気通路に燃料を添加する燃料添加弁と、前記内燃機関でリッチ燃焼を実行するリッチ燃焼実行手段と、前記リッチ燃焼実行手段によって実行されたリッチ燃焼が終了して次のリッチ燃焼が開始されていない間に、前記燃料添加弁から燃料を添加する添加制御手段とを備えたことを特徴とする。
これにより、本発明の内燃機関の排気浄化装置ではリッチ燃焼が終了して次のリッチ燃焼が開始されていない間に燃料添加弁から燃料を添加することによって燃料添加弁の噴孔に詰まった煤を飛散させるので、リッチ燃焼時あるいはリーン燃焼からリッチ燃焼およびリッチ燃焼からリーン燃焼への燃焼切り替え時において大量に発生する煤による燃料添加弁の詰まりが解消できる。したがってリッチ燃焼と排気燃料添加とを適切に切り替えて用いることができる利点に加えて、噴孔の詰まりが抑制できて燃料添加弁からの実際の噴射量の指令値からのずれが抑制できる排気浄化装置が実現できる。さらに燃料添加弁から燃料を噴射することによって煤を飛散させるので、煤の飛散のために新たな機構を装備することなく低コストで詰まりの解消が達成できる。
また前記リッチ燃焼実行手段によるリッチ燃焼終了後から前記添加制御手段による燃料の添加の開始までに経過することを要する必要経過時間を、前記添加により前記添加弁の詰まりを軽減し、かつ前記添加によってリッチ雰囲気に戻らないとの条件を満たすように指令する指令手段を備えたとしてもよい。
これにより添加弁からの燃料の添加により添加弁の詰まりを軽減し、かつその添加によってリッチ雰囲気に戻らないとの条件を満たすように燃料添加を実行するので、添加弁の詰まりを軽減する際に、リッチ雰囲気に戻ってしまうことによって未燃燃料がすり抜けてエミッションが悪化するような事態となることが抑制できる。
また排気中の空燃比を計測する計測手段を備え、前記指令手段は、リーン燃焼状態における目標空燃比と、前記計測手段によって計測された空燃比の計測値との差分が所定値よりも小さければ、前記必要経過時間を経過したと指令するとしてもよい。
これにより、リーン燃焼状態における目標空燃比と空燃比計測値との差分値が小さければ必要経過時間を経過したと指令するので、十分にリーン雰囲気に戻ったとの条件を満たさない限り、添加弁からの燃料添加が実行されない。したがって十分にリーン雰囲気に戻っていないときに燃料添加して、リッチ雰囲気に戻って未燃HC(炭化水素)がすり抜けてエミッションが悪化する事態が抑制できる。
また前記指令手段は、前記内燃機関が高負荷、高回転である程、前記必要経過時間を短くするように指令するとしてもよい。
これにより、一般に内燃機関が高回転、高負荷である程、EGRガスの切替が迅速に進行する等の理由によりリッチからリーンに迅速に移行する傾向があることに対応して、高回転、高負荷の場合は、リッチ燃焼終了後迅速に燃料添加を実行しつつ、かつリッチ雰囲気に戻る可能性を小さくできる。
また前記指令手段は、前記内燃機関の吸気量が多い程、前記必要経過時間を短くするように指令するとしてもよい。
これにより、一般に吸気量が多い程、添加弁のノズル近傍の排気圧力が大きくなってノズルが詰まりやすくなる傾向があることに対応して、吸気量が多い場合にリッチ燃焼終了後迅速に燃料添加を実行して詰まりを軽減できる。
また前記添加制御手段による燃料の添加量を、前記添加弁の詰まりの要因が大きい程、その詰まりの要因を軽減するとの条件を満たすように算出する添加量算出手段を備えたとしてもよい。
これにより添加弁の詰まりの要因が大きい程、その詰まりの要因を軽減するとの条件を満たすように燃料の添加量を算出するので、不必要に大きい添加量による燃費の悪化や、詰まりを軽減できない小さすぎる添加量を回避して、詰まりの状況に応じた適切な添加量で効果的に詰まりを軽減できる。
また前記添加量算出手段は、前記内燃機関が高負荷、高回転である程、前記添加制御手段による燃料の添加量を大きな値とするとしてもよい。
これにより一般に内燃機関が高負荷、高回転である程、内燃機関から排出される煤の量が多い傾向があることに対応して、適した適切な添加量を設定できる。
また前記添加量算出手段は、リッチ燃焼期間が長い程、前記添加制御手段による燃料の添加量を大きな値とするとしてもよい。
これにより、一般にリッチ燃焼期間が長い程、同期間に内燃機関から排出される煤の量は多くなるとの傾向に対応して適切な添加量を設定できる。
また前記添加量算出手段は、リッチ燃焼時における空燃比がリッチ側の値である程、前記添加制御手段による燃料の添加における添加量を大きな値とするとしてもよい。
これにより、一般にリッチ燃焼時における空燃比がリッチ側の値である程、内燃機関から排出される煤の量は多くなる傾向があることに対応して、適した適切な添加量を設定できる。
また前記添加量算出手段は、前記添加制御手段による燃料の添加における添加量を、NOx還元のための燃料添加量よりも少量とするとしてもよい。
これにより、添加弁の詰まり軽減のための燃料添加量をNOx還元のための燃料添加量よりも少量とすることにより、多量の燃料添加によって燃費が悪化することを回避するとともに、燃料添加によってリッチ雰囲気に戻って未燃HCがすり抜けてエミッションが悪化することも抑制する。
また前記NOx触媒の温度を取得する温度取得手段を備え、前記添加制御手段は、前記温度取得手段によって取得された温度が所定温度より低い場合に前記燃料添加弁から燃料を噴射するとしてもよい。
これによりNOx触媒の温度が所定温度より低い場合に添加制御手段によって燃料添加弁から燃料を噴射するので、噴孔の詰まりを解消するための燃料の噴射によってNOx触媒が機能する温度範囲を越えて過昇温することが抑制できる。
また前記添加弁の先端温度相当量を取得する先端温度取得手段を備え、前記添加制御手段は、その先端温度取得手段によって取得された前記先端温度相当量が所定値よりも高い場合、前記温度取得手段によって取得された前記触媒温度に関わらず前記燃料添加弁から燃料を噴射するとしてもよい。
これにより添加弁の先端温度が高い場合には、NOx触媒温度に関係なく燃料添加弁から燃料を噴射する。したがって、一般に添加弁の先端温度が高い場合には詰まりの原因となるデポジットが生成しやすい傾向があることに対応して、触媒温度に関係なく迅速に詰まりの軽減のための燃料添加が実行できる。
また前記添加制御手段は、前記燃料の添加の際に、噴射圧を所定圧力以上とするように複数回に分割して実行するとしてもよい。
これにより噴射圧を所定圧力以上とするように複数回に分割して燃料添加を実行するので、高い圧力で燃料を噴射することで効果的に添加弁の詰まりを軽減できる。また1度に大量の燃料を添加すると触媒をすり抜けてエミッションを悪化させる可能性もあるが、こうした不具合も抑制できる。
本発明に係る内燃機関の排気浄化装置の実施例1での装置構成図。 実施例1での燃料添加弁の噴孔に詰まった煤を飛散させる処理手順を示すフローチャート。 本発明に係る内燃機関の排気浄化装置の実施例2での装置構成図。 実施例2での燃料添加弁の噴孔に詰まった煤を飛散させる処理手順を示すフローチャート。 A/F値、吸気量、噴射量指令値の時間推移の例を示す図。 複数回の燃料噴射の例を示す図。 温度ウィンドウの例を示す図。
以下、本発明の実施例を図面を参照しつつ説明する。まず図1は、本発明に係る内燃機関の排気浄化装置1の実施例1の装置構成の概略図である。図1の排気浄化装置1はディーゼルエンジン2(エンジン)に対して構成され、吸気管3、排気管4を備える。
吸気管3を通ってエンジン2に空気(新気、吸気)が供給され、エンジン2からの排気は排気管4へ排出される。エンジン2には図示しないインジェクタが装備され、インジェクタから筒内へ燃料が噴射される。吸気管3にはエアフロメータ30が設置されている。エアフロメータ30によって(単位時間当たりの)吸気量が計測される。
排気管4には上流側から順に、燃料添加弁41(添加弁)、排気温度センサ42、吸蔵還元型NOx触媒6(NOx触媒、Lean NOx Trap、LNT)、排気温度センサ43が配置されている。添加弁41からはリッチ雰囲気を形成するために燃料が添加(噴射)される。排気温度センサ42、43によって、それぞれの位置での排気の温度が計測される。
LNT6は例えばセラミック製の基材上に担体の層が形成されて、担体上に吸蔵剤と触媒とが担持された構造であるとすればよい。担体としては例えばガンマアルミナを用いれば表面の凹凸による大きな表面積によって多くの吸蔵剤、触媒が担持できて好適である。また吸蔵剤としては例えばバリウム、リチウム、カリウムなど、触媒としては例えば白金などを用いればよい。
LNT6においては、理論空燃比よりも燃料が希薄な(通常、A/F値(空燃比値)は17以上)リーン雰囲気時に排気中のNOxが吸蔵剤に吸蔵される。そして理論空燃比よりも燃料が過剰な(通常、A/F値は14.5以下)リッチ雰囲気に空燃比が調節され、所定の温度条件(例えば触媒が機能するために摂氏300度以上)が満たされると、吸蔵剤に吸蔵されていたNOxが、燃料中の成分から生成された還元剤によって還元されて無害な窒素となって排出される。
上で述べた排気温度センサ42、43の計測値は電子制御装置7(ECU)へ送られる。またECU7によりインジェクタによるエンジン2への燃料噴射量や噴射時期、添加弁41による燃料噴射における噴射量や噴射時期が制御される。ECU7は通常のコンピュータの構造を有するとし、各種演算をおこなうCPUや各種情報の記憶を行うメモリを備えるとすればよい。
本排気浄化装置1ではリッチ燃焼と排気燃料添加とを運転条件に従って切り替えて実行する。上述のとおりリッチ燃焼では、リッチ雰囲気を形成するためにインジェクタからのメイン噴射における燃料噴射量を増量する。また排気燃料添加では、リッチ雰囲気を形成するために添加弁41から燃料を噴射する。
本実施例では、リッチ燃焼期間中やリッチ燃焼からリーン燃焼への切り替え時に発生する煤による添加弁41の詰まりをリッチ燃焼終了後に除去する。後述するように、詰まりを除去する方法は微小量の燃料を添加弁41から噴射して煤を飛散させることである。また煤を飛散させるための噴射によってLNT6が所定温度範囲を越えないための配慮も行う。
本実施例における煤の飛散の処理手順は図2のフローチャートに示されている。図2の処理はECU7によって自動的に順次処理されるとすればよい。図2の処理ではまず、S10でECU7はリッチ燃焼からリーン燃焼へ切り替えられたかどうかを判断する。ECU7は、リッチ燃焼からリーン燃焼へ切り替えられた後の場合(S10:Yes)はS20へ進み、切り替えられてない場合(S10:No)は図2の処理を終了する。
次にS20でECU7はリーン運転中であるかどうかを判断する。つまりS20では、S10でリーン燃焼に切り替えられ、依然としてリーン燃焼のままかどうかが判断される。ECU7は、リーン燃焼のままの場合(S20:Yes)はS30へ進み、再びリッチ燃焼に切り替えられた場合(S20:No)は図2の処理を終了する。
次にS30でECU7は触媒温度、つまりLNT6の内部温度を取得する。この手順では排気温度センサ42、43の一方あるいは両方によってLNT6の上流部あるいは下流部の排気温度を計測し、この計測値からLNT6の内部温度を推定すればよい。この目的のために排気温度センサ42、43の一方あるいは両方の計測値からLNT6の内部温度へのモデルを予め求めてECU7に記憶しておいて、それを用いてS30でLNT6の内部温度を推定すればよい。
次にS40では、S30で取得した触媒温度が所定値以下であるか否かが判断される。ECU7は、触媒温度が所定値以下の場合(S40:Yes)はS50へ進み、所定値より大きい場合(S40:No)は再びS20へ戻り、上述の手順を繰り返して触媒温度が所定値以下となるのを待つ。S50でECU7は添加弁41から燃料を添加する。これにより添加弁41の噴孔に詰まった煤が飛散することで噴孔の詰まりが解消される。以上が図2の処理である。
S40での所定値は、S50での燃料添加によってLNT6が昇温しても、LNT6の温度がリーン期間中の望ましい温度範囲(通常摂氏200度から400度あるいは450度までの範囲、後述の温度ウィンドウ)内に留まることができる温度とすればよい。これによりS50での燃料添加によってLNT6がリーン期間中の望ましい温度範囲を越えて過昇温する可能性が低減できる。
S50における燃料の添加量は、煤の飛散が可能な量であり、かつリッチ雰囲気形成のために添加弁41から添加される際の燃料の添加量よりも小さい量とすればよい。したがってS50における燃料添加量が必要最小限の微小量となるので燃費悪化が抑制できる。また図2では触媒温度が所定値以下となるまで待ち、所定値以下となったら直ちにS50の燃料添加が実行されるので、所定の条件が満たされたら迅速に噴孔の詰まりが解消できるとの効果もある。
上記実施例におけるリッチ燃焼と排気燃料添加との切り替え方法として、例えばエンジン2が高負荷あるいは高回転数の運転条件のときは排気燃料添加を用い、低負荷かつ低回転数の場合はリッチ燃焼を用いるとしてもよい。この場合本発明は、リッチ燃焼により高負荷あるいは高回転数の条件下では大量に煤が発生することが排気燃料添加の使用によって回避でき、さらにリッチからリーンへの切り替え時や、低負荷、低回転数でのリッチ燃焼でも発生する煤による噴孔の詰まりがS50における燃料添加によって解消できるとの複合的な効果を奏する。
また排気管4にA/Fセンサを備えてリッチ期間中にA/F値を計測し、その計測値からLNT6におけるNOxの吸蔵量を検出する手段を備えるとしてもよい。この場合NOxの吸蔵量の低減によってLNT6の劣化度が検出できる。上記実施例では燃料添加弁からの燃料添加はリッチ期間中は行わないので、NOxの吸蔵量の検出における検出精度を低減させないとの効果がある。
次に実施例2を説明する。実施例2では、リッチ燃焼終了後から煤飛散のための燃料添加までの時間や添加量が、運転条件やA/F値、ノズル先端温度等によって調節される。以下で実施例1と異なる部分を説明する。
実施例2における装置構成図が図3に示されている。図3の構成では、図1の構成に加えて、排気管4に空燃比センサ40(A/Fセンサ)が配置されている。A/Fセンサ40によって空燃比(A/F値)が計測される。なおA/Fセンサ40と排気温度センサ42の位置は入れ替えてもよい。また吸気管3には、吸気量(新気量)を計測するためのエアフロメータ30が装備されている。
またエンジン2の回転速度を計測するエンジン回転数センサ20も装備されている。エンジン回転数センサ22は、例えばエンジン2から連結されたクランクの回転角度を計測するクランク角センサとして、その検出値がECU7へ送られてエンジンの回転数が算出されるとすればよい。
さらに排気管4から吸気管3へ排気再循環(EGR:Exhaust Gas Recirculation)を行うためのEGR管5が装備されている。EGR管5にはEGRバルブ50が装備されている。EGRバルブ50の開閉によって排気の還流量が調節される。各種センサの計測値はECU7に送られる。またEGRバルブ50の開度はECU7によって制御される。
以上の構成のもとでの実施例2における煤飛散の処理手順は図4に示されている。図4の処理はプログラム化されてECU7に記憶されており、ECU7がそれを呼び出して自動的に順次実行するとすればよい。
図4の処理ではまずS110でECU7は、リッチ燃焼中であるか否かを判定する。上述のとおり、このリッチ燃焼は、リーン燃焼期間中にLNT6に吸蔵されたNOxを還元、浄化するために実行される。リッチ燃焼中である場合(S110:YES)はS120へ進み、リッチ燃焼中でない場合(S110:NO)は図4の処理を終了する。
S120では、リッチ燃焼中における運転条件、リッチ燃焼時間、A/F計測値、排気温度、新気量を取得する。運転条件は、エンジン回転数センサ20が計測したエンジン回転数と、負荷(あるいは負荷に相当する量)の組とすればよい。このうち負荷は、例えばエンジン2の出力トルクとしてもよく、運転者によるアクセルの踏み込み量としてもよい。
またリッチ燃焼時間に関しては、S120の処理を繰り返すごとに時間を積算していき、後述するS140に進んだときの積算値をリッチ燃焼時間(期間)とすればよい。A/F計測値、排気温度、新気量は、それぞれA/Fセンサ40、排気温度センサ42あるいは43、エアフロメータ30で計測すればよい。
次にS130では、ECU7はリッチ燃焼が終了してリーン燃焼に切り替えられたか否かを検出する。リッチ燃焼の終了、及びリーン燃焼の開始はECU7からの指令で行われるので、その情報を取得すればよい。リッチ燃焼が終了してリーン燃焼に切り替えられた場合(S130:YES)はS140へ進み、まだリッチ燃焼が続いている場合(S130:NO)は、S120へ戻り、リッチ燃焼が終了するまで上記手順を繰り返す。
S140では添加実行判定時間を算出する。ここで添加実行判定時間(判定時間)とは、リッチ燃焼が終了してから、添加弁41の詰まり解消のための燃料添加を開始するまでに最低経過する必要がある時間である。S140での判定時間の計算方法は、例えば以下の(A1)から(A3)の3通りのうちのいずれかとする。
まず方法(A1)では、A/Fセンサ40の計測値から十分にリーン雰囲気に戻ったか否かを判定して、十分にリーン雰囲気に戻るまでの時間を判定時間とする。具体的には、まずリーン期間におけるA/F値の理論値を求める。A/F値の理論値は、リーン期間における目標吸気量と噴射量指令値とから算出する。そしてA/F値の理論値と計測値との差分が所定値以下となったら、十分にリーン雰囲気に戻り、判定時間が経過したと判断する。
方法(A2)では、エンジン2の回転数と負荷とを座標軸とする平面を複数の領域に分割しておき、個々の領域ごとに適切な判定時間を与えるマップを用いる。このマップは予め求めておいて、ECU7のメモリに記憶しておく。一般にエンジン2が高負荷、又は高回転である程、リッチ燃焼からリーン燃焼への切替時にEGRガスの切り替わりが短時間に行われて、迅速にリーン雰囲気に移行する傾向がある。したがって、上記マップではこの傾向を用いて、高負荷、又は高回転の領域ほど判定時間を短くする。S140では、このマップ上の領域のうちでS120で求めたエンジン2の回転数と負荷とが属する領域における判定時間を求める。
方法(A3)では、新気量と判定時間との対応関係を与えるマップを用いる。このマップは予め求めておいて、ECU7のメモリに記憶しておく。一般に、新気量が多い程、添加弁41近傍の圧力が高くなり詰まりが発生しやすくなる傾向がある。したがって上記マップでは、新気量が多い程判定時間を短くすればよい。これにより新気量が多い程迅速に燃料添加が実行されることとなる。S140では、このマップ上でS120で求めた新気量における判定時間を求める。以上が方法(A3)である。なお判定時間は、例えば方法(A1)、(A2)、(A3)で得られる値の最大値としてもよい。この場合上記効果が複合して達成される。
次にS150では、添加弁41の詰まりを解消するための燃料添加における添加量を算出する。S150での添加量の計算方法は、例えば以下の(B1)、(B2)のうちのいずれかとする。
方法(B1)では、まずエンジン2の運転条件、すなわち回転数と負荷との情報から添加量の基本値を算出する。この算出では、エンジン2の回転数と負荷とを座標軸とする平面を複数の領域に分割しておき、個々の領域ごとに適切な添加基本量を与えるマップを用いる。このマップは予め求めておいて、ECU7のメモリに記憶しておく。そしてS150では、S120で求めたエンジン2の回転数と負荷相当量とが属するマップ上の領域における添加基本量を求める。
このマップには、個々の領域の運転条件下でエンジン2から排出される煤量に応じて、添加弁41の詰まりを解消するに十分な添加量を予めシミュレーション等によって求めておき、その数値を記憶しておけばよい。一般に高回転、高負荷の運転条件である程、エンジン2から排出される煤の量は多くなるので、それに応じてマップにおいても、高回転、高負荷の領域ほど添加基本量は大きくすればよい。
次に添加基本量を、S120で求めたリッチ燃焼時間、リッチ燃焼時のA/F値、排気温度に応じて補正する。一般にリッチ燃焼時間が長い程、リッチ期間中にエンジン2から排出される煤の量は多くなる傾向がある。したがってリッチ燃焼時間による補正では、リッチ燃焼時間が長い程、添加量が多くなるように補正する。
同様にリッチ燃焼時のA/F値がリッチ側の数値である場合も、リッチ期間中にエンジン2から排出される煤の量は多くなる傾向がある。したがってリッチ燃焼時のA/F値による補正では、リッチ燃焼時のA/F値がリッチ側の数値である程、添加量が多くなるように補正する。図5にはリッチ燃焼期間にA/F値が目標A/F値よりもリッチ側にずれた場合の例が示されている。
次に排気温度を用いた補正を説明する。まず排気温度から添加弁41のノズル先端温度をS120で推定しておく。この推定では例えば、排気温度と、エアフロメータ30で計測した新気量と、添加弁41の冷却水の影響とからノズル先端温度を推定するモデル、あるいはマップを予め求めておいて、それを用いて推定すればよい。一般にノズル先端温度が高い程、ノズルが詰まるデポジットが生成しやすい傾向がある。したがって排気温度あるいはノズル先端温度による補正では、ノズル先端温度が高い程、添加量が多くなるように補正する。
方法(B2)では、まずリッチ燃焼時間とリッチ燃焼時のA/F値とから燃料添加における基本添加量を算出する。この算出では、上述のとおり、リッチ燃焼時間が長い程、添加量が多くなるように、かつリッチ燃焼時のA/F値がリッチ側の数値である程、添加量が多くなるように算出する。こうした傾向を満たす、リッチ燃焼時間とリッチ燃焼時のA/F値とから基本添加量へのマップを予め求めておき、ECU7に記憶して、それを用いればよい。
次に排気温度から添加弁41のノズル先端温度をS120で推定し、この推定値に応じて基本添加量を補正する。この補正では、上述のように、ノズル先端温度が高い程、添加量が多くなるように補正すればよい。以上が方法(B2)である。なお方法(B1)、(B2)において、ノズル先端温度の推定を省き、排気温度をノズル先端温度に置き換えても通常近似値として問題ない。
次にS160でECU7は、はリッチ燃焼終了後に添加実行判定時間が経過したか否かを判定する。既に添加実行判定時間が経過している場合(S160:YES)はS170へ進み、まだ経過していない場合(S160:NO)はS160を繰り返して、添加実行判定時間が経過するまで待つ。
添加実行判定時間を、S140において上記方法(A2)、(A3)で求めた場合には、当然S160では、その添加実行判定時間が経過するのを待つ。また添加実行判定時間を上記方法(A1)で求めた場合に、S160で添加実行判定時間が経過したか否かを判定する例が図5に示されている。
図5では、上から順にA/F値、吸気量、噴射量指令値の時間推移の例が示されている。時間t1からt2までがリッチ燃焼期間である。リッチ燃焼期間においては、噴射量の指令値がリーン期間よりも大きな値となり、吸気量が絞られることによって、空燃比が理論空燃比よりも低いリッチ燃焼が形成される。
吸気量と噴射量とからA/F値の理論値(あるいは目標値)が算出できる。噴射量と吸気量とがリッチ燃焼とリーン燃焼との切替時点で瞬時に数値が変更されると、A/F値の理論値も瞬時に切り替わる。図6の実線のA/F値が、それを示している。
しかし理論値と異なり実際値は、時間t2でリッチ燃焼が終了してから徐々に吸気量が増加するので、リーン期間が開始してから徐々にA/F値の実際値(計測値)が理論値(あるいは目標値)に近づいていく。添加実行判定時間を上記方法(A1)で求めた場合にS160では、図5に示されているように、徐々に増加してきたA/F値の実際値と、A/Fの理論値との間の差分が所定値以下となったら、添加実行判定時間が経過したと判定すればよい。図5では時間t3で、A/F値の実際値と、A/Fの理論値との間の差分が所定値以下となっている。なおS160では現在時点でのA/F計測値をモニタし続けることとすればよい。
次にS170でECU7は、NOx触媒温度が所定値より低いか否かを判定する。図4では所定値をT1で示している。所定値より低い場合(S170:YES)はS180へ進み、所定値以上の場合(S170:NO)はS190へ進む。
図7にはS170に関係する温度ウィンドウの例が説明されている。図7に示されているように、LNT6におけるNOx吸蔵量とNOx浄化率との関係は単調減少の関係となる。NOx浄化率が所定浄化率であるときのNOx吸蔵量をNOx吸蔵可能量とする。所定浄化率は固定した上でNOx吸蔵可能量とNOx触媒温度との関係を示すと、図7の(a)又は(b)に示したような上に凸の曲線が得られる。
図7(a)、(b)は温度ウィンドウの2つの例を示している。図7(a)では、NOx吸蔵可能量が所定値以上であるNOx触媒温度の範囲を温度ウィンドウとしている。図7(b)では、NOx吸蔵可能量が最大値から所定値以内であるNOx触媒温度の範囲を温度ウィンドウとしている。以上の説明から理解されるように、温度ウィンドウとは、NOx浄化率が所定浄化率を満たし、かつNOx吸蔵量も所望の範囲の大きな値となるNOx触媒の温度範囲である。
S170では、後述のS210での燃料添加の影響でNOx触媒温度が、この温度ウィンドウからはずれないような燃料添加前のNOx触媒温度の上限を所定値T1とすればよい。所定値T1は予め、この条件を満たす数値として求めておけばよい。
次にS180でECU7は、A/F計測値が所定値より高いか否かを判定する。図4では所定値をAF1で示している。A/F計測値が所定値より高い場合(S180:YES)はS200へ進み、所定値未満の場合(S180:NO)は再びS170へ戻る。
次にS190でECU7は、ノズル先端温度が所定値より低いか否かを判定する。図4では所定値をT2で示している。所定値より低い場合(S190:YES)はS200へ進み、所定値以上の場合(S190:NO)は再びS170へ戻る。
以上に示したS160からS180での多段階の判断処理を経ることにより、適切な条件が満たされた場合にのみS200からS210の燃料添加の実行へと進む。以下で、上で述べた多段階の判断処理の目的を説明する。
まずS160の処理により、判定時間を上記方法(A1)又は(A2)で求めた場合には、後述のS210での燃料添加によってリッチ雰囲気に戻ることが抑制できる。したがって燃料添加の影響で未燃HCがLNT6をすり抜けてエミッションを悪化させることが抑制できる。また判定時間を上記方法(A3)で求めた場合には、新気量が大きくて、添加弁近傍の圧力が高いので、ノズルに煤が詰まりやすい状況において、迅速に詰まりを低減することができる。
S170の処理により、後述のS210での燃料添加によってNOx触媒温度が上述の温度ウィンドウからはずれることが抑制できる。すなわち燃料添加によって、NOx浄化率やNOx吸蔵可能量が低減することが抑制できる。
またS180の処理により、後述のS210での燃料添加によってリッチ雰囲気に戻ることが抑制できる。すなわち燃料添加によってリッチ雰囲気になることにより、未燃HCがLNT6をすり抜けてエミッションを悪化させることが抑制できる。
さらにS190の処理によって、ノズル先端温度が高くて、ノズルの詰まりの要因となるデポジットが生成されやすい場合には、NOx触媒温度に関係なく、迅速に詰まり軽減のための燃料添加が実行できる。以上が多段階の判断処理の目的である。
S200に進んだらECU7は、添加弁41からの燃料添加のパターンを算出する。添加パターンの算出の例が図6に示されている。
図6では、numは添加回数(図6ではnum=5)、tadは通電期間(燃料添加を実行する期間)、intはインターバル(燃料添加を実行しない期間)、Aは添加弁からの平均添加量(単位時間当たりの添加量)を示すとする。燃料の密度をden、添加1回あたりの添加量をQadで表すとすると次の式(E1)が成立する。なおQadは、添加弁41のノズルに詰まった煤を吹き飛ばすのに十分噴射量とし、tadは噴射の際に十分な圧力を確保できる通電期間とする。そしてS150で求めた添加量をQadで除算した値をnumとする。
A=(Qad*num*den)/(tad*num+int*(num−1)) (E1)
式(E1)を変形すると次の式(E2)が得られる。
int=(Qad*den−A*tad)*num/(A*(num−1))
(E2)
また次の式(E3)が成立する。
目標空燃比=単位時間当たりの新気量/(添加弁からの平均添加量(A)+筒内での平均噴射量) (E3)
式(E3)を変形することにより次の式(E4)が得られる。結局S200では、式(E4)と(E2)によってintを算出すればよい。これにより目標空燃比を達成しつつ、十分な圧力によって添加弁41の詰まりを軽減できる。目標空燃比はリッチ雰囲気まではもどらない範囲に属する空燃比とすればよい。インターバルintが定まったことにより、図7では時間t4からt5の期間で複数回(num回)に分割して燃料噴射が実行される。
A=単位時間当たりの新気量/目標空燃比―筒内での平均噴射量 (E4)
最後にS210では添加弁41からの燃料添加を実行する。燃料添加量はS150で求めた量とし、添加パターンはS200で求めたものとする。この燃料添加によって、添加弁41のノズルの詰まりが発生しているとみなされる場合に、ノズルの詰まりが軽減できる。以上が図4の処理である。
上記実施例でインジェクタあるいはエンジン2とECU7とがリッチ燃焼実行手段を構成する。S50の手順とECU7とが添加制御手段を構成する。S140の手順とECU7とが指令手段を構成する。A/Fセンサ40とECU7とが計測手段を構成する。S150の手順とECU7とが添加量算出手段を構成する。S30の手順とECU7とが温度取得手段を構成する。S120の手順とECU7とが先端温度取得手段を構成する。またエンジン2はディーゼルエンジンでなく、リーンバーンガソリンエンジンとしても上で述べた効果が同様に得られる。
1 排気浄化装置
2 ディーゼルエンジン(エンジン、内燃機関)
3 吸気管
4 排気管(排気通路)
6 吸蔵還元型NOx触媒(NOx触媒、LNT)
7 ECU
40 A/Fセンサ
41 燃料添加弁
42、43 排気温度センサ

Claims (13)

  1. 排気通路にNOxを吸蔵し還元するためのNOx触媒を備えた内燃機関の排気浄化装置であって、
    前記排気通路に燃料を添加する燃料添加弁と、
    前記内燃機関でリッチ燃焼を実行するリッチ燃焼実行手段と、
    前記リッチ燃焼実行手段によって実行されたリッチ燃焼が終了して次のリッチ燃焼が開始されていない間に、前記燃料添加弁から燃料を添加する添加制御手段とを備えたことを特徴とする内燃機関の排気浄化装置。
  2. 前記リッチ燃焼実行手段によるリッチ燃焼終了後から前記添加制御手段による燃料の添加の開始までに経過することを要する必要経過時間を、前記添加により前記添加弁の詰まりを軽減し、かつ前記添加によってリッチ雰囲気に戻らないとの条件を満たすように指令する指令手段を備えた請求項1に記載の内燃機関の排気浄化装置。
  3. 排気中の空燃比を計測する計測手段を備え、
    前記指令手段は、リーン燃焼状態における目標空燃比と、前記計測手段によって計測された空燃比の計測値との差分が所定値よりも小さければ、前記必要経過時間を経過したと指令する請求項2に記載の内燃機関の排気浄化装置。
  4. 前記指令手段は、前記内燃機関が高負荷、高回転である程、前記必要経過時間を短くするように指令する請求項2に記載の内燃機関の排気浄化装置。
  5. 前記指令手段は、前記内燃機関の吸気量が多い程、前記必要経過時間を短くするように指令する請求項2に記載の内燃機関の排気浄化装置。
  6. 前記添加制御手段による燃料の添加量を、前記添加弁の詰まりの要因が大きい程、その詰まりの要因を軽減するとの条件を満たすように算出する添加量算出手段を備えた請求項1乃至5のいずれか1項に記載の内燃機関の排気浄化装置。
  7. 前記添加量算出手段は、前記内燃機関が高負荷、高回転である程、前記添加制御手段による燃料の添加量を大きな値とする請求項6に記載の内燃機関の排気浄化装置。
  8. 前記添加量算出手段は、リッチ燃焼期間が長い程、前記添加制御手段による燃料の添加量を大きな値とする請求項6又は7に記載の内燃機関の排気浄化装置。
  9. 前記添加量算出手段は、リッチ燃焼時における空燃比がリッチ側の値である程、前記添加制御手段による燃料の添加における添加量を大きな値とする請求項6乃至8のいずれか1項に記載の内燃機関の排気浄化装置。
  10. 前記添加量算出手段は、前記添加制御手段による燃料の添加における添加量を、NOx還元のための燃料添加量よりも少量とする請求項6乃至9のいずれか1項に記載の内燃機関の排気浄化装置。
  11. 前記NOx触媒の温度を取得する温度取得手段を備え、
    前記添加制御手段は、前記温度取得手段によって取得された温度が所定温度より低い場合に前記燃料添加弁から燃料を噴射する請求項1乃至10のいずれか1項に記載の内燃機関の排気浄化装置。
  12. 前記添加弁の先端温度相当量を取得する先端温度取得手段を備え、
    前記添加制御手段は、その先端温度取得手段によって取得された前記先端温度相当量が所定値よりも高い場合、前記温度取得手段によって取得された前記触媒温度に関わらず前記燃料添加弁から燃料を噴射する請求項11に記載の内燃機関の排気浄化装置。
  13. 前記添加制御手段は、前記燃料の添加の際に、噴射圧を所定圧力以上とするように複数回に分割して実行する請求項1乃至12のいずれか1項に記載の内燃機関の排気浄化装置。
JP2009079806A 2008-04-08 2009-03-27 内燃機関の排気浄化装置 Expired - Fee Related JP5142048B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009079806A JP5142048B2 (ja) 2008-04-08 2009-03-27 内燃機関の排気浄化装置
DE102009002257A DE102009002257A1 (de) 2008-04-08 2009-04-07 Abgasreinigungsvorrichtung einer Brennkraftmaschine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008100080 2008-04-08
JP2008100080 2008-04-08
JP2009079806A JP5142048B2 (ja) 2008-04-08 2009-03-27 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2009270567A true JP2009270567A (ja) 2009-11-19
JP5142048B2 JP5142048B2 (ja) 2013-02-13

Family

ID=41111962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079806A Expired - Fee Related JP5142048B2 (ja) 2008-04-08 2009-03-27 内燃機関の排気浄化装置

Country Status (2)

Country Link
JP (1) JP5142048B2 (ja)
DE (1) DE102009002257A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074311A1 (ja) * 2009-12-15 2011-06-23 ボッシュ株式会社 還元剤噴射弁の制御装置及び制御方法
WO2015037405A1 (en) 2013-09-12 2015-03-19 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
EP2982851A2 (en) 2014-08-04 2016-02-10 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222019A (ja) * 2002-01-29 2003-08-08 Toyota Motor Corp 還元剤供給装置
JP2004218520A (ja) * 2003-01-15 2004-08-05 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005083196A (ja) * 2003-09-04 2005-03-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005106047A (ja) * 2003-09-08 2005-04-21 Toyota Motor Corp 排気浄化装置
JP2006090238A (ja) * 2004-09-24 2006-04-06 Mitsubishi Fuso Truck & Bus Corp NOx吸蔵触媒の吸蔵量推定装置及び吸蔵量推定方法
JP2006274856A (ja) * 2005-03-28 2006-10-12 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006291821A (ja) * 2005-04-08 2006-10-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007064183A (ja) * 2005-09-02 2007-03-15 Toyota Motor Corp 排気浄化装置
JP2007071175A (ja) * 2005-09-09 2007-03-22 Toyota Motor Corp 燃料添加装置
JP2007270646A (ja) * 2006-03-30 2007-10-18 Mitsubishi Fuso Truck & Bus Corp 車両用内燃機関の排気浄化装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222019A (ja) * 2002-01-29 2003-08-08 Toyota Motor Corp 還元剤供給装置
JP2004218520A (ja) * 2003-01-15 2004-08-05 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005083196A (ja) * 2003-09-04 2005-03-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2005106047A (ja) * 2003-09-08 2005-04-21 Toyota Motor Corp 排気浄化装置
JP2006090238A (ja) * 2004-09-24 2006-04-06 Mitsubishi Fuso Truck & Bus Corp NOx吸蔵触媒の吸蔵量推定装置及び吸蔵量推定方法
JP2006274856A (ja) * 2005-03-28 2006-10-12 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006291821A (ja) * 2005-04-08 2006-10-26 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007064183A (ja) * 2005-09-02 2007-03-15 Toyota Motor Corp 排気浄化装置
JP2007071175A (ja) * 2005-09-09 2007-03-22 Toyota Motor Corp 燃料添加装置
JP2007270646A (ja) * 2006-03-30 2007-10-18 Mitsubishi Fuso Truck & Bus Corp 車両用内燃機関の排気浄化装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074311A1 (ja) * 2009-12-15 2011-06-23 ボッシュ株式会社 還元剤噴射弁の制御装置及び制御方法
JP2011127442A (ja) * 2009-12-15 2011-06-30 Bosch Corp 還元剤噴射弁の制御装置及び制御方法
US20120255282A1 (en) * 2009-12-15 2012-10-11 Bosch Corporation Control device and control method for reduction agent injection valve
US8793979B2 (en) 2009-12-15 2014-08-05 Bosch Corporation Control device and control method for reduction agent injection valve
WO2015037405A1 (en) 2013-09-12 2015-03-19 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
US20160281573A1 (en) * 2013-09-12 2016-09-29 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
RU2641774C2 (ru) * 2013-09-12 2018-01-22 Тойота Дзидося Кабусики Кайся Двигатель внутреннего сгорания
US9926826B2 (en) 2013-09-12 2018-03-27 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
EP2982851A2 (en) 2014-08-04 2016-02-10 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
US9562453B2 (en) 2014-08-04 2017-02-07 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine

Also Published As

Publication number Publication date
JP5142048B2 (ja) 2013-02-13
DE102009002257A1 (de) 2009-10-29

Similar Documents

Publication Publication Date Title
US20170044953A1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP2009209839A (ja) 内燃機関の排気浄化装置
JP2008309080A (ja) 内燃機関の排気浄化装置
JP4508045B2 (ja) 内燃機関の制御装置
JP4039500B2 (ja) 内燃機関の排気浄化装置
JP5142048B2 (ja) 内燃機関の排気浄化装置
JP4895333B2 (ja) 内燃機関の排気浄化装置
JP2009036177A (ja) 内燃機関の排気浄化装置
JP2009138525A (ja) 排気浄化装置の硫黄堆積度合推定装置
US10087864B2 (en) Control device of internal combustion engine
JP2008190461A (ja) 排ガス浄化装置及び排ガス浄化装置の脱硫方法
WO2016143902A1 (ja) 排気浄化システム及び排気浄化システムの制御方法
WO2016140138A1 (ja) 排気浄化システム及び触媒再生方法
JP4389609B2 (ja) 内燃機関の排気浄化装置
JP5326502B2 (ja) 内燃機関の排気浄化装置
JP2020133401A (ja) 内燃機関の排気浄化装置
JP5708787B2 (ja) 触媒劣化判定システム
JP5142052B2 (ja) 内燃機関の排気浄化装置
JP2005090388A (ja) 内燃機関の排気浄化制御装置
JP4895135B2 (ja) 内燃機関の排気浄化装置
JP6471854B2 (ja) 排気浄化システム
JP4240943B2 (ja) 内燃機関の定常運転状態判定装置
JP2016169622A (ja) 排気浄化システム
JP6432401B2 (ja) 排気浄化システム
JP2007198251A (ja) 触媒劣化検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5142048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees