WO2014103505A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2014103505A1
WO2014103505A1 PCT/JP2013/079574 JP2013079574W WO2014103505A1 WO 2014103505 A1 WO2014103505 A1 WO 2014103505A1 JP 2013079574 W JP2013079574 W JP 2013079574W WO 2014103505 A1 WO2014103505 A1 WO 2014103505A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection amount
addition valve
temperature range
exhaust
Prior art date
Application number
PCT/JP2013/079574
Other languages
English (en)
French (fr)
Inventor
一樹 岩谷
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/655,107 priority Critical patent/US9488080B2/en
Priority to EP13868000.4A priority patent/EP2940267B1/en
Priority to CN201380067870.4A priority patent/CN104884756B/zh
Publication of WO2014103505A1 publication Critical patent/WO2014103505A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/05Systems for adding substances into exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • F01N2610/146Control thereof, e.g. control of injectors or injection valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1493Purging the reducing agent out of the conduits or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0418Methods of control or diagnosing using integration or an accumulated value within an elapsed period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • a reducing agent addition valve for adding a reducing agent to the exhaust passage of the internal combustion engine. Particulate matter in the exhaust gas adheres to the reducing agent addition valve. And when the temperature of a reducing agent addition valve is high, there exists a possibility that the particulate matter adhering to a reducing agent addition valve may harden with heat, and may block the nozzle hole of this reducing agent injection valve. That is, the reducing agent addition valve can be clogged. In contrast, by reducing the temperature of the reducing agent addition valve, clogging of the reducing agent addition valve can be suppressed. And the temperature of this reducing agent addition valve can be lowered
  • the addition of the reducing agent for suppressing the clogging of the reducing agent is referred to as “clogging suppression injection”.
  • a technology that includes a fuel addition valve that injects fuel sequentially into the exhaust passage of the internal combustion engine from the upstream side and an oxidation catalyst, and limits the amount of addition during the clogging suppression injection of the fuel addition valve before the activation of the oxidation catalyst Is known (for example, see Patent Document 1).
  • a selective reduction type NOx catalyst (hereinafter also referred to as an SCR catalyst) may be provided downstream of the oxidation catalyst.
  • NOx purification rate of the SCR catalyst may proportion of NO 2 amount to total amount of NOx in the exhaust gas flowing into the SCR catalyst (hereinafter, NO of 2 ratio) vary.
  • NO of 2 ratio the oxidation ability of the oxidation catalyst decreases.
  • NO 2 ratio decreases.
  • the NOx purification rate in the SCR catalyst may decrease. That is, there is a possibility that the NOx purification rate is lowered by performing the clogging suppression injection.
  • JP 2007-064183 A Japanese Patent Laid-Open No. 2004-060515 JP 2007-071175 A JP 2009-138731 A
  • the present invention has been made in view of the above-described problems, and an object thereof is to suppress a decrease in the NOx purification rate when the addition for suppressing the clogging of the reducing agent addition valve is performed.
  • a first exhaust gas purification device provided in an exhaust passage of an internal combustion engine and having an oxidizing ability
  • a second exhaust purification device provided in an exhaust passage downstream of the first exhaust purification device and having a NOx selective reduction function
  • a fuel addition valve that is provided in an exhaust passage upstream of the first exhaust purification device and injects fuel into the exhaust
  • An exhaust gas purification apparatus for an internal combustion engine comprising: When a predetermined condition for injecting fuel from the fuel addition valve is satisfied, when the temperature of the second exhaust purification device is within a predetermined temperature range, the fuel addition valve is more than when it is outside the predetermined temperature range.
  • a control device is provided for reducing the amount of fuel injected from the fuel.
  • the first exhaust emission control device includes, for example, a catalyst having oxidation ability. This catalyst may be carried on a filter. Further, the first exhaust purification device may be provided with a filter downstream of the catalyst having oxidation ability.
  • the second exhaust purification device includes, for example, a selective reduction type NOx catalyst. This selective reduction type NOx catalyst may be carried on a filter.
  • the fuel addition valve supplies fuel to the first exhaust purification device. When this fuel reacts in the first exhaust purification device, it reduces the oxidation ability of the first exhaust purification device.
  • the control device reduces the fuel injection amount from the fuel addition valve when the temperature of the SCR catalyst is within a predetermined temperature range.
  • the predetermined temperature range may be a temperature range in which the NOx purification rate decreases unless the fuel injection amount is reduced when fuel is injected from the fuel addition valve.
  • NOx purification rate is changed depending on the temperature of the SCR catalyst. If fuel is injected from the fuel addition valve within such a temperature range, the NOx purification rate can be reduced.
  • the predetermined condition for injecting fuel from the fuel addition valve may be a condition for executing clogging suppression injection.
  • the clogging suppression injection can be performed at a specified interval. That is, a predetermined condition may be satisfied at a specified interval. Further, “when a predetermined condition for injecting fuel from the fuel addition valve is satisfied” may be a case in which clogging suppression injection is performed.
  • the NOx purification rate in the second exhaust purification device changes when the ratio of the NO 2 amount in the NOx amount in the exhaust gas flowing into the second exhaust purification device changes in the predetermined temperature range. It may be in a temperature range.
  • the degree of decrease in the NO 2 ratio is reduced.
  • the temperature of the fuel addition valve rises when outside the predetermined temperature range. Can be suppressed.
  • the temperature is outside the predetermined temperature range, even if the fuel injection amount from the fuel addition valve is decreased to increase the NO 2 ratio, there is no effect on the NOx purification rate, so there is no need to decrease the fuel injection amount.
  • the amount of change in the NOx purification rate when the NO 2 ratio changes is equal to or less than a predetermined amount that is considered to be very small, it may be considered that the NOx purification rate has not changed.
  • the control device calculates a reference fuel injection amount in the fuel addition valve when a predetermined condition for injecting fuel from the fuel addition valve is satisfied, and When the temperature is within a predetermined temperature range, the actual fuel injection amount is decreased from the reference fuel injection amount, and the temperature of the second exhaust purification device is lower than the predetermined temperature range.
  • the reference fuel The actual fuel injection amount may be increased more than the injection amount.
  • the reference fuel injection amount (hereinafter also referred to as a reference injection amount) is a fuel injection amount calculated based on, for example, the operating state of the internal combustion engine, and is a fuel injection necessary for suppressing clogging of the fuel addition valve. Amount. If the reference injection amount is too small, it is difficult to suppress clogging of the fuel addition valve. If the reference injection amount is too large, the amount of fuel consumption increases and fuel consumption deteriorates. Therefore, the reference injection amount may be a lower limit value of the fuel injection amount necessary for suppressing clogging of the fuel addition valve.
  • the control device when the integrated value of the value obtained by subtracting the reference fuel injection amount from the actual fuel injection amount is equal to or less than a predetermined value, the control device is configured to inject fuel from the fuel addition valve.
  • the amount may be used as the reference fuel injection amount.
  • the integrated value obtained by subtracting the reference injection amount from the actual fuel injection amount is related to the temperature of the fuel addition valve. That is, when more fuel is injected than the reference injection amount, the temperature of the fuel addition valve becomes lower than necessary, and when fuel less than the reference injection amount is injected, the temperature of the fuel addition valve is It becomes higher than the temperature required to suppress clogging.
  • the amount of decrease and increase in the temperature of the fuel addition valve is determined by the amount of increase / decrease from the reference injection amount, and this increase / decrease amount is correlated with the temperature of the fuel addition valve.
  • the integrated value obtained by subtracting the reference injection amount from the actual fuel injection amount represents a state where the temperature of the fuel addition valve is excessive or insufficient. The larger the integrated value, the lower the temperature of the fuel addition valve. .
  • the temperature of the fuel addition valve becomes high and clogging may occur.
  • the integrated value of the value obtained by subtracting the reference injection amount from the actual fuel injection amount becomes small. Therefore, an integrated value obtained by subtracting the reference injection amount from the actual fuel injection amount, and an integrated value that may cause clogging of the fuel addition valve is set as a predetermined value. And when this integrated value becomes below a predetermined value, the temperature of the fuel addition valve can be maintained at a temperature at which clogging does not occur by setting the fuel injection amount from the fuel addition valve as the reference injection amount. .
  • the integrated value may be an integrated value in a predetermined period.
  • the present invention it is possible to suppress a decrease in the NOx purification rate when the addition for suppressing clogging of the reducing agent addition valve is performed.
  • FIG. 5 is a time chart illustrating the transition of each parameter related to the internal combustion engine when the routine shown in FIG. 4 is executed.
  • FIG. 5 is a time chart illustrating the transition of each parameter related to the internal combustion engine when the routine shown in FIG. 4 is executed.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine according to the present embodiment and an exhaust system thereof.
  • the internal combustion engine 1 shown in FIG. 1 is a diesel engine, but may be a gasoline engine.
  • the internal combustion engine 1 is mounted on a vehicle, for example.
  • the exhaust passage 2 is connected to the internal combustion engine 1.
  • an oxidation catalyst 3, a filter 4, and a selective reduction type NOx catalyst 5 (hereinafter referred to as SCR catalyst 5) are provided in order from the upstream side.
  • the oxidation catalyst 3 is a catalyst having oxidation ability, and oxidizes, for example, HC or CO in the exhaust.
  • the oxidation catalyst 3 may be another catalyst having oxidation ability (for example, a three-way catalyst or an occlusion reduction type NOx catalyst).
  • the oxidation catalyst 3 corresponds to the first exhaust purification device in the present invention.
  • Filter 4 collects particulate matter (PM) in the exhaust.
  • the oxidation catalyst 3 may be carried on the filter 4.
  • the SCR catalyst 5 adsorbs a reducing agent, and selectively reduces NOx by the adsorbing reducing agent when NOx passes.
  • NH 3 can be used as a reducing agent supplied to the SCR catalyst 5.
  • the SCR catalyst 5 may be carried on the filter 4.
  • the filter 4 carrying the SCR catalyst 5 may be provided downstream of the oxidation catalyst 3.
  • the SCR catalyst 5 may be provided downstream of the filter 4 carrying the oxidation catalyst 3.
  • the SCR catalyst 5 corresponds to the second exhaust purification device in the present invention.
  • an ammonia addition valve 8 for adding urea water or ammonia (NH 3 ) to the exhaust gas is provided in the exhaust passage 2 downstream of the filter 4 and upstream of the SCR catalyst 5.
  • the urea water is hydrolyzed by the heat of the exhaust to become ammonia.
  • the ammonia addition valve 8 may be provided upstream of the oxidation catalyst 3, or may be provided downstream of the oxidation catalyst 3 and upstream of the filter 4. Ammonia is used as a reducing agent in the SCR catalyst 5.
  • a first temperature sensor 11 that detects the temperature of exhaust gas and an air-fuel ratio sensor 12 that detects the air-fuel ratio of exhaust gas are attached to the exhaust passage 2 downstream of the oxidation catalyst 3 and upstream of the filter 4. .
  • the first temperature sensor 11 can detect the temperature of the oxidation catalyst 3 or the temperature of the filter 4.
  • the air-fuel ratio sensor 12 can detect the air-fuel ratio of the exhaust gas flowing out from the oxidation catalyst 3 or the air-fuel ratio of the exhaust gas flowing into the filter 4.
  • a second temperature sensor 13 for detecting the temperature of exhaust gas is attached to the exhaust passage 2 downstream of the filter 4 and upstream of the ammonia addition valve 8.
  • the temperature of the filter 4 or the temperature of the SCR catalyst 5 can be detected by the second temperature sensor 13.
  • a temperature sensor may be attached to each of the oxidation catalyst 3, the filter 4, and the SCR catalyst 5, and the temperature of each member may be directly detected.
  • the internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1.
  • the ECU 10 controls the internal combustion engine 1 in accordance with the operating conditions of the internal combustion engine 1 and the driver's request.
  • ECU10 raises the temperature of the oxidation catalyst 3 and exhaust_gas
  • FIG. For example, when the NOx purification rate is low because the temperature of the SCR catalyst 5 is low, the temperature of the SCR catalyst 5 can be increased by supplying HC to the oxidation catalyst 3. Further, when it is desired to increase the purification rate by increasing the temperature of the oxidation catalyst 3, the temperature of the oxidation catalyst 3 can be increased by supplying HC to the oxidation catalyst 3.
  • the ECU 10 performs clogging suppression injection in which fuel is injected from the fuel addition valve 7 in order to lower the temperature of the fuel addition valve 7.
  • the clogging suppression injection is performed at a specified interval when the internal combustion engine 1 is operating, and the specified interval is determined in advance so that the temperature of the fuel addition valve 7 becomes a specified temperature that suppresses clogging. Yes.
  • the ECU 10 calculates a reference injection amount that is a fuel injection amount such that the temperature of the fuel addition valve 7 becomes a temperature at which clogging is suppressed, and performs clogging suppression injection according to the reference injection amount.
  • NO 2 ratio may be an amount obtained by combining the NO and NO 2. Then, depending on the temperature of the SCR catalyst 5, the NO 2 purification rate decreases due to the decrease in the NO 2 ratio.
  • the NOx purification rate increases as the temperature of the SCR catalyst 5 increases.
  • the temperature of the SCR catalyst 5 is within a range from 150 ° C. to 200 ° C., for example, the NOx purification rate increases as the NO 2 ratio approaches 50%. Within this temperature range, the same number of NO and NO 2 is required when NOx is reduced, so that the NOx purification rate is highest when the NO 2 ratio is 50%.
  • the temperature of the SCR catalyst 5 is lower than 150 ° C., for example, and higher than 200 ° C., for example, the NOx purification rate is substantially determined according to the temperature, and therefore, the NO 2 ratio is hardly affected.
  • the NOx purification rate changes within a predetermined temperature range, so that the amount of fuel injected at the clogging suppression injection is suppressed so as to suppress the reduction of the oxidation capability of the oxidation catalyst 3. Reduce compared to other temperatures. At this time, the fuel injection amount is smaller than the reference injection amount.
  • the temperature of the fuel addition valve 7 becomes higher than the specified temperature, which is a temperature at which clogging is suppressed, by reducing the amount of fuel injected at the time of clogging suppression injection below the reference injection amount. That is, the fuel addition valve 7 may be clogged.
  • the clogging suppression injection is performed.
  • the amount of fuel that is sometimes injected may be increased from the reference injection amount.
  • FIG. 3 is a diagram showing the relationship between the temperature of the SCR catalyst 5 and the fuel injection amount at the time of clogging suppression injection.
  • Regulation that the temperature of the fuel addition valve 7 is a temperature at which clogging is suppressed by increasing the fuel injection amount at the time of clogging suppression injection above the reference injection amount within a temperature range adjacent to the predetermined temperature range. Even lower than the temperature. Thereby, when the temperature of the SCR catalyst 5 falls within the predetermined temperature range, the temperature of the fuel addition valve 7 is lowered more than necessary, so the amount of fuel injected at the time of clogging suppression injection is reduced. Even if it decreases, it can control that the temperature of fuel addition valve 7 becomes higher than regulation temperature. Note that the amount of fuel injected during the clogging suppression injection is increased from the reference injection amount when the temperature of the SCR catalyst 5 is lower than the predetermined temperature range or higher than the predetermined temperature range. It may be at least one of temperatures.
  • the temperature range in which the fuel injection amount at the time of clogging suppression injection is made larger than the reference injection amount may be determined in consideration of deterioration of fuel consumption.
  • the temperature range in which the fuel injection amount at the clogging suppression injection is larger than the reference injection amount it is possible to further suppress the occurrence of clogging, but the fuel consumption may be deteriorated.
  • the temperature range in which the fuel injection amount at the time of clogging suppression injection is made larger than the reference injection amount is too narrow, the probability that clogging will occur increases.
  • a temperature range in which the fuel injection amount at the time of clogging suppression injection is larger than the reference injection amount may be obtained by experiment or simulation. Further, the fuel injection amount at this time can be obtained in the same manner.
  • the temperature of the fuel addition valve 7 may become higher than a specified temperature, which is a temperature at which clogging is suppressed. Therefore, in this embodiment, for example, when the integrated value of the value obtained by subtracting the reference injection amount from the actual fuel injection amount becomes a predetermined value or less, the fuel injection amount at the clogging suppression injection is returned to the reference injection amount. May be.
  • the total amount of increase in fuel when the fuel is injected at an increased amount than the reference injection amount is larger than the total amount of increase in fuel when the fuel is injected at a lower amount than the reference injection amount. If this happens, the fuel addition valve 7 may be clogged, and the amount of fuel injected during clogging suppression injection may be returned to the reference injection amount.
  • a reference injection amount that is a fuel injection amount is calculated so that the temperature of the fuel addition valve 7 becomes a temperature at which clogging is suppressed.
  • the temperature of the fuel addition valve 7 varies depending on the engine speed and the engine load. That is, the engine speed and the engine load are correlated with the reference injection amount.
  • a map or equation for obtaining the relationship between the engine speed and the engine load and the reference injection amount is obtained in advance through experiments or simulations and stored in the ECU 10.
  • step S102 the reference injection amount is corrected, and the fuel amount (corrected injection amount) actually injected at the time of clogging suppression injection is calculated.
  • FIG. 5 is a diagram showing the relationship between the temperature of the SCR catalyst 5 and the correction coefficient of the reference injection amount.
  • the relationship shown in FIG. 5 corresponds to the relationship shown in FIG. That is, the map of FIG. 5 is such that the fuel injection amount obtained by multiplying the reference injection amount calculated in step S101 by the correction coefficient calculated in step S102 becomes the fuel injection amount shown in FIG. Is set.
  • the correction coefficient an optimal value is obtained in advance through experiments or simulations and stored in the ECU 10.
  • the integrated correction amount is read.
  • the integrated correction amount is an integrated value obtained by integrating values obtained by subtracting the reference injection amount from the actual fuel injection amount. That is, it is a value obtained by adding the fuel injection amount that is larger than the reference injection amount and subtracting the fuel injection amount that is less than the reference injection amount. In addition, it is good also as an integrated value from the present time to a predetermined period.
  • step S104 it is determined whether or not the fuel injection amount reduction correction at the time of clogging suppression injection is performed. That is, it is determined whether or not the corrected injection amount is smaller than the reference injection amount. In this step, it may be determined whether the temperature of the SCR catalyst 5 is within the predetermined temperature range. If an affirmative determination is made in step S104, the process proceeds to step S105, whereas if a negative determination is made, the process proceeds to step S107.
  • step S105 it is determined whether or not the integrated correction amount is equal to or less than a predetermined value.
  • the predetermined value here is an integrated correction amount that can suppress clogging of the fuel addition valve 7, and may be set to 0, for example. Further, the predetermined value may be set based on the result of the experiment or simulation.
  • step S106 the amount of fuel injected at the time of clogging suppression injection is set to the reference injection amount. That is, since the fuel addition valve 7 may be clogged due to a long time correction of the amount of fuel injected at the time of clogging suppression injection, the reduction correction is prohibited.
  • the temperature of the SCR catalyst 5 is lower than the predetermined temperature range and within the temperature range adjacent to the predetermined temperature range. Increase correction is performed. At this time, the temperature of the fuel addition valve 7 is lower than in the prior art. At this time, although the NO 2 ratio is low, the temperature of the SCR catalyst 5 is low, so the NOx purification rate is hardly changed from the conventional one.
  • the fuel decrease correction is performed during the clogging suppression injection.
  • the temperature of the fuel addition valve 7 is lowered due to the increase correction at the time point T1, even if the temperature of the fuel addition valve 7 rises at the time point T2, the temperature becomes higher than before. Is suppressed.
  • the fuel decrease correction is performed at the time of clogging suppression injection, the decrease amount of the NO 2 ratio is suppressed as compared with the conventional case. For this reason, a decrease in the NOx purification rate is suppressed.
  • the fuel injection amount at the time of clogging suppression injection is corrected to decrease, so that the NOx purification rate decreases. Can be suppressed.
  • the temperature of the SCR catalyst 5 is outside the predetermined temperature range and is within the temperature range adjacent to the predetermined temperature range, the fuel injection amount at the time of clogging suppression injection is increased and corrected. Even if the weight reduction correction is performed thereafter, the temperature of the fuel addition valve 7 can be suppressed from becoming excessively high. Thereby, it can suppress that the fuel addition valve 7 is blocked.
  • the integrated correction amount is equal to or less than the predetermined value, the decrease correction is prohibited, so that the occurrence of clogging due to an increase in the temperature of the fuel addition valve 7 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 還元剤添加弁の詰まりを抑制する添加を実施するときのNOx浄化率の低下を抑制することを目的とする。内燃機関の排気通路に、燃料添加弁と、酸化能力を有する触媒と、選択還元型NOx触媒と、を順に備え、燃料添加弁から燃料を噴射する所定の条件が成立した場合に、選択還元型NOx触媒の温度が、所定の温度範囲内のときには、所定の温度範囲外のときよりも、燃料添加弁から噴射する燃料量を少なくする。

Description

内燃機関の排気浄化装置
 本発明は、内燃機関の排気浄化装置に関する。
 内燃機関の排気通路に還元剤を添加するための還元剤添加弁を備えることがある。この還元剤添加弁には、排気中の粒子状物質が付着する。そして、還元剤添加弁の温度が高い場合には、還元剤添加弁に付着した粒子状物質が熱により固まり、該還元剤噴射弁の噴孔を塞ぐ虞がある。すなわち、還元剤添加弁に詰まりが生じ得る。これに対し、還元剤添加弁の温度を低下させることにより、該還元剤添加弁に詰まりが生じることを抑制できる。そして、還元剤添加弁から定期的に還元剤を噴射することで、該還元剤添加弁の温度を低下させることができる。このような還元剤の詰まりを抑制するための還元剤の添加を以下、「詰まり抑制噴射」と称する。
 そして、内燃機関の排気通路に上流側から順に、燃料を噴射する燃料添加弁と、酸化触媒とを備え、酸化触媒の活性前は、燃料添加弁の詰まり抑制噴射時の添加量を制限する技術が知られている(例えば、特許文献1参照。)。
 ところで、酸化触媒よりも下流側に選択還元型NOx触媒(以下、SCR触媒ともいう。)を備える場合がある。SCR触媒におけるNOx浄化率は、SCR触媒に流入する排気中のNOx量に占めるNO量の割合(以下、NO比率という)によって変わる場合がある。ここで、詰まり抑制噴射を実施すると、酸化触媒における酸化能力が低下する。このため、NOからNOへの酸化が抑制されるので、NO比率が低下する。このようにしてNO比率が低下すると、SCR触媒におけるNOx浄化率が低下する虞がある。すなわち、詰まり抑制噴射を実施することで、NOx浄化率が低下する虞がある。
特開2007-064183号公報 特開2004-060515号公報 特開2007-071175号公報 特開2009-138731号公報
 本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、還元剤添加弁の詰まりを抑制する添加を実施するときのNOx浄化率の低下を抑制することにある。
 上記課題を達成するために本発明では、
 内燃機関の排気通路に設けられ酸化能力を有する第一排気浄化装置と、
 前記第一排気浄化装置よりも下流の排気通路に設けられNOxの選択還元機能を有する第二排気浄化装置と、
 前記第一排気浄化装置よりも上流の排気通路に設けられ排気中に燃料を噴射する燃料添加弁と、
 を備える内燃機関の排気浄化装置において、
 前記燃料添加弁から燃料を噴射する所定の条件が成立した場合に、前記第二排気浄化装置の温度が、所定の温度範囲内のときには、所定の温度範囲外のときよりも、前記燃料添加弁から噴射する燃料量を少なくする制御装置を備える。
 第一排気浄化装置は、例えば酸化能力を有する触媒を備えている。この触媒はフィルタに担持されていてもよい。また、酸化能力を有する触媒よりも下流にフィルタを備えたものを第一排気浄化装置としてもよい。第二排気浄化装置は、例えば選択還元型NOx触媒を備えている。この選択還元型NOx触媒はフィルタに担持されていてもよい。
 燃料添加弁は、第一排気浄化装置に燃料を供給する。この燃料は、第一排気浄化装置において反応するときに、該第一排気浄化装置の酸化能力を低下させる。制御装置は、SCR触媒の温度が、所定の温度範囲内の場合に、燃料添加弁からの燃料噴射量を減量する。なお、所定の温度範囲は、燃料添加弁から燃料を噴射するときに燃料噴射量を減量しなければNOx浄化率が低下する温度範囲としてもよい。ここで、SCR触媒の温度によっては、NO比率が変化することで、NOx浄化率が変化してしまう。このような温度範囲内のときに燃料添加弁から燃料を噴射させると、NOx浄化率が低下し得る。一方、燃料添加弁からの燃料噴射量を減量すると、第一排気浄化装置における酸化能力の低下を抑制することができるため、NOx浄化率の低下を抑制できる。なお、燃料添加弁から燃料を噴射する所定の条件は、詰まり抑制噴射を実行する条件としてもよい。詰まり抑制噴射は、規定間隔で行うことができる。すなわち、規定間隔で所定の条件が成立するとしてもよい。また、「燃料添加弁から燃料を噴射する所定の条件が成立した場合」は、詰まり抑制噴射を実施する場合としてもよい。
 本発明においては、前記所定の温度範囲は、前記第二排気浄化装置に流入する排気中のNOx量に占めるNO量の割合が変化すると、前記第二排気浄化装置におけるNOx浄化率が変化する温度範囲であってもよい。
 燃料添加弁からの燃料噴射量を減少させることにより、NO比率の減少度合いが小さくなる。これにより、より多くのNOをSCR触媒に流入させることができるので、NOx浄化率の低下を抑制できる。また、NO比率が変化するとSCR触媒におけるNOx浄化率が変化する温度範囲に限って燃料添加弁からの燃料噴射量を減少させることにより、所定の温度範囲外のときには、燃料添加弁の温度上昇を抑制することができる。また、所定の温度範囲外のときには、燃料添加弁からの燃料噴射量を減少させてNO比率を高めたとしても、NOx浄化率に影響がないため、燃料噴射量を減少させる必要もない。なお、NO比率が変化したときのNOx浄化率の変化量が非常に小さいと考えられる所定量以下の場合には、NOx浄化率は変化していないと考えてもよい。
 本発明においては、前記制御装置は、前記燃料添加弁から燃料を噴射する所定の条件が成立した場合に、前記燃料添加弁において基準となる燃料噴射量を算出し、前記第二排気浄化装置の温度が、所定の温度範囲内のときには、前記基準となる燃料噴射量よりも実際の燃料噴射量を減少させ、前記第二排気浄化装置の温度が、前記所定の温度範囲よりも低い温度範囲であって、前記所定の温度範囲に隣り合う温度範囲、又は、前記所定の温度範囲よりも高い温度範囲であって、前記所定の温度範囲に隣り合う温度範囲の場合には、前記基準となる燃料噴射量よりも実際の燃料噴射量を増加させてもよい。
 基準となる燃料噴射量(以下、基準噴射量ともいう)は、例えば内燃機関の運転状態に基づいて算出される燃料噴射量であり、燃料添加弁の詰まりを抑制するために必要となる燃料噴射量である。なお、基準噴射量が少なすぎると、燃料添加弁の詰まりを抑制することが困難となり、基準噴射量が多すぎると、燃料の消費量が多くなって燃費の悪化を招く。したがって、基準噴射量は、燃料添加弁の詰まりを抑制するために必要な燃料噴射量の下限値としてもよい。
 そして、燃料噴射によりNOx浄化率が低下する虞がある場合には、燃料添加弁から燃料を噴射するときに、基準噴射量よりも少ない量の燃料を噴射させる。基準噴射量よりも少ない量の燃料を噴射させることで、NOx浄化率の低下を抑制できるが、燃料添加弁の温度が高くなって詰まりが発生する虞がある。そこで、所定の温度範囲に入る前に、予め基準噴射量よりも多い量の燃料を噴射させておくことで、燃料添加弁の温度を必要以上に低下させておく。これにより、所定の温度範囲内で燃料添加弁の温度が上昇したとしても、詰まりが発生する温度に達するまでには余裕があるため、詰まりが発生することを抑制できる。
 本発明においては、前記制御装置は、実際の燃料噴射量から前記基準となる燃料噴射量を減じた値の積算値が、所定値以下となった場合には、前記燃料添加弁から噴射する燃料量を前記基準となる燃料噴射量としてもよい。
 実際の燃料噴射量から基準噴射量を減じた値の積算値は、燃料添加弁の温度と関連している。すなわち、基準噴射量よりも多くの燃料を噴射した場合には、燃料添加弁の温度が必要以上に低くなり、基準噴射量よりも少ない燃料を噴射した場合には、燃料添加弁の温度が、詰まりを抑制するために必要となる温度よりも高くなる。燃料添加弁の温度の下降分と上昇分とは、基準噴射量からの増減量によって決まり、この増減量は、燃料添加弁の温度と相関関係にある。そして、実際の燃料噴射量から基準噴射量を減じた値の積算値は、燃料添加弁の温度の過不足の状態を表しており、積算値が大きくなるほど、燃料添加弁の温度は低いといえる。しかし、SCR触媒の温度が前記所定の温度範囲内となっている時間が長く続くと、燃料添加弁の温度が高くなり、詰まりが発生する虞がある。このようなときには、実際の燃料噴射量から基準噴射量を減じた値の積算値が小さくなる。そこで、実際の燃料噴射量から基準噴射量を減じた値の積算値であって、燃料添加弁に詰まりが生じる虞のある積算値を所定値として設定している。そして、この積算値が所定値以下となった場合に、燃料添加弁からの燃料噴射量を基準噴射量とすることにより、燃料添加弁の温度を、詰まりの発生しない温度に維持することができる。
 なお、燃料噴射量の増減があったとしても、長い時間が経過すると、現時点における燃料添加弁の温度に与える影響が小さくなるため、前記積算値は、所定期間における積算値としてもよい。
 本発明によれば、還元剤添加弁の詰まりを抑制する添加を実施するときのNOx浄化率の低下を抑制することができる。
実施例に係る内燃機関と、その排気系との概略構成を示す図である。 SCR触媒の温度と、SCR触媒におけるNOx浄化率との関係を示した図である。 SCR触媒の温度と、詰まり抑制噴射時の燃料噴射量との関係を示した図である。 詰まり抑制噴射時の燃料噴射量を決定するフローを示したフローチャートである。 SCR触媒の温度と、基準噴射量の補正係数と、の関係を示した図である。 図4に示すルーチンが実施された場合の、内燃機関に関する各パラメータの推移を例示したタイムチャートである。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
<実施例1>
 図1は、本実施例に係る内燃機関と、その排気系との概略構成を示す図である。図1に示す内燃機関1は、ディーゼル機関であるが、ガソリン機関であってもよい。内燃機関1は、たとえば車両に搭載される。
 内燃機関1には、排気通路2が接続されている。この排気通路2の途中には、上流側から順に、酸化触媒3、フィルタ4、選択還元型NOx触媒5(以下、SCR触媒5という。)が備えられている。
 酸化触媒3は、酸化能力を有する触媒であり、排気中の例えばHCまたはCOを酸化させる。なお、酸化触媒3は、酸化能力を有する他の触媒(例えば三元触媒または吸蔵還元型NOx触媒)であってもよい。そして、本実施例においては酸化触媒3が、本発明における第一排気浄化装置に相当する。
 フィルタ4は、排気中の粒子状物質(PM)を捕集する。なお、酸化触媒3は、フィルタ4に担持されていてもよい。
 SCR触媒5は、還元剤を吸着しておき、NOxが通過するときに、吸着していた還元剤によりNOxを選択還元する。SCR触媒5へ供給する還元剤には、NHを利用することができる。なお、SCR触媒5は、フィルタ4に担持されていてもよい。例えば、酸化触媒3よりも下流に、SCR触媒5を担持したフィルタ4を備えていてもよい。また、酸化触媒3を担持したフィルタ4よりも下流に、SCR触媒5を備えていてもよい。そして、本実施例においてはSCR触媒5が、本発明における第二排気浄化装置に相当する。
 酸化触媒3よりも上流の排気通路2には、該排気通路2を流通する排気中に燃料(HC)を噴射する燃料添加弁7が設けられている。燃料添加弁7から排気中にHCを添加することにより、酸化触媒3でHCを反応させ、この反応熱により排気の温度を上昇させることができる。例えば、酸化触媒3、フィルタ4、SCR触媒5の温度を上昇させるときに、燃料添加弁7からHCを添加する。
 また、フィルタ4よりも下流で且つSCR触媒5よりも上流の排気通路2には、排気中に尿素水またはアンモニア(NH)を添加するアンモニア添加弁8が設けられている。尿素水は、排気の熱により加水分解されてアンモニアとなる。なお、アンモニア添加弁8は、酸化触媒3よりも上流に設けてもよく、また、酸化触媒3よりも下流で且つフィルタ4よりも上流に設けてもよい。アンモニアは、SCR触媒5において還元剤として利用される。
 また、酸化触媒3よりも下流で且つフィルタ4よりも上流の排気通路2には、排気の温度を検出する第一温度センサ11及び排気の空燃比を検出する空燃比センサ12が取り付けられている。なお、第一温度センサ11により酸化触媒3の温度またはフィルタ4の温度を検出することができる。また、空燃比センサ12により、酸化触媒3から流出する排気の空燃比、または、フィルタ4に流入する排気の空燃比を検出することができる。また、フィルタ4よりも下流で且つアンモニア添加弁8よりも上流の排気通路2には、排気の温度を検出する第二温度センサ13が取り付けられている。この第二温度センサ13により、フィルタ4の温度またはSCR触媒5の温度を検出することができる。なお、酸化触媒3、フィルタ4、SCR触媒5の夫々に温度センサを取り付けて、夫々の部材の温度を直接検出してもよい。
 なお、上記センサは、全て取り付ける必要はなく、適宜選択して取り付けてもよい。
 以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1を制御する。
 ECU10には、上記センサが電気配線を介して接続され、これらセンサの出力信号がECU10に入力される。また、ECU10には、燃料添加弁7、アンモニア添加弁8が電気配線を介して接続されており、該ECU10によりこれらの機器が制御される。
 そして、ECU10は、酸化触媒3に対してHCを供給することで、酸化触媒3及び排気の温度を上昇させる。例えば、SCR触媒5の温度が低いためにNOx浄化率が低い場合に、酸化触媒3にHCを供給することで、SCR触媒5の温度を上昇させることができる。また、酸化触媒3の温度を上昇させて浄化率を高めたいときにも、酸化触媒3にHCを供給することで該酸化触媒3の温度を上昇させることができる。
 また、ECU10は、フィルタ4に捕集されているPM量が閾値に達すると、酸化触媒3へHCを供給して排気の温度を上昇させる。そうすると、フィルタ4の温度が上昇するため、PMが酸化される。これにより、フィルタ4からPMを除去することができる。このようにして、フィルタ4の再生が実施される。なお、酸化触媒3よりも下流に、吸蔵還元型NOx触媒を備えている場合には、該酸化触媒3にHCを供給することで、該吸蔵還元型NOx触媒の温度を上昇させて、硫黄被毒を回復させることができる。
 このように酸化触媒3へHCを供給するために、ECU10は、燃料添加弁7から燃料を添加させる。
 また、ECU10は、燃料添加弁7の温度を低下させるために、該燃料添加弁7から燃料を噴射させる詰まり抑制噴射を実施している。詰まり抑制噴射は、内燃機関1が作動している場合に規定間隔で実施され、該規定間隔は、燃料添加弁7の温度が詰まりを抑制する温度である規定温度となるように予め定められている。また、ECU10は、燃料添加弁7の温度が、詰まりを抑制する温度となるような燃料噴射量である基準噴射量を算出し、該基準噴射量にしたがって詰まり抑制噴射を実施する。
 しかし、詰まり抑制噴射を実施することにより、酸化触媒3における酸化能力が低下し、該酸化触媒3及びフィルタ4においてNOに酸化されるNOの量が減少する。このため、SCR触媒5に流入するNOx量に対するNO量の比(NO比率)が低下する。なお、NOx量は、NOとNOとを合わせた量としてもよい。そして、SCR触媒5の温度によっては、NO比率が低下することにより、NOx浄化率が低下する。
 ここで、図2は、SCR触媒5の温度と、SCR触媒5におけるNOx浄化率との関係を示した図である。実線は、NO比率が30%の場合を示し、一点鎖線は、NO比率が40%の場合を示し、破線は、NO比率が50%の場合を示す。
 図2に示されるように、SCR触媒5の温度が高くなるほど、NOx浄化率が高くなる。そして、SCR触媒5の温度が例えば150℃から200℃までの範囲内では、NO比率が50%に近付くほどNOx浄化率が高くなる。この温度範囲内では、NOxが還元されるときにNOとNOとが同じ数だけ必要となるため、NO比率が50%のときに最もNOx浄化率が高くなる。一方、SCR触媒5の温度が例えば150℃よりも低い場合、及び、例えば200℃よりも高い場合には、NOx浄化率は温度に応じてほぼ決まるため、NO比率の影響はほとんどない。
 ところで、内燃機関1から排出されたばかりのガス中のNO比率は50%よりも低いが、酸化触媒3においてNOを酸化させることにより、NO比率を50%に近付けることができる。なお、NO比率が50%に近付くような酸化能力を酸化触媒3に持たせておいてもよい。
 このようにNO比率が50%に近付くように調整された酸化触媒3を排気通路2に備えたとしても、詰まり抑制噴射を実施した場合には、酸化触媒3における酸化能力が低下するため、NO比率が低くなってしまう。このため、SCR触媒5におけるNOx浄化率が低下してしまう。
 そこで本実施例では、NO比率が変わるとNOx浄化率が変わる所定の温度範囲内の場合には、酸化触媒3の酸化能力の低下を抑制するように、詰まり抑制噴射時に噴射する燃料量を、他の温度のときと比較して減少させる。このときの燃料噴射量は、基準噴射量よりも少ない。燃料添加弁7からの燃料噴射量を低減することにより、酸化触媒3における酸化能力の低下を抑制できるため、NOの酸化を促進させることができる。なお、詰まり抑制噴射時に噴射する燃料量が多いほど、酸化触媒3における酸化能力は低くなる。
 このように、SCR触媒5の温度が所定の温度範囲内の場合には、詰まり抑制噴射時に噴射する燃料量を減少させることで、NOx浄化率を高めることができる。
 しかし、詰まり抑制噴射時に噴射する燃料量を基準噴射量よりも少なくすることにより、燃料添加弁7の温度が、詰まりを抑制する温度である規定温度よりも高くなる虞がある。すなわち、燃料添加弁7の詰まりが発生する虞がある。
 そこで本実施例では、SCR触媒5の温度が、前記所定の温度範囲よりも低い温度範囲または高い温度範囲であって、前記所定の温度範囲に隣り合う温度範囲内の場合には、詰まり抑制噴射時に噴射する燃料量を基準噴射量よりも増加させてもよい。
 ここで、図3は、SCR触媒5の温度と、詰まり抑制噴射時の燃料噴射量との関係を示した図である。前記所定の温度範囲に隣り合う温度範囲内のときに、詰まり抑制噴射時の燃料噴射量を基準噴射量よりも多くすることにより、燃料添加弁7の温度が、詰まりを抑制する温度である規定温度よりもさらに低くなる。これにより、SCR触媒5の温度が前記所定の温度範囲内となったときには、燃料添加弁7の温度が必要以上に低下している状態になっているので、詰まり抑制噴射時に噴射する燃料量を減少させたとしても、燃料添加弁7の温度が規定温度よりも高くなることを抑制できる。なお、詰まり抑制噴射時に噴射する燃料量を基準噴射量よりも増加させるのは、SCR触媒5の温度が、前記所定の温度範囲よりも低い温度の場合、又は、前記所定の温度範囲よりも高い温度の場合の少なくとも一方であってもよい。
 また、詰まり抑制噴射時の燃料噴射量を基準噴射量よりも多くする温度範囲は、燃費の悪化等を考慮して決定してもよい。ここで、詰まり抑制噴射時の燃料噴射量を基準噴射量よりも多くする温度範囲を広くすることにより、詰まりが発生することをより抑制できるが、燃費が悪化する虞がある。また、詰まり抑制噴射時の燃料噴射量を基準噴射量よりも多くする温度範囲を狭くし過ぎると、詰まりが発生する確率が高くなる。したがって、燃費の悪化の抑制と、詰まりの発生の抑制とを考慮して、実験又はシミュレーションにより、詰まり抑制噴射時の燃料噴射量を基準噴射量よりも多くする温度範囲を求めておいてもよい。また、このときの燃料噴射量も同様に求めることができる。
 なお、SCR触媒5の温度が前記所定の温度範囲内である時間が長くなると、燃料添加弁7の温度が詰まりを抑制する温度である規定温度よりも高くなる虞がある。そこで本実施例では、例えば、実際の燃料噴射量から基準噴射量を減じた値の積算値が、所定値以下となった場合には、詰まり抑制噴射時の燃料噴射量を基準噴射量に戻してもよい。また、例えば、基準噴射量よりも増加させて燃料を噴射したときの燃料の増加分の総量よりも、基準噴射量よりも減少させて燃料を噴射したときの燃料の減少分の総量のほうが大きくなった場合には、燃料添加弁7に詰まりが発生する虞があると考えて、詰まり抑制噴射時に噴射する燃料量を基準噴射量に戻してもよい。
 図4は、詰まり抑制噴射時の燃料噴射量を決定するフローを示したフローチャートである。本ルーチンは、ECU10により、所定時間毎に繰り返し実行される。なお、本実施例においては図4に示すルーチンを処理するECU10が、本発明における制御装置に相当する。
 ステップS101では、燃料添加弁7の温度が詰まりを抑制する温度となるような燃料噴射量である基準噴射量が算出される。ここで、燃料添加弁7の温度は、機関回転数及び機関負荷によって変わる。すなわち、機関回転数及び機関負荷と、基準噴射量とは相関関係にある。そこで、機関回転数及び機関負荷と、基準噴射量との関係を求めるマップまたは式を、予め実験又はシミュレーション等により求めてECU10に記憶させておく。
 ステップS102では、基準噴射量を補正して、詰まり抑制噴射時に実際に噴射する燃料量(補正噴射量)が算出される。ここで、図5は、SCR触媒5の温度と、基準噴射量の補正係数と、の関係を示した図である。図5に示した関係は、図3に示した関係に対応している。すなわち、ステップS101で算出される基準噴射量に、ステップS102で算出される補正係数を乗算して得られる燃料噴射量が、図3に示した燃料噴射量となるように、図5のマップが設定されている。補正係数は、予め実験またはシミュレーション等により最適値を求めてECU10に記憶しておく。
 ステップS103では、積算補正量が読み込まれる。積算補正量は、実際の燃料噴射量から基準噴射量を減じた値を積算した積算値である。すなわち、基準噴射量よりも多い分の燃料噴射量を加算し、基準噴射量よりも少ない分の燃料噴射量を減算した値である。なお、現時点から所定期間前までの積算値としてもよい。
 ステップS104では、詰まり抑制噴射時における燃料噴射量の減量補正が実施されているか否か判定される。すなわち、補正噴射量が基準噴射量よりも少ないか否か判定される。本ステップでは、SCR触媒5の温度が、前記所定の温度範囲内であるか否か判定してもよい。ステップS104で肯定判定がなされた場合にはステップS105へ進み、一方、否定判定がなされた場合にはステップS107へ進む。
 ステップS105では、積算補正量が所定値以下であるか否か判定される。本ステップでは、燃料添加弁7の詰まりを抑制することが可能な状態であるか否か判定している。ここでいう所定値は、燃料添加弁7の詰まりを抑制することができる積算補正量であり、例えば0としてもよい。また、実験またはシミュレーション等を行った結果に基づいて所定値を設定してもよい。本ステップでは、詰まり抑制噴射時に噴射する燃料量の減量補正が長時間行われることで、燃料添加弁7に詰まりが発生する虞があるか否か判定している。ステップS105で肯定判定がなされた場合にはステップS106へ進み、一方、否定判定がなされた場合にはステップS107へ進む。
 ステップS106では、詰まり抑制噴射時に噴射する燃料量が、基準噴射量に設定される。すなわち、詰まり抑制噴射時に噴射する燃料量の減量補正が長時間行われることで燃料添加弁7の詰まりが発生する虞があるため、減量補正を禁止している。
 ステップS107では、詰まり抑制噴射時に噴射する燃料量が、補正噴射量に設定される。これにより、燃料添加弁7の詰まりが発生することを抑制しつつ、NOx浄化率が低下することを抑制できる。
 ここで、図6は、図4に示すルーチンが実施された場合の、内燃機関1に関する各パラメータの推移を例示したタイムチャートである。図6において、「車速」は、内燃機関1が搭載される車両の速度を示しており、「燃料噴射量」は、詰まり抑制噴射時に噴射される燃料量を示しており、「NOx浄化率」は、SCR触媒5に流入するNOx量に対するSCR触媒5で還元されたNOx量を示している。実線は、本実施例に係る制御を実施した場合を示し、破線は、常に基準噴射量を噴射する場合であり従来の詰まり抑制噴射を実施した場合を示している。
 本実施例では、T1の時点においては、SCR触媒5の温度が、所定の温度範囲よりも低く且つ所定の温度範囲に隣り合う温度範囲内となっているため、詰まり抑制噴射時に燃料噴射量の増量補正が行われている。このときには、従来よりも燃料添加弁7の温度が低くなる。また、このときには、NO比率が低くなるものの、SCR触媒5の温度が低いために、NOx浄化率は従来と殆ど変らない。
 また、本実施例では、T2の時点においては、SCR触媒5の温度が所定の温度範囲内であるため、詰まり抑制噴射時に燃料の減量補正が行われている。このときには、T1の時点における増量補正の影響で、燃料添加弁7の温度が低くなっているため、T2の時点において燃料添加弁7の温度が上昇したとしても、従来よりも温度が高くなることが抑制されている。そして、詰まり抑制噴射時に燃料の減量補正が行われているため、NO比率の減少量が従来よりも抑えられる。このため、NOx浄化率の低下が抑制されている。
 また、本実施例では、T3の時点において、積算補正量が所定値まで減少したため、T4の時点において、詰まり抑制噴射時における燃料噴射量の減量補正が禁止される。これにより、燃料噴射量が従来と同じになる。
 以上説明したように本実施例によれば、SCR触媒5の温度が、所定の温度範囲内の場合には、詰まり抑制噴射時における燃料噴射量を減量補正するため、NOx浄化率が低下することを抑制できる。また、SCR触媒5の温度が、所定の温度範囲外の場合であって、該所定の温度範囲に隣り合う温度範囲内の場合には、詰まり抑制噴射時における燃料噴射量を増量補正するため、その後に減量補正が行われたとしても、燃料添加弁7の温度が過度に高くなることを抑制できる。これにより、燃料添加弁7の詰まりが発生することを抑制できる。また、積算補正量が所定値以下になる場合には、減量補正を禁止するため、燃料添加弁7の温度が高くなることにより詰まりが発生することを抑制できる。
1     内燃機関
2     排気通路
3     酸化触媒
4     フィルタ
5     選択還元型NOx触媒(SCR触媒)
7     燃料添加弁
8     アンモニア添加弁
10   ECU
11   第一温度センサ
12   空燃比センサ
13   第二温度センサ

Claims (4)

  1.  内燃機関の排気通路に設けられ酸化能力を有する第一排気浄化装置と、
     前記第一排気浄化装置よりも下流の排気通路に設けられNOxの選択還元機能を有する第二排気浄化装置と、
     前記第一排気浄化装置よりも上流の排気通路に設けられ排気中に燃料を噴射する燃料添加弁と、
     を備える内燃機関の排気浄化装置において、
     前記燃料添加弁から燃料を噴射する所定の条件が成立した場合に、前記第二排気浄化装置の温度が、所定の温度範囲内のときには、所定の温度範囲外のときよりも、前記燃料添加弁から噴射する燃料量を少なくする制御装置を備える内燃機関の排気浄化装置。
  2.  前記所定の温度範囲は、前記第二排気浄化装置に流入する排気中のNOx量に占めるNO量の割合が変化すると、前記第二排気浄化装置におけるNOx浄化率が変化する温度範囲である請求項1に記載の内燃機関の排気浄化装置。
  3.  前記制御装置は、前記燃料添加弁から燃料を噴射する所定の条件が成立した場合に、前記燃料添加弁において基準となる燃料噴射量を算出し、前記第二排気浄化装置の温度が、所定の温度範囲内のときには、前記基準となる燃料噴射量よりも実際の燃料噴射量を減少させ、前記第二排気浄化装置の温度が、前記所定の温度範囲よりも低い温度範囲であって、前記所定の温度範囲に隣り合う温度範囲、又は、前記所定の温度範囲よりも高い温度範囲であって、前記所定の温度範囲に隣り合う温度範囲の場合には、前記基準となる燃料噴射量よりも実際の燃料噴射量を増加させる請求項1または2に記載の内燃機関の排気浄化装置。
  4.  前記制御装置は、実際の燃料噴射量から前記基準となる燃料噴射量を減じた値の積算値が、所定値以下となった場合には、前記燃料添加弁から噴射する燃料量を前記基準となる燃料噴射量とする請求項3に記載の内燃機関の排気浄化装置。
PCT/JP2013/079574 2012-12-25 2013-10-31 内燃機関の排気浄化装置 WO2014103505A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/655,107 US9488080B2 (en) 2012-12-25 2013-10-31 Exhaust gas purification apparatus for internal combustion engine
EP13868000.4A EP2940267B1 (en) 2012-12-25 2013-10-31 Exhaust gas purification apparatus for internal combustion engine
CN201380067870.4A CN104884756B (zh) 2012-12-25 2013-10-31 内燃机的排气净化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-280997 2012-12-25
JP2012280997A JP5915516B2 (ja) 2012-12-25 2012-12-25 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2014103505A1 true WO2014103505A1 (ja) 2014-07-03

Family

ID=51020604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079574 WO2014103505A1 (ja) 2012-12-25 2013-10-31 内燃機関の排気浄化装置

Country Status (5)

Country Link
US (1) US9488080B2 (ja)
EP (1) EP2940267B1 (ja)
JP (1) JP5915516B2 (ja)
CN (1) CN104884756B (ja)
WO (1) WO2014103505A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704357A (zh) * 2021-04-28 2022-07-05 长城汽车股份有限公司 一种确定尿素喷嘴喷射量的方法、装置及车辆

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016002717T5 (de) * 2015-08-03 2018-03-08 Cummins Emission Solutions Inc. Sensorkonfiguration für ein Nachbehandlungssystem umfassend einen SCR mit Filter
CN107654301B (zh) * 2016-07-25 2019-12-24 上海汽车集团股份有限公司 一种发动机排气歧管的温度控制方法及装置
US9926823B2 (en) * 2016-08-10 2018-03-27 GM Global Technology Operations LLC System and method for controlling detecting and cleaning diesel-exhaust-fluid injector deposits
CN110454261B (zh) * 2019-06-29 2020-08-21 潍柴动力股份有限公司 一种hc喷嘴堵塞的监控方法、装置及系统
US11396836B1 (en) * 2021-01-29 2022-07-26 Caterpillar Inc. Reductant dosing control system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060515A (ja) 2002-07-29 2004-02-26 Mitsubishi Fuso Truck & Bus Corp エンジン制御装置
JP2005106047A (ja) * 2003-09-08 2005-04-21 Toyota Motor Corp 排気浄化装置
JP2007064183A (ja) 2005-09-02 2007-03-15 Toyota Motor Corp 排気浄化装置
JP2007071175A (ja) 2005-09-09 2007-03-22 Toyota Motor Corp 燃料添加装置
JP2007239500A (ja) * 2006-03-06 2007-09-20 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009138731A (ja) 2007-11-13 2009-06-25 Toyota Motor Corp 内燃機関の排気浄化システム
JP2012007557A (ja) * 2010-06-25 2012-01-12 Honda Motor Co Ltd 内燃機関の排気浄化装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281250A (ja) 1998-03-27 1999-10-15 Aiwa Co Ltd 空調装置及び生ゴミ処理装置
US6928359B2 (en) 2001-08-09 2005-08-09 Ford Global Technologies, Llc High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature
JP4487982B2 (ja) * 2006-07-12 2010-06-23 トヨタ自動車株式会社 内燃機関の排気浄化システム
JP5000405B2 (ja) * 2007-07-06 2012-08-15 日野自動車株式会社 排気浄化装置
WO2009082035A1 (ja) 2007-12-26 2009-07-02 Toyota Jidosha Kabushiki Kaisha 内燃機関の排気浄化装置
JP4888380B2 (ja) * 2007-12-26 2012-02-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2009174445A (ja) * 2008-01-25 2009-08-06 Toyota Motor Corp 内燃機関の排気浄化装置
US8240133B2 (en) 2009-03-31 2012-08-14 GM Global Technology Operations LLC Injector tip cleaning systems and methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060515A (ja) 2002-07-29 2004-02-26 Mitsubishi Fuso Truck & Bus Corp エンジン制御装置
JP2005106047A (ja) * 2003-09-08 2005-04-21 Toyota Motor Corp 排気浄化装置
JP2007064183A (ja) 2005-09-02 2007-03-15 Toyota Motor Corp 排気浄化装置
JP2007071175A (ja) 2005-09-09 2007-03-22 Toyota Motor Corp 燃料添加装置
JP2007239500A (ja) * 2006-03-06 2007-09-20 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009138731A (ja) 2007-11-13 2009-06-25 Toyota Motor Corp 内燃機関の排気浄化システム
JP2012007557A (ja) * 2010-06-25 2012-01-12 Honda Motor Co Ltd 内燃機関の排気浄化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704357A (zh) * 2021-04-28 2022-07-05 长城汽车股份有限公司 一种确定尿素喷嘴喷射量的方法、装置及车辆
CN114704357B (zh) * 2021-04-28 2023-06-09 长城汽车股份有限公司 一种确定尿素喷嘴喷射量的方法、装置及车辆

Also Published As

Publication number Publication date
CN104884756B (zh) 2017-07-18
JP5915516B2 (ja) 2016-05-11
EP2940267A4 (en) 2015-12-30
EP2940267B1 (en) 2019-03-06
EP2940267A1 (en) 2015-11-04
CN104884756A (zh) 2015-09-02
US9488080B2 (en) 2016-11-08
JP2014125897A (ja) 2014-07-07
US20150345359A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP5880731B2 (ja) 内燃機関の排気浄化装置
JP4020054B2 (ja) 内燃機関の排気浄化システム
AU2013356013B2 (en) Deterioration determination system of exhaust emission control device
USRE48658E1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP5915516B2 (ja) 内燃機関の排気浄化装置
JP4900002B2 (ja) 内燃機関の排気浄化システム
JP5163754B2 (ja) 内燃機関の排気浄化装置
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
WO2010082354A1 (ja) 排気浄化装置の異常検出装置及び排気浄化装置の異常検出方法
EP2873823B1 (en) Exhaust gas purification system for an internal combustion engine
JP5910759B2 (ja) 内燃機関の排気浄化システム
JP4919178B2 (ja) 内燃機関の排気浄化装置
JP2016079852A (ja) 内燃機関の排気浄化装置の異常判定システム
KR20090027666A (ko) 내연 기관용 배기 정화 시스템
JP5880593B2 (ja) 内燃機関の排気浄化装置
JP2012031787A (ja) 内燃機関の排気浄化装置及び方法
JP2008196443A (ja) 内燃機関の排気浄化装置
US10100696B2 (en) Method for operating an exhaust gas purification system connected to an internal combustion engine of a motor-vehicle comprising an SCR catalyst
JP2012215143A (ja) 触媒の劣化判定装置
JP2009115038A (ja) 内燃機関の排気浄化装置
JP7200896B2 (ja) 内燃機関の排気浄化装置、及び車両
JP2014084763A (ja) 内燃機関の制御装置
JP2013238164A (ja) 内燃機関の排気浄化装置
JP2018035766A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868000

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14655107

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013868000

Country of ref document: EP