JP2005079150A - 光源装置及びプロジェクタ - Google Patents

光源装置及びプロジェクタ Download PDF

Info

Publication number
JP2005079150A
JP2005079150A JP2003304585A JP2003304585A JP2005079150A JP 2005079150 A JP2005079150 A JP 2005079150A JP 2003304585 A JP2003304585 A JP 2003304585A JP 2003304585 A JP2003304585 A JP 2003304585A JP 2005079150 A JP2005079150 A JP 2005079150A
Authority
JP
Japan
Prior art keywords
emitting element
path
light emitting
outflow
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003304585A
Other languages
English (en)
Other versions
JP4289088B2 (ja
Inventor
Yutaka Tsuchiya
豊 土屋
Tomo Ikebe
朋 池邊
秀也 ▲関▼
Hideya Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003304585A priority Critical patent/JP4289088B2/ja
Publication of JP2005079150A publication Critical patent/JP2005079150A/ja
Application granted granted Critical
Publication of JP4289088B2 publication Critical patent/JP4289088B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

【課題】 LEDチップ100を直接、または間接的に冷却流体400を強制流動させることによって、冷却効果を高めた光源装置10と、この光源装置10が搭載されて、高輝度で良好な性能を長期間にわたって維持するプロジェクタ1000を提供する。
【解決手段】 光源装置10は、LEDチップ100が直接、または間接的に冷却流体400によって冷却され、LEDチップ100が固着される発光素子基台120と、発光素子基台120に設けられた冷却流体400の流入路124,126と、流出路125,127と、が備えられ、
流入路124,125と流出路125,127とが、LEDチップ100が固着される発光素子基台120の面に対して、略平行に設けられている。
プロジェクタ1000は、前記光源装置10を備える。
【選択図】 図1


Description

本発明は、発光素子が、冷却流体によって直接または間接的に冷却される光源装置と、この光源装置が搭載されるプロジェクタに関する。
近年、発光ダイオード(LED)等の固体光源を照明に用いるプロジェクタ等の電子機器の小型化、高輝度化が促進され、装置内の熱密度が従来に比べて上昇してきたために、電子機器、特に発熱源である光源装置の冷却性能の一層の向上が必要とされてきている。
また、LEDチップは透光性樹脂によって被覆されているが、透光性樹脂は一般的に熱伝導率が低い。従って、LEDチップで発生した熱は、LEDチップが固着される発光素子基板やリード線を通じて放熱されるが、光源装置の高輝度化や高出力化が進むにつれ、充分な放熱性が得られなくなってきている。
従来、発光素子であるLEDチップを冷却流体で直接冷却する光源装置が提案されている。この際、密閉された冷却流体の自然対流で冷却する構造、ヒートパイプの原理で冷却する構造、冷却気体を流動させて冷却させる構造等が知られている(例えば、特許文献1参照)。
また、LEDチップまたはLEDチップが固着された基板を密閉された容器内の冷却液体で冷却する構造や容器外から透光性の絶縁流体を流動させて冷却する構造で、LEDチップで過熱された冷却液体が流動される流路と、冷却された冷却液体が流動される流路が分離されている光源装置が知られている(例えば、特許文献2参照)。
また、LEDチップが基板に固着され、密閉された容器内の冷却液体で冷却される構造であって、冷却液体に接触する基板または容器にフィンが設けられている光源装置も知られている(例えば、特許文献3参照)。
あるいは、放熱板及びLEDチップが搭載される基板に冷却液体の循環路を設け、冷却液体が循環路及びカバー内に封入され、循環路及びカバー内において自然対流する構造が知られている(例えば、特許文献4参照)。
特開平11−163410号公報(第3頁、第4頁、第1図〜第4図) 特開2001−36148号広報(第1頁、第9頁〜第10頁、第1図、第32図) 特開2001−36153号広報(第3頁、第1図、第3図) 特開昭61−168372号広報(第3頁、第1図)
このような特許文献1では、密閉された液体で冷却する構造であるため、液体は自然対流で容器内を循環されるだけのため、冷却スピードが遅いという課題がある。また、ヒートパイプの原理で冷却する構造では、液体内に気泡が発生し易く、気泡は冷却効果を減ずるという課題がある。
また、冷却気体を流動させLEDチップを直接冷却する構造では、気体は金属に比べ熱伝導率が低いため充分な冷却効果が得られないという課題もある。
特許文献2では、冷却液体を容器外から流入させ、容器内を流動して容器外に流出させているので、冷却液体を自然対流によって冷却するよりも冷却効果はあるが、冷却液体の流入流路と流出流路とが、LEDチップに対して制御されていないので、冷却液体の循環性が悪く冷却効率が低いという課題がある。
また、冷却液体の循環性が悪いために、プロジェクタ等に使用される高輝度、高出力の発光素子を冷却するためには、冷却液体の流量を多くしなければならず、このことは、冷却機構の大型化や複雑化が要求され、其の結果、光源装置がコスト高になるという課題がある。
また、冷却液体の流量を増加させると容器内の圧力を増すことになり、LEDチップ自身やLEDチップを接続する電極部(ワイヤーボンディング部)に応力が発生し、光源装置の信頼性を減ずるというような課題もある。
また、特許文献3では、LEDチップが固着される基板、または容器に放熱フィンが設けられているが、冷却液体は密閉されており、自然対流されるだけであるので、充分な冷却性能が得られないというような課題がある。また、このような構造では、構造的強度からLEDチップと放熱フィンとの距離を大きくしなければならないので、充分な冷却性能が得られないという課題もある。
また、特許文献4では、放熱板及びLEDチップが搭載される基板に冷却液体の循環路を設け、冷却液体が循環路及びカバー内に封入され、循環路及びカバー内において自然対流されていることと、冷却液体の流路が放熱板内に限られているために冷却効率が悪いという課題がある。
本発明の目的は、発光素子を直接、間接的に冷却流体を強制流動させることによって、
冷却効果を高めた光源装置と、この光源装置が搭載されたプロジェクタを提供することにある。
本発明の光源装置は、発光素子が冷却流体によって冷却される光源装置であって、前記発光素子が固着される発光素子基台と、前記発光素子基台に前記冷却流体の流入路と、流出路と、が備えられ、前記流入路と前記流出路とが、前記発光素子が固着される前記発光素子基台の面に対して略平行に設けられていることを特徴とする。
ここで、発光素子としては、発光ダイオード(LED)を採用することができ、平面形状は、略正方形または円形に形成されている。冷却流体としては、窒素ガス(N)、アルゴンガス(Ar)などの気体や、純水、フッ素系炭化水素あるいはシリコンオイル等の液体を採用することができる。
また、発光素子基台、冷却構造体の材料としては、冷却流体よりも熱伝導率が高いアルミニウム合金や銅系の金属を採用することができる。
この発明によれば、発光素子は冷却流体によって直接または間接的に冷却することができるが、冷却流体の流入路と流出路とが、発光素子の発光素子基台に固着されている面に対して略平行に設けられているので、光源装置内で冷却流体の流路が制御されているため、冷却液体が円滑に流動され冷却効果を高めることができる。
また、冷却液体が流動されることによって、発光素子を直接、または間接的に効率よく冷却することができる。例えば、発光素子が発生する熱は、冷却流体よりも熱伝導率が高い金属で形成された発光素子基台に早く伝導する。この際、発光素子基台も冷却されるので、冷却効果を高めることができる。このことにより、同じ冷却効果を得るためには、冷却流体の流量を減ずることができるので、光源装置の冷却構造を簡素化でき、また小型化することができる。
このように、冷却流体の流量を減ずることができることから、冷却流体の圧力を減ずることができる。このことにより、例えば、発光素子自身や発光素子と外部制御回路を電気的に接続する接続部にかかる応力を減ずることができるので、長期間にわたって光源装置の性能を維持することができる。
本発明では、前記発光素子が前記冷却流体に浸漬され、前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に2対備えられ、且つ、それぞれが略平行に配置され、前記流入路と前記流出路とが隣り合わせに備えられ、前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることが好ましい。
この発明によれば、冷却流体の流入路と流出路が、発光素子を挟んで対向して設けられているので、冷却流体は発光素子を冷却しながら円滑に流動排出される。また、流入路と流出路とは、隣り合って配置されており、冷却流体は、発光素子の周囲を流動して流入路と隣り合う流出路から排出されるので、光源装置内で冷却流体の循環が円滑に行われる。
さらに、流出路は、流入路よりも発光素子から離れた距離に配置されているので、例えば、発光素子基台の冷却流体が流動される部分の平面を視認した形状が円形である場合、流出路の流出口内側の交錯部は,他の交錯部よりも鋭角な角部が形成されることになるので、冷却流体は、この角部によって、そのまま流出路から排出される流れと、発光素子の周囲に沿って回転流動する流れに分流される。
このように冷却流体の流動方向を制御することによって、冷却流体が発光素子に沿って円滑に流動されるので、発光素子の冷却を効率的に行うことができる。また、このことにより、発光素子の温度分布が均一になるので、熱応力が生じにくくなり、発光素子に歪が生じたり、破壊されたり摺ることを防止でき、熱応力による発光素子の劣化を防止することができる。
また、冷却流体は、例えば、外部のポンプ等で流動されるが、冷却流体が円滑に流動されることで、同じ冷却効果を得るためには少ない流量でよく、そのことでポンプを含め光源装置を小型化することができる。
本発明では、前記発光素子が前記冷却流体に浸漬され、前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に1対備えられ、且つ、それぞれが平行に配置され、前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることが望ましい。
この発明によれば、前述の流入路と流出路とが2対設けられた構造に比べ、光源装置の冷却効果はわずかに減ずるものの、流入路と流出路が1対であるため、構造を簡素化し、小型化することができる。
本発明では、前記発光素子が前記冷却流体に浸漬され、前記流入路と、前記流出路が、それぞれ対向して備えられ、前記発光素子が、対向する前記流入路を結んだ直線と、対向する前記流出路を結んだ直線と、が交錯する位置に備えられていることが好ましい。
この発明によれば、冷却流体は、発光素子に向かって流入され、発光素子に接触した後、発光素子で直角方向に分流され、発光素子に沿って流動し流出路から排出されるので、冷却流体は、発光素子に沿って円滑に流動されるため、前述した冷却効果と均一な温度分布を得ることができる。また、前述の流出路と流入路とを平行に設ける構造よりも、流入路、流出路とを、十字状に配置することで、隣り合う流入路、流出路の距離を大きく設定することができ、製造しやすいという効果や小型化しやすいという効果もある。
本発明では、前記流入路と前記流出路とが、断面方向に複数備えられていることが考えられる。
このような発明では、前述した流入路と流出路とが、断面方向にも複数設けられているので、冷却流体は、平面方向だけに流入路、流出路が設けられている構造に比べ、流量を増加することができるので、より一層冷却効果と温度の均一化を高めることができる。
また、本発明は、前記発光素子が固着される前記発光素子基台の面に、前記冷却流体の流導路が形成されていることが好ましい。
この発明によれば、発光素子基台に冷却流体を円滑に、しかも流動方向を誘導するための、例えば、発光素子に向かって斜め放射状や円弧状の溝、または突起が形成されているので、冷却流体の流動方向を自在に制御することができる。このことにより、冷却流体の流動性、循環性が高められ、一層、冷却効果を高めることができる。
本発明は、前記発光素子基台の周縁部に前記冷却流体の流路が備えられ、この流路に流通する前記流入路と前記流出路とが備えられていることを特徴とする。
本発明によれば、発光素子から熱が伝導されている発光素子基台を冷却することができるので、前述の発光素子を直接冷却する構造に比べ、冷却効果はわずかに減ずるが、発光素子が、直接冷却流体に接触しないために、冷却流体の圧力が発光素子にかからないこと、不純物の侵入等に係わる発光素子の機械的、化学的、光学的な特性の変化や経時変化を減ずることができる。
また、例えば、流路をリング状に形成した場合、冷却流体が、発光素子基台の周囲のこの流路に沿って回転するように流動されるので、円滑に冷却流体を流動することができる。このことにより、同じ冷却効果を得るために少ない流量でよく、外部のポンプを含め光源装置を小型化することができる。
本発明では、前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に2対備えられ、且つ、それぞれが略平行に配置され、前記流入路と前記流出路とが隣り合わせに備えられ、前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることが好ましい。
この発明によれば、冷却流体の流入路と流出路が、発光素子を挟んで対向して設けられた流路に流通しているので、冷却流体は円滑に流動し、排出される。また、流入路と流出路とは、隣り合って配置されており、冷却流体は、発光素子固着される周囲の発光素子基台の流路を流動して流入路と隣り合う流出路から排出されるので、光源装置内で冷却流体の循環が円滑に行われる。
さらに、流出路は、流入路よりも発光素子から離れた距離に配置されているので、例えば、発光素子基台の冷却流体が流動される部分の平面を視認した形状が円形である場合、流出路の流出口内側の交錯部は,他の交錯部よりも鋭角な角部が形成されることになるので、冷却流体は、この角部によって、そのまま流出路から排出される流れと、発光素子基台の周囲に沿って流動する流れに分流される。
このように冷却流体の流動方向を制御することによって、発光素子が固着されるの発光素子基台が冷却されるので、発光素子に熱応力が生じにくくなり、熱応力による発光素子の破壊を防止することができる。
また、冷却流体は、例えば、外部のポンプ等で流動されるが、冷却流体が円滑に流動されることで、同じ冷却効果を得るためには少ない流量でよく、そのことでポンプを含め光源装置を小型化することができる。
本発明では、前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に1対備えられ、且つ、それぞれが平行に配置され、前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることを特徴とする光源装置。
この発明によれば、前述の流入路と流出路とが2対設けられた構造に比べ、光源装置の冷却効果はわずかに減ずるものの、流入路と流出路が1対だけ備えられているため、構造を簡素化し、小型化することができる。
また、本発明では、前記流入路と前記流出路が、それぞれ対向して備えられ、前記光源装置が、対向する前記流入路を結んだ直線と、対向する前記流出路を結んだ直線と、が交錯する位置に備えられていることが好ましい。
この発明によれば、冷却流体は、発光素子基台に向かって流入され、発光素子基台によって2方向に分流され、発光素子基台に沿って流動し流出路から排出されるので、前述した冷却効果と、均一な温度分布を得ることができる。また、前述の流出路と流入路とを平行に設ける構造よりも、流入路、流出路とを、十字状に配置することで、隣り合う流入路、流出路の距離を大きく設定することができ、製造しやすいという効果や小型化しやすいという効果もある。
また、この発明では、前記流入路と前記流出路とが、断面方向に複数備えられていることが望ましい。
このような発明では、前述した流入路と流出路とが、断面方向にも複数設けられているので、冷却流体は、平面方向だけに流入路、流出路が設けられている構造に比べ、流量を増加することができるので、より一層冷却効果と温度の均一化を高めることができる。
本発明のプロジェクタは前述した光源装置が搭載されたことを特徴とする。
このようなプロジェクタは、光源装置の冷却効率が高いので輝度を高めることができ、また、構造も簡素であるため、高輝度でありながら小型化することができる。また、発光素子の温度の均一化ができるため、熱応力による発光素子の劣化を防止することができ、長期間にわたって良好な性能を維持することができる。
以下、本発明の実施形態を図面に基づいて説明する。
図1〜図12は本発明の光源装置の実施例を示し、図13は、本発明のプロジェクタの実施例が示されている。
図1〜図3は、実施例1の光源装置10が示されている。
図1は、実施例1の光源装置を示す平面図で、図2に記載のレンズキャップ200及び固定リング300を省略している。図2は実施例1の断面図が示されている。図3は、実施例1の発光素子基台120の詳細を示す平面図である。図1、図2において、光源装置10は、発光素子基台120と、発光素子基台120に固着される発光素子としてのLEDチップ100と、固定リング300とレンズキャップ200とから構成されている。
LEDチップ100は、平面形状が略正方形をしており、上面にp電極101、下面にn電極102が備えられおり、n電極102が発光素子基台120に形成された凹部の底部122の略中央部に銀ペーストなどの導電性材料で固着され、p電極は、ワイヤー110でリード基板500に接続されている。
発光素子基台120は、外形が直方体で、中央に、開口部が広く、底部が狭い凹部が形成されている。発光素子基台120は、外縁から凹部に貫通する冷却流体400が流通する流入路124,126と、流出路125,127が穿設されている。流入路124,126、流出路125,127は、一部が後述するLEDチップ100の上面を望んだ断面高さに設けられ、平面位置は、LEDチップ100の一辺に沿った方向に向かって形成されている。
図2において、流入路124,126、流出路125,127は、それぞれ平行に形成され、流出路125,127は、長手方向からのLEDチップ100に対して直角方向距離Hが、流入路124,126の長手方向からのLEDチップ100に対しての直角方向距離hよりも離れた位置に設けられている。流出路125,127が、凹部の斜面部121との交錯部125Aと127Aは、平面を視認して他方の交錯部125B,127Bよりも鋭角に形成されている。
図3において、発光素子基台120の底部122は、LEDチップ100に向かって、風車状の冷却流体400の流導路128が形成されている。流導路128は、底部122に溝状に形成されるか、または突起状に形成される。この流導路128は、風車状でも、直線放射状でもよく、底部122の外周近傍から、LEDチップ100の周囲近傍までの範囲に形成されるが、LEDチップ100の周囲は、冷却流体100が、LEDチップ100に沿って回転するように流動できる範囲の空間を備えることが好ましい。
発光素子基台120は、熱伝導率が高いアルミニウム合金や銅合金などが使用できるが、以降、比重も小さく軽量化ができるアルミニウム合金を使用した場合を実施例として説明する。この発光素子基台120は、斜面部121及び底部122の表面にLEDチップ100から射出される可視光を効率良く反射するために、鏡面仕上げ、細かい凹凸仕上げ(乱反射仕上げ)や光の反射層を形成するめっきなどが施されている。また、図示しないが、発光素子基台120は、外部制御回路に接続されている。
発光素子基台120の上面には、リード基板500がインサートされた固定リング300が、密着固定されている。
リード基板500は、金属で形成された短冊状の薄板であり、流入路126と流出路127の中間に配置されており、その両端は、固定リング300から延出されており、内側の一端は、LEDチップ100のp電極101とワイヤー110で接続され、多端は、図示しないが、外部制御回路に接続されている。
固定リング300の上面123には、レンズキャップ200が密着固定され、これらレンズキャップ200と、固定リング300と、発光素子基台120の凹部とで冷却流体400が流動される空間が形成される。
LEDチップ100は、外部制御回路からの発光信号により発光される。
次に、図1、図3により冷却流体400の流動について説明する。流入路124,126は、図示しないが、光源装置10の外部に備えられたポンプに接続され、流出路125,127は、冷却流体が貯蔵されるタンクに接続され、光源装置10の外部の流通過程で冷却流体400は冷却され、流入路124,126から、光源装置10内に流入される。
流入路124,126から流入された冷却流体400は、発光素子基台120の凹部内を矢印A方向に流動し、流入路126と流出路127、流入路124と流出路125とは、平面方向に位置がずれているために、流出路125,127と斜面部121との交錯部125A,127Aで分流され、一部が流出路125,127から外部に排出され、一部が矢印B方向に流動し、流出路125,127から排出され、前述の循環が行われる。
図3で説明したように、流導路128が形成されている場合は、前述した(図1、参照)矢印A及びBのように流動するとともに、矢印C方向にLEDチップ100に向かって流動され、LEDチップ100の周囲を回る矢印Dのような流動が行われる。
従って、本実施例1によれば、冷却流体400の流入路124と流出路125、流入路126と流出路127とが、発光素子を挟んで対向して設けられているが、LEDチップ100からの距離が流出路125,127の方が外側にあるため、流出路125,127の角部125A,127Aで分流されて、冷却流体400がLEDチップの周囲を回転するように流動されるので、冷却流体は発光素子を冷却しながら円滑に流動排出される。
また、流入路125と流出路126、流入路124と流出路127とは、隣り合って配置されており、冷却流体400は、LEDチップ100の周囲を流動して冷却し、流入路と隣り合う流出路から排出されるので、光源装置10内で冷却流体の循環が円滑に行われる。
このように冷却流体の流動方向を制御することによって、冷却流体が発光素子に沿って円滑に流動されるので、発光素子の冷却を効率的に行うことができる。また、このことにより、発光素子の温度分布が均一になるので、熱応力が生じにくくなり、熱応力による発光素子の劣化を防止することができる。
また、冷却流体は、例えば、外部のポンプ等で流動されるが、冷却流体が円滑に流動されることで、同じ冷却効果を得るためには少ない流量でよく、そのことでポンプの動力を小さくすることがで、ポンプを含め光源装置10を小型化することができる。
次に実施例2について、図4を用いて説明する。
図4は、流入路と流出路が1対備えられた光源装置10を示す平面図で、この流入路、流出路以外は、断面関係を含めて実施例1と同じであるので、相違個所のみについて説明する。図4において、発光素子基台120には、流入路126と流出路127が設けられている。発光素子基台120は、平面外形が略正方形で、中央に開口部が広く底部が狭い凹部が形成されている。発光素子基台120は、外縁から凹部に貫通する冷却流体400が流通する流入路126と、流出路127が穿設され、流入路126、流出路127は、一部が後述するLEDチップ100の上面を望んだ断面高さに設けられ、平面位置は、LEDチップ100の一辺に沿った方向に向かって形成されている。
流入路126、流出路127は、それぞれ平行に形成され、流出路127は、長手方向からのLEDチップ100に対して直角方向距離Hが、流入路126の長手方向からのLEDチップ100に対しての直角方向距離hよりも離れた位置に設けられている。流出路127が、凹部の斜面部121との交錯部127Aは、平面を視認して他方の交錯部127Bよりも鋭角に形成されている。
また、底部122の表面には、実施例1で記載された流導路128が形成されている(図3、参照)
冷却流体400は、流入路126から流入され、矢印A方向に流動され、角部127Aで分流され、流出路127が排出される流路と、矢印B方向にLEDチップ100に沿って回転するように流動する流路ができる。また、流導路128に沿って流動する矢印C方向及び矢印D方向の流路もできる(図3、参照)
従って、本実施例2によれば、実施例1で記載されたの流入路と流出路とが2対設けられた構造に比べ、光源装置10の冷却効果はわずかに減ずるものの、ほぼ同等な効果を得ることができる。
また、流入路126と流出路127が各1つだけ設けられるため、光源装置10の構造を簡素化し、小型化することができる。
次に、実施例3について、図5を用いて説明する。実施例3は、実施例1の技術思想を基礎にして、流入路、流出路をLEDチップ100に対向させた構造である。断面関係は、図2と同じであるので省略する。
図5は、本発明の実施例3を示す平面図である。図5において、LEDチップ100は、平面形状が略正方形をしており、上面にp電極101、下面にn電極102が備えられおり、n電極102が発光素子基台120に形成された凹部の底部122の略中央部に銀ペーストなどの導電性材料で固着され、p電極は、ワイヤー110でリード基板500に接続されている。
発光素子基台120は、平面外形が略正方形で、中央に開口部が広く底部が狭い凹部が形成されている。発光素子基台120は、外縁から凹部に貫通する冷却流体400が流通する流入路124,126と、流出路125,127が穿設されている。流入路124,126、流出路125,127は、LEDチップ100の上面を望んだ断面高さに設けられ、平面位置は、LEDチップ100の角部に向かって、流入路124と126、流出路125と127とが相互に対向するように形成されている。
底部122の表面には、実施例1と同様に、溝状や突起状の冷却流体400の流導路が設けられることが好ましいが、この際、この流導路は、図中矢印E方向に沿って形成される。
本実施例においても、光源装置10の外部には、冷却流体400を貯蔵するタンクや流動するためのポンプが備えられているが、実施例1に記載されている構成と同じため、説明は省略する。
流入路124,126から流入された冷却流体400は、LEDチップ100の角部に向かって流動し、この角部で2方向に分流され(図中、矢印E)、LEDチップ100の辺に沿って流動され、流出路125,127に排出される。
従って、本実施例3によれば、冷却流体400は、LEDチップ100の角部に向かって流入され、この角部で2方向に分流され、LEDチップ100の辺に沿って流動し流出路から排出されるので、前述した実施例1と同様な冷却効果と、均一な温度分布を得ることができる。また、実施例1の流出路124,126と流入路125,127とを平行に設ける構造よりも、流入路124,126、流出路125,127とを、十字状に配置することで、隣り合う流入路124と流出路125,127、及び流入路124と流出路125,127との距離を大きく設定することができ、製造しやすいという効果や小型化しやすいという効果もある。
なお、図示しないが、実施例3の構成から、流出路と流入路を1対だけ備えた構造も考えられる。この場合、例えば、流入路126と対向した位置に流出路127を設けることができる(図5に示した、流入路124の位置に流出路127を設ける)。
このような構造では、実施例3で示した流入路と流出路が2対設けられた場合に比べて、光源装置10の冷却効果はやや減ずるものの、ほぼ同等な効果を得ることができる。
また、流入路126と流出路127が1つだけ設けられるため、光源装置10の構造を簡素化し、小型化することができる。
次に、実施例4について、図6を用いて説明する。実施例4は、実施例1ないし実施例3で示した流入路124,126と流出路125,127とが、断面方向に複数備えられた光源装置10を示す。流入路及び流出路の断面方向のレイアウト以外は、実施例1と同じため説明は省略する。図6において、発光素子基台120に設けられた流入路124,126の上部には流入路131,133が設けられている。また、流出路125,127の上部にも流出路132,134が設けられている。
ここで、流入路131,133、流出路132,134とは、平面位置は実施例1(図1、参照)とほぼ同じ位置で、冷却流体400の流入流出方向も同じとされているが、流入路131,133、流出路132,134とを、流入路124,126、流出路125,127に対して平面方向に90度回転した位置に配置してもよく、実施例3(図5、参照)に示す流入路124,126と流出路125,127とに対して、流入路131,133、流出路132,134とを平面方向に90度回転して配置してもよい。
また、図3で示したような、冷却流体400の流導路128を設けることもできる。
さらには、前述したように、流入路131,133を下段にある流入路124,126と、流出路132,134と下段にある流出路125,127とが平面方向で重なるように配置される場合には、それぞれ流入と流出を入換えることができる。すなわち、流入路131,133を流出路に、流出路132,134を流入路にすることができる。
従って、本実施例4によれば、流入路124,126と流出路125,127に加え、流入路131,133、流出路132,134が、断面方向に段差を設けて備えられているので、冷却流体400は、1平面方向だけに流入路、流出路が設けられている構造に比べ、流量を増加することができるので、より一層冷却効果と温度の均一化を高めることができる。
また、実施例2と、実施例3の変形例のように、流入路、流出路が1対設けられている場合においても、上段の流入路、流出路と、下段の流入路、流出路との平面方向角度を任意にずらすことができる。
なお、実施例1〜実施例4では、発光素子基台120は、外形が直方体とされているが、外周が円形の円柱状の形状とすることもできる。
次に、実施例5について、図7、図8を用いて説明する。
図7は、本発明の実施例5の光源装置10を示す平面図で固定リング300、レンズキャップ200を省略している。図8は、実施例5の光源装置10を示す断面図である。図7、図8において、LEDチップ100は、平面形状が略正方形をしており、上面にp電極101、n電極102が備えられおり、下面が発光素子基台120に形成された凹部の底部122の略中央部に接着材等で固着されている。p電極101、n電極102は、ワイヤー110でリード基板501、502にそれぞれ接続されている。
発光素子基台120は、外形が円柱状をしており、中央に開口部が広く底部が狭い凹部が形成され、外縁部には、リング状の冷却流体400の流路129が形成されている。流路129は、底部が発光素子基台120の底部122の面より深く形成され、上部が開口されている。この流路129と発光素子基台120とを外周部から貫通される流入路124,126と流出路125,127が穿設されている。
流入路124,126、流出路125,127は、それぞれ平行に形成され、流出路125,127は、長手方向からのLEDチップ100に対して直角方向距離Hが、流入路124,126の長手方向からのLEDチップ100に対しての直角方向距離hよりも離れた位置に設けられている。流出路125,127が、流路129と交錯した交錯部125Aと127Aは、平面を視認して他方の交錯部125B,127Bよりも鋭角に形成されている。
流路129の上部開口部は、固定リング300によって発光素子基台120に接着等の手段で固着され、密閉封止される。
図8において、固定リング300は、断面方向に2段の段部を設けたリング状に形成され、外周は、発光素子基台120の外周と略同じ形状とされ、合成樹脂によって成形されている。この固定リング300には、リード基板501,502がインサート成形されて密着固定されており、その両端が露出され、リード基板501の内側端部はLEDチップ100のp電極101とワイヤー110で接続され、外側端部は、図示しない外部制御回路に接続されている。また、リード基板502の内側端部はLEDチップ100のn電極102とワイヤー101で接続され、外側端部は、図示しない外部制御回路に接続されている。
固定リング300の上面には、レンズキャップ200が密着固定されており、これら発光素子基台120と、固定リング300と、レンズキャップ200とでLEDチップ100が収納される空間が形成されている。
LEDチップ100は、外部制御回路からの発光信号を得て発光される。
発光素子基台120は、熱伝導率が高いアルミニウム合金や銅合金などが使用できるが、比重も小さく軽量化ができるアルミニウム合金が採用されることが好ましい。この発光素子基台120は、斜面部121及び底部122の表面にLEDチップ100から射出される可視光を効率良く反射するために、鏡面仕上げ、細かい凹凸仕上げ(乱反射仕上げ)や光の反射層を形成するめっきなどが施されている。
また、冷却流体400は、図示しないが、光源装置10の外部に備えられたポンプに接続され、流出路125,127は、冷却流体が貯蔵されるタンクに接続され、光源装置10の外部の流通過程で冷却流体400は冷却され、流入路124,126から、光源装置10内に流入される。
流入路124,126から流入された冷却流体400は、図7で示す矢印のように流路129の壁に沿って流動し、流出路125,127の角部125A,127Aで排出方向と流路129に沿う方向とに分流される。このようにして、冷却流体400は流路内を円滑に流動されるのである。
従って、本実施例5によれば、前述の実施例1〜実施例4に記載のLEDチップ100を直接冷却流体400で冷却する構造に比べ、わずかに冷却効率は減ずるが、液体または気体等の冷却流体400よりも熱伝導率が高い発光素子基台120に伝達された熱を冷却流体を強制的に流動させることで、冷却効果を充分得ることができる。
また、流出路125,127は、流入路124,126よりもLEDチップ100に対して外側にあるため、流路129との交錯部125A、127Aは、他方の交錯部125B、127Bよりも鋭角になるため、この角部125A,127Aで冷却流体が分流され、流路129内を壁に沿って円滑に流動されるため、前述のポンプの動力を小さくすることができ、また、流路129の幅を小さくできるので、ポンプを含め光源装置を小型化することができる。
さらには、冷却流体400がLEDチップ100に直接接触しないので、冷却流体400による、LEDチップの磨耗や、不純物の侵入によるLEDチップ100の特性の変化、冷却流体内に生ずることが考えられる気泡等の影響を減ずることができ、良好な性能を長期間にわたって維持することができる。
なお、図示しないが、実施例5では流入路と流出路が2対備えられていたが、流入路と流出路を1対備えた光源装置も考えられる。すなわち、図7で示した流入路126と流出路127を削除し、流入路124と流出路125とで構成された光源装置10である。この際、流入路126と流出路127だけの構成にすることもでき、効果も同じである。
この場合、流入路と流出路を2対備える構造に対して、冷却効率は、若干減ずるが、構造を簡素にでき、小型化することができるという効果がある。
次に、実施例6について、図9を用いて説明する。実施例6は、実施例5に比べ、LEDチップ100に対して、流入路、流出路の方向を変えた構造であり、他の部分は実施例5と同じであるため説明を省略する。
図9は、実施例6の光源装置10を示す平面図であり、固定リング300,レンズキャップ200を省略してある。
図9において、流入路124と126、流出路125と127は、LEDチップ100を挟んで、それぞれが相互に対向するように配置されている。流入路124,126と流出路125,127とは、互いに90度ずれた位置に形成される。すなわち、流入路と流出路の延長線が直交する関係にある。
冷却流体400は、流入路124,126から流路129に流入した場所で、図中矢印A方向とB方向に分流され、90度回転した位置にある流出路125,127から排出される。流出路125,127の流路129との交錯部は面取りが施されているので、流路129の壁に沿って流動してきた冷却流体400が、流出路125,127に流出し易い形状とされている。
従って、本実施例6では、流入路124,126から流入した冷却流体は、分流され流路129の壁に沿って流動し、流出路125,127から排出されるので、冷却流体400は、流路内を円滑に流動されるので、実施例5と同様な効果を得ることができる。
また、流入路124,126と流出路125,127とは、発光素子基台の外縁部側面及び流路129に対して直角に形成され、流入路124,126、流出路125,127との距離が離れているので、加工し易いためコストを低減することもできる。
なお、前述した実施例6では、流入路と流出路とが2対備えられているが、図示しないが、流入路と流出路とが1対で構成することもできる。すなわち、図9に示した流出路125,127を削除し、流入路126を流出路にする構造である。従って、流入路124の延長線上に流出路126を設けたもので、冷却流体400は、流入路124から流入され、2方向に分流され、流路129内の壁に沿って約180度回転流動され、流出路から排出される。
このような構造では、流入路と流出路を2対備える構造に対して、冷却効率は若干減ずるが、構造を簡素にでき、小型化することができるという効果がある。
続いて、本発明の実施例7について、図10を用いて説明する。実施例7は、実施例5及び実施例6に記載した流入路と流出路に加え、断面方向に段差を設けて複数の流入路と流出路を備えた構造であり、他の構造は、実施例5及び実施例6と同じため省略する。
図10は、実施例7の光源装置10を示す断面図である。図10において、発光素子基台120は、外縁部側面から流路129に貫通する流入路124,126及び流出路125,127を備え、その断面方向下部に、流入路132,134及び流出路131,133が備えられている。
流入路132,134及び流出路131,133は、流入路124,126、流出路125,127の平面視で重なるように配置されている。
従って、本実施例7によれば、流入路と流出路とが4対で構成されているので、実施例5及び実施例6の効果に加え、冷却流体400の流量を増やすことができるので、冷却効果を一層高めることができる。
なお、本実施例7は、前述の実施例5及び実施例6の変形例にも応用できることは勿論、図示しないが、上下の流入路と流出路の流路を変えることができる。例えば、実施例5において(図7、参照)、流入路124,126と流出路125,127に対して、下部に備えた流入路132,133を冷却流体400の流出路とし、流出路131,133を流入路とすることができる。
このことによって、流路129内では、上層と下層に異なる冷却流体400の流層ができることになる。従って、この流層の界面では、冷却流体400が撹拌された状態になるため、流動性はやや減ずるが、温度の均一性を高めることができる。
また、上部の流入路、流出路と、下部に備えらた流入路、流出路とを平面方向に45度ないし90度位相をずらして形成することもできる。
このような組み合わせは、光源装置10のサイズや後述するこの光源装置10を搭載したプロジェクタの性能等から自在に選択して組み合わせることができる。
続いて、本発明の実施例8について、図11を用いて説明する。
図11は、実施例8を示す断面図である。図11において、発光素子基台120は、実施例5及び実施例6に示した流入路124,126、流出路125,127に加え、発光素子基台120の凹部の低部122の下方に、発光素子基台120の外周から横断して貫通する冷却流体400の流路135が穿設されている。
この流路135の大きさは、特に限定されるものではないが、LEDチップ100の平面サイズより大きく、好ましくは、発光素子基台120の低部122の平面サイズと同等にされる。
なお、実施例8は、実施例1ないし実施例7にも応用することができ、発熱源であるLEDチップ100の下部近傍においてLEDチップ100を間接的に冷却することができるので、実施例1ないし実施例7に記載した効果に加え、より一層の冷却効果が得られる。
次に、本発明の実施例9について、図12を用いて説明する。実施例9は、前述した実施例5ないし実施例8の流路129内に冷却フィン136を設けた構造である。
図12は、実施例9を示す断面図である。図12において、発光素子基台120に設けられたリング状の流路129のLEDチップ100に近い壁部に断面が凸凹の冷却フィン136が備えられている。この冷却フィン136は、流路129の底部に設けられてもよい。また、発光素子基台120の外周部に冷却フィンを設けることもできる。
従って、流路129内の壁部に冷却フィンを備え、冷却流体400を流動させることで、放熱効果が高まり、実施例5ないし実施例8に記載された効果に加え、より一層冷却効果を得ることができる。
次に、前述した実施例1ないし実施例9に記載の光源装置10が搭載されたプロジェクタについて図13を用いて説明する。
図13は、本発明のプロジェクタ1000の構成を示す概略構成図である。図13において、本発明に係るプロジェクタ1000は、赤色光(R),緑色光(G),青色光(B)をそれぞれ射出する3個の光源装置10R,10G,10Bのそれぞれに対向するように配置されたライトバルブ800R,800G,800Bと、これら3個のライトバルブ800R,800G,800Bから射出された各変調光を合成して射出するダイクロイックプリズム700(色合成光学系)、このダイクロイックプリズム700から出射された合成光を拡大投写する投写レンズ600(投写光学系)とを有している。
なお、光源装置10R,10G,10Bは、前述した本発明の実施例1〜実施例9に記載の冷却手段を備えている。図示しないが、これら光源装置10R,10G,10Bは、外部に冷却流体400を貯蔵するタンクと、冷却流体を流動するポンプを備えている。
従って、本発明を適用したプロジェクタ1000では、光源装置10R,10G,10Bから射出された色光R,G,Bはそれぞれ対応するライトバルブ800R,800G,800Bに入射した後、各ライトバルブ800R,800G,800Bで光変調された後、ダイクロイックプリズム700に向けて射出される。そして、ライトバルブ800R,800G,800Bにより各々変調された3原色に対応する光成分R,G,Bは、ダイクロイックプリズム700により合成された後、投射レンズ600を介してスクリーン900にカラー画像として拡大投写される。
従って、本発明の実施例10によれば、光源装置10は、LEDチップ100の冷却効率が高いので、輝度を高めることができ、また、構造も簡素であるため、この光源装置10が搭載されたプロジェクタ1000も、高輝度で小型化でき、また長期間にわたって良好な性能を維持することができる。
なお、本発明は前述の実施例に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、実施例1〜実施例9では、LEDチップ100は、平面形状が略正方形としているが、平面形状が円形でも同じ効果が得られる。また、実施例1〜実施例5では、LEDチップは、p電極101は上面側に、n電極102は下面側に設けられ、実施例5〜実施例9では、上面側にp電極101とn電極102とが並んで設けられているが、LEDチップ100は、どちらの構造を採用しても得られる効果は変わらない。
また、本発明では、LEDチップ100の下面にp電極101とn電極102が備えられた場合も、発光素子基台120のLEDチップ100の固着面122に絶縁層を形成し、絶縁層の上面にp電極101とn電極102に対応した電極を形成するような構造にも応用することができる。
また、実施例1〜実施例9では、LEDチップ100は、光源装置10内に1個用いているが、複数のLEDチップ100を設置することができる。
さらに、本発明のプロジェクタ1000は、実施例10では、各色光に対して1個の光源装置10R,10G,10Bを設置しているが、各色光に対して複数の光源装置を設置しても良い。
従って、本発明によれば、LEDチップ100を直接、または間接的に冷却流体400を強制流動させることによって冷却効果を高めた光源装置10と、この光源装置10が搭載されて、高輝度で良好な性能を長期間にわたって維持するプロジェクタ1000を提供することができる。
本発明の実施例1にかかる光源装置を示す平面図。 本発明の実施例1にかかる光源装置を示す断面図。 本発明の実施例1にかかる光源装置を示す要部平面図。 本発明の実施例2にかかる光源装置を示す平面図。 本発明の実施例3にかかる光源装置を示す平面図。 本発明の実施例4にかかる光源装置を示す断面図。 本発明の実施例5にかかる光源装置を示す平面図。 本発明の実施例5にかかる光源装置を示す断面図。 本発明の実施例6にかかる光源装置を示す平面図。 本発明の実施例7にかかる光源装置を示す断面図。 本発明の実施例8にかかる光源装置を示す断面図。 本発明の実施例9にかかる光源装置を示す断面図。 本発明の実施例10にかかるプロジェクタを示す構成図。
符号の説明
10…光源装置、100…LEDチップ、120…発光素子基台、124,126,132,134…流入路、125,127,131,133…流出路、400…冷却流体、1000…プロジェクタ。



Claims (12)

  1. 発光素子が冷却流体によって冷却される光源装置であって、
    前記発光素子が固着される発光素子基台と、
    前記発光素子基台に前記冷却流体の流入路と、流出路と、が備えられ、
    前記流入路と前記流出路とが、前記発光素子が固着される前記発光素子基台の面に対して、略平行に設けられていることを特徴とする光源装置。
  2. 請求項1に記載の光源装置において、
    前記発光素子が前記冷却流体に浸漬され、
    前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に2対備えられ、且つ、それぞれが略平行に配置され、
    前記流入路と前記流出路とが隣り合わせに備えられ、
    前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることを特徴とする光源装置。
  3. 請求項1に記載の光源装置において、
    前記発光素子が前記冷却流体に浸漬され
    前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に1対備えられ、且つ、それぞれが平行に配置され、
    前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることを特徴とする光源装置。
  4. 請求項1に記載の光源装置において、
    前記発光素子が前記冷却流体に浸漬され
    前記流入路と前記流出路が、それぞれ対向して備えられ、
    前記発光素子が、対向する前記流入路を結んだ直線と、対向する前記流出路を結んだ直線と、が交錯する位置に備えられていることを特徴とする光源装置。
  5. 請求項1ないし請求項4のいずれかに記載の光源装置において、
    前記流入路と前記流出路とが、断面方向に複数備えられていることを特徴とする光源装置。
  6. 請求項1ないし請求項5のいずれかに記載の光源装置において、
    前記発光素子が固着される前記発光素子基台の面に、前記冷却流体の流導路が形成されていることを特徴とする光源装置。
  7. 請求項1に記載の光源装置において、
    前記発光素子基台の周縁部に前記冷却流体の流路が備えられ、
    この流路に流通する前記流入路と前記流出路とが備えられていることを特徴とする光源装置。
  8. 請求項1または請求項7に記載の光源装置において、
    前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に2対備えられ、且つ、それぞれが略平行に配置され、
    前記流入路と前記流出路とが隣り合わせに備えられ、
    前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることを特徴とする光源装置。
  9. 請求項1または請求項7に記載の光源装置において、
    前記流入路と前記流出路とが、平面方向に前記発光素子を挟んで対向する位置に1対備えられ、且つ、それぞれが平行に配置され、
    前記発光素子に対して、前記流出路からの直角方向距離が、前記流入路からの直角方向距離よりも離れた位置に備えられていることを特徴とする光源装置。
  10. 請求項1または請求項7に記載の光源装置において、
    前記流入路と前記流出路が、それぞれ対向して備えられ、
    前記光源装置が、対向する前記流入路を結んだ直線と、対向する前記流出路を結んだ直線と、が交錯する位置に備えられていることを特徴とする光源装置。
  11. 請求項1、請求項7ないし請求項9のいずれかに記載の光源装置において、
    前記流入路と前記流出路とが、断面方向に複数備えられていることを特徴とする光源装置。
  12. 請求項1ないし請求項11のいずれかに記載の光源装置が搭載されたことを特徴とするプロジェクタ。
JP2003304585A 2003-08-28 2003-08-28 光源装置 Expired - Fee Related JP4289088B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304585A JP4289088B2 (ja) 2003-08-28 2003-08-28 光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304585A JP4289088B2 (ja) 2003-08-28 2003-08-28 光源装置

Publications (2)

Publication Number Publication Date
JP2005079150A true JP2005079150A (ja) 2005-03-24
JP4289088B2 JP4289088B2 (ja) 2009-07-01

Family

ID=34408232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304585A Expired - Fee Related JP4289088B2 (ja) 2003-08-28 2003-08-28 光源装置

Country Status (1)

Country Link
JP (1) JP4289088B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126074A1 (ja) * 2006-04-28 2007-11-08 Shimane Prefectural Government 半導体発光モジュール、装置、およびその製造方法
US7304418B2 (en) * 2003-10-24 2007-12-04 Seiko Epson Corporation Light source apparatus with light-emitting chip which generates light and heat
JP2010087224A (ja) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Led表示装置およびled表示装置用隔壁の製造方法
KR101010866B1 (ko) * 2010-02-26 2011-01-25 유버 주식회사 Uv led 모듈 냉각장치
KR101510456B1 (ko) 2014-12-16 2015-04-10 정태규 방열 구조를 갖는 발광 다이오드 모듈 장치
JP2017199882A (ja) * 2016-04-28 2017-11-02 岩崎電気株式会社 光源ユニット

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7304418B2 (en) * 2003-10-24 2007-12-04 Seiko Epson Corporation Light source apparatus with light-emitting chip which generates light and heat
WO2007126074A1 (ja) * 2006-04-28 2007-11-08 Shimane Prefectural Government 半導体発光モジュール、装置、およびその製造方法
JP2010087224A (ja) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Led表示装置およびled表示装置用隔壁の製造方法
KR101010866B1 (ko) * 2010-02-26 2011-01-25 유버 주식회사 Uv led 모듈 냉각장치
KR101510456B1 (ko) 2014-12-16 2015-04-10 정태규 방열 구조를 갖는 발광 다이오드 모듈 장치
JP2017199882A (ja) * 2016-04-28 2017-11-02 岩崎電気株式会社 光源ユニット

Also Published As

Publication number Publication date
JP4289088B2 (ja) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4274178B2 (ja) プロジェクタ
JP4983347B2 (ja) 発光装置及び光源装置
KR100776853B1 (ko) 광원 장치 및 프로젝터
JP2005079149A (ja) 光源装置及びプロジェクタ
JP2005085809A (ja) 光源装置、及びプロジェクタ
JP2007103748A (ja) 熱交換器、液冷システム、光源装置、プロジェクタ、電子デバイスユニット、電子機器
JP2006287180A (ja) マイクロチャンネル構造体及びその製造方法、光源装置、並びにプロジェクタ
JP2007133300A (ja) 半導体光源装置及びそれを利用した投射型映像表示装置
JP4654664B2 (ja) 光源装置および投射型表示装置
JP4289088B2 (ja) 光源装置
JP4586396B2 (ja) 光源装置及びこれを用いたプロジェクタ
JP2009026846A (ja) Ledパッケージおよび表示装置
JP2006047914A (ja) プロジェクタ
JP2006066328A (ja) 光源モジュール及びこの光源モジュールを用いた面照明装置
JP6246414B2 (ja) 半導体レーザ光源装置、半導体レーザ光源システムおよび映像表示装置
JP4269790B2 (ja) 発光素子、照明装置、投射型表示装置
JP2007103702A (ja) 熱交換器、熱交換器の製造方法、液冷システム、光源装置、プロジェクタ、電子デバイスユニット、電子機器
JP2005100810A (ja) 光源装置及びプロジェクタ
JP2005045062A (ja) 光源装置及びそれを用いた投射型表示装置
JP6593901B2 (ja) 光源装置および投写型表示装置、半導体発光素子の冷却方法
JP4345507B2 (ja) 光源装置及びプロジェクタ
JP2005085810A (ja) 光源装置およびプロジェクタ
JP4124129B2 (ja) 光源装置及びプロジェクタ
JP2005079066A (ja) 光源装置および投射型表示装置
JP2006173392A (ja) 発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4289088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees