JP2005064229A - 電磁アクチュエータ冷却装置、ステージ装置、並びに露光装置 - Google Patents

電磁アクチュエータ冷却装置、ステージ装置、並びに露光装置 Download PDF

Info

Publication number
JP2005064229A
JP2005064229A JP2003292173A JP2003292173A JP2005064229A JP 2005064229 A JP2005064229 A JP 2005064229A JP 2003292173 A JP2003292173 A JP 2003292173A JP 2003292173 A JP2003292173 A JP 2003292173A JP 2005064229 A JP2005064229 A JP 2005064229A
Authority
JP
Japan
Prior art keywords
refrigerant
stage
electromagnetic actuator
auxiliary refrigerant
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003292173A
Other languages
English (en)
Inventor
Hidehiro Senda
英博 千田
Fukunosuke Nishimatsu
福之助 西松
Tadahiro Kominami
忠弘 小南
Makoto Kondo
近藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003292173A priority Critical patent/JP2005064229A/ja
Publication of JP2005064229A publication Critical patent/JP2005064229A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

【課題】 温度上昇した冷媒による周辺機器への熱影響を抑制できる電磁アクチュエータ冷却装置を提供する。
【解決手段】 電磁アクチュエータ冷却装置100は、発熱部102に冷媒を流して電磁アクチュエータ101を冷却する。電磁アクチュエータ冷却装置100において、発熱部102から流出した冷媒が流れる出口配管113と、出口配管113に対して補助冷媒を供給する補助冷媒供給手段127とを有する。
【選択図】 図1

Description

本発明は、発熱部に冷媒を流して電磁アクチュエータを冷却する電磁アクチュエータ冷却装置に関し、特に、露光装置のステージ装置に用いられる電磁アクチュエータ冷却装置に関する。
従来より、半導体素子、液晶表示素子等の電子デバイスの製造工程では、マスク(又はレチクル)に形成された回路パターンをレジスト(感光剤)が塗布された基板(ウエハやガラスプレートなど)上に転写する露光装置が用いられている。
露光装置としては、マスクのパターンを基板上の複数のショット領域(露光領域)に順次転写するステップ・アンド・リピート方式の露光装置(いわゆるステッパ)や、マスクと基板とを一次元方向に同期移動してマスクのパターンを基板上の各ショット領域に転写するステップ・アンド・スキャン方式の露光装置(いわゆるスキャニング・ステッパ)などがある。
露光装置において、マスクを保持するマスクステージ、あるいは基板を保持する基板ステージなどのステージ装置は、リニアモータやボイスコイルモータなどの電磁アクチュエータによって駆動される。電磁アクチュエータは、通電するとコイルの内部抵抗等により発熱することから、周辺機器への熱影響を抑えるために、冷却装置によって冷却される。電磁アクチュエータの冷却装置としては、電磁アクチュエータの発熱部に冷媒を流して発熱部の熱を回収するものが一般的である(例えば、特許文献1参照)。
特開2001−218443号公報
しかしながら、冷媒を用いた電磁アクチュエータの冷却技術では、電磁アクチュエータの発熱部から流出した冷媒が、発熱部の熱を吸収して温度上昇しており、その熱の影響が周辺機器に及ぶおそれがある。
例えば、冷媒用の配管は複数の配管が互いに近づけて配されることが多い。そのため、発熱部に流入する冷媒が流れる入口配管と、発熱部から流出した冷媒が流れる出口配管とが互いに近づけて配されていると、発熱部から流出した冷媒の熱が、発熱部に流入する冷媒に伝わり、冷却性能が低下するおそれがある。
また、露光装置では、ステージ装置の位置情報を光干渉計を用いて計測する場合がある。この場合、発熱部から流出した冷媒の熱が、配管を介して、ステージ装置が配置された空間の気体に伝わり、その空間内で温度差による気体の揺らぎが発生し、光干渉計の計測精度の低下をまねくおそれがある。
本発明は、上述した事情に鑑みてなされたものであり、温度上昇した冷媒による周辺機器への熱影響を抑制できる電磁アクチュエータ冷却装置を提供することを目的とする。
また、本発明の他の目的は、安定した動作性能を有するステージ装置を提供することにある。
また、本発明の別の目的は、露光精度の向上を図ることができる露光装置を提供することにある。
上記の目的を達成するために、本発明は、実施の形態を示す図1から図9に対応付けした以下の構成を採用している。
本発明の電磁アクチュエータ冷却装置は、発熱部(102)に冷媒を流して電磁アクチュエータ(101)を冷却する電磁アクチュエータ冷却装置(100)において、前記発熱部から流出した前記冷媒が流れる出口配管(113)と、前記出口配管に対して補助冷媒を供給する補助冷媒供給手段(127)とを有することを特徴としている。
この電磁アクチュエータ冷却装置では、発熱部から流出した冷媒が流れる出口配管に対して、補助冷媒が供給されることから、補助冷媒の冷却効果により、出口配管の温度上昇が抑制され、温度上昇した冷媒による周辺機器への熱影響が抑制される。
上記の電磁アクチュエータ冷却装置において、前記補助冷媒供給手段(127)は、前記冷媒の流れと前記補助冷媒の流れとを合流させる合流部(121)を有してもよい。
この電磁アクチュエータ冷却装置では、発熱部から流出した冷媒と補助冷媒とが合流することにより、出口配管を流れる冷媒が冷却され、出口配管の温度上昇が抑制される。
また、上記の電磁アクチュエータ冷却装置において、前記出口配管(141)には、前記冷媒が流れる第1流路(152)と、該第1流路を囲む第2流路(153)とが形成され、前記補助冷媒供給手段(145)は、前記第2流路に対して前記補助冷媒を供給する補助冷媒供給部(144)を有してもよい。
この電磁アクチュエータ冷却装置では、発熱部から流出した冷媒が流れる第1流路を囲んで、補助冷媒が流れる第2流路が形成されることから、第2流路が熱的な壁となって、第1流路を流れる冷媒の熱が出口配管の外部へ伝達されることが抑制される。
また、上記の電磁アクチュエータ冷却装置において、前記発熱部(102)に前記冷媒を供給する入口配管(112)を有し、前記補助冷媒供給手段(133)は、前記入口配管を分岐して前記冷媒の一部を前記補助冷媒として前記出口配管に供給する分岐部(131)を有してもよい。
この電磁アクチュエータ冷却装置では、分岐部を介して、入口配管を流れる冷媒の一部が補助冷媒として出口配管に供給され、その補助冷媒の冷却効果により、出口配管の温度上昇が抑制される。この場合、入口配管を流れる冷媒の一部を補助冷媒として用いることから、装置構成の簡素化が図られる。
本発明のステージ装置は、物体が搭載されるステージ(5)と、該ステージを駆動する電磁アクチュエータ(33,35)とを備えるステージ装置であって、前記電磁アクチュエータを冷却する上記の電磁アクチュエータ冷却装置(100)を備えることを特徴としている。
このステージ装置では、電磁アクチュエータの発熱部で冷媒が温度上昇しても、その冷媒から受ける熱影響が、上記の電磁アクチュエータ冷却装置における補助冷媒によって確実に抑制されるので、安定した動作性能を発揮することができる。
本発明の露光装置は、マスク(R)を保持するマスクステージ(2)と、前記マスク上に形成されたパターンが転写される基板(W)を保持する基板ステージ(5)とを有する露光装置(1)であって、前記マスクステージと前記基板ステージとの少なくとも一方が上記のステージ装置であることを特徴としている。
この露光装置では、マスクステージと基板ステージとの少なくとも一方が安定した動作性能を示すことにより、露光精度の向上が図られる。
以上説明したように、本発明の電磁アクチュエータ冷却装置によれば、発熱部から流出した冷媒が流れる出口配管に対して、補助冷媒が供給されることにより、温度上昇した冷媒による周辺機器への熱影響を抑制することができる。
また、本発明のステージ装置によれば、電磁アクチュエータ冷却装置により、電磁アクチュエータから受ける熱影響が確実に抑制されることから、安定した動作性能を発揮することができる。
また、本発明の露光装置によれば、マスクステージと基板ステージとの少なくとも一方が安定した動作性能を発揮することから、露光精度の向上を図ることができる。
図1は、本発明の電磁アクチュエータ冷却装置の実施の形態の第1例を模式的に示す図である。
図1において、電磁アクチュエータ冷却装置100は、電磁アクチュエータ101の発熱部102に冷媒を流して電磁アクチュエータ101を冷却するものであり、冷媒を貯溜する貯溜部110、冷媒を流すためのポンプ111、電磁アクチュエータ101の発熱部102に冷媒を供給するための入口配管112、及び発熱部102から流出した冷媒が流れる出口配管113等を備えている。
冷媒としては、例えば、ハイドロフルオロエーテル、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、クロロフルオロカーボンなどの他に、フロリナート(商標)などのフッ素系不活性液体、アンモニア、水(もしくは純水)、空気等が挙げられる。本例では、冷媒として、フッ素系不活性液体が用いられる。また、貯溜部110は、冷媒の温度を調整する温調装置を有しており、貯溜部110から排出される冷媒を所定の温度(冷却能力を有する所定温度)に調整するようになっている。
電磁アクチュエータ101は、例えばリニアモータなど、磁界を発生させるコイルを介して電気エネルギーを電磁力に変換するものである。本例の電磁アクチュエータ101は、コイルを囲むハウジング103を有しており、このハウジング103内にコイル等の発熱部102の熱を吸収するための冷媒用の流路が形成されている。電磁アクチュエータ101では、例えば、通電時の内部抵抗等によりコイルが発熱する。そのため、ハウジング103内の冷媒流路は、コイル等の発熱部102から効率的に熱を吸収できるように配設されている。なお、ハウジング103は、高い強度を有する非磁性体の材料からなるのが好ましい。ハウジングの材質としては、例えば、ステンレス、銅、アルミニウム、チタン、銅合金、アルミ合金等が挙げられる。また、樹脂材のような非金属材料も使用することができる。
入口配管112及び出口配管113はそれぞれ、一端が電磁アクチュエータ101のハウジング103(ハウジング103内の冷媒流路)に接続され、他端が冷媒の貯溜部110に接続されている。ここで、入口配管112は、冷媒の流れの方向に沿って、冷媒の貯溜部110から電磁アクチュエータ101に至るまでの配管であり、一方の出口配管113は、冷媒の流れの方向に沿って、電磁アクチュエータ101から貯溜部110に至るまでの配管である。また、出口配管113には、電磁アクチュエータ101を経由することなく、貯溜部110の冷媒の一部を出口配管113に直接導く補助冷媒配管120が接続されている。
補助冷媒配管120は、一端が冷媒の貯溜部110に接続され、他端が出口配管113のうちの電磁アクチュエータ101に近い位置に設けられた合流部121に接続されている。また、補助冷媒配管120には、補助冷媒を流すためのポンプ122が配設されている。
なお、入口配管112、出口配管113、及び補助冷媒配管120の材質は互いに同じでもよく、互いに異なってもよい。配管の材質としては、例えば、ポリウレタンやフッ素樹脂などの各種ポリマーの他に、洗浄されたステンレスなどの金属が挙げられる。
合流部121は、電磁アクチュエータ101(ハウジング103の内部)を経由して出口配管113を流れる冷媒と、貯溜部110から直接送られた補助冷媒とを合流させるものであり、出口配管113の流路と、補助冷媒配管120の流路とを接続する継手構造を含む構成となっている。また、合流部121は、出口配管113から補助冷媒配管120への冷媒の逆流を防ぐ逆止弁125、及び補助冷媒の供給流量を調整するための流量調整弁126を有する。逆止弁125及び流量調整弁126はともに補助冷媒配管120上に配設されている。また、合流部121の配設位置は、補助冷媒による冷却範囲を広く取る上で、出口配管113とハウジング103との接続部分(ハウジング103からの冷媒出口部)に近いのが好ましい。なお、上記補助冷媒配管120、合流部121、及びポンプ122等を含んで本発明における補助冷媒供給手段127が構成される。
上記構成の電磁アクチュエータ冷却装置100では、少なくとも電磁アクチュエータ101の通電時において、電磁アクチュエータ101に対して冷媒が循環供給される。すなわち、所定の温度に調整された冷媒は、貯溜部110から入口配管112を介して電磁アクチュエータ101のハウジング103内に供給され、ハウジング103から流出した後、出口配管113を介して貯溜部110に戻る。この冷媒の循環に伴い、冷媒と発熱部102との間で熱交換が行われ、発熱部102の熱が冷媒に回収され、電磁アクチュエータ101が冷却される。
また、本例の冷却装置100では、出口配管113に対して、貯溜部110の冷媒が補助冷媒として直接供給される。すなわち、貯溜部110内の所定の温度に調整された冷媒の一部は、電磁アクチュエータ101を経由することなく、補助冷媒配管120を介して出口配管113に供給される。出口配管113の合流部121では、電磁アクチュエータ101(ハウジング103の内部)を経由して出口配管113を流れる冷媒と、貯溜部110から直接送られた補助冷媒とが合流する。電磁アクチュエータ101から流出した冷媒は、貯溜部110から流出した直後の冷媒に比べて、発熱部102との熱交換によって温度上昇しているが、貯溜部110から直接供給された低温の補助冷媒と混合されることにより冷却される。
ここで、出口配管113における合流部121よりも下流側(貯溜部110側)では、補助冷媒による冷却効果により、出口配管113の内部を流れる冷媒の温度が低く抑えられる。そのため、電磁アクチュエータ101の発熱部102で冷媒が温度上昇しても、出口配管113の表面温度の上昇が抑制され、出口配管113から周囲への熱伝達が抑えられる。このように、この電磁アクチュエータ冷却装置100では、出口配管113に対して補助冷媒を供給することにより、温度上昇した冷媒による周辺機器への熱影響が抑制される。
なお、本例の冷却装置100において、入口配管112及び出口配管113の配管径(流路断面積)は冷媒の供給流量等に応じて適宜定められる。本例では、出口配管113に、入口配管112からの冷媒に加えて、補助冷媒配管120からの補助冷媒が供給されることから、入口配管112に比べて出口配管113の配管径が大きいことが好ましい。
また、本例の冷却装置100において、出口配管113を流れる冷媒の温度(あるいは出口配管113の表面温度)を計測する計測装置が設けられていてもよい。この場合、その計測装置の計測結果に基づいて、出口配管113への補助冷媒の供給量を制御することにより、出口配管113の温度(表面温度)を確実に抑制できる。補助冷媒の供給量の制御は、例えば、上記流量調整弁126により行うことが可能である。なお、上記流量調整弁126以外にも、入口配管112あるいは出口配管113に冷媒の流れを制御するためのバルブあるいは流量の調整バルブを適宜設けてもよい。
また、貯溜部110に備えている温調装置を、出口配管112に供給する冷媒を温調する温調装置と補助冷媒配管120に供給する冷媒(補助冷媒)を温調する温調装置との2種類設け、それぞれの設定温度を異ならせても構わない。この場合、補助冷媒の温度を入口配管112に供給する冷媒温度よりも低く設定するのが望ましい。これによれば、出口配管113を流れる冷媒の温度が入口配管112を流れる冷媒の温度とほぼ同じになるように、補助冷媒の温度を独立して設定することができる。
さらに、上記合流部121において、出口配管113を流れる冷媒と補助冷媒配管120からの補助冷媒との攪拌を促進させる構造を設けてもよい。温度差のある冷媒を互いに攪拌することにより、より確実な冷却効果が得られる。
図2は、本発明の電磁アクチュエータ冷却装置の実施の形態の第2例を模式的に示す図である。なお、先の図1に示した実施の形態例と同一の機能を有する構成要素は同一の符号を付し、その説明を省略または簡略化する。
実施の形態の第2例において、上記実施の形態例と異なる点は、出口配管113に対する補助冷媒として、入口配管112を流れる冷媒を分岐させたものを用いている点である。すなわち、本例の電磁アクチュエータ冷却装置130は、入口配管112を分岐して冷媒の一部を補助冷媒として出口配管113に供給する分岐部131と、分岐部131で分けられた冷媒の一部を出口配管113(合流部121)に導く補助冷媒配管132とを有する。
分岐部131は、入口配管112の流路を分岐して補助冷媒配管132の流路に接続する継手構造を含む構成となっている。補助冷媒配管132は、一端が分岐部131を介して入口配管112に接続され、他端が合流部121を介して出口配管113に接続されている。なお、上記分岐部131、補助冷媒配管132、及び合流部121等を含んで本発明における補助冷媒供給手段133が構成される。
上記構成の電磁アクチュエータ冷却装置130では、前述した第1の実施の形態例と同様に、冷媒の循環により、冷媒と電磁アクチュエータ101の発熱部102との間で熱交換が行われ、電磁アクチュエータ101が冷却される。
また、本例の冷却装置130では、入口配管112を流れる冷媒の一部が分岐部131及び補助冷媒配管132を介して出口配管113に補助冷媒として供給される。すなわち、入口配管112を流れる冷媒の一部が、分岐部131で分岐され、その冷媒が電磁アクチュエータ101を経由することなく出口配管113に供給される。出口配管113の合流部121では、電磁アクチュエータ101(ハウジング103の内部)を経由して出口配管113を流れる冷媒と、入口配管112から分岐して供給された補助冷媒とが合流する。電磁アクチュエータ101から流出した冷媒は、発熱部102との熱交換によって貯溜部110から流出した直後の冷媒に比べて温度上昇しており、一方、入口配管112で分岐された補助冷媒は、貯溜部110から流出した直後の冷媒とほぼ同じ低温状態にある。そのため、出口配管113において、それらの冷媒が互いに混合されることにより、電磁アクチュエータ101から流出した冷媒が冷却され、出口配管113の温度上昇が抑制される。したがって、本例の冷却装置130においても、補助冷媒による冷却効果により、温度上昇した冷媒による周辺機器への熱影響が抑制される。
また、本例の冷却装置130では、入口配管112を流れる冷媒の一部を分岐したものを補助冷媒として用いることから、装置構成の簡素化が図られる。すなわち、本例では、貯溜部110から分岐部131までの間、入口配管112の一部が補助冷媒用の配管として代用されることになり、貯溜部110から直接出口配管113に補助冷媒を供給する形態に比べて、補助冷媒用の配管長さを短くできる。また、入口配管112を流れる冷媒用のポンプ111の供給圧を利用して、補助冷媒を出口配管113に供給することができるので、補助冷媒用のポンプを省略することが可能である。また、分岐部131での分岐後に温調装置を設け、補助冷媒の温度を低くしてもよい。これによれば合流部121で合流した後の冷媒温度を、入口配管112を流れる冷媒温度と同程度まで下げることができる。
図3は、本発明の電磁アクチュエータ冷却装置の実施の形態の第3例を模式的に示す図である。なお、先の図1及び図2に示した実施の形態例と同一の機能を有する構成要素は同一の符号を付し、その説明を省略または簡略化する。
実施の形態の第3例において、上記各実施の形態例と異なる点は、出口配管が二重管構造からなる点である。すなわち、本例の電磁アクチュエータ冷却装置140は、二重管構造からなる出口配管141と、入口配管112を分岐して冷媒の一部を補助冷媒として出口配管141に供給する分岐部142と、分岐部142で分けられた冷媒の一部を出口配管141に導く補助冷媒配管143と、出口配管141の外側の流路に対して補助冷媒を供給する補助冷媒供給部144とを備える。
図4は、出口配管141の構造を示す断面図である。
図4において、出口配管141は、内管150と外管151とからなる二重管構造からなり、内管150及び外管151はそれぞれチューブ状に形成されている。また、内管150の内側に第1流路152が形成され、内管150と外管151との隙間に第1流路152を囲む第2流路153が形成されている。また、内管150と外管151との間には、隙間を保つための複数(本例では3つ)のリブ154が周方向に離間して配設されている。
なお、図4に示した出口配管141の構造は一例であって、二重管構造であれば他の形態でもよい。例えば、リブは、内管150及び外管151の双方に接続されなくてもよく、一方のみに接続された形態としてもよい。また、リブの数は3つに限定されない他に、リブを省く構成としてもよい。内管150と外管151との間にリブ154が配設されることにより、配管全体の可撓性が確保されかつ、配管の屈曲等に伴う内管150と外管151との隙間の閉塞が防止される。リブ154の数や形状は所望の強度が得られる中で、内管150から外管151にリブを介して伝わる熱がなるべく少なくなるように定められる。
図3に戻り、分岐部142は、入口配管112の流路を分岐して補助冷媒配管143の流路に接続する継手構造を含む構成となっている。補助冷媒配管143は、一端が分岐部142を介して入口配管112に接続され、他端が補助冷媒供給部144を介して出口配管141に接続されている。また、出口配管141は、一端が補助冷媒供給部144を介して電磁アクチュエータ101のハウジング103(ハウジング103内の冷媒流路)に接続され、他端が冷媒の貯溜部110に接続されている。なお、上記分岐部142、補助冷媒配管143、及び補助冷媒供給部144等を含んで本発明における補助冷媒供給手段145が構成される。
図5は、補助冷媒供給部144の構造を示す断面図である。
図5において、補助冷媒供給部144は、それぞれ環状に設けられた内側スリーブ160及び外側スリーブ161と、固定ナット162とを備える。内側スリーブ160と外側スリーブ161とは一体的に形成され、また、内側スリーブ160と外側スリーブ161との間には、補助冷媒用の流路(補助冷媒流路163)が形成されている。また、外側スリーブ161には補助冷媒流路163用の接続口164が設けられている。
また、電磁アクチュエータ101のハウジング103には、冷媒排出用の開口を含む冷媒出口部165が突出して設けられている。内側スリーブ160と冷媒出口部165とは、出口配管141の内管150を間に挟んで互いに結合(螺合)されており、この結合により、出口配管141の内管150が冷媒出口部165に固定されるとともに、出口配管141内の第1流路152とハウジング103内の冷媒流路とが接続されている。また、外側スリーブ161と固定ナット162とは、出口配管141の外管151を間に挟んで互いに結合(螺合)されており、この結合により、出口配管141の外管151が補助冷媒供給部144に固定されるとともに、出口配管141内の第2流路153と補助冷媒供給部144内の補助冷媒流路163とが接続されているる。さらに、補助冷媒供給部144の接続口164は、補助冷媒配管143に接続されており、この接続により、補助冷媒配管143の流路と出口配管141の外側の流路である第2流路153とが接続されている。
上記構成の電磁アクチュエータ冷却装置140では、前述した第1及び第2の各実施の形態例と同様に、冷媒の循環により、冷媒と電磁アクチュエータ101の発熱部102との間で熱交換が行われ、電磁アクチュエータ101が冷却される。
また、本例の冷却装置140では、入口配管112を流れる冷媒の一部が分岐部142及び補助冷媒配管143を介して出口配管141に補助冷媒として供給される。出口配管141は、二重管構造からなり、内側の第1流路152には、電磁アクチュエータ101(ハウジング103の内部)を経由した冷媒が流れ、外側の第2流路153には、電磁アクチュエータ101を経由することなく、入口配管112から分岐して供給される補助冷媒が流れる。すなわち、入口配管112を流れる冷媒の一部が、分岐部142で分岐され、その冷媒が補助冷媒として補助冷媒供給部144を介して出口配管141の第2流路153に供給される。なお、出口配管141の第1流路152及び第2流路153を流れた冷媒は、貯溜部110に送られ、所定の温度に冷却される。
ここで、出口配管141の第1流路152を流れる冷媒は、電磁アクチュエータ101の発熱部102との熱交換によって貯溜部110から流出した直後の冷媒に比べて温度上昇しており、その一方で、第2流路153を流れる補助冷媒は、貯溜部110から流出した直後の冷媒とほぼ同じ低温状態にある。そのため、出口配管141において、低温の補助冷媒が流れる外側の第2流路153が熱的な壁となり、第1流路152を流れる冷媒から出口配管141の外部への熱伝達が抑制される。すなわち、第1流路152を流れる冷媒の熱の一部は、出口配管141の内管150に伝わるものの、その熱は内管150の表面に接しながら流れる補助冷媒に回収され、出口配管141の外部にはほとんど伝わらない。したがって、本例の冷却装置140においても、補助冷媒による冷却効果により、温度上昇した冷媒による周辺機器への熱影響が抑制される。
また、本例の冷却装置140では、第2流路153が熱的な壁となることから、第1流路152を流れる冷媒を冷却する必要がなく、高温状態のままでもよい。そのため、本例では、第2流路153を流れる補助冷媒は、熱を遮蔽する断熱効果を有する程度の流量があればよく、冷媒流量の低減化を図ることが可能である。特に、本例では、複数のリブ154によって、第1流路152の周りに補助冷媒が流れる第2流路153が確実に形成されるので、第1流路152の熱が配管全周にわたって確実に遮断される。
なお、本例では、入口配管112から分岐させた冷媒を補助冷媒として用いているが、先の図1に示した形態と同様に、貯溜部110の冷媒を出口配管141の第2流路153に直接供給する構成としてもよい。また、補助冷媒用の温調装置を別に設けて、補助冷媒の温度を入口配管112を流れる冷媒よりも低い温度に設定するようにしても構わない。これによれば、出口配管113の断熱効果を更に高めることができる。
また、本例では、出口配管141の第1流路152と第2流路153とのそれぞれに同じ冷媒を流しているが、第1流路152と第2流路153とは互いに隔離されていることから、第1流路152とは異なる冷媒を第2流路153に流してもよい。この場合、例えば、第1流路に流す冷媒の貯溜部とは別の貯溜部を設け、その貯溜部から出口配管の外側の第2流路に補助冷媒を供給する構成とするとよい。また、この場合、第2流路に供給する補助冷媒としては、熱回収率の高い水など様々な冷媒が適用され、さらには気体を用いてもよい。補助冷媒として熱回収率の高い冷媒を用いることにより、冷媒(補助冷媒)の使用量をさらに少なくできる。
また、出口配管に限らず、入口配管を二重配管構造としてもよい。この場合、入口配管の内側の流路に電磁アクチュエータの冷却用の冷媒を流し、外側の流路に補助冷媒を流すとよい。これにより、外側の流路を流れる補助冷媒によって、内側の流路が断熱され、冷却効率の向上が図られる。さらに、電磁アクチュエータのハウジング、あるいはハウジング内の冷媒用の配管を二重構造として補助冷媒を供給する構成としてもよい。
次に、本発明のステージ装置および露光装置の実施の形態例を、図6から図8を参照して説明する。ここでは、露光装置として、マスクとしてのレチクルと基板としてのウエハとを同期移動しつつ、レチクルに形成された半導体デバイスの回路パターンをウエハ上に転写する、スキャニング・ステッパ(走査型露光装置)を使用する場合の例を用いて説明する。また、この露光装置においては、本発明のステージ装置をウエハステージに適用するものとする。
図6に示す露光装置1は、光源(不図示)からの露光用照明光によりレチクル(マスク)R上の矩形状(あるいは円弧状)の照明領域を均一な照度で照明する照明光学系IUと、レチクルRを保持して移動するレチクルステージ(マスクステージ)2および該レチクルステージ2を支持するレチクル定盤3を含むステージ装置4と、レチクルRから射出される照明光をウエハ(基板)W上に投影する投影光学系PLと、ウエハWを保持して移動するウエハステージ(基板ステージ)5および該ウエハステージ5を保持するウエハ定盤6を含むステージ装置7と、上記ステージ装置4および投影光学系PLを支持するリアクションフレーム8とから概略構成されている。なお、ここで投影光学系PLの光軸方向をZ方向とし、このZ方向と直交する方向でレチクルRとウエハWの同期移動方向をY方向とし、非同期移動方向をX方向とする。また、それぞれの軸周りの回転方向をθZ、θY、θXとする。
照明光学系IUは、リアクションフレーム8の上面に固定された支持コラム9によって支持される。なお、露光用照明光としては、例えば超高圧水銀ランプから射出される紫外域の輝線(g線、i線)およびKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)およびFレーザ光(波長157nm)等の真空紫外光(VUV)などが用いられる。
リアクションフレーム8は、床面に水平に載置されたベースプレート10上に設置されており、その上部側および下部側には、内側に向けて突出する段部8aおよび8bがそれぞれ形成されている。
ステージ装置4の中、レチクル定盤3は、各コーナーにおいてリアクションフレーム8の段部8aに防振ユニット11を介してほぼ水平に支持されており(なお、紙面奥側の防振ユニットについては図示せず)、その中央部にはレチクルRに形成されたパターン像が通過する開口3aが形成されている。なお、レチクル定盤3の材料として金属やセラミックスを用いることができる。防振ユニット11は、内圧が調整可能なエアマウント12とボイスコイルモータ13とが段部8a上に直列に配置された構成になっている。これら防振ユニット11によって、ベースプレート10およびリアクションフレーム8を介してレチクル定盤3に伝わる微振動がマイクロGレベルで絶縁されるようになっている(Gは重力加速度)。
レチクル定盤3上には、レチクルステージ2が該レチクル定盤3に沿って2次元的に移動可能に支持されている。レチクルステージ2の底面には、非接触ベアリングとして複数のエアベアリング(エアパッド)14が固定されており、これらのエアベアリング14によってレチクルステージ2がレチクル定盤3上に数ミクロン程度のクリアランスを介して浮上支持されている。また、レチクルステージ2の中央部には、レチクル定盤3の開口3aと連通し、レチクルRのパターン像が通過する開口2aが形成されている。
レチクルステージ2について詳述すると、図7に示すように、レチクルステージ2は、レチクル定盤3上を一対のYリニアモータ15、15によってY軸方向に所定ストロークで駆動されるレチクル粗動ステージ16と、このレチクル粗動ステージ16上を一対のXボイスコイルモータ17Xと一対のYボイスコイルモータ17YとによってX、Y、θZ方向に微小駆動されるレチクル微動ステージ18とを備えた構成になっている(なお、図6では、これらを1つのステージとして図示している)。
各Yリニアモータ15は、レチクル定盤3上に非接触ベアリングである複数のエアベアリング(エアパッド)19によって浮上支持されY軸方向に延びる固定子20と、この固定子20に対応して設けられ、連結部材22を介してレチクル粗動ステージ16に固定された可動子21とから構成されている。このため、運動量保存の法則により、レチクル粗動ステージ16の+Y方向の移動に応じて、固定子20は−Y方向に移動する。この固定子20の移動によりレチクル粗動ステージ16の移動に伴う反力を相殺するとともに、重心位置の変化を防ぐことができる。
なお、固定子20は、レチクル定盤3上に代えて、リアクションフレーム8に設けてもよい。固定子20をリアクションフレーム8に設ける場合には、エアベアリング19を省略し、固定子20をリアクションフレーム8に固定して、レチクル粗動ステージ16の移動により固定子20に作用する反力をリアクションフレーム8を介して床に逃がしてもよい。
レチクル粗動ステージ16は、レチクル定盤3の中央部に形成された上部突出部3bの上面に固定されY軸方向に延びる一対のYガイド51、51によってY軸方向に案内されるようになっている。また、レチクル粗動ステージ16は、これらYガイド51、51に対して不図示のエアベアリングによって非接触で支持されている。
レチクル微動ステージ18には、不図示のバキュームチャックを介してレチクルR(図6参照)が吸着保持されるようになっている。レチクル微動ステージ18の−Y方向の端部には、コーナキューブからなる一対のY移動鏡52a、52bが固定され、また、レチクル微動ステージ18の+X方向の端部には、Y軸方向に延びる平面ミラーからなるX移動鏡53が固定されている。そして、これら移動鏡52a、52b、53に対して測長ビームを照射する3つのレーザ干渉計(いずれも不図示)が各移動鏡との距離を計測することにより、レチクルステージ2のX、Y、θZ(Z軸回りの回転)方向の位置が高精度に計測される。なお、レチクル微動ステージ18の材質として金属やコージェライトまたはSiCからなるセラミックスを用いることができる。
図6に戻り、投影光学系PLとして、ここでは物体面(レチクルR)側と像面(ウエハW)側の両方がテレセントリックで円形の投影視野を有し、石英や蛍石を光学硝材とした屈折光学素子(レンズ素子)からなる1/4(または1/5)縮小倍率の屈折光学系が使用されている。このため、レチクルRに照明光が照射されると、レチクルR上の回路パターンのうち、照明光で照明された部分からの結像光束が投影光学系PLに入射し、その回路パターンの部分倒立像が投影光学系PLの像面側の円形視野の中央にスリット状に制限されて結像される。これにより、投影された回路パターンの部分倒立像は、投影光学系PLの結像面に配置されたウエハW上の複数のショット領域のうち、1つのショット領域表面のレジスト層に縮小転写される。
投影光学系PLの鏡筒部の外周には、該鏡筒部に一体化されたフランジ23が設けられている。そして、投影光学系PLは、リアクションフレーム8の段部8bに防振ユニット24を介してほぼ水平に支持された鋳物等で構成された鏡筒定盤25に、光軸方向をZ方向として上方から挿入されるとともに、フランジ23が係合している。なお、鏡筒定盤25として、高剛性・低熱膨張のセラミックス材を用いてもよい。
フランジ23の素材としては、低熱膨張の材質、例えばインバー(Inver;ニッケル36%、マンガン0.25%、および微量の炭素と他の元素を含む鉄からなる低膨張の合金)が用いられている。このフランジ23は、投影光学系PLを鏡筒定盤25に対して点と面とV溝とを介して3点で支持する、いわゆるキネマティック支持マウントを構成している。このようなキネマティック支持構造を採用すると、投影光学系PLの鏡筒定盤25に対する組み付けが容易で、しかも組み付け後の鏡筒定盤25および投影光学系PLの振動、温度変化等に起因する応力を最も効果的に軽減できるという利点がある。
防振ユニット24は、鏡筒定盤25の各コーナーに配置され(なお、紙面奥側の防振ユニットについては図示せず)、内圧が調整可能なエアマウント26とボイスコイルモータ27とが段部8b上に直列に配置された構成になっている。これら防振ユニット24によって、ベースプレート10およびリアクションフレーム8を介して鏡筒定盤25(ひいては投影光学系PL)に伝わる微振動がマイクロGレベルで絶縁されるようになっている。
ステージ装置7は、図6から明らかなように、ステージ装置4と投影光学系PLとから分離してベースプレート10上に設けられている。ステージ装置7は、ウエハステージ5、このウエハステージ5をXY平面に沿った2次元方向に移動可能に支持するウエハ定盤6、ウエハステージ5と一体的に設けられウエハWを吸着保持する試料台ST、これらウエハステージ5および試料台STを相対移動自在に支持するXガイドバーXGを主体に構成されている。ウエハステージ5の底面には、非接触ベアリングである複数のエアベアリング(エアパッド)28が固定されており、これらのエアベアリング28によってウエハステージ5がウエハ定盤6上に、例えば数ミクロン程度のクリアランスを介して浮上支持されている。
ウエハ定盤6は、ベースプレート10の上方に、防振ユニット29を介してほぼ水平に支持されている。防振ユニット29は、ウエハ定盤6の各コーナーに配置され(なお、紙面奥側の防振ユニットについては図示せず)、内圧が調整可能なエアマウント30とウエハ定盤6に対して推力を付与するボイスコイルモータ31とがベースプレート10上に並列に配置された構成になっている。これら防振ユニット29によって、ベースプレート10を介してウエハ定盤6に伝わる微振動がマイクロGレベルで絶縁されるようになっている。
図6及び図8に示すように、XガイドバーXGは、X方向に沿った長尺形状を呈しており、その長さ方向両端には電機子ユニットからなる可動子36,36がそれぞれ設けられている。これらの可動子36,36に対応する磁石ユニットを有する固定子37,37は、ベースプレート10に突設された支持部32、32に設けられている(図6参照、なお図6では可動子36および固定子37を簡略して図示している)。そして、これら可動子36および固定子37によってムービングコイル型のリニアモータ33、33が構成されており、可動子36が固定子37との間の電磁気的相互作用により駆動されることで、XガイドバーXGはY方向に移動するとともに、リニアモータ33、33の駆動を調整することでθZ方向に回転移動する。すなわち、このリニアモータ33によってXガイドバーXGとほぼ一体的にウエハステージ5(および試料台ST、以下単にウエハステージ5と称する)がY方向およびθZ方向に駆動されるようになっている。なお、ウエハステージ5は、Y方向の移動にはガイド部材を有さないガイドレスステージとなっているが、ウエハステージ5のX方向の移動に関しても適宜ガイドレスステージとすることができる。
ウエハステージ5は、XガイドバーXGとの間にZ方向に所定量のギャップを維持する磁石およびアクチュエータからなる磁気ガイドを介して、XガイドバーXGにX方向に相対移動自在に非接触で支持・保持されている。また、ウエハステージ5は、XガイドバーXGに埋設された固定子35aを有するXリニアモータ35による電磁気的相互作用によりX方向に駆動される。なお、Xリニアモータの可動子は図示していないが、ウエハステージ5に取り付けられている。
ウエハステージ5の上面には、ウエハホルダ41を介してウエハWが真空吸着等によって固定される(図6参照、図8では図示略)。また、ウエハステージ5のX方向の位置は、投影光学系PLの鏡筒下端に固定された参照鏡42を基準として、ウエハステージ5の一部に固定された移動鏡43の位置変化を計測するレーザ干渉計44によって所定の分解能、例えば0.5〜1nm程度の分解能でリアルタイムに計測される。なお、上記参照鏡42、移動鏡43、レーザ干渉計44とほぼ直交するように配置された不図示の参照鏡、レーザ干渉計および移動鏡(図8に示す移動鏡48)によってウエハステージ5のY方向の位置が計測される。なお、これらレーザ干渉計の中、少なくとも一方は、測長軸を2軸以上有する多軸干渉計であり、これらレーザ干渉計の計測値に基づいてウエハステージ5(ひいてはウエハW)のXY位置のみならず、θ回転量あるいはこれらに加え、レベリング量をも求めることができるようになっている。
また、XガイドバーXGの−X方向側には、ボイスコイルモータで構成されたXトリムモータ34の可動子34aが取り付けられている。Xトリムモータ34は、Xリニアモータ35の固定子としてのXガイドバーXGとリアクションフレーム8との間に介装され、その固定子34bはリアクションフレーム8(図6参照)に設けられている。このため、ウエハステージ5をX方向に駆動する際の反力は、Xトリムモータ34によりリアクションフレーム8に伝達され、さらにリアクションフレーム8を介してベースプレート10(図6参照)に伝達される。なお、実際にはXトリムモータ34は、リニアモータ33を挟んだZ方向両側に配置されているが、図6および図8では便宜上+Z側のXトリムモータ34のみ図示している。
また、ウエハステージ5は、リニアモータ33、33及びXリニアモータ35を冷却するための冷却装置として、先の図1に示した電磁アクチュエータ冷却装置100を備える。
すなわち、リニアモータ33、33及びXリニアモータ35にはそれぞれ、冷媒入口部60a、60b、60cと、冷媒出口部61a、61b、61cとが設けられており、冷媒入口部60a、60b、60cには、貯溜部110からリニアモータ33、35に冷媒を導く入口配管112a、112b、112c(実線で図示)が接続され、冷媒出口部61a、61b、61cには、リニアモータ33、35から排出された冷媒が流れる出口配管113a、113b、113c(破線で図示)が接続されている。また、出口配管113a、113b、113cには、冷媒出口部61a、61b、61cに設けられた合流部121a、121b、121cを介して、貯溜部110の冷媒を電磁アクチュエータ101を経由することなく直接出口配管113a、113b、113cに導く補助冷媒配管120a、120b、120c(二点鎖線で図示)が接続されている。なお図8では、簡略化のために、先の図1に示したポンプ111、122、逆止弁125、流量調整弁126等の図示を省略している。
次に、上記のように構成されたステージ装置の動作および露光装置による露光処理の動作について説明する。
ここでは、予め、ウエハW上のショット領域を適正露光量(目標露光量)で走査露光するための各種の露光条件が設定されているものとする。そして、いずれも不図示のレチクル顕微鏡およびオフアクシス・アライメントセンサ等を用いたレチクルアライメント、ベースライン計測等の準備作業が行われ、その後アライメントセンサを用いたウエハWのファインアライメント(EGA;エンハンスト・グローバル・アライメント等)が終了し、ウエハW上の複数のショット領域の配列座標が求められる。
ウエハWの露光のための準備動作が完了すると、アライメント結果に基づいてレーザ干渉計44の計測値をモニタしつつ、リニアモータ33、35を制御してウエハWの第1ショットの露光のための走査開始位置にウエハステージ5を移動する。そして、リニアモータ15、33を介してレチクルステージ2とウエハステージ5とのY方向の走査を開始し、両ステージ2、5がそれぞれの目標走査速度に達すると、照明光学系IUからの露光用照明光により、レチクルR上の所定の矩形状の照明領域が均一な照度で照明される。この照明領域に対してレチクルRがY方向に走査されるのに同期して、この照明領域と投影光学系PLに関して共役な露光領域に対してウエハWを走査する。
そして、レチクルRのパターン領域を透過した照明光が投影光学系PLにより1/5倍あるいは1/4倍に縮小され、レジストが塗布されたウエハW上に照射される。そして、ウエハW上の露光領域には、レチクルRのパターンが逐次転写され、1回の走査でレチクルR上のパターン領域の全面がウエハW上のショット領域に転写される。この走査露光時には、レチクルステージ2のY方向の移動速度と、ウエハステージ5のY方向の移動速度とが投影光学系PLの投影倍率(1/5倍あるいは1/4倍)に応じた速度比に維持されるように、リニアモータ15、33を介してレチクルステージ2およびウエハステージ5が同期制御される。
レチクルステージ2の走査方向の加減速時の反力は、固定子20の移動により吸収され、ステージ装置4における重心の位置がY方向において実質的に固定される。また、レチクルステージ2と固定子20とレチクル定盤3との3者間の摩擦が零でなかったり、レチクルステージ2と固定子20との移動方向が僅かに異なる等の理由で、レチクル定盤3の6自由度方向の微少な振動が残留した場合には、上記残留振動を除去すべく、エアマウント12およびボイスコイルモータ13をフィードバック制御する。また、鏡筒定盤25においては、レチクルステージ2、ウエハステージ5の移動による微振動が発生しても、6自由度方向の振動を求め、エアマウント26およびボイスコイルモータ27をフィードバック制御することによりこの微振動をキャンセルして、鏡筒定盤25を定常的に安定した位置に維持することができる。
同様に、ステージ装置7では、レーザ干渉計44等の計測値に基づいて、ウエハステージ5の移動に伴う重心の変化による影響をキャンセルするカウンターフォースを防振ユニット29に対してフィードフォワードで与え、この力を発生するようにエアマウント30およびボイスコイルモータ31を駆動する。また、ウエハステージ5とウエハ定盤6との摩擦が零でない等の理由で、ウエハ定盤6の6自由度方向の微少な振動が残留した場合にも、上記残留振動を除去すべく、エアマウント30およびボイスコイルモータ31をフィードバック制御する。
動作中のステージ装置7では、通電によりコイル等の発熱部が発熱するものの、電磁アクチュエータ冷却装置100によってリニアモータ33、35が冷却される。すなわち、ステージ装置7では、電磁アクチュエータ冷却装置100における冷媒の循環により、冷媒と発熱部102との間で熱交換が行われ、発熱部102の熱が冷媒に回収され、電磁アクチュエータ101が冷却される。
また、ステージ装置7では、補助冷媒配管120a、120b、120cを介して出口配管113a、113b、113cに補助冷媒が供給され、この補助冷媒による冷却効果により、出口配管113a、113b、113cの表面温度の上昇が抑えられる。そのため、ステージ装置7では、入口配管112a、112b、112cと出口配管113a、113b、113cとが互いに近づけて配されていても、入口配管112a、112b、112c(及びその中を流れる冷媒)が温度上昇することが防止される。また、出口配管113a、113b、113cの温度上昇により空気揺らぎが生じてレーザ干渉計44等の計測精度が低下することが防止される。すなわち、このステージ装置7では、リニアモータ33、35の発熱部で冷媒が温度上昇しても、その冷媒から受ける熱影響が、補助冷媒の冷却効果によって確実に抑制される。そのため、リニアモータ33、35から受ける熱影響が確実に抑制され、安定した動作性能を発揮する。そして、このステージ装置7を備える露光装置1では、ステージ装置7が安定した動作性能を示すことにより、露光精度の向上が図られる。
なお、本例では、電磁アクチュエータ冷却装置として、先の図1に示した冷却装置100を用いているが、先の図2に示した冷却装置130、あるいは先の図3に示した冷却装置140を用いてもよい。また、本例では、ウエハ用のステージ装置の冷却について説明したが、レチクル用のステージ装置に対しても同様の冷却装置を適用してもよい。
また、基板としては、半導体デバイス用の半導体ウエハのみならず、液晶ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック基板、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
露光装置としては、レチクル(マスク)とウエハ(基板)とを同期移動してレチクルのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニング・ステッパ;USP5,473,410)の他に、レチクルとウエハとを静止した状態でウエハを順次ステップ移動させながらレチクルのパターンを露光するステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
露光装置の種類としては、ウエハに半導体デバイスパターンを露光する半導体デバイス製造用の露光装置に限らず、液晶表示素子製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCDなど)あるいはレチクルなどを製造するための露光装置などにも広く適用できる。
露光用照明光として、超高圧水銀ランプから発生する輝線(g線(436nm)、h線(404.7nm)、i線(365nm))、KrFエキシマレーザ光(248nm)、ArFエキシマレーザ光(193nm)、Fレーザ光(157nm)のみならず、X線や電子線などの荷電粒子線を用いることができる。例えば、電子線を用いる場合には電子銃として、熱電子放射型のランタンヘキサボライト(LaB)、タンタル(Ta)を用いることができる。さらに、電子線を用いる場合は、レチクルを用いる構成としてもよいし、レチクルを用いずに直接ウエハ上にパターンを形成する構成としてもよい。また、YAGレーザ光や半導体レーザ等の高周波等の波長が200nm〜100nm程度の真空紫外光も適用できる。
投影光学系の倍率は、縮小系のみならず等倍系および拡大系のいずれでもよい。また、投影光学系としては、エキシマレーザ光などの遠紫外線を用いる場合は硝材として石英や蛍石などの遠紫外線を透過する材料を用い、Fレーザ光やX線を用いる場合は反射屈折系または屈折系の光学系にし(レチクルも反射型タイプを用いる)、また電子線を用いる場合には光学系として電子レンズおよび偏向器からなる電子光学系を用いればよい。なお、電子線が通過する光路は、真空状態にすることはいうまでもない。また、投影光学系を用いることなく、レチクル(マスク)とウエハ(基板)とを密接させてレチクルのパターンを露光するプロキシミティ露光装置にも適用可能である。
ウエハステージやレチクルステージにリニアモータ(USP5,623,853またはUSP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、ステージは、ガイドに沿って移動するタイプでもよいし、ガイドを設けないガイドレスタイプでもよい。
ステージの駆動装置として、二次元に磁石を配置した磁石ユニット(永久磁石)と、二次元にコイルを配置した電機子ユニットとを対向させ電磁力によりステージを駆動する平面モータを用いてもよい。この場合、磁石ユニット(永久磁石)と電機子ユニットとのいずれか一方をステージに接続し、磁石ユニットと電機子ユニットの他方をステージの移動面側(ベース)に設ければよい。
本願実施形態の露光装置は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
半導体デバイスは、図9に示すように、デバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、シリコン材料からウエハを製造するステップ203、前述した露光装置によりレチクルのパターンをウエハに露光するウエハ処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明の電磁アクチュエータ冷却装置の実施の形態の第1例を模式的に示す図である。 本発明の電磁アクチュエータ冷却装置の実施の形態の第2例を模式的に示す図である。 本発明の電磁アクチュエータ冷却装置の実施の形態の第3例を模式的に示す図である。 出口配管の構造の一例を示す断面図である。 補助冷媒供給部の構造の一例を示す断面図である。 本発明の露光装置の概略構成図である。 同露光装置を構成するウエハ側ステージ装置の外観斜視図である。 ウエハステージを構成するXトリムモータの概略構成図である。 半導体デバイスの製造工程の一例を示すフローチャート図である。
符号の説明
R…レチクル(マスク)、W…ウエハ(基板)、PL…投影光学系、1…露光装置、2…レチクルステージ、4、7…ステージ装置、5…ウエハステージ(基板ステージ)、33、35…リニアモータ(電磁アクチュエータ)、44…レーザ干渉計、100、130、140…電磁アクチュエータ冷却装置、101…電磁アクチュエータ、102…発熱部、112…入口配管、113、141…出口配管、120、132、143…補助冷媒配管、121…合流部、125…逆止弁、126…流量調整弁、127、133、145…補助冷媒供給手段、130…冷却装置、131、142…分岐部、144…補助冷媒供給部、150…内管、151…外管、152…第1流路、153…第2流路。

Claims (7)

  1. 発熱部に冷媒を流して電磁アクチュエータを冷却する電磁アクチュエータ冷却装置において、
    前記発熱部から流出した前記冷媒が流れる出口配管と、
    前記出口配管に対して補助冷媒を供給する補助冷媒供給手段とを有することを特徴とする電磁アクチュエータ冷却装置。
  2. 前記補助冷媒供給手段は、前記冷媒の流れと前記補助冷媒の流れとを合流させる合流部を有することを特徴とする請求項1に記載の電磁アクチュエータ冷却装置。
  3. 前記出口配管には、前記冷媒が流れる第1流路と、該第1流路を囲む第2流路とが形成され、
    前記補助冷媒供給手段は、前記第2流路に対して前記補助冷媒を供給する補助冷媒供給部を有することを特徴とする請求項1に記載の電磁アクチュエータ冷却装置。
  4. 前記発熱部に前記冷媒を供給する入口配管を有し、
    前記補助冷媒供給手段は、前記入口配管を分岐して前記冷媒の一部を前記補助冷媒として前記出口配管に供給する分岐部を有することを特徴とする請求項1から請求項3のいずれか一項に記載の電磁アクチュエータ冷却装置。
  5. 前記補助冷媒の温度を前記冷媒の温度よりも低く調整する温度調整手段を有することを特徴とする請求項1から請求項4のいずれか一項に記載の電磁アクチュエータ冷却装置。
  6. 物体が搭載されるステージと、該ステージを駆動する電磁アクチュエータとを備えるステージ装置であって、
    前記電磁アクチュエータを冷却する請求項1から請求項5のいずれか一項に記載の電磁アクチュエータ冷却装置を備えることを特徴とするステージ装置。
  7. マスクを保持するマスクステージと、前記マスク上に形成されたパターンが転写される基板を保持する基板ステージとを有する露光装置であって、
    前記マスクステージと前記基板ステージとの少なくとも一方が請求項6に記載のステージ装置であることを特徴とする露光装置。
JP2003292173A 2003-08-12 2003-08-12 電磁アクチュエータ冷却装置、ステージ装置、並びに露光装置 Withdrawn JP2005064229A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292173A JP2005064229A (ja) 2003-08-12 2003-08-12 電磁アクチュエータ冷却装置、ステージ装置、並びに露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292173A JP2005064229A (ja) 2003-08-12 2003-08-12 電磁アクチュエータ冷却装置、ステージ装置、並びに露光装置

Publications (1)

Publication Number Publication Date
JP2005064229A true JP2005064229A (ja) 2005-03-10

Family

ID=34369603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292173A Withdrawn JP2005064229A (ja) 2003-08-12 2003-08-12 電磁アクチュエータ冷却装置、ステージ装置、並びに露光装置

Country Status (1)

Country Link
JP (1) JP2005064229A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004918A (ja) * 2006-05-26 2008-01-10 Canon Inc ステージ装置、露光装置、及びデバイス製造方法
JP2011512018A (ja) * 2007-10-09 2011-04-14 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学素子の温度制御装置
JP2011129905A (ja) * 2009-12-08 2011-06-30 Asml Holding Nv 転がりループ状のケーブルダクトを通して流体を輸送する二重封じ込めシステム
JP2012109606A (ja) * 2006-05-26 2012-06-07 Canon Inc ステージ装置、露光装置、及びデバイス製造方法
JP2014116609A (ja) * 2009-02-17 2014-06-26 Carl Zeiss Smt Gmbh アクチュエータシステムを備える投影露光装置
EP2911276A1 (de) * 2014-02-20 2015-08-26 Siemens Aktiengesellschaft Kühlkreislauf mit mindestens zwei Kühlmitteln für elektrische Maschine
CN111357174A (zh) * 2017-05-10 2020-06-30 雷诺股份公司 用于电动机器的油冷却的系统
CN114374298A (zh) * 2022-01-18 2022-04-19 浙江吉利控股集团有限公司 一种电驱系统的冷却系统及车辆

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109606A (ja) * 2006-05-26 2012-06-07 Canon Inc ステージ装置、露光装置、及びデバイス製造方法
JP2008004918A (ja) * 2006-05-26 2008-01-10 Canon Inc ステージ装置、露光装置、及びデバイス製造方法
US9442397B2 (en) 2007-10-09 2016-09-13 Carl Zeiss Smt Gmbh Device for controlling temperature of an optical element
US9195151B2 (en) 2007-10-09 2015-11-24 Carl Zeiss Smt Gmbh Device for controlling temperature of an optical element
US8328374B2 (en) 2007-10-09 2012-12-11 Carl Zeiss Smt Gmbh Device for controlling temperature of an optical element
US8632194B2 (en) 2007-10-09 2014-01-21 Carl Zeiss Smt Gmbh Device for controlling temperature of an optical element
JP2011512018A (ja) * 2007-10-09 2011-04-14 カール・ツァイス・エスエムティー・ゲーエムベーハー 光学素子の温度制御装置
US8894225B2 (en) 2007-10-09 2014-11-25 Carl Zeiss Smt Gmbh Device for controlling temperature of an optical element
JP2014116609A (ja) * 2009-02-17 2014-06-26 Carl Zeiss Smt Gmbh アクチュエータシステムを備える投影露光装置
US9052616B2 (en) 2009-12-08 2015-06-09 Asml Holding N.V. Dual containment system having coaxial flexible tubes for transporting a fluid through a “rolling loop” cable duct
JP2011129905A (ja) * 2009-12-08 2011-06-30 Asml Holding Nv 転がりループ状のケーブルダクトを通して流体を輸送する二重封じ込めシステム
EP2911276A1 (de) * 2014-02-20 2015-08-26 Siemens Aktiengesellschaft Kühlkreislauf mit mindestens zwei Kühlmitteln für elektrische Maschine
WO2015124450A1 (de) * 2014-02-20 2015-08-27 Siemens Aktiengesellschaft Kühlkreislauf mit mindestens zwei kühlmitteln für elektrische maschine
CN111357174A (zh) * 2017-05-10 2020-06-30 雷诺股份公司 用于电动机器的油冷却的系统
CN111357174B (zh) * 2017-05-10 2022-06-14 雷诺股份公司 用于电动机器的油冷却的系统
CN114374298A (zh) * 2022-01-18 2022-04-19 浙江吉利控股集团有限公司 一种电驱系统的冷却系统及车辆
CN114374298B (zh) * 2022-01-18 2024-01-23 无锡星驱科技有限公司 一种电驱系统的冷却系统及车辆

Similar Documents

Publication Publication Date Title
US6555936B1 (en) Flatmotor device and exposure device
JP4505668B2 (ja) 露光装置及び露光方法並びにデバイス製造方法
JP4205054B2 (ja) 露光システム及びデバイス製造方法
JP5513185B2 (ja) リソグラフィ装置およびデバイス製造方法
JP2001218443A (ja) リニア・モーター及びそのための流体循環システム並びに露光装置
JP2002198284A (ja) ステージ装置および露光装置
JP2005094993A (ja) 保持部材、冷媒、冷却方法及び冷却装置、リニアモータ装置及びステージ装置、並びに露光装置
JPWO2003079418A1 (ja) 露光装置及びデバイス製造方法
JPWO2003063212A1 (ja) ステージ装置および露光装置
JP2005064229A (ja) 電磁アクチュエータ冷却装置、ステージ装置、並びに露光装置
JP2009037391A (ja) 温度調整装置、露光装置、アクチュエータ装置、保持装置、及びデバイス製造方法
JP2004215419A (ja) リニアモータ、リニアモータの冷却方法及びステージ装置並びに露光装置
JP2004357426A (ja) リニアモータ及び露光装置
JP2004040874A (ja) リニアモータ及びステージ装置並びに露光装置
JP2002008973A (ja) モノリシック・ステージ
JP2004180361A (ja) リニアモータ及びリニアモータ製造方法及びステージ装置並びに露光装置
JP2002217082A (ja) ステージ装置及び露光装置
JP2004159493A (ja) リニアモータ装置、ステージ装置及び露光装置並びにリニアモータ装置の冷却方法
JP2005136004A (ja) 露光装置、およびデバイス製造方法
JP2004048919A (ja) リニアモータ及びステージ装置並びに露光装置
JP2006006050A (ja) 電機子ユニット、電磁アクチュエータ、ステージ装置、及び露光装置
JP2003299339A (ja) リニアモータおよびステージ装置並びに露光装置
JP2005026288A (ja) 電磁アクチュエータ、ステージ装置、並びに露光装置
JP2010268604A (ja) モータ装置及びステージ装置並びに露光装置
JP2011115022A (ja) シャフトモータ及びステージ装置並びに露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090204