JP2005032839A - 半導体集積回路及びマスターチップ - Google Patents

半導体集積回路及びマスターチップ Download PDF

Info

Publication number
JP2005032839A
JP2005032839A JP2003193849A JP2003193849A JP2005032839A JP 2005032839 A JP2005032839 A JP 2005032839A JP 2003193849 A JP2003193849 A JP 2003193849A JP 2003193849 A JP2003193849 A JP 2003193849A JP 2005032839 A JP2005032839 A JP 2005032839A
Authority
JP
Japan
Prior art keywords
power supply
wiring
integrated circuit
semiconductor integrated
element isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003193849A
Other languages
English (en)
Inventor
Naoki Takahashi
直樹 高橋
Satoshi Fujiwara
聡 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP2003193849A priority Critical patent/JP2005032839A/ja
Publication of JP2005032839A publication Critical patent/JP2005032839A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

【課題】電源配線の配線抵抗の少ない半導体集積回路及びマスターチップを提供する。
【解決手段】半導体基板1と、半導体基板1の表面近傍に配置されたトランジスタ100A, 101A, 100Bと、トランジスタ100A, 101A, 100B, 101Bを互いに分離する素子分離絶縁層5A, 5B, 5Cと、素子分離絶縁層5A, 5C, 5Eに埋め込まれた低位電源配線10A, 10B及び高位電源配線11Aを備える。
【選択図】 図4

Description

【0001】
【発明の属する技術分野】
本発明は半導体集積回路及びこれに用いるマスターチップに係り、特に半導体集積回路及びマスターチップの配線技術に関する。
【0002】
【従来の技術】
半導体集積回路の集積度を上げるためには、半導体素子を微細化させると共に、半導体素子に接続され、低位電源或いは高位電源から電源電圧を伝達する電源配線の線幅やピッチを微細化させる必要がある。しかし配線の線幅の微細化は、電源配線の配線抵抗の上昇をもたらす。従来このような配線抵抗を低減させるためには、太い線幅を有する電源配線を多層配線層の各配線層ごとに多数配置することによって配線抵抗を低減させたり、他の信号配線よりも厚膜の電源配線を多層配線層の最上層に追加することによって配線抵抗を低減させるなどの手段がとられていた。(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平6− 13590号公報(第2−4頁、第1図)
【0004】
【発明が解決しようとする課題】
しかし、線幅の太い電源配線を多層配線の各層に多数配置すると、各配線層における他の信号配線の配線自由度が低下し、配線の混雑度が増加する。また、最上層の電源配線から半導体素子に電源電圧又は接地電圧を供給するには、複数の配線層とビアプラグを経由しなければならない。しかし、ビアプラグは配線に比べて電気抵抗が高い。よって、電気抵抗を低減させるには、ビアプラグを多数配置しなければならないが、ビアプラグを多数配置すると、中間配線層において電源配線が占める面積が増加し、他の信号配線の配線自由度が低下してしまう。
【0005】
本発明は上記問題点を鑑み、電源配線の配線抵抗を低減可能で、配線層の配線自由度を上昇させる半導体集積回路及びマスターチップを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために本発明の第1の特徴は、多層配線構造を備える半導体集積回路であって、半導体基板と、半導体基板の一部に配置された複数のトランジスタと、複数のトランジスタを互いに分離する素子分離絶縁層と、素子分離絶縁層の上部に配置された多層配線構造の最下層の層間絶縁膜と、最下層の層間絶縁膜の下方に配置され、複数のトランジスタにそれぞれ電源電圧を供給する電源配線とを備えることを特徴とする半導体集積回路であることを要旨とする。
【0007】
本発明の第2の特徴は、半導体基板と、半導体基板の一部に配置された複数のトランジスタと、複数のトランジスタを互いに分離する素子分離絶縁層と、素子分離絶縁層の上部に配置された層間絶縁膜と、層間絶縁膜の下方に配置された電源配線とを備えることを特徴とするマスターチップであることを要旨とする。
【0008】
【発明の実施の形態】
次に、図面を参照して本発明の第1から第4の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。なお、以下の示す第1から第4の実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の配置等を下記のものに特定するものではない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。以下の実施の形態ではマスターチップを用いるセミカスタムICに本発明を応用した例を示す。ここで「トランジスタ」とは電界効果トランジスタ(FET)、バイポーラトランジスタ(BJT)、静電誘導トランジスタ(SIT)等を含み得るが、以下の実施の形態においてはFET、特にnチャネルMOSトランジスタ及びpチャネルMOSトランジスタに本発明を応用した例を示している。また「電源配線」は接地配線(低位電源配線)と高位電源配線の両方を含むものとする。
【0009】
(第1の実施の形態)
本発明の第1の実施の形態に係るマスターチップ40には図1に示すように、NAND、NOR、NOTなどの基本論理回路を作るための基本セル12A, 12B, 12C, 12D, 12E, 12F,・・・・・, 112A, 112B, 112C, 112D, 112E, 112F,・・・・・, 113A, 113B, 113C, 113D, 113E, 113F,・・・・・, 114A, 114B, 114C, 114D, 114E, 114F,・・・・・それぞれが配列され、ゲートアレイを構成している。またマスターチップ40には低位電源配線10Aと高位電源配線11Aがそれぞれ対をなして基本セル12A, 12C, 12E,・・・・・それぞれから構成されるセル列を貫くように配置されている。同様に、低位電源配線10Bと高位電源配線11Bは基本セル12B, 12D, 12F,・・・・・それぞれから構成されるセル列を、低位電源配線10Cと高位電源配線11Cは基本セル112A, 112C, 112E, ・・・・・それぞれから構成されるセル列を、低位電源配線10Dと高位電源配線11Dは基本セル112B, 112D, 112F, ・・・・・それぞれから構成されるセル列を、低位電源配線10Eと高位電源配線11Eは基本セル113A, 113C, 113E, ・・・・・それぞれから構成されるセル列を、低位電源配線10Fと高位電源配線11Fは基本セル113B, 113D, 113F, ・・・・・それぞれから構成されるセル列を、低位電源配線10Gと高位電源配線11Gは基本セル114A, 114C, 114E, ・・・・・それぞれから構成されるセル列を、低位電源配線10Hと高位電源配線11Hは基本セル114B, 114D, 114F, ・・・・・それぞれから構成されるセル列をそれぞれ貫くように配置されている。
【0010】
マスターチップ40周辺部にはI/Oセル103A, 103B, 103C,・・・・・, 104A, 104B, 104C,・・・・・, 105A, 105B, 105C,・・・・・, 106A, 106B, 106C,・・・・・それぞれが配置され、配線マスクにより各端子ごとに入力バッファ、出力バッファ、双方向バッファなどを構成することができる。
【0011】
図2は図1に示した隣接する基本セル12A, 12C及び基本セル12B, 12Dの一部を拡大して示した平面図である。図2の拡大平面図に示すように、図1のマスターチップ40の基本セル12A, 12C, 12E,・・・・・それぞれの下部にはpウェル6Aとnウェル16Aが低位電源配線10A及び高位電源配線11Aと平行方向に貫通するよう共通領域で形成されている。基本セル12AはnチャネルMOSトランジスタ100A、pチャネルMOSトランジスタ101A、pウェル6Aに対して設けられたp型のコンタクト領域441A、nウェル16Aに対して設けられたn型のコンタクト領域331Aを備える。nチャネルMOSトランジスタ100Aはゲート電極24A、ソース領域3A、ドレイン領域4Aを有し、pチャネルMOSトランジスタ101Aはゲート電極25A、ソース領域13A、ドレイン領域14Aを有する。nチャネルMOSトランジスタ100A、pチャネルMOSトランジスタ101Aのそれぞれの周囲は素子分離絶縁層5で囲まれている。基本セル12CはnチャネルMOSトランジスタ100C、pチャネルMOSトランジスタ101C、pウェル6Aに対して設けられたp型のコンタクト領域441C、nウェル16Aに対して設けられたn型のコンタクト領域331Cを備える。nチャネルMOSトランジスタ100C、pチャネルMOSトランジスタ101Cのそれぞれの周囲は素子分離絶縁層5で囲まれている。
【0012】
なお図2には、図1の基本セル12B, 12D, 12F,・・・・・それぞれの下部を貫通するよう共通領域で形成されているpウェル6Bの一部と、低位電源配線10B、基本セル12B, 12Dの一部であるソース領域3B, 3D、ゲート電極24B, 24D、pウェル6Bに対して設けられたp型のコンタクト領域441B, 441Dそれぞれも示されている。なお、基本セル12A〜12Dの表面は層間絶縁膜で覆われているが、図2においてはこれを透視して示している。
【0013】
次に、第1の実施の形態に係る半導体集積回路を構成するゲートアレイの一部の平面図が図3であり、これは図2に示したマスターチップの基本セル12A, 12Cそれぞれの層間絶縁膜の上に金属配線層を設けCMOSインバータ回路2Aを構成した例である。また図3に示したA−A方向から見たゲートアレイの断面図が図4である。なお図3の平面図は、図4の断面図に示す第1の層間絶縁膜(最下層の層間絶縁膜)60及び第2の層間絶縁膜160より上の多層配線層を透視して示している。
【0014】
図4に示すように、CMOSインバータ回路2Aは素子分離絶縁層5A, 5Cそれぞれの表面近傍内部に埋め込まれた低位電源配線10A及び高位電源配線11A、半導体基板1上に配置された第1の層間絶縁膜60、低位電源配線10A及び高位電源配線11Aから第1の層間絶縁膜60上に配置された接続配線15A, 115Aを経由してnチャネルMOSトランジスタ100A及びpチャネルMOSトランジスタ101Aに電源電圧を伝達する電流経路、第1の層間絶縁膜60上に配置された第1層出力配線35A及び図3に示す第1層入力配線53Aを備えnチャネルMOSトランジスタ100AとpチャネルMOSトランジスタ101Aに電気信号を入出力する信号配線を備える。
【0015】
ここで図4の断面図に示すように、ゲート電極24A, 25Aそれぞれはpウェル6A及びnウェル16Aの表面上中央に配置されたゲート絶縁膜23A, 123Aの上に配置されている。またnチャネルMOSトランジスタ100A及びpチャネルMOSトランジスタ101Aを取り囲む素子分離絶縁層5A, 5B, 5Cは半導体基板1の表面近傍内部に設けられた素子分離溝8A, 8B, 8C内部にそれぞれ埋め込まれている。素子分離絶縁層5A〜5Cは図4の断面図においては見かけ上、それぞれ孤立して配置されているが、各素子分離絶縁層5A〜5Cは図2及び図3の平面図に示すように一体の素子分離絶縁層5となって低位電源配線10A及び高位電源配線11Aを取り囲んでいる。
【0016】
図3及び図4に示すCMOSインバータ回路2Aにおいて、nチャネルMOSトランジスタ100Aのソース領域3Aは、低位電源配線10Aの上に配置されたビアプラグ20A、ソース領域3Aの上に配置されたコンタクトプラグ7A及びビアプラグ20Aとコンタクトプラグ7Aを接続する接続配線15Aを備える電流経路により低位電源配線10Aに接続される低位電源(VSS)から電源電圧を供給される。またpチャネルMOSトランジスタ101Aのソース領域13Aは、高位電源配線11Aの上に配置されたビアプラグ120A、ソース領域13Aの上に配置されたコンタクトプラグ107A及びビアプラグ120Aとコンタクトプラグ107Aを接続する接続配線115Aを備える電流経路により高位電源配線11Aに接続される高位電源(VDD)から電源電圧を供給される。またpウェル6Aには、図3に示すビアプラグ220A、接続配線215A、コンタクトプラグ207A及びp型のコンタクト領域441Cを経由して低位電源配線10Aに接続される低位電源配線(VSS)より電源電圧が供給され、nウェル16Aにはビアプラグ221A、接続配線315A、コンタクトプラグ307A及びn型のコンタクト領域331Cを経由して高位電源配線11Aに接続される高位電源(VDD)より電源電圧が供給される。
【0017】
さらに、CMOSインバータ回路2AのnチャネルMOSトランジスタ100A及びpチャネルMOSトランジスタ101Aは、ドレイン領域4A, 14Aそれぞれの上に配置されたコンタクトプラグ17A, 117A、第1の層間絶縁膜60の上に配置され、コンタクトプラグ17A, 117Aそれぞれを接続する第1層出力配線35Aを備える信号配線と、ゲート電極24A, 25Aそれぞれの上に配置されたコンタクトプラグ26A, 126A、コンタクトプラグ26A, 126Aそれぞれを接続する第1層入力配線53Aを備える信号配線によってそれぞれ接続される。
【0018】
このような回路構成をとることにより、図3及び図4に示すCMOSインバータ回路2Aに第1層信号配線135B、入力端子67A、第1層入力配線53A及びコンタクトプラグ26A, 126Aそれぞれを介してゲート電極24A, 25Aに高電位信号が供給されると、nチャネルMOSトランジスタ100Aはオン状態、pチャネルMOSトランジスタ101Aはオフ状態となり、CMOSインバータ回路2Aは、コンタクトプラグ17A、第1層出力配線35A及び出力端子68Aそれぞれを介して低電位信号を第1層信号配線135Aに出力する。
【0019】
なお、図3及び図4には図1に示した基本セル12Aに隣接する基本セル12Bの一部であるpウェル6B、ゲート絶縁膜23B、ゲート電極24B、ソース領域3B、低位電源配線10Bと、基本セル12Bの上部に配置された金属配線層の一部であるビアプラグ20B、コンタクトプラグ7B、接続配線15B、コンタクトプラグ26B、第1層入力配線53Bも示されている。図3に示すゲートアレイにおいて、以上説明した以外の構成要素の配置等は図2と同じであるので説明は省略する。
【0020】
さらに図4において半導体基板1の上部には多層配線層が配置されており、接続配線15A, 15B, 115A及び第1層出力配線35Aの上部に第2の層間絶縁膜160が配置され、第1層出力配線35Aの上に第2の層間絶縁膜160を貫くビアプラグ217が配置される。第2の層間絶縁膜160の上には、第2層信号配線235A, 235B, 235Cそれぞれが配置される。また、第2層信号配線235Bはビアプラグ217と接している。さらに第2層信号配線235A, 235B, 235Cの上部には、第3の層間絶縁膜260が配置される。第2層信号配線235Aの上には、第3の層間絶縁膜260を貫くビアプラグ317が配置される。第3の層間絶縁膜260の上には、第3層信号配線335A, 335Bそれぞれが配置される。第3層信号配線335Aはビアプラグ317と接している。さらに第3層信号配線335A, 335Bの上部には第4の層間絶縁膜360が配置される。第3層信号配線335Aの上には第4の層間絶縁膜360を貫くビアプラグ417Aが配置され、第3層信号配線335Bの上には第4の層間絶縁膜360を貫くビアプラグ417Bが配置される。第4の層間絶縁膜360の上には、第4層信号配線435A, 435B, 435Cそれぞれが配置される。第4層信号配線435A, 435Cそれぞれはビアプラグ417A, 417Bと接している。第4層信号配線435A, 435B, 435Cの上部には第5の層間絶縁膜460が配置される。第4層信号配線435Bの上には第5の層間絶縁膜460を貫くビアプラグ517が配置される。第5の層間絶縁膜460の上には第5層信号配線535が配置される。第5層信号配線535はビアプラグ517と接している。さらに、第5層信号配線535の上部にはパッシベーション膜560が配置される。
【0021】
なお図2乃至図4においては、半導体基板1の材料として単結晶シリコン(Si)等が使用できる。低位電源配線10A, 10B、高位電源配線11A、ビアプラグ20A, 20B, 120A, 217, 220A, 221A, 317, 417A, 417B, 517、コンタクトプラグ7A, 7B, 17A, 26A, 26B, 107A, 117A, 126A, 207A, 307A、接続配線15A, 15B, 115A, 215A, 315A、第1層入力配線53A, 53B、第1層出力配線35A、入力端子67A, 出力端子68A、第1層信号配線135A, 135B、第2層信号配線235A〜235C、第3層信号配線335A, 335B、第4層信号配線435A〜4354C及び第5層信号配線535それぞれに用いる材料としてはアルミニウム(Al)、銅(Cu)等の金属、アルミニウム合金(Al−Si, Al−Cu−Si等)、或いはモリブデン(Mo)やタングステン(W)等の高融点金属、またはこれら高融点金属のシリサイド(MoSi, WSi等)等が使用できる。またゲート電極24A, 24B, 24C, 24D, 25A, 25Cそれぞれには、例えば多結晶シリコンからなる単層膜、または多結晶シリコン膜上にシリサイド膜を積層した2層膜がそれぞれ使用できる。素子分離絶縁層5, 5A, 5B, 5C、ゲート絶縁膜23A, 23B, 123A及び第1の層間絶縁膜60、第2の層間絶縁膜160, 第3の層間絶縁膜260, 第4の層間絶縁膜360, 第5の層間絶縁膜460及びパッシベーション膜560それぞれの材料としては、二酸化ケイ素(SiO)、炭素或いはフッ素を添加した一酸化ケイ素(SiOC, SiOF)等の無機系絶縁材料や、二酸化ケイ素水素シルセスキオキサン(HSQ)、その他有機系ポリマ等のいわゆる低誘電体(low−k)材料等が使用できる。
【0022】
以上示したように、第1の実施の形態に係る半導体集積回路を構成するマスターチップ40は図1に示したように低位電源配線10A〜10H、高位電源配線11A〜11Hそれぞれをあらかじめ備えているため、マスターチップ40の基本セル12A, 12B, 12C, 12D, 12E, 12F,・・・・・, 112A, 112B, 112C, 112D, 112E, 112F,・・・・・, 113A, 113B, 113C, 113D, 113E, 113F,・・・・・, 114A, 114B, 114C, 114D, 114E, 114F,・・・・・に金属配線層を配置してゲートアレイを構成する際、信号配線の配線自由度を高くすることが可能である。従来マスターチップに配置された基本セルのトランジスタに電源電圧を供給するには、半導体基板上部に配置された多層配線層の最上層に配置された電源配線から複数のビアプラグや各層の配線を経由する必要があったため、多層配線層における信号配線の配線自由度が低くならざるを得なかった。しかし、第1の実施の形態に係る図2の基本セル12A, 12Cそれぞれに金属配線層を配置して構成された図3及び図4に示したゲートアレイは、半導体基板1に埋め込まれた低位電源配線10A及び高位電源配線11Aよりビアプラグ20A, 120A、接続配線15A, 115A及びコンタクトプラグ7A, 107Aを備える電流経路を経由してそれぞれソース領域3A, 13Aに電源電圧を供給することが可能であり、またビアプラグ220A, 221A、接続配線215A, 315A及びコンタクトプラグ207A, 307Aを備える電流経路のみを経由してそれぞれコンタクト領域441C, 331Cに電源電圧を供給することが可能である。そのため図3に示すように、第1層配線層において接続配線15A, 15B, 115A, 215A, 315Aそれぞれが存在する領域以外は半導体素子間を接続する信号配線を配置することが可能であるので、信号配線の配線自由度が上昇し、第1層信号配線135A, 135Bのように第1層配線のみで隣接する基本セルに向かって信号配線を配線することも可能となる。さらに、図4の断面図に示したように、第1層配線層より上の配線層は、全て信号配線のために利用することが可能となる。
【0023】
またこのような構造をとることにより、図3及び図4に示したゲートアレイは従来と比較して低位電源配線10A, 10B及び高位電源配線11Aとソース領域3A, 3B, 13A或いはコンタクト領域441C, 331Cが短い電流経路でそれぞれ電気的に接続されるため、配線抵抗の低減と接地電圧の上昇を抑制することも可能となる。
【0024】
次に図5から図26の工程断面図を用いて、図4に示したゲートアレイの製造方法を説明する。
【0025】
(a)まず図5に示すように、半導体基板1の表面に熱酸化膜(SiO膜)80を形成させる。次にレジスト膜21を塗布し、これをフォトリソグラフィー技術によりパターニングして開口83A, 83B, 83Cそれぞれを形成させる。
【0026】
(b)レジスト膜21をマスクとして熱酸化膜80を異方性エッチング法でパターニングし、レジスト膜21を除去後、パターニングされた熱酸化膜80をマスクとして半導体基板1を異方性エッチング法で選択的に除去し、図6に示すように素子分離溝8A, 8B, 8Cをそれぞれ形成させる。
【0027】
(c)化学的気相堆積法(CVD法)により図7に示すように絶縁層81を素子分離溝8A〜8Cそれぞれの内部が充填されるように堆積させた後、図8に示すように絶縁層81及び熱酸化膜80を半導体基板1が表出するまで化学機械研磨法(CMP法)で研磨除去し、素子分離絶縁層5A, 5B, 5Cを半導体基板1に埋め込む。
【0028】
(d)図9に示すようにレジスト膜121を塗布し、これをリソグラフィー技術によりパターニングして開口86A, 86Bをそれぞれ形成させる。開口86A, 86Bそれぞれよりボロン(B)等のp型不純物イオンを半導体基板1内部に選択的に注入した後、レジスト膜121を剥離剤等で除去する。
【0029】
(e)再度図10に示すようにレジスト膜122を半導体基板1に塗布し、これをリソグラフィー技術によりパターニングして開口87を形成させる。開口87より燐(P)やヒ素(As)等のn型不純物イオンを半導体基板1内部に選択的に注入した後、レジスト膜122を剥離剤等で除去する。
【0030】
(f)イオン注入された不純物イオンを熱処理(ドライブイン)後、ドライブイン等で半導体基板1の表面に形成された熱酸化膜を除去し、図11に示すようにpウェル6A, 6B及びnウェル16Aをそれぞれ半導体基板1内部に形成させる。
【0031】
(g)半導体基板1の表面に熱酸化によりゲート絶縁膜(ゲート酸化膜)23A, 23B, 123Aをそれぞれ形成させ、さらにCVD法により多結晶シリコン膜を堆積させる。次にリソグラフィー法及び異方性エッチング法により多結晶シリコン膜を選択的除去し、ゲート電極24A, 24B, 25Aをそれぞれ図12に示すように形成させる。
【0032】
(h)図13に示すように半導体基板1にレジスト膜124を塗布し、リソグラフィー法により開口186A, 186Bをそれぞれ形成させ、開口186A, 186Bよりpウェル6A, 6Bそれぞれに燐(P)やヒ素(As)等のn型不純物イオンをゲート電極24A, 24Bをマスクとしてゲート絶縁膜23A, 23Bを通して選択的に注入後、ゲート絶縁膜23A, 23Bそれぞれを選択的にエッチング除去し、レジスト膜124も剥離剤等で除去する。
【0033】
(i)図14に示すように再度レジスト膜224を半導体基板1に塗布し、リソグラフィー法により開口187を形成させ、開口187よりnウェル16Aにボロン(B)等のp型不純物イオンをゲート電極25Aをマスクとしてゲート絶縁膜123Aを通して選択的に注入後、ゲート絶縁膜123Aを選択的にエッチング除去し、レジスト膜224も剥離剤等で除去する。
【0034】
(j)熱処理により不純物イオンを活性化し、かつ拡散させて図15に示すようにn型のソース領域3A, 3B、n型のドレイン領域4A、p型のソース領域13A及びp型のドレイン領域14Aをそれぞれ形成させ、半導体基板1の表面近傍に図4に示したnチャネルMOSトランジスタ100A及び pチャネルMOSトランジスタ101Aそれぞれが形成される。
【0035】
(k)図16に示すように、レジスト膜226を半導体基板1の表面に塗布し、リソグラフィー法により開口88A, 88B, 88Cをそれぞれ形成させる。
【0036】
(l)開口88A, 88B, 88Cそれぞれより素子分離絶縁層5A, 5Cの部分を異方性エッチング法により選択的に除去し、図17に示すようなU溝18A, 18B, 18Cをそれぞれ形成させる。
【0037】
(m)スパッタリング法や蒸着法によりAl又はAl−Si, Al−Cu−Si等の導電体を絶縁層81の表面から堆積後、絶縁層81上に堆積した余分な導電体をCMP法で研磨除去し、図18に示すように開口88A, 88B, 88C及びU溝18A, 18B, 18Cそれぞれの内部を導電体22A, 22B, 22Cで充填する。
【0038】
(n)導電体22A〜22Cを半導体基板1の表面と同じ高さまで異方性エッチングにより除去後、レジスト膜226を剥離剤等で除去することにより図19に示す低位電源配線10A, 10B及び高位電源配線11Aそれぞれが素子分離絶縁層5A, 5Cに埋め込まれる。
【0039】
(o)CVD法等により第1の層間絶縁膜60を半導体基板1の表面上から堆積させ、表面をCMP法で平坦化処理し図20に示すマスターチップがまず完成する。
【0040】
(p)次に、図21に示すように接続孔(ビアホール)30A, 30B, 130A及び接続孔(コンタクトホール)31A, 31B, 32A, 131A, 132Aそれぞれをリソグラフィー法及び異方性エッチング法により第1の層間絶縁膜60に形成する。
【0041】
(q)スパッタリング法、蒸着法等によりビアホール30A, 30B, 130A及びコンタクトホール31A, 31B, 32A, 131A, 132Aそれぞれを高融点金属(W, Mo等)等の導電体で充填後、第1の層間絶縁膜60上に堆積した余分な導電体をCMP法で研磨除去し、図22に示すようにビアプラグ20A, 20B, 120A及びコンタクトプラグ7A, 7B, 17A, 107A, 117Aをそれぞれ形成させる。
【0042】
(r)スパッタリング法、蒸着法等により第1の層間絶縁膜60上にAl又はAl−Si, Al−Cu−Si等の導電体を堆積させ、CMP法で表面を平坦化した後リソグラフィー法及び異方性エッチング法により選択的除去し、図23に示す接続配線15A, 15B, 115A及び第1層出力配線35Aそれぞれを形成する。さらに接続配線15A, 15B, 115A及び第1層出力配線35Aの上部に第2の層間絶縁膜160をCVD法で堆積させ、CMP法で表面を平坦化させる。
【0043】
(s)リソグラフィー法及び異方性エッチング法により第2の層間絶縁膜160にビアホールを形成し、スパッタリング法又は蒸着法等により導電体をビアホールに充填させた後に表面を平坦化処理し図24に示すビアプラグ217を形成する。次にスパッタリング法又は蒸着法により導電層を第2の層間絶縁膜160の上に堆積させ、CMP法による平坦化、リソグラフィー法及び異方性エッチング法による選択的除去により第2層信号配線235A, 235B, 235Cそれぞれを形成する。さらに、第2層信号配線235A, 235B, 235Cの上部にCVD法で第3の層間絶縁膜260を堆積させ、CMP法で表面を平坦化処理する。
【0044】
(t)リソグラフィー法及び異方性エッチング法により第3の層間絶縁膜260にビアホールを形成し、スパッタリング法又は蒸着法等により導電体をビアホールに充填させた後に表面を平坦化処理し図25に示すビアプラグ317を形成する。次にスパッタリング法又は蒸着法により導電層を第3の層間絶縁膜260上に堆積させ、CMP法による平坦化、リソグラフィー法及び異方性エッチング法による選択的除去により第3層信号配線335A, 335Bそれぞれを形成する。さらに、第3層信号配線335A, 335Bの上部に第4の層間絶縁膜360を堆積させ、CMP法で表面を平坦化処理する。
【0045】
(u)リソグラフィー法及びエッチング法により第4の層間絶縁膜360にビアホールを形成し、スパッタリング法又は蒸着法等により導電体をビアホールに充填させた後に表面を平坦化処理し図26に示すビアプラグ417A, 417Bをそれぞれ形成する。次にスパッタリング法又は蒸着法により導電層を第4の層間絶縁膜360上に堆積させ、CMP法による平坦化、リソグラフィー法及び異方性エッチング法による選択的除去により第4層信号配線435A, 435B, 435Cをそれぞれ形成する。さらに、第4層信号配線435A, 435B, 435Cの上部に第5の層間絶縁膜460を堆積させ、CMP法で表面を平坦化処理する。
【0046】
(v)リソグラフィー法及びエッチング法により第5の層間絶縁膜460にビアホールを形成し、スパッタリング法又は蒸着法等により導電体をビアホールに充填させた後に表面を平坦化処理し図4に示すビアプラグ517を形成する。次にスパッタリング法又は蒸着法により導電層を第5の層間絶縁膜460の上に堆積させ、CMP法による平坦化、リソグラフィー法及び異方性エッチング法による選択的除去により第5層信号配線535を形成する。さらに、第5層信号配線535の上部にパッシベーション膜560を堆積させ、CMP法で表面を平坦化処理し図4に示すゲートアレイが完成する。
【0047】
なお、上記(q)〜(v)の説明において、金属配線層をスパッタリング法又は蒸着法により形成させる製造方法を記載したが、層間絶縁膜に配線パターンをリソグラフィー法により形成し、Cuをメッキ法により層間絶縁膜に堆積させた後CMP法で研磨処理し、Cu配線を各層間絶縁膜に埋め込むいわゆるCuダマスカス配線工程をとる方法でもよい。
【0048】
(第1の実施の形態の変形例1)
図27は図2に示した基本セル12A, 12Cそれぞれの変形例を示しており、基本セル12Aに配置されたnチャネルMOSトランジスタは図2と異なり、低位電源配線10Aと垂直方向に配置されたゲート電極240A, 241Aとゲート電極240A, 250Aそれぞれを挟むように配置されたソース・ドレイン領域33A, 44A, 55Aを備え、pチャネルMOSトランジスタは高位電源配線11Aと垂直方向に配置されたゲート電極241A, 251Aとゲート電極241A, 251Aそれぞれを挟むように配置されたソース・ドレイン領域133A, 144A, 155Aを備える。同様に基本セル12Cにはゲート電極240C, 250C、ソース・ドレイン領域33C, 44C, 55Cを備えるnチャネルMOSトランジスタ及びゲート電極241C, 251C、ソース・ドレイン領域133C, 144C, 155Cを備えるpチャネルMOSトランジスタが配置されている。また、図27には基本セル12A, 12Cそれぞれに隣接して配置される基本セルの一部であるゲート電極240B, 240D, 250B, 250D及びソース・ドレイン領域33B, 33D, 44B, 44D, 55B, 55Dも示されている。 図27の平面図に示した上記以外の構成要素の配置は図2と同じであるので説明は省略する。
【0049】
以上示したような構成、配置を有するトランジスタを備える基本セル12A, 12Cから構成されるマスターチップにおいても、半導体基板1内部で低位電源配線10A及び高位電源配線11Aとトランジスタが隣接して配置されることから、金属配線層を設置してゲートアレイを構成する際に信号配線の配線自由度を上昇させること等が可能となる。
【0050】
(第1の実施の形態の変形例2)
図28に示すゲートアレイの断面図は、図4に示した第1の実施の形態に係る半導体集積回路を構成するゲートアレイの変形例である。図4においては、素子分離絶縁層5A〜5CそれぞれがいわゆるSTI法により半導体基板1の表面近傍内部に埋め込まれているのに対し、図28に示すゲートアレイは素子分離絶縁層65A, 65B, 65CそれぞれがいわゆるLOCOS法により半導体基板1の表面近傍に部分的に埋め込まれ、低位電源配線110A, 110B及び高位電源配線111Aそれぞれが素子分離絶縁層65A, 65Cの表面近傍内部に埋め込まれているところが異なる。その他の構成要素の配置等は図4に示したゲートアレイと同じであるので説明は省略する。
【0051】
このようにLOCOS法により素子分離絶縁層が形成されたゲートアレイにおいても、第1の実施の形態を適用することにより図4に示したゲートアレイと同様に信号配線の配線自由度の上昇を可能とし、また低位電源(VSS)とソース領域3A, 3B或いは高位電源(VDD)とソース領域13A間の配線抵抗の低減等を可能とする。
【0052】
(第2の実施の形態)
図29は第2の実施の形態に係る半導体集積回路を構成するゲートアレイの一部を示す断面図であり、第1の実施の形態に係る図4においては低位電源配線10A, 10B及び高位電源配線11Aそれぞれが素子分離絶縁層5A, 5Cの表面近傍内部に埋め込まれているのに対し、図29においては低位電源配線70Aが素子分離絶縁層5Aの表面上に、高位電源配線71A及び低位電源配線70Bが素子分離絶縁層5Cの表面上に配置されているところが第1の実施の形態と異なる。よってソース領域3A, 3Bそれぞれには低位電源配線70A, 70Bそれぞれに接続される低位電源(VSS)よりビアプラグ225A, 225B、接続配線15A, 15B及びコンタクトプラグ7A, 7Bを備える電流経路を介して電源電圧が供給され、ソース領域13Aには高位電源配線71Aに接続される高位電源(VDD)よりビアプラグ125A、接続配線115A及びコンタクトプラグ107Aを備える電流経路を介して電源電圧が供給される。その他の構成要素の配置等は図4のゲートアレイと同じであるので説明は省略する。また第2の実施の形態の半導体集積回路に係るマスターチップ及びゲートアレイの平面図は図2及び図3と同一であるので省略する。
【0053】
なお、図29において低位電源配線70A, 70B、高位電源配線71A及びビアプラグ225A, 225B, 125Aそれぞれに用いる材料としてはAl, Cu等の金属、Al−Si, Al−Cu−Si等のアルミニウム合金、MoやW等の高融点金属、或いはこれら高融点金属のシリサイド等が使用できる。
【0054】
第2の実施の形態に係る半導体集積回路を構成する図29に示したゲートアレイは、低位電源配線70A, 70B及び高位電源配線71Aとソース領域3A, 3B, 13Aが短い電流経路で結ばれることから配線抵抗の低減及び接地電圧の上昇の抑制等が可能であり、なおかつ素子分離溝8A〜8Cがそれぞれ素子分離絶縁層5A〜5Cのみで充填されているため、トランジスタ間の充分な素子分離をも可能とする。
【0055】
次に図30から図32を用いて図29に示したゲートアレイの製造方法について説明する。
【0056】
(a)まず第1の実施の形態の図5〜図15の説明に記載した工程を半導体基板1に施した後、図30に示すようにリソグラフィー法により開口85A, 85B, 85Cを有するレジスト膜91を半導体基板1の表面上に形成させる。
【0057】
(b)メッキ法等により開口85A, 85B, 85CそれぞれをCu等の導電体で充填した後、レジスト膜91上に堆積した余分な導電体をCMP法により研磨除去し、レジスト膜91を剥離剤等で除去することにより図31に示すような低位電源配線70A, 70B及び高位電源配線71Aそれぞれを素子分離絶縁層5A, 5C上に形成させる。
【0058】
(c)CVD法等により第1の層間絶縁膜60を半導体基板1の上に堆積させ、表面をCMP法で平坦化処理し、図32に示すように第2の実施の形態に係るマスターチップがまず完成する。これより後は図21〜図26の説明に記載した製造方法により金属配線等を半導体基板1上部に配置し図29に示した第2の実施の形態に係るゲートアレイが完成する。
【0059】
(第3の実施の形態)
図33は第3の実施の形態に係る基本セル312A, 312Cを備えるマスターチップの一部の平面図を示しており、これが図2に示した第1の実施の形態に係るマスターチップの一部の平面図と異なるのは、低位電源配線10Aとソース領域3A, 3C及びコンタクト領域441A, 441Cそれぞれを電気的に接続する埋込配線73A, 73C, 273A, 273C、高位電源配線11Aとソース領域13A, 13C及びコンタクト領域331A, 331Cそれぞれを電気的に接続する埋込配線173A, 173C, 373A, 373C、低位電源配線10Bとソース領域3B, 3D及びコンタクト領域441B, 441Dそれぞれを電気的に接続する埋込配線73B, 73D, 273B, 273Dが配置されている点である。その他の構成要素等の配置については図2のマスターチップと同じであるので説明は省略する。
【0060】
次に第3の実施の形態に係る半導体集積回路を構成するゲートアレイの一部の平面図が図34であり、これは図33に示したマスターチップの基本セル312Aの層間絶縁膜の上に金属配線層を設けてCMOSインバータ回路302Aを有するゲートアレイを構成した例であり、また図34のA−A方向から見た断面図を図35に示す。なお図34の平面図は図35の断面図に示す第1の層間絶縁膜60及び第2の層間絶縁膜160より上の配線層を透視して示している。図33のマスターチップの平面図に示したように埋込配線73A〜73D, 173A, 173C, 273A〜273D, 373A, 373Cそれぞれがマスターチップにあらかじめ配置されているため、第1の実施の形態に係る図3及び図4に示したゲートアレイで配置されていたビアプラグ20A, 20B, 120A, 220A, 221A、接続配線15A, 15B, 115A, 215A, 315A及びコンタクトプラグ7A, 7B, 107A, 207A, 307Aは図34及び図35に示すゲートアレイには配置されていない。その他の金属配線層の構成要素の配置等は図3及び図4に示したゲートアレイと同じであるので説明は省略する。
【0061】
なお、埋込配線73A〜73D, 173A, 173C, 273A〜273D, 373A, 373Cそれぞれに用いる材料としては、Al, Cu等の金属、Al−Si, Al−Cu−Si等のアルミニウム合金、MoやW等の高融点金属、或いはこれら高融点金属のシリサイド等が使用できる。
【0062】
以上説明したような構造をとることにより、第3の実施の形態に係る半導体集積回路を構成する図32に示したマスターチップは金属配線層を配置してゲートアレイを構成する際に電源用の配線を配置する必要がなく、信号配線の配線自由度を高くすることが可能となる。そのため第1層配線層においても信号配線の配線自由度を上昇させることが可能となる。また低位電源配線或いは高位電源配線とトランジスタが複雑な電流経路を経ることなく埋込配線73A〜73D, 173A, 173C, 273A〜273D, 373A, 373Cそれぞれで接続されることから配線抵抗の低減が可能となり、また接地電圧の上昇を抑制することも可能となる。
【0063】
次に図36から図40を用いて図35に示したゲートアレイの製造方法について説明する。
【0064】
(a)まず第1の実施の形態の図5〜図19の説明に記載した工程を半導体基板1に施した後、図36に示すように半導体基板1の表面にリソグラフィー法により開口84A, 84B, 84Cそれぞれを有するレジスト膜61を形成させる。
【0065】
(b)開口84A〜84Cそれぞれから表出する部分の素子分離絶縁層5A, 5Cそれぞれを異方性エッチング法等により選択的に除去し、図37に示すように凹部38A, 38B, 38Cをそれぞれ形成させる。
【0066】
(c)スパッタリング法や蒸着法によりAl又はAl−Si, Al−Cu−Si等の導電体をレジスト膜61の表面から堆積させ、余分な導電体をCMP法で研磨除去し図38に示すように凹部38A〜38C及び開口84A〜84C内部をそれぞれ導電体22A, 22B, 22Cで充填する。
【0067】
(d)導電体22A〜22Cを半導体基板1の表面と同じ高さまで異方性エッチングにより除去後、レジスト膜61を剥離剤等で除去することにより、図39に示すように凹部38A, 38B, 38Cそれぞれの内部に埋込配線73A, 173A, 73Bが埋め込まれる。
【0068】
(e)CVD法等により第1の層間絶縁膜60を半導体基板1の表面上から堆積させ、表面をCMP法で平坦化処理し図40に示す第3の実施の形態に係るマスターチップがまず完成する。さらに図21〜図26の説明に記載した製造方法により金属配線層を配置し図35に示したゲートアレイが完成する。
【0069】
(第4の実施の形態)
図41は第4の実施の形態に係るマスターチップの一部の平面拡大図で、基本セル42A, 42Cそれぞれを示しており、第4の実施の形態に係る半導体集積回路を構成するゲートアレイの一部の平面図が図42である。これは図41に示した基本セル42A, 42Cの層間絶縁膜の上に金属配線層を設けたものであり、図42のA−A方向から見た断面図が図43である。第1の実施の形態に係るマスターチップ及びゲートアレイでは図4に示したように低位電源配線10A, 10B及び高位電源配線11Aが素子分離絶縁層5A, 5Cそれぞれの表面近傍内部に配置されることから、図2及び図3の平面図において低位電源配線10A, 10B及び高位電源配線11Aが素子分離絶縁層5に囲まれて表出しているのに対し、第4の実施の形態に係るマスターチップ及びゲートアレイは図43に示すように低位電源配線170A, 170B及び高位電源配線171Aそれぞれが素子分離絶縁層5A, 5Cの内部に埋め込まれているため、図41及び図42の平面図においてマスターチップの表面に表出していない点がまず異なる。
【0070】
そのため図41に示すマスターチップは、低位電源配線170Aに対して設けられた基板内接続部242A, 243A, 242C, 243C、高位電源配線171Aに対して設けられた基板内接続部342A, 343A, 342C, 343C及び低位電源配線170Bに対して設けられた基板内接続部242B, 243B, 242D, 243Dを備え、金属配線を配置してゲートアレイを構成する際の電源電流経路を確保している。
【0071】
よって図43のゲートアレイの断面図においては、ソース領域3A, 3Bそれぞれには低位電源配線170A, 170Bに接続される低位電源(VSS)より基板内接続部242A, 242B、ビアプラグ20A, 20B、接続配線15A, 15B及びコンタクトプラグ7A, 7Bそれぞれを経由して電源電圧が供給される。また、ソース領域13Aには高位電源配線171Aに接続される高位電源(VDD)より基板内接続部342A、ビアプラグ120A、接続配線115A及びコンタクトプラグ107Aそれぞれを経由して電源電圧が供給される。図41乃至図43において、その他の構成要素等の配置は図2乃至図4と同じであるので説明は省略する。
【0072】
なお、低位電源配線170A, 170B、高位電源配線171A及び基板内接続部242A〜242D, 342A, 342C, 243A〜243D, 343A, 343Cそれぞれに用いる材料としては、Al, Cu等の金属、Al−Si, Al−Cu−Si等のアルミニウム合金、MoやW等の高融点金属、或いはこれら高融点金属のシリサイド等が使用できる。
【0073】
第4の実施の形態に係るマスターチップは、図41乃至図43に示したように低位電源配線170A, 170B及び高位電源配線171Aそれぞれが素子分離絶縁層5の内部に埋込まれていることから金属配線層を設置する際に信号配線の配線自由度の上昇を可能とするとと共に、低位電源配線170A, 170B及び高位電源配線171Aと金属配線層との配線間容量を低減させることも可能となる。
【0074】
次に図44から図49の工程断面図を用いて、図43に示したゲートアレイの製造法を説明する。
【0075】
(a)第1の実施の形態の図5〜図19の説明の記載と同様の製造方法により、図44に示すように半導体基板1に素子分離絶縁層5A〜5C、トランジスタ等を形成し、素子分離絶縁層5A, 5Cに導電体43A, 43B, 43Cを埋め込む。
【0076】
(b)レジスト膜161を半導体基板1表面に形成後リソグラフィー法により導電体43A〜43Cが表出するようにパターニングし、導電体43A〜43Cそれぞれを表面から異方性エッチングで選択的除去し図45に示すように低位電源配線170A, 170B及び高位電源配線171Aそれぞれを素子分離絶縁層5A, 5C内部に形成させる。
【0077】
(c)再度絶縁体をCVD法によりレジスト膜161の表面から堆積させた後、CMP法でレジスト膜161上に堆積した余分な絶縁体を研磨除去する。次にレジスト膜161の開口部から低位電源配線170A, 170B及び高位電源配線171A上に堆積した絶縁体を半導体基板1の表面界面と同じ高さまで異方性エッチングにより除去し、レジスト膜161を除去することにより、図46に示すように素子分離溝8A, 8Cの内部に低位電源配線170A, 170B及び高位電源配線171Aそれぞれが周囲を素子分離絶縁層5A, 5Cで取り囲まれるようにして埋め込まれる。
【0078】
(d)半導体基板1表面にレジスト膜261を塗布後リソグラフィー法によりパターニングし、素子分離絶縁層5A, 5C表面から低位電源配線170A, 171A及び高位電源配線170Bそれぞれに向かって異方性エッチングにより基板内接続孔29A, 29B, 29Cを図47に示すように形成させる。
【0079】
(e)スパッタリング法や蒸着法によりAl又はAl−Si, Al−Cu−Si等の導電体を基板内接続孔29A〜29C内部に充填するように堆積させ、CMP法でレジスト膜261上に堆積した余分な導電体を研磨除去する。次に低位電源配線170A, 170B及び高位電源配線171A上に堆積した導電体を異方性エッチングにより半導体基板1の表面界面と同じ高さまで除去し、図48に示すように基板内接続部242A, 342A, 242Bそれぞれを形成させる。
【0080】
(f)半導体基板1表面にCVD法等により図49に示すように第1の層間絶縁膜60を堆積させ、表面をCMP法で平坦化処理し第4の実施の形態に係るマスターチップがまず完成する。さらに図21〜図26の説明に記載した製造方法により金属配線層を配置し、図43に示したゲートアレイが完成する。
【0081】
(その他の実施の形態)
上記のように、本発明は第1から第4の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
【0082】
既に述べた第1乃至第4の実施の形態においては、CMOSインバータ回路を備える半導体集積回路に本発明を実施した形態について説明したが、本発明は単体のnMOSFETからなる論理回路、pMOSFETからなる論理回路、HEMT論理回路、SIT論理回路、化合物半導体からなる論理回路、HBT論理回路にも実施可能である。つまり、主電極領域を備えるトランジスタであり、主電極領域が高位電源或いは低位電源に接続される必要があるものであれば、本発明を適用することにより、第1から第4の実施の形態に開示したように、電源配線の電気抵抗を低下させ、信号配線の配線自由度を上昇させることが可能となる。この場合、第1乃至第4の実施の形態に示したようにMOSトランジスタに本発明を実施する場合には、主電極領域はソース領域又はドレイン領域のいずれかを意味するが、バイポーラトランジスタの場合、主電極領域とはエミッタ領域又はコレクタ領域のいずれかを意味する。なお、主電極領域表面をシリサイド化する等の半導体集積回路の高速化技術の採用も勿論とられうる。
【0083】
さらに本発明はマスターチップを用いないフルカスタムの半導体集積回路にも応用できるのは勿論であり、最下層の層間絶縁膜より下部に電源配線を配置することにより、回路設計の自由度の上昇等が可能となる。
【0084】
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【0085】
【発明の効果】
本発明によれば、電源配線の配線抵抗が少なく、信号配線の配線自由度の高い半導体集積回路及びマスターチップを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る半導体集積回路を構成するマスターチップの模式図である。
【図2】本発明の第1の実施の形態に係る半導体集積回路を構成する基本セルの平面図である。
【図3】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの平面図である。
【図4】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの断面図である。
【図5】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その1)。
【図6】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その2)。
【図7】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その3)。
【図8】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その4)。
【図9】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その5)。
【図10】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その6)。
【図11】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その7)。
【図12】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その8)。
【図13】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その9)。
【図14】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その10)。
【図15】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その11)。
【図16】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その12)。
【図17】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その13)。
【図18】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その14)。
【図19】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その15)。
【図20】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その16)。
【図21】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その17)。
【図22】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その18)。
【図23】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その19)。
【図24】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その20)。
【図25】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その21)。
【図26】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その22)。
【図27】本発明の第1の実施の形態に係る半導体集積回路を構成する基本セルの変形例を示す平面図である。
【図28】本発明の第1の実施の形態に係る半導体集積回路を構成するゲートアレイの変形例を示す断面図である。
【図29】本発明の第2の実施の形態に係る半導体集積回路を構成するゲートアレイの断面図である。
【図30】本発明の第2の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その1)。
【図31】本発明の第2の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その2)。
【図32】本発明の第2の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その3)。
【図33】本発明の第3の実施の形態に係る半導体集積回路を構成する基本セルの平面図である。
【図34】本発明の第3の実施の形態に係る半導体集積回路を構成するゲートアレイの平面図である。
【図35】本発明の第3の実施の形態に係る半導体集積回路を構成するゲートアレイの断面図である。
【図36】本発明の第3の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その1)。
【図37】本発明の第3の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その2)。
【図38】本発明の第3の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その3)。
【図39】本発明の第3の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その4)。
【図40】本発明の第3の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その5)。
【図41】本発明の第4の実施の形態に係る半導体集積回路を構成する基本セルの平面図である。
【図42】本発明の第4の実施の形態に係る半導体集積回路を構成するゲートアレイの平面図である。
【図43】本発明の第4の実施の形態に係る半導体集積回路を構成するゲートアレイの断面図である。
【図44】本発明の第4の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その1)。
【図45】本発明の第4の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その2)。
【図46】本発明の第4の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その3)。
【図47】本発明の第4の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その4)。
【図48】本発明の第4の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その5)。
【図49】本発明の第4の実施の形態に係る半導体集積回路を構成するゲートアレイの製造方法を説明する工程断面図である(その6)。
【符号の説明】
1…半導体基板
2A, 302A…CMOSインバータ回路
3A, 3B, 3C, 3D, 13A, 13C…ソース領域
4A, 4C, 14A, 14C…ドレイン領域
33A, 33B, 33C, 33D, 44A, 44B, 44C, 44D, 55A, 55B, 55C, 55D, 133A, 133C, 144A, 144C, 155A, 155C…ソース・ドレイン領域
331A, 331C, 441A, 441B, 441C, 441D…コンタクト領域
5, 5A, 5B, 5C, 65A, 65B, 65C…素子分離絶縁層
6A, 6B…pウェル
8A, 8B, 8C…素子分離溝
10A, 10B, 10C, 10D, 10E, 10F, 10G, 10H, 11A, 11B, 11C, 11D, 11E, 11F, 11G, 11H, 70A, 70B, 71A, 93A, 110A, 110B, 111A, 170A, 170B, 171A …電源配線
12A, 12B, 12C, 12D, 12E, 12F,・・・・・, 42A, 42C, 112A, 112B, 112C, 112D, 112E, 112F,・・・・・, 113A, 113B, 113C, 113D, 113E, 113F,・・・・・, 114A, 114B, 114C, 114D, 114E, 114F,・・・・・, 312A, 312C…基本セル
15A, 15B, 115A, 215A, 315A…接続配線
16A…nウェル
18A, 18B, 18C…U溝
20A, 20B, 120A, 125A, 217, 220A, 221A, 225A, 225B, 317, 417A, 417B, 517…ビアプラグ
7A, 7B, 17A, 26A, 26B, 107A, 117A, 126A, 207A, 307A…コンタクトプラグ
21, 61, 91, 121, 122, 124, 161, 224, 226, 261…レジスト膜
22A, 22B, 22C, 43A, 43B, 43C…導電体
23A, 23B, 123A…ゲート絶縁膜
24A, 24B, 24C, 24D, 25A, 25C, 240A, 240B, 240C, 240D, 241A, 241C…ゲート電極
30A, 30B, 130A…ビアホール
31A, 31B, 32A, 131A, 132A …コンタクトホール
29A, 29B, 29C …基板内接続孔
35A…第1層出力配線
38A, 38B, 38C…凹部
40…マスターチップ
53A, 53B…第1層入力配線
60, 160, 260, 360, 460…層間絶縁膜
560…パッシベーション膜
67A…入力端子
68A…出力端子
73A, 73B, 73C, 73D, 173A, 173C, 273A, 273B, 273C, 273D, 373A, 373C…埋込配線
80…熱酸化膜
81…絶縁層
83A, 83B, 83C, 84A, 84B, 84C, 85A, 85B, 85C, 86A, 86B, 87, 88A, 88B, 88C, 186A, 186B, 187 …開口
100A, 100C, 101A, 101C…トランジスタ
103A, 103B, 103C・・・・・, 104A, 104B, 104C・・・・・, 105A, 105B, 105C・・・・・, 106A, 106B, 106C・・・・・ … I/Oセル
135A, 135B…第1層信号配線
235A, 235B, 235C…第2層信号配線
335A, 335B…第3層信号配線
435A, 435B, 435C…第4層信号配線
535…第5層信号配線
242A, 242B, 242C, 242D, 243A, 243B, 243C, 243D, 342A, 342C, 343A, 343C…基板内接続部

Claims (9)

  1. 多層配線構造を備える半導体集積回路であって、
    半導体基板と、
    前記半導体基板の一部に配置された複数のトランジスタと、
    前記複数のトランジスタを互いに分離する素子分離絶縁層と、
    前記素子分離絶縁層の上部に配置された前記多層配線構造の最下層の層間絶縁膜と、
    該最下層の層間絶縁膜の下方に配置され、前記複数のトランジスタにそれぞれ電源電圧を供給する電源配線、
    とを備えることを特徴とする半導体集積回路。
  2. 前記電源配線の少なくとも一部が、前記素子分離絶縁層の内部に埋め込まれたことを特徴とする請求項1に記載の半導体集積回路。
  3. 前記電源配線の最上面が、前記素子分離絶縁層の最上面よりも上方に配置されたことを特徴とする請求項1に記載の半導体集積回路。
  4. 前記電源配線と前記トランジスタとを互いに接続する電流経路を更に備えることを特徴とする請求項1乃至3のいずれか1項に記載の半導体集積回路。
  5. 前記電流経路が、前記最下層の層間絶縁膜上に配置された接続配線を経由することを特徴とする請求項4に記載の半導体集積回路。
  6. 前記電流経路が、前記素子分離絶縁層に埋め込まれた埋込配線であることを特徴とする請求項4に記載の半導体集積回路。
  7. 半導体基板と、
    前記半導体基板の一部に配置された複数のトランジスタと、
    前記複数のトランジスタを互いに分離する素子分離絶縁層と、
    前記素子分離絶縁層の上部に配置された層間絶縁膜と、
    該層間絶縁膜の下方に配置された電源配線
    とを備えることを特徴とするマスターチップ。
  8. 前記電源配線の少なくとも一部が、前記素子分離絶縁層の内部に埋め込まれたことを特徴とする請求項7に記載のマスターチップ。
  9. 前記素子分離絶縁層内部に前記電源配線と前記トランジスタに接する埋込配線を更に備えることを特徴とする請求項7又は8記載のマスターチップ。
JP2003193849A 2003-07-08 2003-07-08 半導体集積回路及びマスターチップ Withdrawn JP2005032839A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003193849A JP2005032839A (ja) 2003-07-08 2003-07-08 半導体集積回路及びマスターチップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003193849A JP2005032839A (ja) 2003-07-08 2003-07-08 半導体集積回路及びマスターチップ

Publications (1)

Publication Number Publication Date
JP2005032839A true JP2005032839A (ja) 2005-02-03

Family

ID=34205207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193849A Withdrawn JP2005032839A (ja) 2003-07-08 2003-07-08 半導体集積回路及びマスターチップ

Country Status (1)

Country Link
JP (1) JP2005032839A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234738A (ja) * 2006-02-28 2007-09-13 Renesas Technology Corp 電子装置
WO2020065916A1 (ja) * 2018-09-28 2020-04-02 株式会社ソシオネクスト 半導体装置
EP3651188A1 (en) * 2018-11-12 2020-05-13 IMEC vzw A method for contacting a buried interconnect rail from the back side of an ic
WO2020095765A1 (ja) * 2018-11-09 2020-05-14 株式会社ソシオネクスト 半導体集積回路装置
WO2020110733A1 (ja) * 2018-11-26 2020-06-04 株式会社ソシオネクスト 半導体集積回路装置
JP2020524907A (ja) * 2017-06-22 2020-08-20 東京エレクトロン株式会社 埋め込み型電力レール
JPWO2020217396A1 (ja) * 2019-04-25 2020-10-29
JP2021524151A (ja) * 2018-03-19 2021-09-09 東京エレクトロン株式会社 3次元デバイス及びそれを形成する方法
WO2023112682A1 (ja) * 2021-12-17 2023-06-22 株式会社ソシオネクスト 半導体集積回路装置
WO2023127385A1 (ja) * 2021-12-27 2023-07-06 株式会社ソシオネクスト 半導体集積回路装置
WO2023132264A1 (ja) * 2022-01-06 2023-07-13 株式会社ソシオネクスト 半導体集積回路装置
WO2023151939A1 (en) * 2022-02-09 2023-08-17 International Business Machines Corporation Semiconductor structure with a buried power rail
WO2023166674A1 (ja) * 2022-03-03 2023-09-07 株式会社ソシオネクスト 半導体集積回路装置
TWI818648B (zh) * 2021-12-29 2023-10-11 美商萬國商業機器公司 用於垂直場效應電晶體之埋入式電源軌形成
WO2023223501A1 (ja) * 2022-05-19 2023-11-23 株式会社ソシオネクスト 半導体装置

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234738A (ja) * 2006-02-28 2007-09-13 Renesas Technology Corp 電子装置
JP2020524907A (ja) * 2017-06-22 2020-08-20 東京エレクトロン株式会社 埋め込み型電力レール
JP7074968B2 (ja) 2018-03-19 2022-05-25 東京エレクトロン株式会社 3次元デバイス及びそれを形成する方法
JP2021524151A (ja) * 2018-03-19 2021-09-09 東京エレクトロン株式会社 3次元デバイス及びそれを形成する方法
JP7160105B2 (ja) 2018-09-28 2022-10-25 株式会社ソシオネクスト 半導体装置
WO2020065916A1 (ja) * 2018-09-28 2020-04-02 株式会社ソシオネクスト 半導体装置
JPWO2020065916A1 (ja) * 2018-09-28 2021-08-30 株式会社ソシオネクスト 半導体装置
US11916057B2 (en) 2018-11-09 2024-02-27 Socionext Inc. Semiconductor integrated circuit device
WO2020095765A1 (ja) * 2018-11-09 2020-05-14 株式会社ソシオネクスト 半導体集積回路装置
US10985057B2 (en) 2018-11-12 2021-04-20 Imec Vzw Method for contacting a buried interconnect rail of an integrated circuit chip from the back side of the IC
EP3651188A1 (en) * 2018-11-12 2020-05-13 IMEC vzw A method for contacting a buried interconnect rail from the back side of an ic
US11908799B2 (en) 2018-11-26 2024-02-20 Socionext Inc. Semiconductor integrated circuit device
WO2020110733A1 (ja) * 2018-11-26 2020-06-04 株式会社ソシオネクスト 半導体集積回路装置
JPWO2020217396A1 (ja) * 2019-04-25 2020-10-29
JP7272426B2 (ja) 2019-04-25 2023-05-12 株式会社ソシオネクスト 半導体装置
WO2023112682A1 (ja) * 2021-12-17 2023-06-22 株式会社ソシオネクスト 半導体集積回路装置
WO2023127385A1 (ja) * 2021-12-27 2023-07-06 株式会社ソシオネクスト 半導体集積回路装置
TWI818648B (zh) * 2021-12-29 2023-10-11 美商萬國商業機器公司 用於垂直場效應電晶體之埋入式電源軌形成
WO2023132264A1 (ja) * 2022-01-06 2023-07-13 株式会社ソシオネクスト 半導体集積回路装置
WO2023151939A1 (en) * 2022-02-09 2023-08-17 International Business Machines Corporation Semiconductor structure with a buried power rail
WO2023166674A1 (ja) * 2022-03-03 2023-09-07 株式会社ソシオネクスト 半導体集積回路装置
WO2023223501A1 (ja) * 2022-05-19 2023-11-23 株式会社ソシオネクスト 半導体装置

Similar Documents

Publication Publication Date Title
US4661202A (en) Method of manufacturing semiconductor device
US7338840B1 (en) Method of forming a semiconductor die with heat and electrical pipes
JP4776752B2 (ja) 半導体装置
KR100479135B1 (ko) 반도체 장치 및 그 제조 방법
US6498089B2 (en) Semiconductor integrated circuit device with moisture-proof ring and its manufacture method
JP2005032839A (ja) 半導体集積回路及びマスターチップ
US7564104B2 (en) Low ohmic layout technique for MOS transistors
US6909189B2 (en) Semiconductor device with dummy structure
JPH10189600A (ja) 半導体集積回路、半導体集積回路の設計方法および製造方法
CN109768030B (zh) 半导体装置结构
US20010011734A1 (en) Semiconductor device having a library of standard cells and method of designing the same
US6583045B1 (en) Chip design with power rails under transistors
JP2001230423A (ja) Soimosfetデバイスおよびその形成方法
JP2007103809A (ja) 半導体装置及び半導体装置の製造方法
JP2687890B2 (ja) Mos型半導体装置の製造方法
US20040089915A1 (en) Semiconductor device with fuses
US20040051120A1 (en) Semiconductor device and method of manufacturing the same
JPH05275546A (ja) 半導体デバイス及びその新規な埋込み相互接続構造並びにそれぞれを形成する方法
US5643832A (en) Semiconductor device and method for fabrication thereof
JP3266644B2 (ja) ゲートアレイ装置
JPS6234150B2 (ja)
JP2004193535A (ja) 半導体装置およびその製造方法
JP2003218356A (ja) Soi型半導体装置の製造方法、設計方法およびsoi型半導体装置
CN110634860A (zh) 半导体装置
US20040119121A1 (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003