WO2023166674A1 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
WO2023166674A1
WO2023166674A1 PCT/JP2022/009198 JP2022009198W WO2023166674A1 WO 2023166674 A1 WO2023166674 A1 WO 2023166674A1 JP 2022009198 W JP2022009198 W JP 2022009198W WO 2023166674 A1 WO2023166674 A1 WO 2023166674A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
wiring
semiconductor chip
integrated circuit
circuit device
Prior art date
Application number
PCT/JP2022/009198
Other languages
English (en)
French (fr)
Inventor
良樹 石垣
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to PCT/JP2022/009198 priority Critical patent/WO2023166674A1/ja
Publication of WO2023166674A1 publication Critical patent/WO2023166674A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Definitions

  • the present disclosure relates to a semiconductor integrated circuit device including stacked semiconductor chips.
  • PDN Power Delivery Network
  • Patent Document 1 among stacked semiconductor chips, a first semiconductor chip is provided with a power switch, and a second semiconductor chip, which is attached to the back surface of the first semiconductor chip and has a power supply wiring, supplies power to the power switch.
  • a semiconductor device that supplies a potential (power supply voltage) is disclosed.
  • Patent Document 1 a power supply voltage is supplied from a pad as an external terminal provided under the second semiconductor chip. This power supply voltage is supplied to the power switch of the first semiconductor chip through the power supply wiring of the second semiconductor chip.
  • IP cores Intelligent Property core
  • the provided data includes the layout structure and cannot be modified.
  • the pads as external terminals of the hard macro are provided on the upper part of the first semiconductor chip (the first semiconductor chip)
  • the structure as in Patent Document 1 does not apply the power supply voltage.
  • external terminals must be provided on the top of the first semiconductor chip in addition to the external terminals on the bottom of the second semiconductor chip (second semiconductor chip). Therefore, it is difficult to design a semiconductor integrated circuit device, and the cost increases.
  • An object of the present disclosure is to provide a semiconductor integrated circuit device that can cope with the case where it is specified that external terminals are provided on the top of the first semiconductor chip.
  • a first aspect of the present disclosure is a semiconductor integrated circuit device including a first semiconductor chip and a second semiconductor chip, wherein the back surface of the first semiconductor chip and the main surface of the second semiconductor chip are arranged to face each other. It is The first semiconductor chip is formed on a main surface, and has a first terminal connected to a first power supply for supplying a first power supply voltage. a second terminal connected to a second power supply that supplies a second power supply voltage different from the power supply voltage; the first power supply; and a third power supply that supplies a third power supply voltage different from the first and second power supply voltages.
  • the second semiconductor chip includes a first wiring connected to the first embedded power supply wiring and the first via.
  • the first terminal connected to the first power supply that supplies the first power supply voltage is formed on the upper portion of the main surface of the first semiconductor chip.
  • the first terminal is connected to the power switch circuit via a first via passing through the first semiconductor chip from the main surface to the back surface, the first wiring of the second semiconductor chip, and the first embedded power supply wiring of the first semiconductor chip. connected with Accordingly, since the first power supply voltage can be supplied to the power switch circuit from the first terminal formed on the main surface of the first semiconductor chip, the external terminal can be provided on the top of the first semiconductor chip. Even if it is specified, it can correspond.
  • a second aspect of the present disclosure is a semiconductor integrated circuit device including a first semiconductor chip and a second semiconductor chip, wherein the back surface of the first semiconductor chip and the main surface of the second semiconductor chip are arranged to face each other. It is The first semiconductor chip is provided above the main surface and has a first terminal connected to a first power supply for supplying a first power supply voltage, and a first terminal provided above the main surface, the first Between a second terminal connected to a second power supply that supplies a second power supply voltage different from the power supply voltage, the first power supply, and a third power supply that supplies a third voltage different from the first and second voltages a power supply switch circuit provided in an embedded power supply wiring layer for controlling connection and disconnection between the first and third power supplies; and a first embedded power supply wiring formed in an embedded power supply wiring layer and connected to the first power supply.
  • the second semiconductor chip includes a second wiring connected to the first embedded power supply wiring.
  • the first terminal connected to the first power supply that supplies the first power supply voltage is formed on the upper portion of the main surface of the first semiconductor chip.
  • the first terminal is connected to the power switch circuit via the first wiring of the first wiring layer and the first embedded power wiring of the embedded power wiring layer in the first semiconductor chip. Accordingly, since the first power supply voltage can be supplied to the power switch circuit from the first terminal formed on the main surface of the first semiconductor chip, the external terminal can be provided on the top of the first semiconductor chip. Even if it is specified, it can correspond.
  • a third aspect of the present disclosure is a semiconductor integrated circuit device including a first semiconductor chip and a second semiconductor chip, wherein the back surface of the first semiconductor chip and the main surface of the second semiconductor chip are arranged to face each other. It is The first semiconductor chip is provided above the main surface and has a first terminal connected to a first power supply for supplying a first power supply voltage, and a first terminal provided above the main surface, the first Between a second terminal connected to a second power supply that supplies a second power supply voltage different from the power supply voltage, the first power supply, and a third power supply that supplies a third voltage different from the first and second voltages a power supply switch circuit provided in an embedded power supply wiring layer for controlling connection and disconnection between the first and third power supplies; and a first embedded power supply wiring formed in an embedded power supply wiring layer and connected to the first power supply.
  • the second semiconductor chip includes a second wiring connected to the first via.
  • the first terminal connected to the first power supply that supplies the first power supply voltage is formed on the upper portion of the main surface of the first semiconductor chip.
  • the first terminal is connected to the power switch circuit via the first wiring of the first wiring layer and the first embedded power wiring of the embedded power wiring layer in the first semiconductor chip. Accordingly, since the first power supply voltage can be supplied to the power switch circuit from the first terminal formed on the main surface of the first semiconductor chip, the external terminal can be provided on the top of the first semiconductor chip. Even if it is specified, it can correspond.
  • FIG. 1 is a cross-sectional view showing the outline of a semiconductor integrated circuit device according to a first embodiment
  • FIG. FIG. 2 is a plan view showing an example of the layout structure of the first semiconductor chip according to the first embodiment
  • 4 is a circuit diagram showing the configuration of a power switch circuit included in the first semiconductor chip according to the first embodiment
  • FIG. 4 is a circuit diagram showing the configuration of the buffer of the power switch control circuit according to the first embodiment
  • FIG. FIG. 2 is a plan view showing an example of the layout structure of the standard cell region according to the first embodiment
  • FIG. 2 is a cross-sectional view showing an example of the layout structure of the standard cell region according to the first embodiment
  • FIG. 11 is a plan view showing an example of the layout structure of the standard cell area of the first semiconductor chip according to the second embodiment; FIG.
  • FIG. 8 is a plan view showing an example of the layout structure of the standard cell area of the second semiconductor chip according to the second embodiment;
  • FIG. 5 is a cross-sectional view showing an example of the layout structure of the standard cell region according to the second embodiment;
  • FIG. 5 is a cross-sectional view showing an example of the layout structure of the standard cell region according to the second embodiment;
  • FIG. 10 is a plan view showing another example of the layout structure of the standard cell region according to the second embodiment;
  • FIG. 10 is a plan view showing another example of the layout structure of the standard cell region according to the second embodiment;
  • FIG. 1 shows a cross-sectional view of a semiconductor integrated circuit device according to the first embodiment.
  • the semiconductor integrated circuit device includes a first semiconductor chip 10 and a second semiconductor chip 20. As shown in FIG. 1, the semiconductor integrated circuit device according to the first embodiment includes a first semiconductor chip 10 and a second semiconductor chip 20. As shown in FIG. 1, the semiconductor integrated circuit device according to the first embodiment includes a first semiconductor chip 10 and a second semiconductor chip 20. As shown in FIG. 1, the semiconductor integrated circuit device according to the first embodiment includes a first semiconductor chip 10 and a second semiconductor chip 20. As shown in FIG.
  • the first semiconductor chip 10 includes a substrate 11 and wiring layers 12 .
  • the substrate 11 is, for example, a silicon substrate, and semiconductor elements such as transistors are formed on the surface side of the substrate 11 .
  • the transistor is for example a FinFET comprising fins 13 in the source, drain and channel.
  • the wiring layer 12 includes wirings 14 and an insulating layer 15 formed on the surface of the substrate 11 .
  • a portion of the wiring 14 is connected to the fins 13 .
  • An embedded power supply wiring 16 connected to the wiring 14 is formed on the surface side of the substrate 11 .
  • the embedded power supply wiring 16 is a buried power supply wiring (BPR: Buried Power Rail) of an embedded power supply wiring layer formed by embedding at least a part of the substrate 11 .
  • the substrate 11 is provided with vias 17 connecting from the embedded power wiring 16 to the back surface of the substrate 11 . Further, the substrate 11 is provided with vias 18 connecting the pads 19 to the wirings 23 formed on the upper surface of the wiring layer 22 .
  • the pads 19 are external terminals connected to, for example, a wiring board or board.
  • the vias 17 and 18 are, for example, through-silicon vias (TSV).
  • the second semiconductor chip 20 is arranged facing the back surface of the substrate 11 of the first semiconductor chip 10 .
  • the second semiconductor chip 20 includes a substrate 21 and wiring layers 22 .
  • the substrate 21 is, for example, a silicon substrate.
  • the wiring layer 22 is formed on the surface of the substrate 21 .
  • the upper surface of the wiring layer 22 faces the rear surface of the substrate 11 of the first semiconductor chip 10 . That is, the wiring layer 22 is located between the substrates 11 and 21 .
  • the wiring layer 22 includes a plurality of wirings 23 .
  • a part of the wiring 23 formed on the upper surface of the wiring layer 22 is connected to the embedded power supply wiring 16 via the via 17 .
  • a part of the wiring 23 formed on the upper surface of the wiring layer 22 is connected to the pad 19 through the via 18 .
  • some of the plurality of wirings 23 are connected to each other through vias 24 .
  • FIG. 2 is a plan view showing an example of the layout structure of the first semiconductor chip according to the first embodiment.
  • FIG. 3 is a circuit diagram showing the configuration of a power switch circuit included in the first semiconductor chip according to the first embodiment.
  • the first semiconductor chip 10 includes a plurality of standard cell regions 31 and input/output (I/O) cell regions 32 arranged therearound.
  • the number of standard cell regions 31 arranged may be one, or may be three or more.
  • the standard cell region 31 includes standard cells 41 and power switch circuits 42 .
  • the standard cell 41 includes various logic circuits such as NAND circuits and inverter circuits.
  • a VSS wiring for supplying a ground voltage to the standard cell 41 and a VDDV wiring for supplying a power supply voltage are arranged.
  • a VDD wiring for supplying a power supply voltage from the outside to the power switch circuit 42 is arranged.
  • the power switch circuit 42 includes a switch transistor 51 and a power switch control circuit 52.
  • the switch transistor 51 is a P-channel MOS transistor and is connected between the VDD wiring and the VDDV wiring.
  • the power switch control circuit 52 is connected to the gate of the switch transistor 51 and controls the operation of the switch transistor 51 .
  • the power switch control circuit 52 switches on/off of the switch transistor 51 to control conduction between the VDD wiring and the VDDV wiring.
  • the power switch control circuit 52 is, for example, a buffer.
  • FIG. 4 is a circuit diagram showing the configuration of the buffer of the power switch control circuit according to the first embodiment.
  • the buffer 60 used in the power switch control circuit 52 has inverters 61 and 62 .
  • An input signal IN is input to the inverter 61
  • the output of the inverter 61 is input to the gate of the switch transistor 51 and the inverter 62
  • the output signal OUT is output from the inverter 62 .
  • Each of inverters 61 and 62 includes a pair of P-channel MOS transistor and N-channel MOS transistor.
  • FIG. 5 is a plan view showing an example of the layout structure of the standard cell area according to the first embodiment.
  • 6A and 6B are cross-sectional views showing examples of the layout structure of the standard cell region according to the first embodiment. Specifically, FIG. 6A(a) shows a cross section taken along line X1-X1', FIG. 6A(b) shows a cross section taken along line X2-X2', and FIG. 6B shows a cross section taken along line Y1-Y1'.
  • FIGS. 5, 6A, and 6B a plurality of standard cells 41 and a plurality of power switch circuits 42 are arranged in the standard cell region 31.
  • FIG. 5 a plurality of standard cells 41 and a plurality of power switch circuits 42 are arranged in the standard cell region 31.
  • the power switch circuit 42 also includes an embedded power supply wiring 103 extending in the X direction.
  • the embedded power supply wiring 103 is arranged between the embedded power supply wirings 101 adjacent to each other in the Y direction, and is arranged so that the position in the Y direction coincides with the embedded power supply 102 .
  • the embedded power supply wiring 101 corresponds to the VDDV wiring
  • the embedded power supply wiring 102 corresponds to the VSS wiring
  • the embedded power supply wiring 103 corresponds to the VDD wiring.
  • the embedded power supply wirings 101 to 103 are part of the embedded power supply wiring 16 .
  • the standard cell 41 and the power switch circuit 42 include FinFETs configured by the fins 13 .
  • a device isolation film 11a is formed on the surface of the substrate 11.
  • the element isolation film 11a is formed by, for example, the STI (Shallow Trench Isolation) method.
  • a plurality of grooves extending in the X direction are formed in the substrate 11 and the isolation film 11a.
  • Embedded power supply wirings 101 to 103 are formed in these trenches.
  • Surfaces of the embedded power supply wirings 101 to 103 are covered with an insulating film 104 . In this way, the embedded power supply wirings 101 to 103 are formed in the embedded power supply wiring layer in the first semiconductor chip 10 .
  • the surface of the isolation film 11a and the surface of the insulating film 104 may or may not be flush with the surface of the substrate 11.
  • a local wiring 111 is formed above the embedded power supply wirings 101 to 103 .
  • a part of the local wiring 111 is connected to the embedded power supply wirings 101-103. Also, although illustration is omitted, a part of the local wiring 111 is connected to the fin 13 . Note that the local wiring 111 is part of the wiring 14 .
  • Vias 121 to 123 are formed in the substrate 11 so as to penetrate the substrate 11 in the Z direction.
  • a via 121 is formed below the embedded power supply wiring 101
  • a via 122 is formed below the embedded power supply wiring 102
  • a via 123 is formed below the embedded power supply wiring 103 .
  • Vias 121 - 123 are part of via 17 .
  • wirings 131 to 133 extending in the Y direction are arranged side by side in the X direction.
  • the upper surfaces of the wirings 131 to 133 are exposed from the wiring layer 22 .
  • the wirings 131-133 are connected to vias 121-123 via bumps 141-143, respectively.
  • wirings 151 to 153 extending in the X direction are arranged side by side in the Y direction.
  • the wirings 131 to 133 and 151 to 153 are part of the wiring 23 .
  • Vias 162 and 163 are formed between the upper wiring layer 22a and the lower wiring layer 22b.
  • the wirings 132 and 133 are connected to the wirings 152 and 153 via vias 162 and 163, respectively.
  • Vias 162 and 163 are part of via 24 .
  • a via for connecting the wiring 131 and the wiring 151 is formed between the upper wiring layer 22a and the lower wiring layer 22b.
  • vias 172 and 173 penetrating from the upper surface of the wiring layer 12 to the rear surface of the substrate 11 are formed in the first semiconductor chip 10 .
  • Vias 172 and 173 are part of via 18 .
  • Vias 172 and 173 are connected to wires 132 and 133 via bumps 145 and 146, respectively.
  • the bumps 141 to 145 are, for example, microbumps such as solder.
  • the vias 172 and 173 are connected to the pads 19 through bumps 182 and 183.
  • each pad 19 is connected to a power supply external to the semiconductor integrated circuit device, which supplies power supply voltages VDD and VSS, respectively.
  • the pad 19 to which the via 173 is connected is connected to a power supply that supplies the power supply voltage VDD
  • the pad 19 to which the via 172 is connected is connected to a power supply that supplies the power supply voltage VSS. be.
  • the power supply voltage VDD is supplied to the power switch circuit 42 via the bumps 183 , the vias 173 , the bumps 146 , the wiring 133 , the bumps 143 , the vias 123 and the embedded power supply wiring 103 .
  • the power supply voltage VSS is supplied to the standard cell 41 and the power switch circuit 42 through the bumps 182 , the vias 172 , the bumps 145 , the wiring 132 , the bumps 142 , the vias 122 and the embedded power supply wiring 102 .
  • the vias 172 and 173 are arranged at locations where the standard cell 41 and the power switch circuit 42 are not arranged in plan view.
  • the first semiconductor chip 10 is formed above the wiring layer 12, and is formed above the wiring layer 12 and the pads 19 connected to the power supply that supplies the power supply voltage VDD.
  • a pad 19 connected to a power supply for supplying a voltage VSS, a power switch circuit 42 provided between the VDD wiring and the VDDV wiring for controlling connection and disconnection between the VDD wiring and the VDDV wiring, and an embedded power wiring layer.
  • embedded power wiring 103 connected to a power supply that supplies power supply voltage VDD, and an embedded power supply wiring formed in an embedded power supply wiring layer and connected to a power supply that supplies power supply voltage VSS.
  • the second semiconductor chip 20 includes wiring 132 connected to the embedded power supply wiring 102 and the via 172 .
  • pads 19 connected to a power supply that supplies the power supply voltage VSS are formed on the upper portion of the wiring layer 12 of the first semiconductor chip 10 .
  • the pads 19 are connected to the power switch circuit 42 via vias 172 penetrating the substrate 11 and the wiring layer 12, the wiring 132 of the second semiconductor chip 20, and the embedded power wiring 102 of the first semiconductor chip 10. be.
  • the power supply voltage VSS can be supplied to the power switch circuit 42 from the pad 19 formed on the wiring layer 12 of the first semiconductor chip 10 , so that external terminals are provided on the top of the first semiconductor chip 10 . Even if it is stipulated, it can be handled.
  • the power supply voltages VDD and VSS supplied to the standard cell 41 and the power switch circuit 42 through the vias 173 and 172 are supplied to the first semiconductor chip 10 after being supplied to the second semiconductor chip 20 .
  • the power supply voltage can be stably supplied to the second semiconductor chip 20
  • the power supply voltage drop supplied to the standard cell 41 and the power switch circuit 42 can be suppressed, and power supply noise can be suppressed.
  • embedded power supply wirings 101 to 103 extending in the X direction are connected to wirings 131 to 133 extending in the Y direction in the second semiconductor chip 20, respectively.
  • the wirings 131-133 are connected to 151-153 extending in the X direction, respectively.
  • a mesh-shaped power supply network for supplying the power supply voltages VDDV, VSS, and VDD is configured, thereby suppressing a drop in the power supply voltage supplied to the standard cell 41 and the power switch circuit 42, and suppressing power supply noise. be able to.
  • wirings 131 to 133 and 151 to 153 are provided on the second semiconductor chip 20 . This eliminates the need to form a power supply network within the first semiconductor chip 10, thereby improving the degree of freedom in arranging wiring within the first semiconductor chip 10.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • embedded power supply wirings 101 to 103 are formed in the embedded power supply wiring layer. As a result, since it is not necessary to provide the power supply wiring on the wiring layer 12, the degree of freedom in arranging the wiring provided on the wiring layer 12 of the first semiconductor chip 10 is improved.
  • the bumps 141 to 145 are, for example, microbumps such as solder, they are not limited to this.
  • the wirings 131 to 133 and the vias 121 to 123 may be connected by a metal film such as tin (Sn). That is, as long as the wirings 131 to 133 and the vias 121 to 123 are connected, any configuration may be adopted.
  • FIG. 7 is a plan view showing another example of the layout structure of the standard cell area according to the first embodiment.
  • 8 is a cross-sectional view showing another example of the layout structure of the standard cell region according to the first embodiment; FIG. Specifically, FIG. 8 shows a cross-section along line X3-X3'.
  • connecting portions 192 and 193 are formed below vias 172 and 173, respectively, as compared with FIG.
  • connection portions 192 and 193 are formed in the upper wiring layer 22 a of the wiring layer 22 .
  • Each of the connecting portions 192 and 193 is formed in a flat plate shape in plan view.
  • the connecting portion 192 connects a plurality of (three in FIG. 7) wirings 132 adjacent to each other.
  • the connection portion 192 has widths in the X direction and the Y direction that are wider than the widths in the X direction and the Y direction of the via 172 (bump 182) in plan view.
  • the bumps 145 and 182 are formed in the same shape (circular in FIG. 7) in plan view. Note that the connection portion 192 is not connected to the wirings 131 and 133 .
  • the connecting portion 193 is connected to the wiring 133 .
  • the connection portion 193 has widths in the X direction and the Y direction that are wider than the widths in the X direction and the Y direction of the via 173 (bump 183) in plan view. Also, the bumps 146 and 183 are formed in the same shape (circular in FIG. 7) in plan view. Note that the connection portion 193 is not connected to the wirings 131 and 132 .
  • the bumps 145 and the vias 172 have the same shape in plan view, and the bumps 146 and the vias 173 have the same shape in plan view. , and the resistance value between the bumps 183 of the first semiconductor chip 10 and the wiring 133 of the second semiconductor chip 20 can be reduced. Thereby, the power supply voltage can be stably supplied to the wirings 132 and 133 of the second semiconductor chip 20 .
  • connection portions 192 and 193 are each formed in a flat plate shape, they are not limited to this.
  • the connection portions 192 and 193 may each be composed of a plurality of strip-shaped wirings, or may be formed in a grid pattern.
  • the connection portions 192 and 193 may have a slit and may include a region where no wiring is formed.
  • FIG. 9 is a plan view showing another example of the layout structure of the standard cell area according to the first embodiment.
  • FIG. 10 is a cross-sectional view showing another example of the layout structure of the standard cell region according to the first embodiment. Specifically, FIG. 10 shows a cross-section along line X4-X4'. 9, in place of the vias 172 and 173, a plurality of wirings and a plurality of vias are arranged in the wiring layer 12 of the first semiconductor chip 10.
  • FIG. 10 shows a cross-section along line X4-X4'. 9, in place of the vias 172 and 173, a plurality of wirings and a plurality of vias are arranged in the wiring layer 12 of the first semiconductor chip 10.
  • a plurality of wirings 202 and a plurality of wirings 203 extending in the X direction are formed in the upper wiring layer 12a of the wiring layer 12 of the first semiconductor chip 10.
  • the wirings 202 and 203 have upper surfaces exposed from the wiring layer 12 and are connected to the bumps 182 and 183, respectively.
  • a plurality of wirings 212 and a plurality of wirings 213 extending in the Y direction are formed in the lower wiring layer 12b of the wiring layer 12 of the first semiconductor chip 10 .
  • the wirings 202 and 212 are formed below the bump 182
  • the wirings 203 and 213 are formed below the bump 183 . Parts of the wirings 202, 203, 212, 213 partially overlap the embedded power supply wirings 101, 102 in plan view.
  • a plurality of vias 222 and 223 are formed below the wirings 202 and 203, respectively.
  • the wirings 202 and 203 are connected to wirings 212 and 213 via vias 222 and 223, respectively.
  • a plurality of vias 232 and 233 are formed below the wirings 212 and 213, respectively.
  • the wirings 212 and 213 are connected to the embedded power supply wirings 102 and 103 via vias 232 and 233, respectively.
  • a plurality of (here, five) embedded power supply wirings 103 are formed below the wirings 213 .
  • a plurality of embedded power supply wirings 103 are arranged between the embedded power supply wirings 101 (or the embedded power supply wirings 102) arranged side by side in the X direction.
  • the power supply voltage VDD is supplied to the power switch circuit 42 through the bumps 183 , the wiring 203 , the vias 223 , the wirings 213 , the vias 233 and the embedded power supply wiring 103 .
  • the power supply voltage VSS is supplied to the standard cell 41 and the power switch circuit 42 through the bump 182 , the wiring 202 , the via 222 , the wiring 212 , the via 232 and the embedded power supply wiring 102 .
  • the embedded power supply wirings 101 and 102 extending in the X direction are formed continuously under the bumps 182 and 183, respectively. Voltage is strengthened.
  • two wiring layers (an upper wiring layer 12a and a lower wiring layer 12b) are formed in the wiring layer 12 of the first semiconductor chip 10, and the standard cell 41 and the power supply are connected via these wiring layers.
  • the power supply voltage is supplied to the switch circuit 42, it is not limited to this.
  • the number of wiring layers through which the power supply voltage is supplied to the standard cell 41 and the power switch circuit 42 may be one or three or more.
  • FIG. 11 is a plan view showing an example of the layout structure of the standard cell region of the first semiconductor chip according to the second embodiment
  • FIG. 12 is the layout structure of the standard cell region of the second semiconductor chip according to the second embodiment
  • FIG. 13A is a plan view showing an example
  • FIGS. 13A and 13B are cross-sectional views showing an example of a standard cell region in a semiconductor circuit device according to a second embodiment; Specifically, FIG. 13A(a) shows a cross section taken along line X5-X5', FIG. 13A(b) shows a cross section taken along line X6-X6', and FIG. 13B shows a cross section taken along line Y2-Y2'.
  • a plurality of wirings 302 and 303 extending in the X direction are formed in the upper wiring layer 12a of the wiring layer 12 of the first semiconductor chip 10.
  • FIG. A plurality of (here, three) wirings 302 are connected by a connecting portion 305 .
  • a plurality of (here, two) wirings 303 are connected by a connecting portion 306 .
  • the connecting portions 305 and 306 have upper portions exposed from the wiring layer 12 and are connected to the bumps 182 and 183, respectively.
  • a plurality of wirings 312 and 313 extending in the Y direction are arranged alternately in the X direction. Parts of the wirings 302, 303, 312, 313 partially overlap the embedded power supply wirings 101, 102 in plan view.
  • the wirings 302, 303, 312, and 313 partially overlap the standard cell 41 and the power switch circuit 42 in plan view.
  • a plurality of vias 322 are formed below the wiring 302 and the connecting portion 305 , and a plurality of vias 323 are formed below the wiring 303 and the connecting portion 306 .
  • the wiring 302 and the connecting portion 305 are connected to the wiring 312 through vias 322 .
  • the wiring 303 and the connecting portion 306 are connected to the wiring 313 through the via 323 .
  • a plurality of vias 332 and 333 are formed below the wirings 312 and 313, respectively.
  • the wirings 312 and 313 are connected to the embedded power supply wirings 102 and 103 via vias 332 and 333, respectively.
  • the power supply voltage VDD is supplied to the power switch circuit 42 via the bump 183 , the wiring 303 (connecting portion 306 ), the via 323 , the wiring 313 , the via 333 and the embedded power supply wiring 103 .
  • the power supply voltage VSS is supplied to the standard cell 41 and the power switch circuit 42 through the bump 182 , the wiring 302 (connecting portion 305 ), the via 322 , the wiring 312 , the via 332 and the embedded power supply wiring 102 .
  • the first semiconductor chip 10 is formed above the wiring layer 12, and is formed above the wiring layer 12 and the pads 19 connected to the power supply that supplies the power supply voltage VDD.
  • a pad 19 connected to a power supply for supplying a voltage VSS, a power switch circuit 42 provided between the VDD wiring and the VDDV wiring for controlling connection and disconnection between the VDD wiring and the VDDV wiring, and an embedded power wiring layer.
  • embedded power wiring 103 connected to a power supply that supplies power supply voltage VDD, and an embedded power supply wiring formed in an embedded power supply wiring layer and connected to a power supply that supplies power supply voltage VSS.
  • the second semiconductor chip 20 includes wirings 131 connected to the vias 121 .
  • pads 19 connected to a power supply that supplies the power supply voltage VSS are formed on the upper portion of the wiring layer 12 of the first semiconductor chip 10 .
  • the pad 19 is connected to the power switch circuit 42 via the wiring 302 of the upper wiring layer 12 a , the wiring 312 of the lower wiring layer 12 b and the embedded power wiring 102 of the first semiconductor chip 10 .
  • the power supply voltage VSS can be supplied to the power switch circuit 42 from the pad 19 formed on the wiring layer 12 of the first semiconductor chip 10 , so that external terminals are provided on the top of the first semiconductor chip 10 . Even if it is stipulated, it can be handled.
  • the embedded power supply wirings 101, 102 extending in the X direction are formed continuously below the bumps 182, 183, respectively. Strengthened.
  • the standard cell 41 and the power switch circuit 42 can be arranged under the bumps 182 and 183, the area of the semiconductor integrated circuit device can be reduced.
  • FIG. 14 is a plan view showing another example of the layout structure of the standard cell area according to the second embodiment. Specifically, FIG. 14 shows a plan view of the standard cell region 31 from the embedded power wiring layer of the first semiconductor chip 10 to the second semiconductor chip 20. As shown in FIG. In FIG. 14, the wirings 133 and 153 in the wiring layer 22 of the second semiconductor chip 20 are omitted as compared with FIGS. Note that FIG. 14 shows the VDD wiring 310 formed in the wiring layer 12 of the first semiconductor chip 10 . A power supply voltage VDD is supplied to the power switch circuit 42 via a VDD wiring 310 .
  • the second semiconductor chip 20 is formed with a power supply network (wirings 131, 151, 132, 152) for supplying power supply voltages VDDV, VSS to the standard cell 41 and the power switch circuit 42.
  • a power supply network (wirings 131, 151, 132, 152) for supplying power supply voltages VDDV, VSS to the standard cell 41 and the power switch circuit 42.
  • FIG. Thereby, the power supply voltages VDDV and VSS supplied to the standard cell 41 and the power switch circuit 42 can be strengthened.
  • a power supply network for supplying the power supply voltage VDD to the standard cells 41 and the power switch circuit 42 is formed only in the first semiconductor chip 10 (see FIG. 11, etc.).
  • the embedded power supply wirings 101, 102 extending in the X direction are formed continuously under the bumps 182, 183, respectively, the power supply voltage supplied to the first semiconductor chip 10 is strengthened.
  • FIG. 15 is a plan view showing another example of the layout structure of the standard cell area according to the second embodiment. Specifically, FIG. 15 shows a plan view of the standard cell region 31 from the embedded power wiring layer of the first semiconductor chip 10 to the second semiconductor chip 20. As shown in FIG. In FIG. 15, only the wiring 131 is formed in the wiring layer 22 of the second semiconductor chip 20 as compared with FIG.
  • Embedded power wiring 101 is connected to wiring 131 via via 121 (and bump 141). Thereby, the power supply voltage VDDV supplied to the power switch circuit 42 can be strengthened.
  • each of the wirings 131 may be composed of a plurality of strip-shaped wirings, or may be formed in a grid pattern. That is, the wiring 131 may have a slit in part and may not have wiring.
  • planar shape of the via is not particularly limited, and may be circular, elliptical, square, rectangular, or the like.
  • the second semiconductor chip 20 may not include the substrate 21 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

第1半導体チップ(10)は、配線層(12)の上部に形成されており、電源電圧VSSを供給する電源に接続されたパッド(19)と、VDD配線およびVDDV配線の間に設けられた電源スイッチ回路(42)と、埋込電源配線層に形成されており、電源電圧VSSを供給する電源と接続された埋込電源配線(102)と、電源電圧VSSを供給する電源に接続されたパッド(19)に接続されており、基板(11)および配線層(12)を貫通するように設けられたビア(172)とを含む。第2半導体チップ(20)は、埋込電源配線(102)およびビア(172)に接続された配線(132)を含む。

Description

半導体集積回路装置
 本開示は、積層された半導体チップを備えた半導体集積回路装置に関する。
 半導体集積回路は、その微細化に伴う高集積化および低電圧化により、電源電圧降下(IR-Drop)や電源ノイズに対してより注意した設計が必要となっている。このため、半導体集積回路に対して電源電圧を供給する電源供給網(PDN:Power Delivery Network)の設計が重要となる。
 また、半導体集積回路は低電力化のために内部に電源スイッチを設け、システムの動作に応じて電源スイッチをON/OFFすることによって消費電力を削減することが広く行われている。
 特許文献1では積層された半導体チップのうち、第1の半導体チップに電源スイッチを設け、第1の半導体チップの背面に張り合わされ、電源配線が構成された第2の半導体チップから電源スイッチに電源電位(電源電圧)を供給する半導体装置が開示されている。
WO2020/065916号公報
 特許文献1では、第2の半導体チップの下部に設けられた、外部端子としてのパッドから電源電圧が供給される。この電源電圧が、第2の半導体チップの電源配線を介して、第1の半導体チップの電源スイッチに供給される。
 一般的に大規模な半導体集積回路装置を設計する場合に、多くのIPコア(Intellectual Property core)と呼ばれる、特定の機能単位でまとめられた回路を使用する。これらのうちハードマクロと呼ばれるIPコアでは、提供されるデータにそのレイアウト構造まで含まれており、それらを修正できない。この場合、そのハードマクロの外部端子としてのパッドが、第1の半導体チップ(第1半導体チップ)の上部に設けられることが規定されていると、特許文献1のような構造では、電源電圧を供給するために、第2の半導体チップ(第2半導体チップ)の下部の外部端子に加えて、第1の半導体チップの上部にも外部端子を設けなくてはならない。このため、半導体集積回路装置の設計が困難であり、かつ、コストも大きくなる。
 本開示は、第1の半導体チップの上部に外部端子が設けられることが規定されている場合においても対応可能な半導体集積回路装置を提供することを目的とする。
 本開示の第1態様では、第1半導体チップと第2半導体チップとを含む半導体集積回路装置であって、前記第1半導体チップの背面と前記第2半導体チップの主面とが対向して配置されている。前記第1半導体チップは、主面の上部に形成されており、第1電源電圧を供給する第1電源に接続された第1端子と、前記主面の上部に形成されており、前記第1電源電圧と異なる第2電源電圧を供給する第2電源に接続された第2端子と、前記第1電源と、前記第1および第2電源電圧と異なる第3電源電圧を供給する第3電源との間に設けられ、前記第1および第3電源の間の接続および切断を制御する電源スイッチ回路と、埋込電源配線層に形成されており、前記第1電源と接続された第1埋込電源配線と、前記埋込電源配線層に形成されており、前記第2電源と接続された第2埋込電源配線と、前記第1端子に接続されており、主面から背面まで貫通するように設けられた第1ビアとを含む。前記第2半導体チップは、前記第1埋込電源配線および前記第1ビアに接続された第1配線を含む。
 本開示によると、第1半導体チップの主面の上部に、第1電源電圧を供給する第1電源に接続される第1端子が形成されている。第1端子は、第1半導体チップを主面から背面まで貫通する第1ビア、第2半導体チップの第1配線、および、第1半導体チップの第1埋込電源配線を介して、電源スイッチ回路と接続される。これにより、第1半導体チップの主面の上部に形成された第1端子から電源スイッチ回路に第1電源電圧を供給することができるため、第1半導体チップの上部に外部端子が設けられることが規定されていても対応することができる。
 本開示の第2態様では、第1半導体チップと第2半導体チップとを含む半導体集積回路装置であって、前記第1半導体チップの背面と前記第2半導体チップの主面とが対向して配置されている。前記第1半導体チップは、主面の上部に設けられており、第1電源電圧を供給する第1電源に接続された第1端子と、前記主面の上部に設けられており、前記第1電源電圧と異なる第2電源電圧を供給する第2電源に接続された第2端子と、前記第1電源と、前記第1および第2電圧と異なる第3電圧を供給する第3電源との間に設けられ、前記第1および第3電源の間の接続および切断を制御する電源スイッチ回路と、埋込電源配線層に形成されており、前記第1電源と接続された第1埋込電源配線と、前記埋込電源配線層に形成されており、前記第2電源と接続された第2埋込電源配線と、前記埋込電源配線層よりも上層の第1配線層に形成されており、前記第1端子および前記第1埋込電源配線に接続された第1配線とを含む。前記第2半導体チップは、前記第1埋込電源配線と接続された第2配線を含む。
 本開示によると、第1半導体チップの主面の上部に、第1電源電圧を供給する第1電源に接続される第1端子が形成されている。第1端子は、第1半導体チップにおける、第1配線層の第1配線および埋込電源配線層の第1埋込電源配線を介して、電源スイッチ回路と接続されている。これにより、第1半導体チップの主面の上部に形成された第1端子から電源スイッチ回路に第1電源電圧を供給することができるため、第1半導体チップの上部に外部端子が設けられることが規定されていても対応することができる。
 本開示の第3態様では、第1半導体チップと第2半導体チップとを含む半導体集積回路装置であって、前記第1半導体チップの背面と前記第2半導体チップの主面とが対向して配置されている。前記第1半導体チップは、主面の上部に設けられており、第1電源電圧を供給する第1電源に接続された第1端子と、前記主面の上部に設けられており、前記第1電源電圧と異なる第2電源電圧を供給する第2電源に接続された第2端子と、前記第1電源と、前記第1および第2電圧と異なる第3電圧を供給する第3電源との間に設けられ、前記第1および第3電源の間の接続および切断を制御する電源スイッチ回路と、埋込電源配線層に形成されており、前記第1電源と接続された第1埋込電源配線と、前記埋込電源配線層に形成されており、前記第2電源と接続された第2埋込電源配線と、前記埋込電源配線層に形成されており、前記第3電源と接続された第3埋込電源配線と、前記埋込電源配線層よりも上層の第1配線層に形成されており、前記第1端子および前記第1埋込電源配線に接続された第1配線と、前記背面に露出しており、前記第3埋込電源配線に接続された第1ビアとを含む。前記第2半導体チップは、前記第1ビアに接続された第2配線を含む。
 本開示によると、第1半導体チップの主面の上部に、第1電源電圧を供給する第1電源に接続される第1端子が形成されている。第1端子は、第1半導体チップにおける、第1配線層の第1配線および埋込電源配線層の第1埋込電源配線を介して、電源スイッチ回路と接続されている。これにより、第1半導体チップの主面の上部に形成された第1端子から電源スイッチ回路に第1電源電圧を供給することができるため、第1半導体チップの上部に外部端子が設けられることが規定されていても対応することができる。
 本開示によると、第1半導体チップの上部に外部端子が設けられることが規定されている場合においても対応することができる。
第1実施形態に係る半導体集積回路装置の概要を示す断面図。 第1実施形態に係る第1半導体チップのレイアウト構造の例を示す平面図。 第1実施形態に係る第1半導体チップに含まれる電源スイッチ回路の構成を示す回路図。 第1実施形態に係る電源スイッチ制御回路のバッファの構成を示す回路図。 第1実施形態に係るスタンダードセル領域のレイアウト構造の例を示す平面図。 第1実施形態に係るスタンダードセル領域のレイアウト構造の例を示す断面図。 第1実施形態に係るスタンダードセル領域のレイアウト構造の例を示す断面図。 第1実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す平面図。 第1実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す断面図。 第1実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す平面図。 第1実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す断面図。 第2実施形態に係る第1半導体チップのスタンダードセル領域のレイアウト構造の例を示す平面図。 第2実施形態に係る第2半導体チップのスタンダードセル領域のレイアウト構造の例を示す平面図。 第2実施形態に係るスタンダードセル領域のレイアウト構造の例を示す断面図。 第2実施形態に係るスタンダードセル領域のレイアウト構造の例を示す断面図。 第2実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す平面図。 第2実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す平面図。
 以下、実施の形態について、図面を参照して説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省くことがある。また、以下の説明において、基板の表面に平行で互いに直交する2つの方向をX方向(第1方向)、Y方向(第2方向)とし、基板の表面に垂直な方向をZ方向とする。また、本開示での配置の一致とは、厳密に、製造上のばらつきに起因して不一致となったものを排除するものではなく、製造上のばらつきで配置にずれが生じている場合でも、配置が一致しているものとみなすことができる。
 (第1実施形態)
 図1は第1実施形態に係る半導体集積回路装置の断面図を示す。
 図1に示すように、第1の実施形態に係る半導体集積回路装置は、第1半導体チップ10および第2半導体チップ20を含む。
 第1半導体チップ10は、基板11および配線層12を含む。
 基板11は、例えば、シリコン基板であり、基板11の表面側にトランジスタ等の半導体素子が形成されている。トランジスタは、例えばソース、ドレインおよびチャネルにフィン13を含むFinFETである。
 配線層12は、基板11の表面上に形成された配線14および絶縁層15を含む。配線14の一部はフィン13に接続される。また、基板11の表面側に、配線14に接続される埋込電源配線16が形成されている。埋込電源配線16は、基板11に少なくとも一部が埋め込まれて形成される埋込電源配線層の埋込電源配線(BPR:Buried Power Rail)である。
 基板11には、埋込電源配線16から基板11の裏面に繋がるビア17が設けられている。また、基板11には、パッド19から配線層22の上面に形成された配線23に繋がるビア18が設けられている。パッド19は、例えば、配線基板やボードなどに接続する外部端子である。ビア17,18は、例えばシリコン貫通ビア(through-silicon via:TSV)である。
 第2半導体チップ20は、第1半導体チップ10の基板11の裏面に対向して配置される。第2半導体チップ20は、基板21および配線層22を含む。
 基板21は、例えばシリコン基板である。
 配線層22は、基板21の表面上に形成される。配線層22の上面は、第1半導体チップ10の基板11の裏面に対向する。すなわち、配線層22は、基板11と基板21の間に位置する。
 配線層22は、複数の配線23を含む。配線層22の上面に形成された配線23の一部は、ビア17を介して、埋込電源配線16に接続されている。また、配線層22の上面に形成された配線23の一部は、ビア18を介して、パッド19と接続されている。また、複数の配線23の一部は、ビア24を介して、互いに接続されている。
 図2は第1実施形態に係る第1半導体チップのレイアウト構造の例を示す平面図である。図3は第1実施形態に係る第1半導体チップに含まれる電源スイッチ回路の構成を示す回路図である。
 図2に示すように、第1半導体チップ10は、複数のスタンダードセル領域31およびその周辺に配置された入出力(I/O)セル領域32を含む。なお、スタンダードセル領域31の配置数は1でもよいし、3以上であってもよい。
 図3に示すように、スタンダードセル領域31は、スタンダードセル41および電源スイッチ回路42を含む。スタンダードセル41は、例えば、NAND回路、インバータ回路などの各種論理回路を含む。スタンダードセル領域31には、スタンダードセル41に接地電圧を供給するVSS配線、電源電圧を供給するVDDV配線が配置されている。また、スタンダードセル領域31には、外部から電源スイッチ回路42に電源電圧を供給するVDD配線が配置されている。 
 図3に示すように、電源スイッチ回路42は、スイッチトランジスタ51および電源スイッチ制御回路52を含む。スイッチトランジスタ51は、PチャネルMOSトランジスタであり、VDD配線とVDDV配線との間に接続されている。電源スイッチ制御回路52は、スイッチトランジスタ51のゲートに接続され、スイッチトランジスタ51の動作を制御する。電源スイッチ制御回路52によりスイッチトランジスタ51のオン/オフが切り替えられ、VDD配線とVDDV配線との間の導通が制御される。電源スイッチ制御回路52は、例えばバッファである。
 図4は第1実施形態に係る電源スイッチ制御回路のバッファの構成を示す回路図である。
 図4に示すように、電源スイッチ制御回路52に用いられるバッファ60は、インバータ61およびインバータ62を有する。インバータ61に入力信号INが入力され、インバータ61の出力がスイッチトランジスタ51のゲート及びインバータ62に入力され、インバータ62から出力信号OUTが出力される。インバータ61及び62は、いずれも1対のPチャネルMOSトランジスタ及びNチャネルMOSトランジスタを含む。
 図5は第1実施形態に係るスタンダードセル領域のレイアウト構造の例を示す平面図である。図6Aおよび図6Bは第1実施形態に係るスタンダードセル領域のレイアウト構造の例を示す断面図である。具体的には、図6A(a)は線X1-X1’の断面、図6A(b)は線X2-X2’の断面、図6Bは線Y1-Y1’の断面を示す。
 図5、図6Aおよび図6Bに示すように、スタンダードセル領域31には、複数のスタンダードセル41と、複数の電源スイッチ回路42とが配置されている。
 また、図5に示すように、スタンダードセル領域31には、X方向に延びる複数の埋込電源配線101,102が、Y方向に交互に配置されている。また、電源スイッチ回路42は、X方向に延びる埋込電源配線103を含む。埋込電源配線103は、Y方向に隣接する埋込電源配線101同士の間に配置され、Y方向の位置が埋込電源102と一致するように配置されている。埋込電源配線101はVDDV配線に相当し、埋込電源配線102はVSS配線に相当し、埋込電源配線103はVDD配線に相当する。また、埋込電源配線101~103は、埋込電源配線16の一部である。
 なお、図6Bに示すように、スタンダードセル41および電源スイッチ回路42は、フィン13で構成されたFinFETを含む。
 図6Aおよび図6Bに示すように、基板11の表面には、素子分離膜11aが形成されている。素子分離膜11aは、例えばSTI(Shallow Trench Isolation)法により形成されている。基板11および素子分離膜11aには、X方向に延びるように形成された複数の溝が形成されている。埋込電源配線101~103は、この溝内に形成されている。そして、埋込電源配線101~103の表面は絶縁膜104により覆われている。このようにして、埋込電源配線101~103は、第1半導体チップ10における埋込電源配線層に形成されている。なお、素子分離膜11aの表面および絶縁膜104の表面は基板11の表面と面一であってもよいし、面一でなくてもよい。
 埋込電源配線101~103の上層には、ローカル配線111が形成されている。ローカル配線111の一部は、埋込電源配線101~103と接続されている。また、図示は省略するが、ローカル配線111の一部はフィン13に接続されている。なお、ローカル配線111は、配線14の一部である。
 基板11には、基板11をZ方向に貫通するビア121~123が形成されている。ビア121は埋込電源配線101の下方に形成されており、ビア122は埋込電源配線102の下方に形成されており、ビア123は埋込電源配線103の下方に形成されている。ビア121~123は、ビア17の一部である。
 図5、図6Aおよび図6Bに示すように、第2半導体チップ20の配線層22における上層配線層22aには、Y方向に延びる配線131~133が、X方向に並んで配置されている。配線131~133は、上面が配線層22から露出している。配線131~133は、バンプ141~143を介して、ビア121~123とそれぞれ接続されている。
 第2半導体チップ20の配線層22における下層配線層22bには、X方向に延びる配線151~153が、Y方向に並んで配置されている。配線131~133,151~153は、配線23の一部である。
 上層配線層22aと下層配線層22bとの間には、ビア162,163が形成されている。配線132,133は、ビア162,163を介して、配線152,153とそれぞれ接続されている。ビア162,163は、ビア24の一部である。なお、図示は省略するが、上層配線層22aと下層配線層22bとの間には、配線131と配線151とを接続するビアが形成されている。
 ここで、第1半導体チップ10には、配線層12の上面から基板11の裏面まで貫通するビア172,173が形成されている。ビア172,173はビア18の一部である。ビア172,173は、バンプ145,146を介して、配線132,133とそれぞれ接続されている。なお、バンプ141~145は、例えば、半田などのマイクロバンプである。
 ビア172,173は、バンプ182,183を介して、パッド19と接続される。図示は省略するが、各パッド19は、本半導体集積回路装置の外部にある、電源電圧VDD,VSSをそれぞれ供給する電源と接続される。図5および図6では、ビア173が接続されるパッド19には、電源電圧VDDを供給する電源が接続され、ビア172が接続されるパッド19には、電源電圧VSSを供給する電源が接続される。
 すなわち、バンプ183、ビア173、バンプ146、配線133、バンプ143、ビア123、埋込電源配線103を介して、電源スイッチ回路42に電源電圧VDDが供給される。また、バンプ182、ビア172、バンプ145、配線132、バンプ142、ビア122、埋込電源配線102を介して、スタンダードセル41および電源スイッチ回路42に電源電圧VSSが供給される。
 なお、図5に示すように、ビア172,173は、平面視において、スタンダードセル41および電源スイッチ回路42が配置されていない箇所に配置される。
 以上の構成により、第1半導体チップ10は、配線層12の上部に形成されており、電源電圧VDDを供給する電源に接続されたパッド19と、配線層12の上部に形成されており、電源電圧VSSを供給する電源に接続されたパッド19と、VDD配線およびVDDV配線の間に設けられ、VDD配線およびVDDV配線の間の接続および切断を制御する電源スイッチ回路42と、埋込電源配線層に形成されており、電源電圧VDDを供給する電源と接続された埋込電源配線103と、埋込電源配線層に形成されており、電源電圧VSSを供給する電源と接続された埋込電源配線102と、電源電圧VSSを供給する電源に接続されたパッド19に接続されており、基板11および配線層12を貫通するように設けられたビア172とを含む。第2半導体チップ20は、埋込電源配線102およびビア172に接続された配線132を含む。
 すなわち、第1半導体チップ10の配線層12の上部に、電源電圧VSSを供給する電源に接続されたパッド19が形成されている。このパッド19は、基板11および配線層12を貫通するビア172、第2半導体チップ20の配線132、および、第1半導体チップ10の埋込電源配線102を介して、電源スイッチ回路42と接続される。これにより、第1半導体チップ10の配線層12の上部に形成されたパッド19から電源スイッチ回路42に電源電圧VSSを供給することができるため、第1半導体チップ10の上部に外部端子が設けられることが規定されていても対応することができる。
 また、ビア173,172を介して、スタンダードセル41および電源スイッチ回路42に供給される電源電圧VDD,VSSは、第2半導体チップ20に供給された後に、第1半導体チップ10に供給される。これにより、第2半導体チップ20に安定して電源電圧を供給することができるため、スタンダードセル41および電源スイッチ回路42に供給される電源電圧降下を抑制するとともに、電源ノイズを抑制することができる。
 また、第1半導体チップ10において、X方向に延びる埋込電源配線101~103が、第2半導体チップ20において、Y方向に延びる配線131~133とそれぞれ接続されている。また、第2半導体チップ20において、配線131~133は、X方向に延びる151~153とそれぞれ接続されている。これにより、電源電圧VDDV,VSS,VDDを供給するメッシュ状の電源供給網が構成されているため、スタンダードセル41および電源スイッチ回路42に供給する電源電圧降下を抑制するとともに、電源ノイズを抑制することができる。
 また、配線131~133,151~153が第2半導体チップ20に設けられている。これにより、電源供給網を第1半導体チップ10内に構成する必要がないため、第1半導体チップ10内の配線の配置の自由度が向上する。
 また、埋込電源配線101~103が埋込電源配線層に形成されている。これにより、配線層12に電源配線を設ける必要がないため、第1半導体チップ10の配線層12に設けられる配線の配置の自由度が向上する。
 また、バンプ141~145は、例えば、半田等のマイクロバンプであるとしたが、これに限られない。例えば、配線131~133と、ビア121~123とは、錫(Sn)などの金属膜により接続してもよい。すなわち、配線131~133と、ビア121~123とが接続されていれば、どのような構成であってもよい。
 (変形例1)
 図7は第1実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す平面図である。図8は第1実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す断面図。具体的には、図8は、線X3-X3’の断面を示す。
 図7では、図5と比較すると、ビア172,173の下方にそれぞれ接続部192,193が形成されている。
 図7および図8に示すように、配線層22の上層配線層22aには、接続部192,193が形成されている。接続部192,193は、それぞれ、平面視において、平板状に形成されている。
 接続部192は、互いに隣接する複数(図7では3本)の配線132を接続している。接続部192は、平面視において、X方向およびY方向の幅が、ビア172(バンプ182)のX方向およびY方向の幅よりもそれぞれ広い。また、バンプ145,182は、平面視において、同じ形状(図7では、円)で形成されている。なお、接続部192は、配線131,133と接続されていない。
 接続部193は、配線133と接続されている。接続部193は、平面視において、X方向およびY方向の幅が、ビア173(バンプ183)のX方向およびY方向の幅よりもそれぞれ広い。また、バンプ146,183は、平面視において、同じ形状(図7では、円)で形成されている。なお、接続部193は、配線131,132と接続されていない。
 本変形例では、バンプ145とビア172とが平面視において同じ形状であり、バンプ146とビア173とが平面視において同じ形状であるため、第1半導体チップ10のバンプ182から第2半導体チップ20の配線132までの間の抵抗値、および、第1半導体チップ10のバンプ183から第2半導体チップ20の配線133までの間の抵抗値を下げることができる。これにより、第2半導体チップ20の配線132,133へ安定して電源電圧を供給することができる。
 その他、図5と同様の効果を得ることができる。
 なお、接続部192,193は、それぞれ、平板状に形成されるとしたが、これに限られない。例えば、接続部192,193は、それぞれ、複数の短冊状の配線で構成されていてもよいし、格子状に形成されてもよい。すなわち、接続部192,193は、一部にスリットが入っており、配線が形成されていない領域を含んでもよい。
 (変形例2)
 図9は第1実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す平面図である。図10は第1実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す断面図である。具体的には、図10は、線X4-X4’の断面を示す。図9は、図5と比較すると、ビア172,173に代えて、第1半導体チップ10の配線層12に複数の配線および複数のビアが配置されている。
 図9および図10に示すように、第1半導体チップ10の配線層12における上層配線層12aには、X方向に延びる複数の配線202および複数の配線203が形成されている。配線202,203は、上面が配線層12から露出しており、バンプ182,183とそれぞれ接続されている。第1半導体チップ10の配線層12における下層配線層12bには、Y方向に延びる複数の配線212および複数の配線213が形成されている。配線202,212は、バンプ182の下方に形成されており、配線203,213は、バンプ183の下方に形成されている。配線202,203,212,213の一部は、平面視において、埋込電源配線101,102と一部が重なっている。
 配線202,203の下方には、複数のビア222,223がそれぞれ形成されている。配線202,203は、ビア222,223を介して、配線212,213とそれぞれ接続されている。また、配線212,213の下方には、複数のビア232,233がそれぞれ形成されている。配線212,213は、ビア232,233を介して、埋込電源配線102,103と接続されている。
 なお、配線213の下方には、複数(ここでは、5本)の埋込電源配線103が形成されている。複数の埋込電源配線103は、X方向に並んで配置された埋込電源配線101(または埋込電源配線102)同士の間に配置されている。
 すなわち、バンプ183、配線203、ビア223、配線213、ビア233、埋込電源配線103を介して、電源スイッチ回路42に電源電圧VDDが供給される。また、バンプ182、配線202、ビア222、配線212、ビア232、埋込電源配線102を介して、スタンダードセル41および電源スイッチ回路42に電源電圧VSSが供給される。
 本変形例では、図5とは異なり、バンプ182,183の下方において、X方向に延びる埋込電源配線101,102がそれぞれ連続して形成されるため、第1半導体チップ10へ供給される電源電圧が強化される。
 また、第1半導体チップ10に、配線層12および基板11を貫通するビア172,173を形成する必要がなくなるため、Z方向の長さが異なる2種類のTSV(ビア121~123とビア172,173)を形成しなくてもよい。これにより、半導体集積回路装置の製造容易性が向上するため、半導体集積回路装置の歩留まりおよび信頼性が向上する。
 その他、図5と同様の効果を得ることができる。
 なお、本変形例では、第1半導体チップ10の配線層12に2つの配線層(上層配線層12aおよび下層配線層12b)が形成され、これらの配線層を経由して、スタンダードセル41および電源スイッチ回路42に電源電圧が供給されているが、これに限られない。スタンダードセル41および電源スイッチ回路42に電源電圧を供給するために経由する配線層の数は1または3以上であってもよい。
 (第2実施形態)
 図11は第2実施形態に係る第1半導体チップのスタンダードセル領域のレイアウト構造の例を示す平面図であり、図12は第2実施形態に係る第2半導体チップのスタンダードセル領域のレイアウト構造の例を示す平面図であり、図13Aおよび図13Bは第2実施形態に係る半導体回路装置におけるスタンダードセル領域の例を示す断面図である。具体的には、図13A(a)は線X5-X5’の断面、図13A(b)は線X6-X6’の断面、図13Bは線Y2-Y2’の断面を示す。
 図11、図12、図13Aおよび図13Bに示すように、第1半導体チップ10の配線層12の上層配線層12aには、X方向に延びる複数の配線302,303が形成されている。複数(ここでは3本)の配線302は、接続部305によって接続されている。複数(ここでは2本)の配線303は、接続部306によって接続されている。接続部305,306は、上部が配線層12から露出しており、バンプ182,183とそれぞれ接続されている。第1半導体チップ10の配線層12の下層配線層12bには、Y方向に延びる複数の配線312,313が、X方向に交互に配置されている。配線302,303,312,313の一部は、平面視において、埋込電源配線101,102と一部が重なっている。また、配線302,303,312,313は、平面視において、スタンダードセル41および電源スイッチ回路42と一部が重なっている。
 配線302および接続部305の下方には、複数のビア322が形成されており、配線303および接続部306の下方には、複数のビア323が形成されている。配線302および接続部305は、ビア322を介して、配線312と接続されている。配線303および接続部306は、ビア323を介して、配線313と接続されている。
 配線312,313の下方には、複数のビア332,333がそれぞれ形成されている。配線312,313は、ビア332,333を介して、埋込電源配線102,103とそれぞれ接続されている。
 すなわち、バンプ183、配線303(接続部306)、ビア323、配線313、ビア333、埋込電源配線103を介して、電源スイッチ回路42に電源電圧VDDが供給される。また、バンプ182、配線302(接続部305)、ビア322、配線312、ビア332、埋込電源配線102を介して、スタンダードセル41および電源スイッチ回路42に電源電圧VSSが供給される。
 以上の構成により、第1半導体チップ10は、配線層12の上部に形成されており、電源電圧VDDを供給する電源に接続されたパッド19と、配線層12の上部に形成されており、電源電圧VSSを供給する電源に接続されたパッド19と、VDD配線およびVDDV配線の間に設けられ、VDD配線およびVDDV配線の間の接続および切断を制御する電源スイッチ回路42と、埋込電源配線層に形成されており、電源電圧VDDを供給する電源と接続された埋込電源配線103と、埋込電源配線層に形成されており、電源電圧VSSを供給する電源と接続された埋込電源配線102と、埋込電源配線層に形成されており、電源電圧VDDVを供給する電源と接続された埋込電源配線101と、埋込電源配線層よりも上層の上層配線層12aおよび下層配線層12bにそれぞれ形成されており、電源電圧VSSを供給する電源に接続されたパッド19および埋込電源配線102に接続された配線302,312と、背面が露出しており、埋込電源配線101に接続されたビア121とを含む。第2半導体チップ20は、ビア121に接続された配線131を含む。
 すなわち、第1半導体チップ10の配線層12の上部に、電源電圧VSSを供給する電源に接続されたパッド19が形成されている。このパッド19は、上層配線層12aの配線302、下層配線層12bの配線312および第1半導体チップ10の埋込電源配線102を介して、電源スイッチ回路42と接続される。これにより、第1半導体チップ10の配線層12の上部に形成されたパッド19から電源スイッチ回路42に電源電圧VSSを供給することができるため、第1半導体チップ10の上部に外部端子が設けられることが規定されていても対応することができる。
 また、本実施形態では、図5とは異なり、バンプ182,183の下方において、X方向に延びる埋込電源配線101,102がそれぞれ連続して形成されるため、第1半導体チップ10の電源が強化される。
 また、バンプ182,183の下部にもスタンダードセル41や電源スイッチ回路42を配置することができるため、半導体集積回路装置の小面積化を図ることができる。
 また、第1半導体チップ10に、配線層12および基板11を貫通するビア172,173を形成する必要がなくなるため、Z方向の長さが異なる2種類のTSV(ビア121~123とビア172,173)を形成しなくてもよい。これにより、半導体集積回路装置の製造容易性が向上するため、半導体集積回路装置の歩留まりおよび信頼性が向上する。
 (変形例1)
 図14は第2実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す平面図である。具体的に、図14は、第1半導体チップ10の埋込電源配線層から第2半導体チップ20までのスタンダードセル領域31の平面図を示す。図14では、図11および図12と比較すると、第2半導体チップ20の配線層22における配線133,153が省略されている。なお、図14には、第1半導体チップ10の配線層12に形成されたVDD配線310が図示されている。電源スイッチ回路42には、VDD配線310を介して、電源電圧VDDが供給される。
 図14に示すように、第2半導体チップ20に、スタンダードセル41および電源スイッチ回路42に電源電圧VDDV,VSSを供給する電源供給網(配線131,151,132,152)が形成されている。これにより、スタンダードセル41および電源スイッチ回路42に供給される電源電圧VDDV,VSSを強化することができる。なお、スタンダードセル41および電源スイッチ回路42に電源電圧VDDを供給する電源供給網が、第1半導体チップ10のみに形成されている(図11など参照)。
 また、バンプ182,183の下方において、X方向に延びる埋込電源配線101,102がそれぞれ連続して形成されるため、第1半導体チップ10へ供給される電源電圧が強化される。
 その他、図11および図12と同様の効果を得ることができる。
 (変形例2)
 図15は第2実施形態に係るスタンダードセル領域のレイアウト構造の他の例を示す平面図である。具体的に、図15は、第1半導体チップ10の埋込電源配線層から第2半導体チップ20までのスタンダードセル領域31の平面図を示す。図15では、図14と比較すると、第2半導体チップ20の配線層22に配線131のみが形成されている。
 具体的には、第2半導体チップ20の配線層22には、X方向およびY方向に延びる平板状の配線131が形成されている。埋込電源配線101は、ビア121(およびバンプ141)を介して、配線131と接続されている。これにより、電源スイッチ回路42に供給される電源電圧VDDVを強化することができる。
 その他、図14と同様の効果を得ることができる。
 なお、配線131は、平板状に形成されるとしたが、これに限られない。例えば、配線131は、それぞれ、複数の短冊状の配線で構成されていてもよいし、格子状に形成されてもよい。すなわち、配線131は、一部にスリットが入っており、配線が形成されていなくても構わない。
 なお、上記各実施形態および各変形例において、ビアの平面形状は特に限定されず、例えば円形、楕円形、正方形又は矩形等とすることができる。
 また、上記各実施形態および各変型例において、第2半導体チップ20は、基板21を含まなくてもよい。
 本開示では、第1半導体チップの上部に外部端子が設けられることが規定されている場合においても対応することができる。
 10 第1半導体チップ
 20 第2半導体チップ
 11,21 基板
 12,22 配線層
 13 フィン
 14,23,121~123,202,203,212,213,302,303,312,313 配線
 16,101~103 埋込電源配線
 17,18,121~123,172,173 ビア
 19 パッド
 41 スタンダードセル
 42 電源スイッチ回路

Claims (15)

  1.  第1半導体チップと第2半導体チップとを含む半導体集積回路装置であって、
     前記第1半導体チップの背面と前記第2半導体チップの主面とが対向して配置されており、
     前記第1半導体チップは、
      主面の上部に形成されており、第1電源電圧を供給する第1電源に接続された第1端子と、
      前記主面の上部に形成されており、前記第1電源電圧と異なる第2電源電圧を供給する第2電源に接続された第2端子と、
      前記第1電源と第3電源との間に設けられ、前記第1および第3電源の間の接続および切断を制御する電源スイッチ回路と、
      埋込電源配線層に形成されており、前記第1電源と接続された第1埋込電源配線と、
      前記埋込電源配線層に形成されており、前記第2電源と接続された第2埋込電源配線と、
      前記第1端子に接続されており、主面から背面まで貫通するように設けられた第1ビアとを含み、
     前記第2半導体チップは、前記第1埋込電源配線および前記第1ビアに接続された第1配線を含む、ことを特徴等する半導体集積回路装置。
  2.  請求項1記載の半導体集積回路装置において、
     前記第1半導体チップは、前記第2端子に接続されており、主面から背面まで貫通するように設けられた第2ビアをさらに含み、
     前記第2半導体チップは、前記第2埋込電源配線および前記第2ビアに接続された第2配線をさらに含むことを特徴とする半導体集積回路装置。
  3.  請求項1記載の半導体集積回路装置において、
     前記第1半導体チップは、前記背面に露出しており、前記第1埋込電源配線および前記第1配線に接続された第3ビアをさらに含むことを特徴とする半導体集積回路装置。
  4.  請求項1記載の半導体集積回路装置において、
     前記第2半導体チップは、複数の前記第1配線を含み、
     前記複数の第1配線は、平板状に形成された接続部を介して接続されており、
     前記接続部は、前記第1ビアに接続されていることを特徴とする半導体集積回路装置。
  5.  請求項4記載の半導体集積回路装置において、
     前記第1および第2埋込電源配線は、第1方向に延びており、
     前記接続部の前記第1方向における幅は、前記第1ビアの前記第1方向における幅よりも広いことを特徴とする半導体集積回路装置。
  6.  第1半導体チップと第2半導体チップとを含む半導体集積回路装置であって、
     前記第1半導体チップの背面と前記第2半導体チップの主面とが対向して配置されており、
     前記第1半導体チップは、
      主面の上部に形成されており、第1電源電圧を供給する第1電源に接続された第1端子と、
      前記主面の上部に形成されており、前記第1電源電圧と異なる第2電源電圧を供給する第2電源に接続された第2端子と、
      前記第1電源と第3電源との間に設けられ、前記第1および第3電源の間の接続および切断を制御する電源スイッチ回路と、
      埋込電源配線層に形成されており、前記第1電源と接続された第1埋込電源配線と、
      前記埋込電源配線層に形成されており、前記第2電源と接続された第2埋込電源配線と、
      前記埋込電源配線層よりも上層の第1配線層に形成されており、前記第1端子および前記第1埋込電源配線に接続された第1配線とを含み、
     前記第2半導体チップは、前記第1埋込電源配線と接続された第2配線を含む、ことを特徴とする半導体集積回路装置。
  7.  請求項6記載の半導体集積回路装置において、
     前記第1半導体チップは、前記第1配線層に形成されており、前記第2端子および前記第2埋込電源配線に接続された第3配線をさらに含み、
     前記第2半導体チップは、前記第2埋込電源配線および前記第3配線と接続された第4配線をさらに含むことを特徴とする半導体集積回路装置。
  8.  請求項6記載の半導体集積回路装置において、
     前記第1配線は、平面視において、前記第1および第2埋込電源配線の少なくともいずれか一方と重なりを有することを特徴とする半導体集積回路装置。
  9.  請求項6記載の半導体集積回路装置において、
     前記第1半導体チップは、前記背面に露出しており、前記第1埋込電源配線および前記第1配線に接続された第2ビアをさらに含むことを特徴とする半導体集積回路装置。
  10.  第1半導体チップと第2半導体チップとを含む半導体集積回路装置であって、
     前記第1半導体チップの背面と前記第2半導体チップの主面とが対向して配置されており、
     前記第1半導体チップは、
      主面の上部に形成されており、第1電源電圧を供給する第1電源に接続された第1端子と、
      前記主面の上部に形成されており、前記第1電源電圧と異なる第2電源電圧を供給する第2電源に接続された第2端子と、
      前記第1電源と第3電源との間に設けられ、前記第1および第3電源の間の接続および切断を制御する電源スイッチ回路と、
      埋込電源配線層に形成されており、前記第2電源と接続された第2埋込電源配線と、
      前記埋込電源配線層に形成されており、前記第3電源と接続された第3埋込電源配線と、
      前記埋込電源配線層よりも上層の第1配線層に形成されており、前記第1端子に接続された第1配線と、
      前記背面に露出しており、前記第3埋込電源配線に接続された第1ビアとを含み、
     前記第2半導体チップは、前記第1ビアに接続された第2配線を含む、ことを特徴とする半導体集積回路装置。
  11.  請求項10記載の半導体集積回路装置において、
     前記第1半導体チップは、前記第1配線層に形成されており、前記第2端子および前記第2埋込電源配線に接続された第3配線をさらに含む、ことを特徴とする半導体集積回路装置。
  12.  請求項10記載の半導体集積回路装置において、
     前記第1配線は、平面視において、前記電源スイッチ回路と重なりを有することを特徴とする半導体集積回路装置。
  13.  請求項10記載の半導体集積回路装置において、
     前記第1配線は、平面視において、前記第1および第2埋込電源配線の少なくともいずれか一方と重なりを有することを特徴とする半導体集積回路装置。
  14.  請求項10記載の半導体集積回路装置において、
     前記第2半導体チップは、前記第2配線よりも下層の配線層に形成されており、第1方向に延びる第4配線をさらに含み、
     前記第2配線は、前記第1方向と異なる第2方向に延びており、前記第4配線に接続されていることを特徴とする半導体集積回路装置。
  15.  請求項10記載の半導体集積回路装置において、
     前記第2配線は、平板状に形成されていることを特徴とする半導体集積回路装置。
PCT/JP2022/009198 2022-03-03 2022-03-03 半導体集積回路装置 WO2023166674A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009198 WO2023166674A1 (ja) 2022-03-03 2022-03-03 半導体集積回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009198 WO2023166674A1 (ja) 2022-03-03 2022-03-03 半導体集積回路装置

Publications (1)

Publication Number Publication Date
WO2023166674A1 true WO2023166674A1 (ja) 2023-09-07

Family

ID=87883356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009198 WO2023166674A1 (ja) 2022-03-03 2022-03-03 半導体集積回路装置

Country Status (1)

Country Link
WO (1) WO2023166674A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032839A (ja) * 2003-07-08 2005-02-03 Toshiba Microelectronics Corp 半導体集積回路及びマスターチップ
JP2006228897A (ja) * 2005-02-16 2006-08-31 Fujitsu Ltd 半導体装置
JP2009076518A (ja) * 2007-09-19 2009-04-09 Nec Electronics Corp 半導体装置
JP2010129958A (ja) * 2008-12-01 2010-06-10 Seiko Epson Corp 半導体装置及び半導体装置の製造方法
JP2012044042A (ja) * 2010-08-20 2012-03-01 Kawasaki Microelectronics Inc 半導体集積回路および半導体集積回路装置
JP2013016573A (ja) * 2011-07-01 2013-01-24 Renesas Electronics Corp 半導体集積回路装置
JP2014072499A (ja) * 2012-10-02 2014-04-21 Hitachi Ltd 半導体装置
JP2017028085A (ja) * 2015-07-22 2017-02-02 富士通株式会社 半導体装置および半導体装置の制御方法
WO2021070367A1 (ja) * 2019-10-11 2021-04-15 株式会社ソシオネクスト 半導体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032839A (ja) * 2003-07-08 2005-02-03 Toshiba Microelectronics Corp 半導体集積回路及びマスターチップ
JP2006228897A (ja) * 2005-02-16 2006-08-31 Fujitsu Ltd 半導体装置
JP2009076518A (ja) * 2007-09-19 2009-04-09 Nec Electronics Corp 半導体装置
JP2010129958A (ja) * 2008-12-01 2010-06-10 Seiko Epson Corp 半導体装置及び半導体装置の製造方法
JP2012044042A (ja) * 2010-08-20 2012-03-01 Kawasaki Microelectronics Inc 半導体集積回路および半導体集積回路装置
JP2013016573A (ja) * 2011-07-01 2013-01-24 Renesas Electronics Corp 半導体集積回路装置
JP2014072499A (ja) * 2012-10-02 2014-04-21 Hitachi Ltd 半導体装置
JP2017028085A (ja) * 2015-07-22 2017-02-02 富士通株式会社 半導体装置および半導体装置の制御方法
WO2021070367A1 (ja) * 2019-10-11 2021-04-15 株式会社ソシオネクスト 半導体装置

Similar Documents

Publication Publication Date Title
JP7160105B2 (ja) 半導体装置
US20170294448A1 (en) Integrated circuit power distribution network
US6489689B2 (en) Semiconductor device
JP7415176B2 (ja) 半導体集積回路装置
WO2020066797A1 (ja) 半導体集積回路装置および半導体パッケージ構造
JP7315016B2 (ja) 半導体装置
KR20150139435A (ko) 인터페이스 회로소자를 갖는 집적회로와, 그 인터페이스 회로소자용 인터페이스 셀
US8507994B2 (en) Semiconductor device
TW202139423A (zh) 三維積體電路封裝及其製造方法
KR20210122674A (ko) 3차원 집적 회로를 위한 안테나 효과 보호 및 정전 방전 보호
US20220336499A1 (en) Semiconductor integrated circuit device
US9305891B2 (en) Semiconductor integrated circuit with TSV bumps
WO2021171969A1 (ja) 半導体集積回路装置
WO2021075540A1 (ja) 半導体集積回路装置
WO2023166674A1 (ja) 半導体集積回路装置
JP4800816B2 (ja) 半導体集積回路装置
US6455899B2 (en) Semiconductor memory device having improved pattern of layers and compact dimensions
JP2000223575A (ja) 半導体装置の設計方法、半導体装置および半導体装置の製造方法
WO2023209971A1 (ja) 半導体集積回路装置
WO2023132264A1 (ja) 半導体集積回路装置
WO2023054601A1 (ja) 半導体装置
WO2023127385A1 (ja) 半導体集積回路装置
TWI648836B (zh) 帶有介面電路系統之積體電路及用於此類介面電路系統之介面單元
WO2024047820A1 (ja) 半導体集積回路装置
WO2022215485A1 (ja) 半導体集積回路装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929819

Country of ref document: EP

Kind code of ref document: A1