WO2023132264A1 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
WO2023132264A1
WO2023132264A1 PCT/JP2022/047451 JP2022047451W WO2023132264A1 WO 2023132264 A1 WO2023132264 A1 WO 2023132264A1 JP 2022047451 W JP2022047451 W JP 2022047451W WO 2023132264 A1 WO2023132264 A1 WO 2023132264A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
transistor
wiring
supply wiring
cell
Prior art date
Application number
PCT/JP2022/047451
Other languages
English (en)
French (fr)
Inventor
秀幸 小室
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Publication of WO2023132264A1 publication Critical patent/WO2023132264A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Definitions

  • the present disclosure relates to a semiconductor integrated circuit device using a buried power rail (BPR).
  • BPR buried power rail
  • a standard cell method is known as a method of forming a semiconductor integrated circuit on a semiconductor substrate.
  • basic units for example, inverters, latches, flip-flops, full adders, etc.
  • multiple standard cells are arranged on a semiconductor substrate. Then, by connecting these standard cells with wiring, an LSI chip is designed.
  • BI Buried Interconnect
  • Patent Document 1 discloses a technique of using a wiring provided in a buried wiring layer as a power wiring (Buried Power Rail (BPR)) and also as a signal wiring.
  • BPR Battery Power Rail
  • a buried power supply wiring is a wiring embedded in a substrate, so it cannot be provided in a region where a transistor is arranged in a plan view.
  • embedded power supply wiring is provided at the top and bottom ends of the standard cell, so transistors cannot be arranged at the top and bottom ends of the standard cell. Therefore, it is difficult to increase the transistor size.
  • the present disclosure makes it possible to easily increase the size of transistors in standard cells in a semiconductor integrated circuit device using embedded power supply wiring.
  • a semiconductor integrated circuit device includes a plurality of standard cells, and a first standard cell, which is one of the plurality of standard cells, is provided in an embedded wiring layer and is arranged in a first direction.
  • a first power supply wiring extending in the first direction to supply a first power supply voltage
  • a second power supply wiring provided in the embedded wiring layer and extending in the first direction to supply a second power supply voltage
  • a first transistor of a first conductivity type connected to a power supply wiring, wherein the first power supply wiring is separated from the first transistor in a plan view and is perpendicular to the first direction; It is positioned closer to the center of the first standard cell than the first transistor in two directions.
  • the first power supply wiring provided in the embedded wiring layer is separated from the first transistor connected to the first power supply wiring in plan view, and In the direction, it is closer to the center of the first standard cell than the first transistor. This allows the range of the first transistor to be extended outwardly of the first standard cell in the second direction. Therefore, the size of the first transistor can be easily increased.
  • a semiconductor integrated circuit device includes a plurality of standard cells, and a first standard cell, which is one of the plurality of standard cells, is provided in a buried wiring layer and is arranged in a first direction. and a first and second power supply wiring extending in the first direction to supply a first power supply voltage; third and fourth power supply wirings arranged between the first power supply wiring and the second power supply wiring and supplying a second power supply voltage; and a first conductivity type power supply wiring connected to the third power supply wiring a first transistor, which is separated from the third and fourth power supply wirings in a plan view, and which is separated from the third power supply wiring and the fourth power supply wiring in the second direction; is between
  • the third and third power supply lines are arranged in the buried wiring layer between the first power supply line and the second power supply line in the second direction and supply the second power supply voltage.
  • 4 power supply wiring is arranged.
  • the first transistor connected to the third power supply wiring is separated from the third and fourth power supply wirings in plan view and is between the third power supply wiring and the fourth power supply wiring in the second direction. .
  • the range of the first transistor can be expanded in the second direction between the third power wiring and the fourth power wiring. Therefore, the size of the first transistor can be easily increased.
  • a semiconductor integrated circuit device includes a plurality of standard cells, the plurality of standard cells including a first standard cell and a second standard cell, the first standard cell a first power supply wiring provided in an embedded wiring layer, extending in a first direction and supplying a first power supply voltage; and a first conductivity type first transistor connected to the first power supply wiring, the first power supply wiring is separated from the first transistor in plan view, the second standard cell is adjacent to the first standard cell in a second direction perpendicular to the first direction, and a second power supply line having a size in the second direction smaller than that of the first standard cell, provided in the embedded wiring layer, extending in the first direction, and supplying the first power supply voltage;
  • the first transistor included in the first standard cell is between the first power supply wiring and the second power supply wiring in the second direction.
  • the first and second standard cells are adjacent in the second direction.
  • the first power supply wiring provided in the embedded wiring layer is separated from the first transistor connected to the first power supply wiring in plan view.
  • the second standard cell has a second power supply wiring provided in the buried wiring layer, and the first transistor included in the first standard cell is connected between the first power supply wiring and the second power supply wiring in the second direction. between. This allows the range of the first transistor to be extended in the second direction towards the second standard cell. Therefore, the size of the first transistor can be easily increased.
  • the size of transistors in standard cells can be easily increased.
  • FIG. 2 is a plan view showing an example of a block layout in the semiconductor integrated circuit device according to Embodiment 1;
  • FIG. A plan view showing a layout example of the cell SCA in FIG. (a) and (b) are cross-sectional views showing the cross-sectional structure of FIG. Inverter circuit diagram
  • FIG. 2 is a plan view showing a layout example of the cell SCB in FIG. 1;
  • (a) and (b) are plan views showing other layout examples of the cell SCB.
  • (a) is a plan view showing a layout example of the cell SCC in FIG. 1
  • (b) is a plan view showing a layout example of the adjacent cells SCA and SCC.
  • (a), (b), and (c) are plan views showing other layout examples of upper and lower terminal cells.
  • FIG. 4 is a plan view showing an example of a block layout in a semiconductor integrated circuit device according to Embodiment 2;
  • a plan view showing a layout example of the cell SCA2 in FIG. (a) and (b) are plan views showing layout examples of the cell SCB2 in FIG.
  • a plan view showing a layout example of adjacent cells SCA2 and SCC2 in FIG. (a), (b), and (c) are plan views showing other layout examples of upper and lower terminal cells.
  • (a) and (b) are plan views showing layout examples of cells according to a modification of the second embodiment.
  • the horizontal direction of the drawing is the X direction (corresponding to the first direction), and the vertical direction of the drawing is the Y direction (corresponding to the second direction).
  • the direction perpendicular to the substrate surface is defined as the Z direction (corresponding to the depth direction).
  • VDD indicates a power supply voltage, a high voltage power supply itself or a high voltage power supply line
  • VVS indicates a power supply voltage, a low voltage power supply itself or a low voltage power supply line.
  • the standard cell is abbreviated as “cell” as appropriate.
  • the term “dummy transistor” refers to a transistor that does not contribute to the logic function of the standard cell.
  • a “dummy gate wiring” is a gate wiring that does not constitute a transistor.
  • FIG. 1 is a plan view showing an example of a block layout in a semiconductor integrated circuit device according to Embodiment 1.
  • FIG. 1 In the block layout of FIG. 1, a plurality of standard cells SC are arranged side by side in the X and Y directions. It should be noted that FIG. 1 shows only the power supply wiring formed in the embedded wiring layer (BI).
  • an embedded power supply wiring 11 that supplies VDD to the standard cells SC and an embedded power supply wiring 12 that supplies VSS to the standard cells SC extend in the X direction.
  • Each standard cell SC is supplied with VDD from the embedded power supply wiring 11 and is supplied with VSS from the embedded power supply wiring 12 .
  • the embedded power supply wirings 11 and 12 are arranged in the center of the cell row in the Y direction. Note that the standard cells SC are vertically inverted in the drawing for each cell column, and along with this, the positions of the embedded power supply lines 11 and 12 are interchanged in the Y direction for each cell column. In the uppermost row and the lowermost row of the drawing, only the embedded power supply wiring 12 is arranged in the central portion of the cell row in the Y direction.
  • a plurality of standard cells SC includes standard cells SCA, SCB, and SCC.
  • Standard cell SCA is a normal single-height cell and includes a pair of embedded power supply lines 11 and 12 in the cell.
  • the standard cell SCB is a double-height cell, has twice the height (size in the Y direction) of the single-height cell, and includes two pairs of embedded power supply lines 11 and 12 in the cell.
  • Standard cells SCC are arranged in the uppermost and lowermost cell columns, and are so-called upper and lower terminal cells.
  • a standard cell SCC has a height half that of a single height cell and includes an embedded power supply line 12 .
  • FIG. 2A and 2B are plan views showing layout examples of the standard cell SCA, FIG. It is sectional drawing which shows the cross-sectional structure in Y2'.
  • the cell SCA shown in FIG. 2 constitutes an inverter shown in FIG. 4 as an example of a logic circuit.
  • the logic circuit formed by each standard cell is not limited to inverters.
  • FIG. 2 shows the cell frame CF of the cell SCA. The same applies to figures showing other layout examples.
  • a P-type transistor P1 is formed on the N-well.
  • An N-type transistor N1 is formed on a P-well or a P-type substrate.
  • the transistors P1 and N1 are arranged in a row in the Y direction.
  • the transistors P1 and N1 respectively have nanosheets 21 and 22 each made up of three sheets as a channel portion. That is, the transistors P1 and N1 are nanosheet FETs.
  • the number of nanosheets included in each nanosheet FET is not limited to three.
  • the regions of the nanosheets 21, 22 become the channel regions of the respective transistors P1, N1.
  • pads 23 and 24 made of a semiconductor layer with an integral structure connected to the three sheets are formed, respectively.
  • Pad 23 serves as the source region of transistor P1.
  • Pad 24 serves as the drain region of transistor P1.
  • Pads 25 and 26 each made of an integrated semiconductor layer connected to the three sheets are formed on the left side and the right side of the nanosheet 22 in the drawing, respectively.
  • Pad 25 serves as the source region of transistor N1.
  • Pad 26 serves as the drain region of transistor N1.
  • a gate wiring 31 extending in the Y direction is formed.
  • the gate wiring 31 surrounds the outer peripheries of the nanosheet 21 of the transistor P1 and the nanosheet 22 of the transistor N1 in the Y and Z directions via a gate insulating film (not shown).
  • Gate wiring 31 corresponds to the gates of transistors P1 and N1.
  • the gate widths of the transistors P1 and N1 are the same (w1). However, the gate widths of the transistors P1 and N1 may not be the same.
  • Dummy gate wirings 35a and 35b are formed on the cell frames CF on both sides of the gate wiring 31 in the X direction.
  • Local wirings 41, 42, and 43 extending in the Y direction are formed in the local wiring layer.
  • the local wiring 41 is connected to the pad 23 and is also connected to the power supply wiring 11 via vias.
  • the local wiring 42 is connected to the pad 25 and is also connected to the power supply wiring 12 via vias.
  • Local wiring 43 is connected to pads 24 and 26 .
  • Metal wires 51 and 52 extending in the X direction are formed in the M1 wiring layer.
  • Metal wiring 51 corresponds to input node A and is connected to gate wiring 31 via a contact.
  • Metal wiring 52 corresponds to output node Y and is connected to local wiring 43 via a contact.
  • the embedded power supply wirings 11 and 12 and the transistors P1 and N1, which are nanosheet FETs, are arranged apart from each other in plan view.
  • the embedded power supply wirings 11 and 12 are arranged in the central portion in the Y direction, and are closer to the center of the cell SCA in the Y direction than the transistors P1 and N1, respectively.
  • the transistors P1 and N1 can be extended to the vicinity of the cell frame CF in the Y direction.
  • the transistors P1 and N1 can be brought as close as possible to other transistors in cells adjacent in the Y direction, as long as the design rules are maintained.
  • FIG. 5 is a plan view showing a layout example of the standard cell SCB.
  • Cell SCB shown in FIG. 5 constitutes the inverter shown in FIG. 4, similarly to cell SCA.
  • embedded power supply wirings 11a and 12a extending in the X direction are arranged in the upper region of the drawing, and Extending embedded power supply lines 11b and 12b are arranged.
  • the embedded power supply wirings 11a and 11b supply VDD, and the embedded power supply wirings 12a and 12b supply VSS.
  • a P-type transistor P1a is formed on the N-well on the upper side of the drawing, and a P-type transistor P1b is formed on the N-well on the lower side of the drawing.
  • P-type transistors P1a and P1b constitute transistor P1 in FIG.
  • An N-type transistor N1 is formed on a P-well or a P-type substrate.
  • the transistors P1a, N1 and P1b are arranged in a row in the Y direction.
  • the transistors P1a, P1b, and N1 respectively have nanosheets 61, 62, and 63, which are made up of, for example, three sheets, as channel portions. That is, the transistors P1a, P1b and N1 are nanosheet FETs. The regions of the nanosheets 61, 62, 63 become the channel regions of the transistors P1a, P1b, N1.
  • Pads 64 and 65 made of a semiconductor layer having an integral structure connected to the three sheets are formed on the left side and the right side of the nanosheet 61 in the drawing, respectively.
  • the pad 64 becomes the source region of the transistor P1a.
  • the pad 65 becomes the drain region of the transistor P1a.
  • Pads 66 and 67 each made of a semiconductor layer having an integral structure connected to the three sheets are formed on the left side and the right side of the nanosheet 62 in the drawing, respectively.
  • Pad 66 serves as the source region of transistor P1b.
  • the pad 67 becomes the drain region of the transistor P1b.
  • Pads 68 and 69 made of a semiconductor layer having an integral structure connected to the three sheets are formed on the left side and the right side of the nanosheet 63 in the drawing, respectively.
  • Pad 68 serves as the source region of transistor N1.
  • Pad 69 serves as the drain region of transistor N1.
  • a gate wiring 32 extending in the Y direction is formed.
  • the gate wiring 32 surrounds the nanosheet 61 of the transistor P1a, the nanosheet 62 of the transistor P1b, and the nanosheet 63 of the transistor N1 in the Y and Z directions via a gate insulating film (not shown).
  • Gate wiring 32 corresponds to the gates of transistors P1a, P1b and N1.
  • the gate widths of the transistors P1a and P1b are the same (w1). However, the gate widths of the transistors P1a and P1b may not be the same.
  • the gate width w2 of the transistor N1 is larger than twice the gate width w1 of the transistors P1a and P1b (w2>w1 ⁇ 2).
  • Local wirings 45, 46, 47, and 48 extending in the Y direction are formed in the local wiring layer.
  • the local wiring 45 is connected to the pad 64 and is also connected to the power supply wiring 11a via vias.
  • the local wiring 46 is connected to the pad 68 and also connected to the power supply wirings 12a and 12b via vias.
  • the local wiring 47 is connected to the pad 66 and is also connected to the power supply wiring 11b via vias.
  • Local wiring 48 is connected to pads 65 , 67 and 69 .
  • Metal wires 53 and 54 extending in the X direction are formed in the M1 wiring layer.
  • Metal wiring 53 corresponds to input node A and is connected to gate wiring 32 via a contact.
  • Metal wiring 54 corresponds to output node Y and is connected to local wiring 48 via a contact.
  • the embedded power supply wirings 11a, 11b, 12a, 12b and the transistors P1a, P1b, N1, which are nanosheet FETs, are arranged apart from each other in plan view.
  • Transistor N1 is located between embedded power supply lines 12a and 12b in the Y direction. Thereby, the range of transistor N1 can be expanded between embedded power supply lines 12a and 12b.
  • FIGS. 6(a) and (b) are other layout examples of the cell SCB.
  • the transistor N1 arranged in the central portion in the Y direction has two nanosheets 63a and 63b separated in the Y direction.
  • the placement positions of the embedded power supply wires 11a and 12a are switched, and the placement positions of the embedded power supply wires 11b and 12b are switched.
  • the transistors N1a and N1b are arranged near both ends in the Y direction, respectively, and the transistor P1 is arranged in the central portion in the Y direction.
  • N-type transistors N1a and N1b constitute transistor N1 in FIG.
  • the size of the transistor P1 can be increased between the embedded power supply wirings 11a and 11b.
  • the transistor P1 arranged in the central portion in the Y direction may have two nanosheets separated in the Y direction.
  • FIG. 7(a) is a plan view showing a layout example of a standard SCC, which is upper and lower terminal cells.
  • FIG. 7B is a plan view showing the layout of standard cells SCC and SCA that are adjacent in the Y direction.
  • the cells SCA are arranged such that the layout shown in FIG. 2 is vertically inverted in the drawing.
  • the cell SCC is smaller in size in the Y direction than the cell SCA.
  • the size of the cell SCC in the Y direction is set to 1/2 of the size of the cell SCA here, it is not limited to this.
  • the standard cell SCC extends in the X direction and includes a power supply wiring 12 for supplying VSS and a dummy transistor DT1.
  • Dummy transistor DT1 has a gate wiring 71 extending in the Y direction, and local wirings 75 and 76 are connected to the drain and source, respectively.
  • Dummy gate wirings 72a and 72b are formed on cell frames on both sides of the gate wiring 71 in the X direction.
  • the transistor N1 of the cell SCA is located between the power wiring 12 of the cell SCA and the power wiring 12 of the cell SCC in the Y direction.
  • the arrangement of each component that is, the embedded power supply wiring, the transistor, the gate wiring and the local wiring is symmetrical in the Y direction.
  • the distances from the boundaries of cells SCA and SCC to each constituent element are the same.
  • the constituent elements are arranged regularly in the entire block layout of the semiconductor integrated circuit device, so that variations in the manufacturing finish of the constituent elements can be suppressed.
  • FIG. 8 is a plan view showing another layout example of upper and lower terminal cells.
  • FIG. 8A shows a modification of the layout of the cell SCC, which has only the power supply wiring 12 and the dummy gate wirings 71, 72a and 72b.
  • FIG. 8B shows a modification of the layout of the cell SCC, which has only the power supply wiring 12 .
  • FIG. 8(c) is a layout example of upper and lower termination cells including power supply wiring 11 for supplying VDD.
  • the upper and lower terminal cells in FIG. 8C are used when, in adjacent cells in the Y direction, the nearest transistor is a P-type transistor and the nearest power wiring is a power wiring that supplies VDD.
  • a configuration including only the power supply wiring 11 and the dummy gate wiring may be used as in the case of FIG. 8A.
  • the configuration may be such that only the power wiring is provided.
  • the embedded power supply wiring 11 is separated from the transistor P1 in plan view, and is positioned closer to the center of the cell SCA than the transistor P1 in the Y direction. It is in.
  • the embedded power supply wiring 12 is separated from the transistor N1 in plan view, and is located closer to the center of the cell SCA than the transistor N1 in the Y direction. This allows the range of the transistors P1 and N1 to be extended toward the outside of the cell SCA in the Y direction. Therefore, it is possible to easily increase the size of the transistors P1 and N1.
  • embedded power supply wirings 12a and 12b for supplying VSS are arranged between the embedded power supply wirings 11a and 11b for supplying VDD in the Y direction.
  • the transistor N1 is separated from the embedded power supply wirings 12a and 12b in plan view and is located between the embedded power supply wirings 12a and 12b in the Y direction. Thereby, the range of transistor N1 can be expanded in the Y direction between embedded power supply lines 12a and 12b. Therefore, the size of transistor N1 can be easily increased.
  • the standard cells SCA and SCC are adjacent in the Y direction.
  • the embedded power supply wiring 12 is separated from the transistor N1 in plan view.
  • the cell SCC which is the upper and lower terminal cell, has an embedded power supply wiring 12, and the transistor N1 provided in the cell SCA is between the embedded power supply wirings 12 in the Y direction. This allows the range of transistor N1 to be extended in the Y direction towards cell SCC. Therefore, the size of transistor N1 can be easily increased.
  • FIG. 9 is a plan view showing an example of a block layout in a semiconductor integrated circuit device according to Embodiment 2.
  • FIG. 9 a plurality of standard cells SC are arranged side by side in the X and Y directions.
  • the standard cells SC are vertically inverted in the drawing for each cell column.
  • FIG. 9 shows only the power supply wiring formed in the embedded wiring layer (BI).
  • an embedded power supply wiring 13 that supplies VDD to the standard cells SC and an embedded power supply wiring 14 that supplies VSS to the standard cells SC extend in the X direction.
  • Each standard cell SC is supplied with VDD from the embedded power supply wiring 13 and is supplied with VSS from the embedded power supply wiring 14 .
  • the embedded power supply wiring 13 is arranged on the boundary line of the cell column and shared between cells adjacent in the Y direction.
  • the embedded power supply wiring 14 is arranged in the center of each cell row in the Y direction.
  • the wiring width of the embedded power supply wiring 13 is larger than the wiring width of the embedded power supply wiring 14 . For example, by making the wiring width of the embedded power supply wiring 13 double the wiring width of the embedded power supply wiring 11 shown in the first embodiment, the same power supply wiring width as that of the first embodiment can be secured.
  • the plurality of standard cells SC includes standard cells SCA2, SCB2 and SCC2.
  • the standard cell SCA2 is a normal single-height cell, and has an embedded power supply wiring 13 that supplies VDD at one end of the cell in the Y direction, and an embedded power supply wiring 14 that supplies VSS in the cell. It is
  • the standard cell SCB2 is a double-height cell and has a height twice that of a single-height cell.
  • An embedded power supply wiring 14 for supplying two VSS is arranged in the .
  • Standard cells SCC2 are arranged in the uppermost and lowermost cell columns, and are so-called upper and lower terminal cells.
  • Standard cell SCC2 has a height half that of a single height cell and includes an embedded power supply line 14 for supplying VSS.
  • the embedded power supply wiring for supplying VSS is arranged on the boundary between the cell columns, and the embedded power supply wiring for supplying VDD is arranged in the center of each cell row in the Y direction.
  • FIG. 10 is a plan view showing a layout example of the standard cell SCA2.
  • Cell SCA2 shown in FIG. 10 constitutes an inverter shown in FIG. 4 as an example of a logic circuit.
  • the layout of FIG. 10 differs from the layout of FIG. 2 in Embodiment 1 in the positional relationship between the transistor P1 and the power supply wiring (the power supply wiring 11 in FIG. 2 and the power supply wiring 13 in FIG. 10) that supplies VDD. there is
  • an embedded power supply line 13 extending in the X direction is arranged at the upper end of the drawing in the Y direction, and an embedded power supply line 14 extending in the X direction is arranged in the central portion in the Y direction. are placed.
  • the embedded power supply wiring 13 supplies VDD
  • the embedded power supply wiring 14 supplies VSS.
  • the cells SCA2 shown in FIG. 10 are reversed in the vertical direction of the drawing.
  • a P-type transistor P1 is formed on the N-well.
  • An N-type transistor N1 is formed on a P-well or a P-type substrate.
  • the transistors P1 and N1 are arranged in a row in the Y direction.
  • the transistors P1 and N1 respectively have nanosheets 121 and 122 each composed of, for example, three sheets as a channel portion. That is, the transistors P1 and N1 are nanosheet FETs.
  • the number of nanosheets included in each nanosheet FET is not limited to three.
  • the regions of the nanosheets 121, 122 become channel regions of the respective transistors P1, N1.
  • Pads 123 and 124 made of an integrated semiconductor layer connected to the three sheets are formed on the left side and the right side of the nanosheet 121 in the drawing, respectively.
  • Pad 123 serves as the source region of transistor P1.
  • Pad 124 serves as the drain region of transistor P1.
  • Pads 125 and 126 made of a semiconductor layer having an integral structure connected to the three sheets are formed on the left side and the right side of the nanosheet 122 in the drawing, respectively.
  • Pad 125 serves as the source region of transistor N1.
  • Pad 126 serves as the drain region of transistor N1.
  • a gate wiring 131 extending in the Y direction is formed.
  • the gate wiring 131 surrounds the nanosheet 121 of the transistor P1 and the nanosheet 122 of the transistor N1 in the Y and Z directions via a gate insulating film (not shown).
  • Gate wiring 131 corresponds to the gates of transistors P1 and N1.
  • the gate widths of the transistors P1 and N1 are the same (w1). However, the gate widths of the transistors P1 and N1 may not be the same.
  • Dummy gate wirings 135a and 135b are formed on the cell frames CF on both sides of the gate wiring 131 in the X direction.
  • local wirings 141, 142, and 143 extending in the Y direction are formed.
  • the local wiring 141 is connected to the pad 123 and also connected to the power supply wiring 13 via vias.
  • the local wiring 142 is connected to the pad 125 and also connected to the power supply wiring 14 via vias.
  • Local wiring 143 is connected to pads 124 and 126 .
  • Metal wires 151 and 152 extending in the X direction are formed in the M1 wiring layer.
  • Metal wiring 151 corresponds to input node A and is connected to gate wiring 131 via a contact.
  • Metal wiring 152 corresponds to output node Y and is connected to local wiring 143 via a contact.
  • the embedded power supply wirings 13 and 14 and the transistors P1 and N1, which are nanosheet FETs, are arranged apart from each other in plan view.
  • the embedded power supply wiring 14 is arranged in the central portion in the Y direction, and is closer to the center of the cell SCA2 than the transistor N1 in the Y direction. This allows the transistor N1 to extend to the vicinity of the cell frame CF in the Y direction.
  • the transistor N1 can be brought as close as possible to the other transistors in the cells adjacent to the lower side of the drawing in the Y direction, as long as the design rules are maintained.
  • the power supply wiring 13 for supplying VDD can be shared with other cells adjacent to the upper side of the drawing in the Y direction, the power supply can be strengthened compared to the first embodiment.
  • FIG. 11(a) is a plan view showing a layout example of the standard cell SCB2.
  • the cell SCB2 shown in FIG. 11(a) constitutes the inverter shown in FIG. 4, like the cell SCA2.
  • the layout of FIG. 11A is different from the layout of FIG. 5 in Embodiment 1 in that the transistors P1a and P1b and power supply wirings (power supply wirings 11a and 11b in FIG. 5, power supply wirings 11a and 11b in FIG. 13a, 13b) are different.
  • embedded power supply wirings 13a and 13b extending in the X direction are arranged at both ends in the Y direction, respectively.
  • an embedded power supply wiring 14a extending in the X direction is arranged, and an embedded power supply wiring 14b extending in the X direction is arranged in the lower region of the drawing.
  • the embedded power supply wirings 13a and 13b supply VDD, and the embedded power supply wirings 14a and 14b supply VSS.
  • a P-type transistor P1a is formed on the N-well on the upper side of the drawing, and a P-type transistor P1b is formed on the N-well on the lower side of the drawing.
  • P-type transistors P1a and P1b constitute transistor P1 in FIG.
  • An N-type transistor N1 is formed on a P-well or a P-type substrate.
  • the transistors P1a, N1 and P1b are arranged in a row in the Y direction.
  • the transistors P1a, P1b, and N1 respectively have nanosheets 161, 162, and 163, which are made up of, for example, three sheets, as channel portions. That is, the transistors P1a, P1b and N1 are nanosheet FETs. The regions of the nanosheets 161, 162, 163 become channel regions of the respective transistors P1a, P1b, N1.
  • Pads 164 and 165 made of a semiconductor layer with an integrated structure connected to the three sheets are formed on the left side and the right side of the nanosheet 161 in the drawing, respectively.
  • Pad 164 serves as the source region of transistor P1a.
  • Pad 165 serves as the drain region of transistor P1a.
  • Pads 166 and 167 made of a semiconductor layer having an integral structure connected to the three sheets are formed on the left side and the right side of the nanosheet 162 in the drawing, respectively.
  • Pad 166 serves as the source region of transistor P1b.
  • Pad 167 serves as the drain region of transistor P1b.
  • Pads 168 and 169 made of a semiconductor layer having an integral structure connected to the three sheets are formed on the left side and the right side of the nanosheet 163 in the drawing, respectively.
  • Pad 168 serves as the source region of transistor N1.
  • Pad 169 serves as the drain region of transistor N1.
  • a gate wiring 132 extending in the Y direction is formed.
  • the gate wiring 132 surrounds the nanosheet 161 of the transistor P1a, the nanosheet 162 of the transistor P1b, and the nanosheet 163 of the transistor N1 in the Y and Z directions via a gate insulating film (not shown).
  • Gate line 132 corresponds to the gates of transistors P1a, P1b and N1.
  • the gate widths of the transistors P1a and P1b are the same (w1). However, the gate widths of the transistors P1a and P1b may not be the same.
  • the gate width w2 of the transistor N1 is larger than twice the gate width w1 of the transistors P1a and P1b (w2>w1 ⁇ 2).
  • local wirings 145, 146, 147 and 148 extending in the Y direction are formed.
  • the local wiring 145 is connected to the pad 164 and also connected to the power supply wiring 13a via vias.
  • the local wiring 146 is connected to the pad 168 and also connected to the power supply wirings 14a and 14b via vias.
  • the local wiring 147 is connected to the pad 166 and is also connected to the power supply wiring 13b via vias.
  • Local wiring 148 is connected to pads 165 , 167 and 169 .
  • Metal wires 153 and 154 extending in the X direction are formed in the M1 wiring layer.
  • Metal wiring 153 corresponds to input node A and is connected to gate wiring 132 via a contact.
  • Metal wiring 154 corresponds to output node Y and is connected to local wiring 148 via a contact.
  • the embedded power supply wirings 13a, 13b, 14a, 14b and the transistors P1a, P1b, N1, which are nanosheet FETs, are arranged apart from each other in plan view.
  • Transistor N1 is located between embedded power supply lines 14a and 14b in the Y direction. Thereby, the range of transistor N1 can be expanded between embedded power supply lines 14a and 14b.
  • FIG. 11(b) is a modification of the layout of the cell SCB shown in FIG. 11(a).
  • the transistor N1 arranged in the central portion in the Y direction has two nanosheets 163a and 163b separated in the Y direction.
  • FIG. 12 is a plan view showing the layout of standard cells SCC2 and SCA2 that are adjacent in the Y direction.
  • the cells SCA2 are arranged upside down in the drawing from the layout shown in FIG.
  • cell SCC2 is smaller in size in the Y direction than cell SCA2.
  • the size of the cell SCC2 in the Y direction is set to 1/2 of the size of the cell SCA2 here, it is not limited to this.
  • the layout of the standard cell SCC2 is the same as the layout of the cell SCC of FIG. 7(a) in the first embodiment. That is, the cell SCC2 extends in the X direction and includes a power supply wiring 14 for supplying VSS and a dummy transistor DT2. Dummy transistor DT2 has a gate wiring 171 extending in the Y direction, and local wirings 175 and 176 are connected to the drain and source, respectively. Dummy gate wirings 172a and 172b are formed on cell frames on both sides of the gate wiring 171 in the X direction.
  • the transistor N1 of the cell SCA2 is located between the power wiring 14 of the cell SCA2 and the power wiring 14 of the cell SCC2 in the Y direction.
  • the arrangement of each component that is, the embedded power supply wiring, the transistor, the gate wiring and the local wiring is symmetrical in the Y direction.
  • the distances from the boundaries of cells SCA2 and SCC2 to each component are the same.
  • the constituent elements are arranged regularly in the entire block layout of the semiconductor integrated circuit device, so that variations in the manufacturing finish of the constituent elements can be suppressed.
  • FIG. 13 is a plan view showing another layout example of upper and lower terminal cells.
  • FIG. 13A shows a modification of the layout of the cell SCC2, which has only the power supply wiring 14 and the dummy gate wirings 171, 172a and 172b.
  • FIG. 13B shows a modification of the layout of the cell SCC2, which has only the power supply wiring 14.
  • FIG. 13(c) is a layout example of upper and lower termination cells including power supply wiring 13 for supplying VDD.
  • the upper and lower end cells in FIG. 13(c) are used when the closest power wiring in cells adjacent in the Y direction is the power wiring for supplying VDD arranged at the cell end. That is, the upper and lower terminal cells in FIG. 13C share the power supply line 13 with the adjacent cell on the lower side of the drawing in the Y direction.
  • a configuration including only the power supply wiring 13 and the dummy gate wiring may be used as in FIG. 13(a).
  • the configuration may be such that only the power wiring is provided.
  • the embedded power supply wiring 14 is separated from the transistor N1 in plan view, and is closer to the center of the cell SCA2 than the transistor N1 in the Y direction. It is in. This allows the range of transistor N1 to be extended outward from cell SCA2 in the Y direction. Therefore, the size of transistor N1 can be easily increased.
  • embedded power supply wirings 14a and 14b for supplying VSS are arranged between the embedded power supply wirings 13a and 13b for supplying VDD in the Y direction.
  • the transistor N1 is separated from the embedded power supply wirings 14a and 14b in plan view, and is located between the embedded power supply wirings 14a and 14b in the Y direction. As a result, the range of transistor N1 can be expanded in the Y direction between embedded power supply lines 14a and 14b. Therefore, the size of transistor N1 can be easily increased.
  • the standard cells SCA2 and SCC2 are adjacent in the Y direction.
  • embedded power supply wiring 14 is separated from transistor N1 in plan view.
  • the cell SCC2, which is the upper and lower terminal cell, has an embedded power supply wiring 14, and the transistor N1 provided in the cell SCA2 is between the embedded power supply wirings 14 in the Y direction. This allows the range of transistor N1 to be extended in the Y direction towards cell SCC2. Therefore, the size of transistor N1 can be easily increased.
  • FIG. 14 is a cell layout example according to a modification of the second embodiment.
  • the layout of FIG. 14 is used in a block layout in which the embedded power supply wiring for supplying VSS is arranged on the boundary between the cell columns, and the embedded power supply wiring for supplying VDD is arranged in the center of each cell row in the Y direction. be done.
  • FIG. 14(a) is a layout example of a single-height cell
  • FIG. 14(b) is a layout example of a double-height cell.
  • an embedded power supply wiring 15 for supplying VDD extending in the X direction is arranged in the central portion in the Y direction, and an embedded power supply wiring 15 for supplying VSS extending in the X direction is arranged at the lower end of the drawing in the Y direction.
  • a power supply wiring 16 is arranged.
  • the transistor P1 is arranged above the embedded power supply wiring 15 in the drawing.
  • Transistor N1 is arranged between embedded power supply wiring 15 and embedded power supply wiring 16 .
  • Other configurations are the same as the layout of cell SCA2 shown in FIG.
  • the embedded power supply wiring 15 is arranged in the center in the Y direction, and is closer to the center of the cell than the transistor P1 in the Y direction. This allows the transistor P1 to extend to the vicinity of the cell frame in the Y direction.
  • the embedded power supply wiring 15a extending in the X direction is arranged in the upper area of the drawing, and the embedded power supply wiring 15a extending in the X direction is arranged in the lower area of the drawing. 15b are arranged. Embedded power supply wirings 16a and 16b extending in the X direction are arranged at both ends in the Y direction, respectively.
  • the embedded power supply wirings 15a and 15b supply VDD, and the embedded power supply wirings 16a and 16b supply VSS.
  • the transistor P1 is arranged between the embedded power supply wirings 15a and 15b, the transistor N1a is arranged between the embedded power supply wirings 15a and 16a, and the embedded power supply wiring 15b is arranged. , 16b.
  • N-type transistors N1a and N1b constitute transistor N1 in FIG.
  • the size of the transistor P1 can be increased between the embedded power supply wirings 15a and 15b.
  • the transistor P1 arranged in the center in the Y direction may have two nanosheets separated in the Y direction.
  • the present disclosure makes it possible to easily increase the size of transistors in standard cells in semiconductor integrated circuit devices that use embedded power supply wiring, and is therefore useful, for example, in improving the performance of system LSIs.

Abstract

埋込電源配線を用いる半導体集積回路装置において、スタンダードセルにおけるトランジスタのサイズを容易に拡大可能にする。スタンダードセルは、X方向に延び、電源電圧VDDを供給する埋込電源配線(11)と、X方向に延び、電源電圧VSSを供給する埋込電源配線(12)と、電源配線(11)と接続されたトランジスタ(P1)とを備える。埋込電源配線(11)は、トランジスタ(P1)と平面視で離間しており、かつ、Y方向において、トランジスタ(P1)より、当該スタンダードセルの中央に近い位置にある。

Description

半導体集積回路装置
 本開示は、埋込電源配線(BPR:Buried Power Rail)を用いる半導体集積回路装置に関する。
 半導体基板上に半導体集積回路を形成する方法として、スタンダードセル方式が知られている。スタンダードセル方式とは、特定の論理機能を有する基本的単位(例えば、インバータ,ラッチ,フリップフロップ,全加算器など)をスタンダードセルとして予め用意しておき、半導体基板上に複数のスタンダードセルを配置して、それらのスタンダードセルを配線で接続することによって、LSIチップを設計する方式のことである。
 半導体集積回路の高集積化のために、スタンダードセルに、従来のようなトランジスタの上層に形成された金属配線層に設けられた配線ではなく、埋め込み配線(BI:Buried Interconnect)層に設けられた配線を用いることが提案されている。
 特許文献1では、埋め込み配線層に設けられた配線を、電源配線(埋込電源配線(BPR:Buried Power Rail))として用いるとともに、信号配線としても用いる技術が開示されている。
米国特許第10,170,413号明細書(FIG.2C)
 埋込電源配線(BPR)は、基板に埋め込んだ配線であるため、平面視において、トランジスタが配置される領域には設けることができない。上述の特許文献1では、スタンダードセルの上下端に埋込電源配線が設けられているため、トランジスタをスタンダードセルの上下端に配置することができない。このため、トランジスタサイズの拡大が困難である。
 本開示は、埋込電源配線を用いる半導体集積回路装置において、スタンダードセルにおけるトランジスタのサイズを容易に拡大可能にするものである。
 本開示の第1態様では、半導体集積回路装置は、複数のスタンダードセルを備え、前記複数のスタンダードセルの1つである第1スタンダードセルは、埋込配線層に設けられており、第1方向に延び、第1電源電圧を供給する第1電源配線と、前記埋込配線層に設けられており、前記第1方向に延び、第2電源電圧を供給する第2電源配線と、前記第1電源配線と接続された、第1導電型の第1トランジスタとを備え、前記第1電源配線は、前記第1トランジスタと平面視で離間しており、かつ、前記第1方向と垂直をなす第2方向において、前記第1トランジスタより、前記第1スタンダードセルの中央に近い位置にある。
 この態様によると、第1スタンダードセルにおいて、埋込配線層に設けられた第1電源配線は、当該第1電源配線と接続された第1トランジスタと平面視で離間しており、かつ、第2方向において、第1トランジスタより、第1スタンダードセルの中央に近い位置にある。これにより、第1トランジスタの範囲を、第2方向において第1スタンダードセルの外側に向けて、拡張することができる。したがって、第1トランジスタのサイズを容易に拡大することができる。
 本開示の第2態様では、半導体集積回路装置は、複数のスタンダードセルを備え、前記複数のスタンダードセルの1つである第1スタンダードセルは、埋込配線層に設けられており、第1方向に延び、第1電源電圧を供給する第1および第2電源配線と、前記埋込配線層に設けられており、前記第1方向に延び、前記第1方向と垂直をなす第2方向において前記第1電源配線と前記第2電源配線との間に配置されており、第2電源電圧を供給する第3および第4電源配線と、前記第3電源配線と接続された、第1導電型の第1トランジスタとを備え、前記第1トランジスタは、前記第3および第4電源配線と平面視で離間しており、かつ、前記第2方向において、前記第3電源配線と前記第4電源配線との間にある。
 この態様によると、第1スタンダードセルにおいて、埋込配線層に、第2方向において第1電源配線と第2電源配線との間に配置されており、第2電源電圧を供給する第3および第4電源配線が配置されている。第3電源配線と接続された第1トランジスタは、第3および第4電源配線と平面視で離間しており、かつ、第2方向において、第3電源配線と第4電源配線との間にある。これにより、第1トランジスタの範囲を、第2方向において第3電源配線と第4電源配線との間において拡張することができる。したがって、第1トランジスタのサイズを容易に拡大することができる。
 本開示の第3態様では、半導体集積回路装置は、複数のスタンダードセルを備え、前記複数のスタンダードセルは、第1スタンダードセルと、第2スタンダードセルとを含み、前記第1スタンダードセルは、埋込配線層に設けられており、第1方向に延び、第1電源電圧を供給する第1電源配線と、前記第1電源配線と接続された、第1導電型の第1トランジスタとを備え、前記第1電源配線は、前記第1トランジスタと平面視で離間しており、前記第2スタンダードセルは、前記第1方向と垂直をなす第2方向において前記第1スタンダードセルと隣接しており、前記第2方向におけるサイズが前記第1スタンダードセルより小さく、かつ、前記埋込配線層に設けられており、前記第1方向に延び、前記第1電源電圧を供給する第2電源配線を備え、前記第1スタンダードセルが備える前記第1トランジスタは、前記第2方向において、前記第1電源配線と前記第2電源配線との間にある。
 この態様によると、第1および第2スタンダードセルは、第2方向において隣接している。第1スタンダードセルにおいて、埋込配線層に設けられた第1電源配線は、当該第1電源配線と接続された第1トランジスタと平面視で離間している。第2スタンダードセルは、埋込配線層に設けられた第2電源配線を備えており、第1スタンダードセルが備える第1トランジスタは、第2方向において、第1電源配線と第2電源配線との間にある。これにより、第1トランジスタの範囲を、第2方向において第2スタンダードセルの方に向けて、拡張することができる。したがって、第1トランジスタのサイズを容易に拡大することができる。
 本開示によると、埋込電源配線を用いる半導体集積回路装置において、スタンダードセルにおけるトランジスタのサイズが容易に拡大可能になる。
実施形態1に係る半導体集積回路装置におけるブロックレイアウトの例を示す平面図 図1におけるセルSCAのレイアウト例を示す平面図 (a),(b)は図2の断面構造を示す断面図 インバータの回路図 図1におけるセルSCBのレイアウト例を示す平面図 (a),(b)はセルSCBの他のレイアウト例を示す平面図 (a)は図1におけるセルSCCのレイアウト例を示す平面図、(b)は隣接するセルSCA,SCCのレイアウト例を示す平面図 (a),(b),(c)は上下終端セルの他のレイアウト例を示す平面図 実施形態2に係る半導体集積回路装置におけるブロックレイアウトの例を示す平面図 図9におけるセルSCA2のレイアウト例を示す平面図 (a),(b)は図9におけるセルSCB2のレイアウト例を示す平面図 図9における、隣接するセルSCA2,SCC2のレイアウト例を示す平面図 (a),(b),(c)は上下終端セルの他のレイアウト例を示す平面図 (a),(b)は実施形態2の変形例に係るセルのレイアウト例を示す平面図
 以下、実施の形態について、図面を参照して説明する。なお、以下の説明では、図2等の平面図において、図面横方向をX方向(第1方向に相当)、図面縦方向をY方向(第2方向に相当)としている。また、基板面に垂直な方向をZ方向(深さ方向に相当)としている。また、「VDD」は電源電圧、高電圧側電源自体または高電圧側電源線を示し、「VSS」は電源電圧、低電圧側電源自体または低電圧側電源線を示す。また、本明細書において、スタンダードセルのことを、適宜、「セル」と略記する。また、本明細書において、「ダミートランジスタ」は、スタンダードセルの論理機能に寄与しないトランジスタのことをいう。「ダミーゲート配線」は、トランジスタを構成しないゲート配線のことをいう。
 (実施形態1)
 図1は実施形態1に係る半導体集積回路装置におけるブロックレイアウトの例を示す平面図である。図1のブロックレイアウトでは、複数のスタンダードセルSCが、X方向およびY方向に並べて配置されている。なお、図1では、埋め込み配線層(BI)に形成された電源配線のみを図示している。
 図1において、VDDをスタンダードセルSCに供給する埋込電源配線11と、VSSをスタンダードセルSCに供給する埋込電源配線12とが、X方向に延びている。各スタンダードセルSCは、埋込電源配線11からVDDの供給を受け、埋込電源配線12からVSSの供給を受ける。図1に示す各セル列のうち、図面最上列および図面最下列以外のセル列では、埋込電源配線11,12は、当該セル列のY方向における中央部に配置されている。なお、スタンダードセルSCは、セル列ごとに、図面上下に反転されており、これに伴って、埋込電源配線11,12は、セル列ごとに、Y方向において配置位置が入れ替わっている。図面最上列および図面最下列では、当該セル列のY方向における中央部に埋込電源配線12のみが配置されている。
 複数のスタンダードセルSCは、スタンダードセルSCA,SCB,SCCを含む。スタンダードセルSCAは、通常のシングルハイトセルであり、セル内に、一対の埋込電源配線11,12を含む。スタンダードセルSCBは、ダブルハイトセルであり、シングルハイトセルの2倍の高さ(Y方向におけるサイズ)を有し、セル内に、二対の埋込電源配線11,12を含む。スタンダードセルSCCは、最上セル列および最下セル列に配置されており、いわゆる上下終端セルである。スタンダードセルSCCは、シングルハイトセルの半分の高さを有し、埋込電源配線12を含む。
 図2はスタンダードセルSCAのレイアウト例を示す平面図であり、図3(a)は図2の線Y1-Y1’における断面構造を示す断面図、図3(b)は図2の線Y2-Y2’における断面構造を示す断面図である。図2に示すセルSCAは、論理回路の一例として、図4に示すインバータを構成する。ただし、本開示において、各スタンダードセルが構成する論理回路は、インバータに限られるものではない。
 図2に示すように、セルSCAにおいて、Y方向における中央部に、X方向に延びる埋込電源配線11,12が配置されている。埋込電源配線11はVDDを供給し、埋込電源配線12はVSSを供給する。なお、図1のブロックレイアウトでは、セルSCAは、図面上下方向に反転して配置されている。図2では、セルSCAのセル枠CFを示している。他のレイアウト例を示す図も同様である。
 Nウェル上に、P型トランジスタP1が形成されている。PウェルまたはP型基板上に、N型トランジスタN1が形成されている。トランジスタP1,N1はY方向に1列に並んでいる。トランジスタP1,N1は、チャネル部として、3枚のシートからなるナノシート21,22をそれぞれ有する。すなわち、トランジスタP1,N1はナノシートFETである。なお、各ナノシートFETが有するナノシートの枚数は、3枚に限られるものではない。ナノシート21,22の領域が、各トランジスタP1,N1のチャネル領域になる。
 ナノシート21の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド23,24がそれぞれ形成されている。パッド23は、トランジスタP1のソース領域となる。パッド24は、トランジスタP1のドレイン領域となる。ナノシート22の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド25,26がそれぞれ形成されている。パッド25は、トランジスタN1のソース領域となる。パッド26は、トランジスタN1のドレイン領域となる。
 Y方向に延びるゲート配線31が形成されている。ゲート配線31は、トランジスタP1のナノシート21、および、トランジスタN1のナノシート22のY方向およびZ方向における外周を、ゲート絶縁膜(図示せず)を介して囲んでいる。ゲート配線31は、トランジスタP1,N1のゲートに対応する。トランジスタP1,N1のゲート幅は同一である(w1)。ただし、トランジスタP1,N1のゲート幅は同一でなくてもかまわない。また、ゲート配線31のX方向における両側のセル枠CF上に、ダミーゲート配線35a,35bが形成されている。
 ローカル配線層において、Y方向に延びるローカル配線41,42,43が形成されている。ローカル配線41は、パッド23と接続されており、かつ、電源配線11とビアを介して接続されている。ローカル配線42は、パッド25と接続されており、かつ、電源配線12とビアを介して接続されている。ローカル配線43は、パッド24,26と接続されている。
 M1配線層において、X方向に延びるメタル配線51,52が形成されている。メタル配線51は、入力ノードAに対応しており、ゲート配線31と、コンタクトを介して接続されている。メタル配線52は、出力ノードYに対応しており、ローカル配線43と、コンタクトを介して接続される。
 図2に示すように、埋込電源配線11,12と、ナノシートFETであるトランジスタP1,N1は、平面視で離間して配置される。埋込電源配線11,12は、Y方向における中央部に配置されており、Y方向において、それぞれ、トランジスタP1,N1より、セルSCAの中央に近い位置にある。これによって、トランジスタP1,N1は、Y方向においてセル枠CFの近傍まで拡張することができる。例えば、Y方向において隣接するセルが有する他のトランジスタと、デザインルールが保たれる範囲で、トランジスタP1,N1を最大限に近接させることができる。
 図5はスタンダードセルSCBのレイアウト例を示す平面図である。図5に示すセルSCBは、セルSCAと同様に、図4に示すインバータを構成する。
 図5に示すように、セルSCBのY方向における中央部において、図面上側の領域に、X方向に延びる埋込電源配線11a,12aが配置されており、図面下側の領域に、X方向に延びる埋込電源配線11b,12bが配置されている。埋込電源配線11a,11bはVDDを供給し、埋込電源配線12a,12bはVSSを供給する。
 図面上側のNウェル上に、P型トランジスタP1aが形成されており、図面下側のNウェル上に、P型トランジスタP1bが形成されている。P型トランジスタP1a,P1bによって、図4におけるトランジスタP1が構成される。PウェルまたはP型基板上に、N型トランジスタN1が形成されている。トランジスタP1a,N1,P1bはY方向に1列に並んでいる。
 トランジスタP1a,P1b,N1は、チャネル部として、例えば3枚のシートからなるナノシート61,62,63をそれぞれ有する。すなわち、トランジスタP1a,P1b,N1はナノシートFETである。ナノシート61,62,63の領域が、各トランジスタP1a,P1b,N1のチャネル領域になる。
 ナノシート61の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド64,65がそれぞれ形成されている。パッド64は、トランジスタP1aのソース領域となる。パッド65は、トランジスタP1aのドレイン領域となる。ナノシート62の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド66,67がそれぞれ形成されている。パッド66は、トランジスタP1bのソース領域となる。パッド67は、トランジスタP1bのドレイン領域となる。ナノシート63の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド68,69がそれぞれ形成されている。パッド68は、トランジスタN1のソース領域となる。パッド69は、トランジスタN1のドレイン領域となる。
 Y方向に延びるゲート配線32が形成されている。ゲート配線32は、トランジスタP1aのナノシート61、トランジスタP1bのナノシート62、および、トランジスタN1のナノシート63のY方向およびZ方向における外周を、ゲート絶縁膜(図示せず)を介して囲んでいる。ゲート配線32は、トランジスタP1a,P1b,N1のゲートに対応する。トランジスタP1a,P1bのゲート幅は同一である(w1)。ただし、トランジスタP1a,P1bのゲート幅は同一でなくてもかまわない。また、トランジスタN1のゲート幅w2は、トランジスタP1a,P1bのゲート幅w1の2倍よりも大きい(w2>w1×2)。
 ローカル配線層において、Y方向に延びるローカル配線45,46,47,48が形成されている。ローカル配線45は、パッド64と接続されており、かつ、電源配線11aとビアを介して接続されている。ローカル配線46は、パッド68と接続されており、かつ、電源配線12a,12bとビアを介して接続されている。ローカル配線47は、パッド66と接続されており、かつ、電源配線11bとビアを介して接続されている。ローカル配線48は、パッド65,67,69と接続されている。
 M1配線層において、X方向に延びるメタル配線53,54が形成されている。メタル配線53は、入力ノードAに対応しており、ゲート配線32と、コンタクトを介して接続されている。メタル配線54は、出力ノードYに対応しており、ローカル配線48と、コンタクトを介して接続される。
 図5に示すように、埋込電源配線11a,11b,12a,12bと、ナノシートFETであるトランジスタP1a,P1b,N1は、平面視で離間して配置される。トランジスタN1は、Y方向において、埋込電源配線12a,12bの間にある。これにより、トランジスタN1の範囲を、埋込電源配線12a,12bの間において拡張することができる。
 図6(a),(b)はセルSCBの他のレイアウト例である。図6(a)に示すレイアウトでは、Y方向における中央部に配置されたトランジスタN1が、Y方向に2つに分離されたナノシート63a,63bを有している。
 図6(b)に示すレイアウトでは、埋込電源配線11a,12aの配置位置が入れ替わっており、埋込電源配線11b,12bの配置位置が入れ替わっている。そして、Y方向における両端近傍に、トランジスタN1a,N1bがそれぞれ配置されており、Y方向における中央部に、トランジスタP1が配置されている。N型トランジスタN1a,N1bによって、図4におけるトランジスタN1が構成される。図6(b)のレイアウトでは、埋込電源配線11a,11bの間において、トランジスタP1のサイズを大きくすることができる。なお、図6(b)において、図6(a)と同様に、Y方向における中央部に配置されたトランジスタP1が、Y方向に2つに分離されたナノシートを有するようにしてもよい。
 図7(a)は上下終端セルであるスタンダードSCCのレイアウト例を示す平面図である。また、図7(b)は、Y方向において隣接するスタンダードセルSCC,SCAのレイアウトを併せて示す平面図である。図7(b)では、セルSCAは、図2に示すレイアウトが図面上下に反転して配置されている。図7(b)に示すように、セルSCCは、Y方向におけるサイズが、セルSCAより小さい。なお、ここでは、セルSCCのY方向におけるサイズはセルSCAの1/2としているが、これに限られるものではない。
 図7(a)に示すように、スタンダードセルSCCは、X方向に延びており、VSSを供給する電源配線12と、ダミートランジスタDT1とを備える。ダミートランジスタDT1は、Y方向に延びるゲート配線71を有し、かつ、ドレインおよびソースにローカル配線75,76がそれぞれ接続されている。また、ゲート配線71のX方向における両側のセル枠上に、ダミーゲート配線72a,72bが形成されている。
 図7(b)に示すように、セルSCAのトランジスタN1は、Y方向において、セルSCAが備える電源配線12と、セルSCCが備える電源配線12との間にある。そして、セルSCA,SCCの境界からみて、各構成要素、すなわち、埋込電源配線、トランジスタ、ゲート配線およびローカル配線の配置がY方向において対称になっている。言い換えると、セルSCAとセルSCCとにおいて、各構成要素のセルSCA,SCCの境界からの距離が、互いに同じである。これにより、半導体集積回路装置のブロックレイアウト全体において、各構成要素の配置が規則的になるので、各構成要素の製造仕上がりのばらつきを抑制することができる。
 図8は上下終端セルの他のレイアウト例を示す平面図である。図8(a)はセルSCCのレイアウトの変形例であり、電源配線12と、ダミーゲート配線71,72a,72bのみを備えた構成になっている。図8(b)はセルSCCのレイアウトの変形例であり、電源配線12のみを備えた構成になっている。
 図8(c)は、VDDを供給する電源配線11を備える上下終端セルのレイアウト例である。図8(c)の上下終端セルは、Y方向に隣接するセルにおいて、最近接のトランジスタがP型トランジスタであり、最近接の電源配線がVDDを供給する電源配線である場合に用いられる。なお、図8(c)のレイアウトに代えて、図8(a)と同様に、電源配線11とダミーゲート配線のみを備えた構成としてもよい。また、図8(b)と同様に、電源配線のみを備えた構成としてもよい。
 以上のように本実施形態によると、スタンダードセルSCAにおいて、埋込電源配線11は、トランジスタP1と平面視で離間しており、かつ、Y方向において、トランジスタP1より、セルSCAの中央に近い位置にある。また、埋込電源配線12は、トランジスタN1と平面視で離間しており、かつ、Y方向において、トランジスタN1より、セルSCAの中央に近い位置にある。これにより、トランジスタP1,N1の範囲を、Y方向においてセルSCAの外側に向けて、拡張することができる。したがって、トランジスタP1,N1のサイズを容易に拡大することができる。
 また、スタンダードセルSCBにおいて、Y方向において、VDDを供給する埋込電源配線11a,11bの間に、VSSを供給する埋込電源配線12a,12bが配置されている。トランジスタN1は、埋込電源配線12a,12bと平面視で離間しており、かつ、Y方向において、埋込電源配線12a,12bの間にある。これにより、トランジスタN1の範囲を、Y方向において埋込電源配線12a,12bの間において拡張することができる。したがって、トランジスタN1のサイズを容易に拡大することができる。
 また、スタンダードセルSCA,SCCは、Y方向において隣接している。セルSCAにおいて、埋込電源配線12は、トランジスタN1と平面視で離間している。上下終端セルであるセルSCCは、埋込電源配線12を備えており、セルSCAが備えるトランジスタN1は、Y方向において、埋込電源配線12同士の間にある。これにより、トランジスタN1の範囲を、Y方向においてセルSCCの方に向けて拡張することができる。したがって、トランジスタN1のサイズを容易に拡大することができる。
 (実施形態2)
 図9は実施形態2に係る半導体集積回路装置におけるブロックレイアウトの例を示す平面図である。図9のブロックレイアウトでは、複数のスタンダードセルSCが、X方向およびY方向に並べて配置されている。スタンダードセルSCは、セル列ごとに、図面上下に反転されている。なお、図1と同様に、図9では、埋め込み配線層(BI)に形成された電源配線のみを図示している。
 図9において、VDDをスタンダードセルSCに供給する埋込電源配線13と、VSSをスタンダードセルSCに供給する埋込電源配線14とが、X方向に延びている。各スタンダードセルSCは、埋込電源配線13からVDDの供給を受け、埋込電源配線14からVSSの供給を受ける。図9では、埋込電源配線13は、セル列の境界線上に配置されており、Y方向に隣接するセル間で共有されている。埋込電源配線14は、各セル列のY方向における中央部に配置されている。埋込電源配線13の配線幅は、埋込電源配線14の配線幅よりも大きい。例えば、埋込電源配線13の配線幅を、実施形態1に示した埋込電源配線11の配線幅の2倍にすることによって、実施形態1と同じ電源配線幅を確保することができる。
 複数のスタンダードセルSCは、スタンダードセルSCA2,SCB2,SCC2を含む。スタンダードセルSCA2は、通常のシングルハイトセルであり、Y方向におけるセル端の一方にVDDを供給する埋込電源配線13が配置されており、セル内にVSSを供給する埋込電源配線14が配置されている。スタンダードセルSCB2は、ダブルハイトセルであり、シングルハイトセルの2倍の高さを有し、Y方向におけるセル端の両方にVDDを供給する埋込電源配線13がそれぞれ配置されており、セル内に2本のVSSを供給する埋込電源配線14が配置されている。スタンダードセルSCC2は、最上セル列および最下セル列に配置されており、いわゆる上下終端セルである。スタンダードセルSCC2は、シングルハイトセルの半分の高さを有し、VSSを供給する埋込電源配線14を含む。
 なお、図9のブロックレイアウトにおいて、VSSを供給する埋込電源配線を、セル列の境界線上に配置し、VDDを供給する埋込電源配線を、各セル列のY方向における中央部に配置してもよい。
 図10はスタンダードセルSCA2のレイアウト例を示す平面図である。図10に示すセルSCA2は、論理回路の一例として、図4に示すインバータを構成する。図10のレイアウトは、実施形態1における図2のレイアウトと対比すると、トランジスタP1とVDDを供給する電源配線(図2では電源配線11、図10では電源配線13)との位置関係が、異なっている。
 図10に示すように、セルSCA2において、Y方向における図面上端に、X方向に延びる埋込電源配線13が配置されており、Y方向における中央部に、X方向に延びる埋込電源配線14が配置されている。埋込電源配線13はVDDを供給し、埋込電源配線14はVSSを供給する。なお、図9のブロックレイアウトでは、図10に示すセルSCA2は、図面上下方向に反転して配置されている。
 Nウェル上に、P型トランジスタP1が形成されている。PウェルまたはP型基板上に、N型トランジスタN1が形成されている。トランジスタP1,N1はY方向に1列に並んでいる。トランジスタP1,N1は、チャネル部として、例えば3枚のシートからなるナノシート121,122をそれぞれ有する。すなわち、トランジスタP1,N1はナノシートFETである。なお、各ナノシートFETが有するナノシートの枚数は、3枚に限られるものではない。ナノシート121,122の領域が、各トランジスタP1,N1のチャネル領域になる。
 ナノシート121の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド123,124がそれぞれ形成されている。パッド123は、トランジスタP1のソース領域となる。パッド124は、トランジスタP1のドレイン領域となる。ナノシート122の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド125,126がそれぞれ形成されている。パッド125は、トランジスタN1のソース領域となる。パッド126は、トランジスタN1のドレイン領域となる。
 Y方向に延びるゲート配線131が形成されている。ゲート配線131は、トランジスタP1のナノシート121、および、トランジスタN1のナノシート122のY方向およびZ方向における外周を、ゲート絶縁膜(図示せず)を介して囲んでいる。ゲート配線131は、トランジスタP1,N1のゲートに対応する。トランジスタP1,N1のゲート幅は同一である(w1)。ただし、トランジスタP1,N1のゲート幅は同一でなくてもかまわない。また、ゲート配線131のX方向における両側のセル枠CF上に、ダミーゲート配線135a,135bが形成されている。
 ローカル配線層において、Y方向に延びるローカル配線141,142,143が形成されている。ローカル配線141は、パッド123と接続されており、かつ、電源配線13とビアを介して接続されている。ローカル配線142は、パッド125と接続されており、かつ、電源配線14とビアを介して接続されている。ローカル配線143は、パッド124,126と接続されている。
 M1配線層において、X方向に延びるメタル配線151,152が形成されている。メタル配線151は、入力ノードAに対応しており、ゲート配線131と、コンタクトを介して接続されている。メタル配線152は、出力ノードYに対応しており、ローカル配線143と、コンタクトを介して接続される。
 図10に示すように、埋込電源配線13,14と、ナノシートFETであるトランジスタP1,N1は、平面視で離間して配置される。埋込電源配線14は、Y方向における中央部に配置されており、Y方向において、トランジスタN1よりセルSCA2の中央に近い位置にある。これによって、トランジスタN1は、Y方向においてセル枠CFの近傍まで拡張することができる。例えば、Y方向において図面下側に隣接するセルが有する他のトランジスタと、デザインルールが保たれる範囲で、トランジスタN1を最大限に近接させることができる。また、VDDを供給する電源配線13を、Y方向において図面上側に隣接する他のセルと共有することができるので、実施形態1と比べて、電源を強化できる。
 図11(a)はスタンダードセルSCB2のレイアウト例を示す平面図である。図11(a)に示すセルSCB2は、セルSCA2と同様に、図4に示すインバータを構成する。図11(a)のレイアウトは、実施形態1における図5のレイアウトと対比すると、トランジスタP1a,P1bとVDDを供給する電源配線(図5では電源配線11a,11b、図11(a)では電源配線13a,13b)との位置関係が、異なっている。
 図11(a)に示すように、セルSCB2において、Y方向における両端に、X方向に延びる埋込電源配線13a,13bがそれぞれ配置されており、Y方向における中央部において、図面上側の領域に、X方向に延びる埋込電源配線14aが配置されており、図面下側の領域に、X方向に延びる埋込電源配線14bが配置されている。埋込電源配線13a,13bはVDDを供給し、埋込電源配線14a,14bはVSSを供給する。
 図面上側のNウェル上に、P型トランジスタP1aが形成されており、図面下側のNウェル上に、P型トランジスタP1bが形成されている。P型トランジスタP1a,P1bによって、図4におけるトランジスタP1が構成される。PウェルまたはP型基板上に、N型トランジスタN1が形成されている。トランジスタP1a,N1,P1bはY方向に1列に並んでいる。
 トランジスタP1a,P1b,N1は、チャネル部として、例えば3枚のシートからなるナノシート161,162,163をそれぞれ有する。すなわち、トランジスタP1a,P1b,N1はナノシートFETである。ナノシート161,162,163の領域が、各トランジスタP1a,P1b,N1のチャネル領域になる。
 ナノシート161の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド164,165がそれぞれ形成されている。パッド164は、トランジスタP1aのソース領域となる。パッド165は、トランジスタP1aのドレイン領域となる。ナノシート162の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド166,167がそれぞれ形成されている。パッド166は、トランジスタP1bのソース領域となる。パッド167は、トランジスタP1bのドレイン領域となる。ナノシート163の図面左側および図面右側に、3枚のシートに接続された一体構造の半導体層からなるパッド168,169がそれぞれ形成されている。パッド168は、トランジスタN1のソース領域となる。パッド169は、トランジスタN1のドレイン領域となる。
 Y方向に延びるゲート配線132が形成されている。ゲート配線132は、トランジスタP1aのナノシート161、トランジスタP1bのナノシート162、および、トランジスタN1のナノシート163のY方向およびZ方向における外周を、ゲート絶縁膜(図示せず)を介して囲んでいる。ゲート配線132は、トランジスタP1a,P1b,N1のゲートに対応する。トランジスタP1a,P1bのゲート幅は同一である(w1)。ただし、トランジスタP1a,P1bのゲート幅は同一でなくてもかまわない。また、トランジスタN1のゲート幅w2は、トランジスタP1a,P1bのゲート幅w1の2倍よりも大きい(w2>w1×2)。
 ローカル配線層において、Y方向に延びるローカル配線145,146,147,148が形成されている。ローカル配線145は、パッド164と接続されており、かつ、電源配線13aとビアを介して接続されている。ローカル配線146は、パッド168と接続されており、かつ、電源配線14a,14bとビアを介して接続されている。ローカル配線147は、パッド166と接続されており、かつ、電源配線13bとビアを介して接続されている。ローカル配線148は、パッド165,167,169と接続されている。
 M1配線層において、X方向に延びるメタル配線153,154が形成されている。メタル配線153は、入力ノードAに対応しており、ゲート配線132と、コンタクトを介して接続されている。メタル配線154は、出力ノードYに対応しており、ローカル配線148と、コンタクトを介して接続される。
 図11(a)に示すように、埋込電源配線13a,13b,14a,14bと、ナノシートFETであるトランジスタP1a,P1b,N1は、平面視で離間して配置される。トランジスタN1は、Y方向において、埋込電源配線14a,14bの間にある。これにより、トランジスタN1の範囲を、埋込電源配線14a,14bの間において拡張することができる。
 図11(b)は図11(a)に示すセルSCBのレイアウトの変形例である。図11(b)に示すレイアウトでは、Y方向における中央部に配置されたトランジスタN1が、Y方向に2つに分離されたナノシート163a,163bを有している。
 図12はY方向において隣接するスタンダードセルSCC2,SCA2のレイアウトを併せて示す平面図である。図12では、セルSCA2は、図10に示すレイアウトとは図面上下に反転して配置されている。図12に示すように、セルSCC2は、Y方向におけるサイズが、セルSCA2より小さい。なお、ここでは、セルSCC2のY方向におけるサイズはセルSCA2の1/2としているが、これに限られるものではない。
 図12に示すように、スタンダードセルSCC2のレイアウトは、実施形態1における図7(a)のセルSCCのレイアウトと同様である。すなわち、セルSCC2は、X方向に延びており、VSSを供給する電源配線14と、ダミートランジスタDT2とを備える。ダミートランジスタDT2は、Y方向に延びるゲート配線171を有し、かつ、ドレインおよびソースにローカル配線175,176がそれぞれ接続されている。また、ゲート配線171のX方向における両側のセル枠上に、ダミーゲート配線172a,172bが形成されている。
 図12に示すように、セルSCA2のトランジスタN1は、Y方向において、セルSCA2が備える電源配線14と、セルSCC2が備える電源配線14との間にある。そして、セルSCA2,SCC2の境界からみて、各構成要素、すなわち、埋込電源配線、トランジスタ、ゲート配線およびローカル配線の配置がY方向において対称になっている。言い換えると、セルSCA2とセルSCC2とにおいて、各構成要素のセルSCA2,SCC2の境界からの距離が、互いに同じである。これにより、半導体集積回路装置のブロックレイアウト全体において、各構成要素の配置が規則的になるので、各構成要素の製造仕上がりのばらつきを抑制することができる。
 図13は上下終端セルの他のレイアウト例を示す平面図である。図13(a)はセルSCC2のレイアウトの変形例であり、電源配線14と、ダミーゲート配線171,172a,172bのみを備えた構成になっている。図13(b)はセルSCC2のレイアウトの変形例であり、電源配線14のみを備えた構成になっている。
 図13(c)は、VDDを供給する電源配線13を備える上下終端セルのレイアウト例である。図13(c)の上下終端セルは、Y方向に隣接するセルにおける最近接の電源配線が、セル端に配置されたVDDを供給する電源配線である場合に用いられる。すなわち、図13(c)の上下終端セルは、Y方向における図面下側に隣接するセルと、電源配線13を共有する。なお、図13(c)のレイアウトに代えて、図13(a)と同様に、電源配線13とダミーゲート配線のみを備えた構成としてもよい。また、図13(b)と同様に、電源配線のみを備えた構成としてもよい。
 以上のように本実施形態によると、スタンダードセルSCA2において、埋込電源配線14は、トランジスタN1と平面視で離間しており、かつ、Y方向において、トランジスタN1より、セルSCA2の中央に近い位置にある。これにより、トランジスタN1の範囲を、Y方向においてセルSCA2の外側に向けて拡張することができる。したがって、トランジスタN1のサイズを容易に拡大することができる。
 また、スタンダードセルSCB2において、Y方向において、VDDを供給する埋込電源配線13a,13bの間に、VSSを供給する埋込電源配線14a,14bが配置されている。トランジスタN1は、埋込電源配線14a,14bと平面視で離間しており、かつ、Y方向において、埋込電源配線14a,14bの間にある。これにより、トランジスタN1の範囲を、Y方向において埋込電源配線14a,14bの間において拡張することができる。したがって、トランジスタN1のサイズを容易に拡大することができる。
 また、スタンダードセルSCA2,SCC2は、Y方向において隣接している。セルSCA2において、埋込電源配線14は、トランジスタN1と平面視で離間している。上下終端セルであるセルSCC2は、埋込電源配線14を備えており、セルSCA2が備えるトランジスタN1は、Y方向において、埋込電源配線14同士の間にある。これにより、トランジスタN1の範囲を、Y方向においてセルSCC2の方に向けて拡張することができる。したがって、トランジスタN1のサイズを容易に拡大することができる。
 図14は実施形態2の変形例に係るセルのレイアウト例である。図14のレイアウトは、VSSを供給する埋込電源配線がセル列の境界線上に配置され、VDDを供給する埋込電源配線が各セル列のY方向における中央部に配置されたブロックレイアウトにおいて用いられる。図14(a)はシングルハイトセルのレイアウト例であり、図14(b)はダブルハイトセルのレイアウト例である。
 図14(a)では、Y方向における中央部に、X方向に延びるVDDを供給する埋込電源配線15が配置されており、Y方向における図面下端に、X方向に延びるVSSを供給する埋込電源配線16が配置されている。トランジスタP1は、埋込電源配線15より図面上側に配置されている。トランジスタN1は、埋込電源配線15と埋込電源配線16との間に配置されている。その他の構成は、図10に示すセルSCA2のレイアウトと同様である。埋込電源配線15は、Y方向における中央部に配置されており、Y方向において、トランジスタP1よりセルの中央に近い位置にある。これによって、トランジスタP1は、Y方向においてセル枠の近傍まで拡張することができる。
 図14(b)では、Y方向における中央部において、図面上側の領域に、X方向に延びる埋込電源配線15aが配置されており、図面下側の領域に、X方向に延びる埋込電源配線15bが配置されている。また、Y方向における両端に、X方向に延びる埋込電源配線16a,16bがそれぞれ配置されている。埋込電源配線15a,15bはVDDを供給し、埋込電源配線16a,16bはVSSを供給する。
そして、Y方向における中央部において、埋込電源配線15a,15bの間にトランジスタP1が配置されており、埋込電源配線15a,16aの間にトランジスタN1aが配置されており、埋込電源配線15b,16bの間にトランジスタN1bが配置されている。N型トランジスタN1a,N1bによって、図4におけるトランジスタN1が構成される。その他の構成は、図6(b)に示すレイアウトと同様である。図14(b)のレイアウトでは、埋込電源配線15a,15bの間において、トランジスタP1のサイズを大きくすることができる。なお、図14(b)において、図11(b)と同様に、Y方向における中央部に配置されたトランジスタP1が、Y方向に2つに分離されたナノシートを有するようにしてもよい。
 本開示では、埋込電源配線を用いる半導体集積回路装置において、スタンダードセルにおけるトランジスタのサイズが容易に拡大可能になるので、例えば、システムLSIの性能向上に有用である。
11,12,13,14,15,16 埋込電源配線
11a,11b,12a,12b,13a,13b,14a,14b,15a,15b 埋込電源配線
SC,SCA,SCB,SCC,SCA2,SCB2,SCC2 スタンダードセル
P1,P1a,P1b,N1,N1a,N1b トランジスタ
DT1,DT2 ダミートランジスタ

Claims (11)

  1.  複数のスタンダードセルを備える半導体集積回路装置であって、
     前記複数のスタンダードセルの1つである第1スタンダードセルは、
     埋込配線層に設けられており、第1方向に延び、第1電源電圧を供給する第1電源配線と、
     前記埋込配線層に設けられており、前記第1方向に延び、第2電源電圧を供給する第2電源配線と、
     前記第1電源配線と接続された、第1導電型の第1トランジスタとを備え、
     前記第1電源配線は、前記第1トランジスタと平面視で離間しており、かつ、前記第1方向と垂直をなす第2方向において、前記第1トランジスタより、前記第1スタンダードセルの中央に近い位置にある
    半導体集積回路装置。
  2.  請求項1記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記第2電源配線と接続された、第2導電型の第2トランジスタを備え、
     前記第2電源配線は、前記第2トランジスタと平面視で離間しており、かつ、前記第2方向において、前記第2トランジスタより、前記第1スタンダードセルの中央に近い位置にある
    半導体集積回路装置。
  3.  請求項1記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記第2電源配線と接続された、第2導電型の第2トランジスタを備え、
     前記第2電源配線は、前記第2トランジスタと平面視で離間しており、かつ、前記第2方向において、前記第2トランジスタより、前記第1スタンダードセルの中央から遠い位置にある
    半導体集積回路装置。
  4.  複数のスタンダードセルを備える半導体集積回路装置であって、
     前記複数のスタンダードセルの1つである第1スタンダードセルは、
     埋込配線層に設けられており、第1方向に延び、第1電源電圧を供給する第1および第2電源配線と、
     前記埋込配線層に設けられており、前記第1方向に延び、前記第1方向と垂直をなす第2方向において前記第1電源配線と前記第2電源配線との間に配置されており、第2電源電圧を供給する第3および第4電源配線と、
     前記第3電源配線と接続された、第1導電型の第1トランジスタとを備え、
     前記第1トランジスタは、前記第3および第4電源配線と平面視で離間しており、かつ、前記第2方向において、前記第3電源配線と前記第4電源配線との間にある
    半導体集積回路装置。
  5.  請求項4記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記第1電源配線と接続された、第2導電型の第2トランジスタを備え、
     前記第1電源配線は、前記第2トランジスタと平面視で離間しており、かつ、前記第2方向において、前記第2トランジスタより、前記第1スタンダードセルの中央に近い位置にある
    半導体集積回路装置。
  6.  請求項4記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記第1電源配線と接続された、第2導電型の第2トランジスタを備え、
     前記第1電源配線は、前記第2トランジスタと平面視で離間しており、かつ、前記第2方向において、前記第2トランジスタより、前記第1スタンダードセルの中央から遠い位置にある
    半導体集積回路装置。
  7.  請求項4記載の半導体集積回路装置において、
     前記第1トランジスタは、前記第1スタンダードセルの前記第2方向における中央をまたがって配置されている
    半導体集積回路装置。
  8.  複数のスタンダードセルを備える半導体集積回路装置であって、
     前記複数のスタンダードセルは、
     第1スタンダードセルと、
     第2スタンダードセルとを含み、
     前記第1スタンダードセルは、
     埋込配線層に設けられており、第1方向に延び、第1電源電圧を供給する第1電源配線と、
     前記第1電源配線と接続された、第1導電型の第1トランジスタとを備え、
     前記第1電源配線は、前記第1トランジスタと平面視で離間しており、
     前記第2スタンダードセルは、
     前記第1方向と垂直をなす第2方向において前記第1スタンダードセルと隣接しており、前記第2方向におけるサイズが前記第1スタンダードセルより小さく、かつ、
     前記埋込配線層に設けられており、前記第1方向に延び、前記第1電源電圧を供給する第2電源配線を備え、
     前記第1スタンダードセルが備える前記第1トランジスタは、前記第2方向において、前記第1電源配線と前記第2電源配線との間にある
    半導体集積回路装置。
  9.  請求項8記載の半導体集積回路装置において、
     前記第2スタンダードセルは、
     ダミートランジスタを備える
    半導体集積回路装置。
  10.  請求項8記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記埋込配線層に設けられており、前記第1方向に延び、第2電源電圧を供給する第3電源配線と、
     前記第3電源配線と接続された、第2導電型の第2トランジスタとを備え、
     前記第3電源配線は、前記第2トランジスタと平面視で離間しており、かつ、前記第2方向において、前記第2トランジスタより、前記第1スタンダードセルの中央に近い位置にある
    半導体集積回路装置。
  11.  請求項8記載の半導体集積回路装置において、
     前記第1スタンダードセルは、
     前記埋込配線層に設けられており、前記第1方向に延び、第2電源電圧を供給する第3電源配線と、
     前記第3電源配線と接続された、第2導電型の第2トランジスタとを備え、
     前記第3電源配線は、前記第2トランジスタと平面視で離間しており、かつ、前記第2方向において、前記第2トランジスタより、前記第1スタンダードセルの中央から遠い位置にある
    半導体集積回路装置。
PCT/JP2022/047451 2022-01-06 2022-12-22 半導体集積回路装置 WO2023132264A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022001012 2022-01-06
JP2022-001012 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023132264A1 true WO2023132264A1 (ja) 2023-07-13

Family

ID=87073593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047451 WO2023132264A1 (ja) 2022-01-06 2022-12-22 半導体集積回路装置

Country Status (1)

Country Link
WO (1) WO2023132264A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032839A (ja) * 2003-07-08 2005-02-03 Toshiba Microelectronics Corp 半導体集積回路及びマスターチップ
US20180151494A1 (en) * 2016-11-28 2018-05-31 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having buried metal line and fabrication method of the same
JP2018190760A (ja) * 2017-04-28 2018-11-29 株式会社ソシオネクスト 半導体装置
JP2019145823A (ja) * 2019-04-17 2019-08-29 ソニー株式会社 半導体集積回路
WO2020066797A1 (ja) * 2018-09-28 2020-04-02 株式会社ソシオネクスト 半導体集積回路装置および半導体パッケージ構造
WO2020137746A1 (ja) * 2018-12-26 2020-07-02 株式会社ソシオネクスト 半導体集積回路装置
JP2021061278A (ja) * 2019-10-03 2021-04-15 株式会社ソシオネクスト 半導体集積回路装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032839A (ja) * 2003-07-08 2005-02-03 Toshiba Microelectronics Corp 半導体集積回路及びマスターチップ
US20180151494A1 (en) * 2016-11-28 2018-05-31 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having buried metal line and fabrication method of the same
JP2018190760A (ja) * 2017-04-28 2018-11-29 株式会社ソシオネクスト 半導体装置
WO2020066797A1 (ja) * 2018-09-28 2020-04-02 株式会社ソシオネクスト 半導体集積回路装置および半導体パッケージ構造
WO2020137746A1 (ja) * 2018-12-26 2020-07-02 株式会社ソシオネクスト 半導体集積回路装置
JP2019145823A (ja) * 2019-04-17 2019-08-29 ソニー株式会社 半導体集積回路
JP2021061278A (ja) * 2019-10-03 2021-04-15 株式会社ソシオネクスト 半導体集積回路装置

Similar Documents

Publication Publication Date Title
US10163495B2 (en) Two-port SRAM connection structure
US20210305278A1 (en) Semiconductor integrated circuit device
US20080180132A1 (en) Semiconductor device and method of fabricating the same
JP7415176B2 (ja) 半導体集積回路装置
CN109564893B (zh) 半导体芯片
JP7364928B2 (ja) 半導体集積回路装置
US20210320065A1 (en) Semiconductor integrated circuit device
US20220336499A1 (en) Semiconductor integrated circuit device
TW202131516A (zh) 包括垂直場效電晶體的標準單元
US20220216319A1 (en) Semiconductor integrated circuit device
JPH04102370A (ja) 半導体集積回路装置
US11916057B2 (en) Semiconductor integrated circuit device
JP2013089771A (ja) 半導体集積回路装置
WO2023132264A1 (ja) 半導体集積回路装置
JP2001358232A (ja) 半導体記憶装置
JP7060814B2 (ja) 半導体集積回路装置
WO2022186012A1 (ja) 半導体集積回路装置
WO2021171969A1 (ja) 半導体集積回路装置
TW202306104A (zh) 虛設單元及分接單元佈局結構
WO2023209971A1 (ja) 半導体集積回路装置
WO2023127385A1 (ja) 半導体集積回路装置
US20230290785A1 (en) Semiconductor integrated circuit device
WO2023248772A1 (ja) 半導体集積回路装置
WO2022172737A1 (ja) 半導体集積回路装置
WO2023112682A1 (ja) 半導体集積回路装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918848

Country of ref document: EP

Kind code of ref document: A1