JP2004534380A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2004534380A5 JP2004534380A5 JP2002570306A JP2002570306A JP2004534380A5 JP 2004534380 A5 JP2004534380 A5 JP 2004534380A5 JP 2002570306 A JP2002570306 A JP 2002570306A JP 2002570306 A JP2002570306 A JP 2002570306A JP 2004534380 A5 JP2004534380 A5 JP 2004534380A5
- Authority
- JP
- Japan
- Prior art keywords
- layer
- waveguide
- type
- active
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010410 layer Substances 0.000 claims 103
- 230000003287 optical Effects 0.000 claims 29
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 25
- 239000004065 semiconductor Substances 0.000 claims 15
- 230000000051 modifying Effects 0.000 claims 12
- 239000003870 refractory metal Substances 0.000 claims 11
- 230000005669 field effect Effects 0.000 claims 10
- 238000002347 injection Methods 0.000 claims 10
- 239000007924 injection Substances 0.000 claims 10
- 238000003780 insertion Methods 0.000 claims 9
- 238000010521 absorption reaction Methods 0.000 claims 8
- 238000000034 method Methods 0.000 claims 8
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims 7
- 238000005253 cladding Methods 0.000 claims 7
- 150000002500 ions Chemical class 0.000 claims 7
- 238000002310 reflectometry Methods 0.000 claims 6
- 239000000969 carrier Substances 0.000 claims 5
- 230000005693 optoelectronics Effects 0.000 claims 5
- 230000000295 complement Effects 0.000 claims 4
- 230000001808 coupling Effects 0.000 claims 4
- 238000010168 coupling process Methods 0.000 claims 4
- 238000005859 coupling reaction Methods 0.000 claims 4
- 238000005468 ion implantation Methods 0.000 claims 4
- 239000002184 metal Substances 0.000 claims 4
- 229910052751 metal Inorganic materials 0.000 claims 4
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 claims 3
- 230000002269 spontaneous Effects 0.000 claims 3
- MDPILPRLPQYEEN-UHFFFAOYSA-N Aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 claims 2
- 229920001721 Polyimide Polymers 0.000 claims 2
- 239000004642 Polyimide Substances 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 238000005755 formation reaction Methods 0.000 claims 2
- 239000012535 impurity Substances 0.000 claims 2
- 230000031700 light absorption Effects 0.000 claims 2
- 238000011068 load Methods 0.000 claims 2
- 239000000203 mixture Substances 0.000 claims 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- 239000002344 surface layer Substances 0.000 claims 2
- 229910001020 Au alloy Inorganic materials 0.000 claims 1
- 229910004298 SiO 2 Inorganic materials 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 claims 1
- 239000011247 coating layer Substances 0.000 claims 1
- 239000004020 conductor Substances 0.000 claims 1
- 230000000875 corresponding Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 238000011049 filling Methods 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 239000003353 gold alloy Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 239000007943 implant Substances 0.000 claims 1
- 238000002955 isolation Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000002844 melting Methods 0.000 claims 1
- 238000001465 metallisation Methods 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 229920002120 photoresistant polymer Polymers 0.000 claims 1
- 238000004151 rapid thermal annealing Methods 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
Claims (25)
- 少なくとも第1のエピタキシャル層によって前記N+ドープ層から間隔を置いて配置されるp変調ドープ量子井戸を形成する第1の複数の層と、
n変調ドープ量子井戸を形成する第2の複数の層と、前記第1の複数の層は少なくとも第2のエピタキシャル層によって前記第2の複数の層から分離されており、
少なくとも第3のエピタキシャル層によって前記第2の複数の層から間隔を置いて配置されるP+ドープ層と、
を含む基板上に成長した一連のエピタキシャル層を備える半導体デバイス。 - 前記p変調ドープ量子井戸は、AlGaAsのP+ドープ層と、実質的にアンドープのInGaAsの量子井戸層と、GaAsのバリア層とを備える、請求項1に記載の半導体デバイス。
- 前記n変調ドープ量子井戸は、AlGaAsのN+ドープ層と、実質的にアンドープのInGaAsの量子井戸層と、GaAsのバリア層とを備える、請求項1または2に記載の半導体デバイス。
- 前記n変調ドープ量子井戸および前記p変調ドープ量子井戸の少なくとも一方が実質的にアンドープのInGaAsNを含む、前記請求項1から3のいずれかに記載の半導体デバイス。
- 前記一連のエピタキシャル層は、AlAsおよびGaAsの複数の分布型ブラッグ反射器(DBR)ミラー層を含む、前記請求項1から4のいずれかに記載の半導体デバイス。
- pおよびn変調ドープ量子井戸を分離する前記少なくとも第2のエピタキシャル層は、AlGaAsの比較的厚い層である、前記請求項1から5のいずれかに記載の半導体デバイス。
- 前記少なくとも第2のエピタキシャル層はGaAs層をさらに含む、請求項6に記載の半導体デバイス。
- 前記一連のエピタキシャル層は、分布型ブラッグ反射器(DBR)ミラーを含み、ミラーの上に、
(i)n型バイポーラトランジスタは、電界効果制御要素として従来のベース領域の役を果たすp型反転チャネルを変調ドープ界面に有し、前記バイポーラトランジスタの層構造は、pチャネルへテロ構造電界効果トランジスタ(PHFET)の層構造であって、エミッタ層が前記PHFET用のゲート接点層の役を果たすPHFET層構造も実現する、多数キャリアとして電子を有し(n型)、前記DBRミラー上に前記エミッタが付着され、最上面層としてコレクタを有する変調ドープバイポーラ電界効果トランジスタを実現する第1の連続層と、
(ii)p型バイポーラトランジスタは、電界効果制御要素として従来のベース領域の役を果たすn型反転チャネルを変調ドープ界面に有し、前記バイポーラトランジスタの層構造は、nチャネルへテロ構造電界効果トランジスタ(NHFET)層構造であって、エミッタ表面層が前記NHFET用のゲート接点層の役を果たすNHFET層構造も実現する、多数キャリアとして正孔を有し(p型)、コレクタ層が前記n型バイポーラトランジスタの前記コレクタと共通であり、最上面層として前記エミッタを有する変調ドープバイポーラ電界効果トランジスタを実現する、前記第1の連続層に付着される第2の連続層と、
が付着される、請求項1に記載の半導体デバイス。 - 前記n型バイポーラトランジスタは、N+GaAsの第1の底部層と、N型AlxGa1−xAsの層と、AlyGa1−yAsの前記N+ドープ層と、アンドープAlyGa1−yAsの前記少なくとも第1のエピタキシャル層と、P+型AlyGa1−yAsのデルタドープ層を含む前記p変調ドープ量子井戸と、アンドープAlyGa1−yAsのスペーサ層と、アンドープGaAsのスペーサ層と、AlyGa1−yAsバリアを有する少なくとも1つの無歪みGaAs量子井戸、またはGaAsバリアを有するInGaAsNの少なくとも1つのアンドープ量子井戸と、を含む連続層から構成され、
前記少なくとも1つの第2のエピタキシャル層が、前記n型トランジスタのコレクタとして機能するためにアンドープAlyGa1−yAsを含み、また前記p型トランジスタが共通コレクタとしての前記コレクタから始まり、
前記p型バイポーラトランジスタは、アンドープGaAsのスペーサ層と、少なくとも1つのAlyGa1−yAsバリアおよび無歪みGaAs量子井戸を含むか、またはGaAsバリアを有するInGaAsNの少なくとも1つのアンドープ量子井戸を含む前記n変調ドープ量子井戸と、アンドープGaAsのスペーサ層と、アンドープAlyGa1−yAsのスペーサ層と、N+型AlyGa1−yAsのデルタドープ層と、アンドープAlyGa1−yAsの層と、前記P+ドープAlyGa1−yAs層と、P型AlxGa1−xAsの層と、前記p型トランジスタのエミッタ用金属接点層として機能するためのP++型GaAsまたはGaAsおよびInGaAsの組合せの層とを含む、前記少なくとも1つの第2のエピタキシャル層の上に付着される連続層から構成される、請求項8に記載の半導体デバイス。 - x=0.7およびy=0.15である、請求項9に記載の半導体デバイス。
- 前記InGaAsN中の窒素の割合が、0.98μmの自然放出周波数に対して0%、1.5μmの自然放出周波数に対して約4%〜5%、0.98μmと1.5μmとの間の自然放出周波数に対して0%と5%との間に選択される、請求項10に記載の半導体デバイス。
- 前記少なくとも1つのAlyGa1−yAsバリアおよび無歪みGaAs量子井戸、またはGaAsバリアを有するInGaAsNの少なくとも1つのアンドープ量子井戸が、一連のAlyGa1−yAsバリアおよび無歪みGaAs量子井戸、またはGaAsバリアを有するInGaAsNの一連のアンドープ量子井戸を含む、請求項9から11のいずれかに記載の半導体デバイス。
- AlyGa1−yAsの前記少なくとも1つの第2のエピタキシャル層は、厚さが4000Åと10000Åとの間である、請求項9から12のいずれかに記載の半導体デバイス。
- 前記n型バイポーラトランジスタの前記N型AlxGa1−xAs層はドーピングが約5×1017cm−3で厚みが500Å〜3000Åであり、前記AlyGa1−yAsのN+ドープ層はドーピングが約3×1018cm−3で厚みが60Å〜80Åであり、前記アンドープAlyGa1−yAsの少なくとも第1のエピタキシャル層は厚みが200Å〜300Åであり、前記P+型AlyGa1−yAsのデルタドープ層はドーピングが約3〜4×1018cm−3で厚みが60〜80Åであり、前記アンドープAlyGa1−yAsのスペーサ層は厚みが20〜30Åであり、前記アンドープGaAsのスペーサ層は厚みが約15Åであり、
前記p型バイポーラトランジスタは、約100Åの前記アンドープGaAsのスペーサ層を含む前記少なくとも1つの第2のエピタキシャル層の上に付着された連続層から構成され、前記p型バイポーラトランジスタの前記アンドープGaAsのスペーサ層は厚みが約15Åであり、前記p型バイポーラトランジスタの前記アンドープAlyGa1−yAsのスペーサ層は厚みが60〜80Åであり、前記p型バイポーラトランジスタの前記アンドープAlyGa1−yAs層は厚みが200Å〜300Åであり、前記p型バイポーラトランジスタの前記P+型AlyGa1−yAs層はドーピングが約3×1018cm−3で厚みが60Å〜80Åであり、前記P型AlxGa1−xAs層はドーピングが約5×1017cm−3で厚みが1000Å〜3000Å厚みであり、前記P+型GaAsまたはGaAsおよびInGaAsの組合せの層はドーピングが約5×1019〜1020cm−3である、請求項9から13のいずれかに記載の半導体デバイス。 - パターンを位置合わせするためにエッチングされる1組のアライメントマークを用いる製造順序を適用することによって、エピタキシャル連続層から構成される多機能光電子デバイスであって、
電流案内経路と構造の活性領域内への正キャリアの2次元的な導電とを形成するpn接合であって、空乏トランジスタを作製するための負の閾値も定めるpn接合を形成するためにN型イオンが注入され、
高融点金属が、nチャネル電界効果トランジスタ用のゲート電極またはp型バイポーラトランジスタ用のエミッタ電極ならびに全てのレーザおよび検出器用のp型接点を形成するために規定され、前記高融点金属は、前記pチャネル電界効果トランジスタ用のコレクタ電極を、前記最上部P++表面層とP+デルタドープシートとを最初に除去することによって形成し、前記高融点金属パターンは、前記光電子デバイスへの光学エネルギーの流出入を可能にするための光開口部を形成し、
高融点金属およびそのフォトレジストを自己整合形成のためのマスクとして用いて、前記nチャネル電界効果トランジスタ反転チャネルに対する低抵抗接点を形成するためのN型イオンが注入され、前記反転チャネルは、GaAs、前記p型バイポーラトランジスタの前記変調ドープ層の存在による歪みInGaAsまたは歪みおよび無歪みInGaAsNの、前記量子井戸内に作製され、
コレクタの役を果たす高融点金属を自己整合形成のためのマスクとして、前記pチャネル電界効果トランジスタ反転チャネルに対する低抵抗接点を形成するためのP型イオンが注入され、前記反転チャネルは、GaAs、前記p型バイポーラトランジスタの前記変調ドープ層の存在による歪みInGaAsまたは歪みおよび無歪みInGaAsNの、前記量子井戸内に形成され、
前記注入を高速熱アニーリングして、活性化し、選択された領域を不規則化し、
ディープエッチを用いて底部ミラー層を露出させることによって活性なデバイス領域をメサ内に形成した後に、前記活性デバイス下でAlAs層を完全に水蒸気酸化させ、
前記P+イオン注入領域に対する、前記N+イオン注入領域に対する、および前記pチャネルHFETの前記ゲート接点としてまたは前記n型バイポーラトランジスタの前記エミッタとして機能する前記底部N+層に対する接点領域を規定およびエッチングし、
pおよびn型の金合金のリフトオフ処置用のレジストを規定した後に、n型およびp型領域においてメタライゼーションおよび金属のリフトオフを行い、
ポリイミド分離を適用し、接点窓をエッチングし、および相互接続金金属パターンをリフトオフし、レーザおよび検出器用の分布型ブラッグ反射器ミラー層が設けられた、請求項1から14のいずれかに記載のデバイス。 - 光電子サイリスタの動作に適合されたデバイスであって、前記最上部P++エミッタが前記デバイスのアノードであり、前記N+底部エミッタ領域が前記デバイスのカソードであり、前記n型反転チャネルと接点する前記N+イオン注入ソース領域が高インピーダンスの第3端子入力ノードとして機能し、良く規定されたオフおよびオン状態と、前記第3端子からの電流入力によってゼロ注入電流における最大値から高注入による最小値まで変調され得るスイッチング電圧とによって、デバイスがサイリスタとして電気的に機能し、前記サイリスタはそのスイッチオン状態において、前記オン状態電流フローが前記レーザ閾値を超えたときに、前記光開口部からの光放出を伴うVCSELとして機能し、また前記サイリスタはオフ状態において、光が前記光開口部に入る共振空洞検出器として機能して、前記サイリスタの前記反転チャネルの一方または両方に十分な電荷が蓄積しているときに、光発生による電子−正孔対が前記サイリスタを前記オフ状態から前記オン状態へ切り換え得る、請求項15に記載のデバイス。
- 相補型HFET機能の実現に適合されたデバイスであって、あるメサ上にNチャネルHFETが形成され、別のメサ上にPチャネルHFETが形成され、前記デバイスのゲート端子が、入力ノードとして機能する共通の接続部を有し、前記デバイスのドレイン端子が、出力ノードとして機能する共通の接続部を有し、相補型動作が得られるように前記PHFETソースノードが正の供給電圧に接続されて前記NHFETソースノードが接地された、請求項15に記載のデバイス。
- 相補型バイポーラ機能の実現に適合されたデバイスであって、あるメサ上にn型バイポーラ(電子多数キャリア)トランジスタが形成され、別のメサ上にp型バイポーラ(正孔多数キャリア)トランジスタが形成され、前記デバイスのソース端子が、入力ノードとして機能する共通の接続部を有し、前記デバイスのコレクタ端子が、出力ノードとして機能する共通の接続部を有し、相補型バイポーラ動作が得られるように前記p型エミッタノードが正の供給電圧に接続されて前記n型エミッタノードが接地された、請求項15に記載のデバイス。
- 光パワーの能動型導波管検出器の動作に適合されたデバイスであって、活性層の上方に設けられまた活性層の下方に成長された前記DBRミラーが、導波管伝搬用のクラッディング層として機能し、前記N+イオン注入ソース領域が、前記電子反転チャネルから電子光電流を取り出し、前記P++最上部エミッタと前記P+イオン注入ソース領域とが、前記正孔反転チャネルから正孔光電流を取り出し、前記底部N+ゲート領域が、完全に占有されたp型反転チャネルを保証して正孔導電用の高速伝送線を形成するようにバイアスされ、前記光入力が、前記高融点金属電極と前記N型導波用チャネル注入とによって規定される前記能動型導波管に自己整合された受動型導波管を通して、前記チャネル領域へ入れられ、前記受動型導波管が、不純物フリーの空孔不規則化または同様の技術によって実現される前記受動領域におけるわずかに大きいエネルギーギャップによって、前記能動型導波管内への低挿入損失を実現して、屈折率の最小変化したがって前記受動型/能動型導波管界面におけるほぼゼロの反射率を実現する、請求項15に記載のデバイス。
- 光パワーの能動型導波管受信機の動作に適合されたデバイスであって、活性層の上方に設けられ且つ活性層の下方に成長された前記DBRミラーは、導波管伝搬用のクラッディング層として機能し、前記N+イオン注入ソース領域が、前記電子反転チャネルから電子光電流の一定の流れを取り出すように、一体化された電流源によってバイアスされ、前記底部N+ゲート領域またはサブコレクタノードが、直列の負荷要素を通して前記p+エミッタ接点に対してバイアスされる結果、光を前記導波管へ入れたときに、前記サイリスタをそのオン状態へ切り換えることが最小限の光入力パワーで起こり、前記光信号が終了したときに、前記サイリスタをそのオフ状態へ切り換えて戻すことが起こり、前記光受信機は、前記サイリスタと前記直列負荷要素との接続ノードにおいて電気出力をもたらし、前記光入力が、前記高融点金属電極と前記N型導波用チャネル注入とによって規定される前記能動型導波管に自己整合された受動型導波管を通して、前記チャネル領域へ入れられ、前記受動型導波管が、不純物フリーの空孔不規則化または同様の技術によって実現される前記受動領域におけるわずかに大きいエネルギーギャップによって、前記能動型導波管内への低挿入損失を実現して、屈折率の最小変化したがって前記受動型/能動型導波管界面におけるほぼゼロの反射率を実現する、請求項15に記載のデバイス。
- 光パワーの能動型導波管増幅器の動作に適合されたデバイスであって、活性層の上方に設けられまた活性層の下方に成長された前記DBRミラーが、導波管伝搬用のクラッディング層として機能し、前記N+イオン注入ソース領域が前記上部電子反転チャネル内へ電子を注入し、前記最上部P++エミッタが、前記高融点金属接点から正孔を注入し、前記下部正孔反転チャネルが、前記最上部P++エミッタからの正孔によって供給される浮遊p電極の役を果たす前記上部量子井戸へ正孔を供給し、前記底部N+ゲート領域も電気的に浮遊し、前記光入力が、前記高融点金属電極と前記N型導波用チャネル注入とによって規定される能動型導波管に自己整合された受動型導波管を通して、前記能動型導波管へ入れられ、前記受動型導波管が、不純物フリーの空孔不規則化または同様の技術によって実現される前記受動領域におけるわずかに大きいエネルギーギャップによって、前記能動型導波管内への低挿入損失を実現して、屈折率の最小変化したがって前記受動型/能動型導波管界面におけるほぼゼロの反射率を実現し、その結果、前記光増幅器に対する効果的な単一経路ゲイン動作が得られる、請求項15に記載のデバイス。
- 光電子サイリスタ光増幅器として構成されて動作されるデバイスであって、前記最上部P++エミッタが前記デバイスのアノードであり、前記N+底部エミッタ領域が前記デバイスのカソードであり、前記N+イオン注入ソース領域が、高インピーダンスの第3端子入力ノードとして、前記n型反転チャネルと接点し、活性層の上方に設けられまた活性層の下方に成長された前記DBRミラーが、導波管伝搬用のクラッディング層として機能し、前記デバイスは、前記サイリスタレーザの閾値電流をかなり下回る電流レベルにバイアスされているため、光増幅器として機能し、前記光入力が、前記高融点金属電極と前記N型導波用チャネル注入とによって規定される前記能動型導波管に自己整合された受動型導波管を通して、前記サイリスタ光増幅器の前記能動型導波管へ入れられ、前記受動型導波管が、不純物フリーの空孔不規則化または同様の技術によって実現される前記受動領域におけるわずかに大きいエネルギーギャップによって、前記能動型導波管内への低挿入損失を実現して、屈折率の最小変化したがって前記受動型/能動型導波管界面におけるほぼゼロの反射率を実現し、その結果、前記光増幅器に対する効果的な単一経路ゲイン動作が得られる、請求項15に記載のデバイス。
- 光パワーの能動型導波管吸収変調器の動作に適合されたデバイスであって、前記活性層の上方に設けられまた活性層の下方に成長された前記DBRミラーが、導波管伝搬用のクラッディング層として機能し、前記N+イオン注入ソース領域が、前記上部n型量子井戸反転チャネル内へ電子を注入して前記量子井戸を充填するように、前記P++エミッタ接点に対して負にバイアスされ、前記P+イオン注入ソース領域と前記N+下部ゲート領域とが、互いに接続されて、前記上部n型量子井戸を充填する正孔源として機能するように正にバイアスされ、前記注入される電子および注入される正孔によって、前記上部量子井戸における吸収端がより高いエネルギー(より短い波長)へシフトし、前記吸収端におけるシフトが光吸収を大きく減らすために、前記光パワーが、本質的に全吸収が実現するゼロバイアスにおける非シフト状態と比べてごくわずかな吸収で前記デバイスを通って伝搬し、前記光パワーが、前記高融点金属電極と前記N型導波用チャネル注入とによって規定される能動型導波管に自己整合された受動型導波管を通して、前記能動型導波管へ入れられ、前記受動型導波管が、不純物フリーの空孔不規則化または同様の技術によって実現される前記受動領域におけるわずかに大きいエネルギーギャップによって、前記能動型導波管内への低挿入損失を実現して、屈折率の最小変化したがって前記受動型/能動型導波管界面におけるほぼゼロの反射率を実現し、その結果、前記導波管変調器に対する低挿入損失が得られる、請求項15に記載のデバイス。
- 活性層が、導波管伝搬用のクラッディング層として機能するために前記活性層の上方に設けられまた活性層の下方に成長されたDBRミラーの間に挟まれた、光入力信号に対する光電子サイリスタデジタル光吸収変調器として構成されて動作されるデバイスであって、前記最上部P++エミッタが前記デバイスのアノードであり、前記N+底部エミッタ領域が前記デバイスのカソードであり、前記N+イオン注入ソース領域が、高インピーダンスの第3端子入力ノードとして、前記n型反転チャネルと接点し、前記変調器は2つの状態を有し、一方は、非常に吸収性のあるノーマリーオフ状態に対応し、他方は、上部および下部の両方の量子井戸レベルが電子および正孔によって充填され、量子井戸の両方の組における吸収端がより高いエネルギーへシフトして、本質的に吸収損失が全くない状態で光信号が導波管を通過することが可能となるノーマリーオン状態に対応し、前記第3の端子は、前記光入力信号が通過した後で前記サイリスタが切り換わってオフ状態へ戻って次の光信号を吸収するように、電流源へバイアスされ、前記光入力が、前記高融点金属電極と前記N型導波用チャネル注入とによって規定される前記能動型導波管に自己整合された受動型導波管を通して、前記サイリスタ光変調器の前記能動型導波管へ入れられ、前記受動型導波管が、不純物フリーの空孔不規則化または同様の技術によって実現される前記受動領域におけるわずかに大きいエネルギーギャップによって、前記能動型導波管内への低挿入損失を実現して、屈折率の最小変化したがって前記受動型/能動型導波管界面におけるほぼゼロの反射率を実現し、その結果、前記光変調器に対する効果的な単一経路ゲイン動作が得られる、請求項15に記載のデバイス。
- デュアル能動型導波管指向性カプラ光スイッチの動作に適合されたデバイスであって、狭い寸法の電気的に絶縁された光結合領域によって分離される2つの平行な能動型導波管を備え、前記結合領域は、SiO2被覆層の存在下での熱処理によって前記領域のバンドギャップがわずかに増加する不純物不規則化などの技術によって作製され、各導波管は、第1の導波管に入る光パワーが、第2の導波管に最小限の距離に渡ってエバネッセント的に結合して、ごくわずかなパワー成分が前記第1の導波管内に残り得るように(クロス状態)、または前記光パワーが、前記第1の導波管に完全に結合して戻り(スルー状態)、ごくわずかなパワーが前記第2の導波管内に残り得るように、1つのソースノードと1つのP++ゲート/エミッタノードとによって電気的にアクセスされ、前記結合は、どちらかの導波管の前記ゲート/エミッタノードと前記ソースノードとの間に電圧を印加することによって開始され、前記電圧によって前記反転チャネル内に電子が注入されて、前記第2の導波管に対する前記第1の導波管の伝搬定数が変化し、前記伝播定数の変化は、第2の導波管に対する第1の導波管の吸収端がシフトして、光パワーの完全な結合を実現するための長さが著しく変化することに起因し、前記導波管は、導波管伝搬用のクラッディング層として機能するために前記活性層の上方に設けられまた活性層の下方に成長された前記DBRミラーを用いており、第1および第2の導波管への前記光入力は、前記高融点金属電極と前記N型導波用チャネル注入とによって規定される前記能動型導波管に自己整合された受動型導波管を通して、前記導波管へ入れられ、前記受動型導波管が、不純物の不規則化または同様の技術によって実現される前記受動領域におけるわずかに大きいエネルギーギャップによって、前記能動型導波管内への低挿入損失を実現して、屈折率の最小変化したがって前記受動型/能動型導波管界面におけるほぼゼロの反射率を実現し、その結果、非常に低い挿入損失が得られる、請求項15に記載のデバイス。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/798,316 US6479844B2 (en) | 2001-03-02 | 2001-03-02 | Modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit |
PCT/US2002/006802 WO2002071490A1 (en) | 2001-03-02 | 2002-03-04 | A modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004534380A JP2004534380A (ja) | 2004-11-11 |
JP2004534380A5 true JP2004534380A5 (ja) | 2005-12-22 |
Family
ID=25173092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002570306A Pending JP2004534380A (ja) | 2001-03-02 | 2002-03-04 | モノリシック光電子集積回路用の変調ドープサイリスタおよび相補型トランジスタの組合せ |
Country Status (6)
Country | Link |
---|---|
US (2) | US6479844B2 (ja) |
EP (1) | EP1371098A4 (ja) |
JP (1) | JP2004534380A (ja) |
KR (1) | KR100912358B1 (ja) |
CN (1) | CN100530680C (ja) |
WO (1) | WO2002071490A1 (ja) |
Families Citing this family (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6849866B2 (en) * | 1996-10-16 | 2005-02-01 | The University Of Connecticut | High performance optoelectronic and electronic inversion channel quantum well devices suitable for monolithic integration |
US7181144B1 (en) * | 1998-07-09 | 2007-02-20 | Zilog, Inc. | Circuit design and optics system for infrared signal transceivers |
JP2001281473A (ja) * | 2000-03-28 | 2001-10-10 | Toshiba Corp | フォトニクス結晶及びその製造方法、光モジュール並びに光システム |
US7247892B2 (en) * | 2000-04-24 | 2007-07-24 | Taylor Geoff W | Imaging array utilizing thyristor-based pixel elements |
US6479844B2 (en) * | 2001-03-02 | 2002-11-12 | University Of Connecticut | Modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit |
WO2002077682A2 (en) * | 2001-03-27 | 2002-10-03 | Metrophotonics Inc. | Vertical integration of active devices with passive semiconductor waveguides |
JP4468609B2 (ja) * | 2001-05-21 | 2010-05-26 | 株式会社ルネサステクノロジ | 半導体装置 |
US7831151B2 (en) | 2001-06-29 | 2010-11-09 | John Trezza | Redundant optical device array |
US6704472B2 (en) * | 2001-11-05 | 2004-03-09 | Triquint Technology Holding Co. | Optoelectronic device having an integrated capacitor formed thereon and method of manufacturing the same |
US6847054B1 (en) * | 2002-02-07 | 2005-01-25 | Finisar Corporation | Optical transistor and method thereof |
US6841795B2 (en) * | 2002-10-25 | 2005-01-11 | The University Of Connecticut | Semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation |
US6954473B2 (en) | 2002-10-25 | 2005-10-11 | Opel, Inc. | Optoelectronic device employing at least one semiconductor heterojunction thyristor for producing variable electrical/optical delay |
US7776753B2 (en) * | 2002-10-25 | 2010-08-17 | University Of Connecticut | Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation |
US6995407B2 (en) | 2002-10-25 | 2006-02-07 | The University Of Connecticut | Photonic digital-to-analog converter employing a plurality of heterojunction thyristor devices |
US7015120B2 (en) * | 2002-10-25 | 2006-03-21 | The University Of Connecticut | Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation |
US7332752B2 (en) | 2002-10-25 | 2008-02-19 | The University Of Connecticut | Optoelectronic circuit employing a heterojunction thyristor device to convert a digital optical signal to a digital electrical signal |
US7556976B2 (en) * | 2002-10-25 | 2009-07-07 | The University Of Connecticut | Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation |
FR2848727B1 (fr) * | 2002-12-13 | 2005-02-18 | Thales Sa | Transistor a vanne de spin a haut rendement |
US6974969B2 (en) | 2003-01-13 | 2005-12-13 | The University Of Connecticut | P-type quantum-well-base bipolar transistor device employing interdigitated base and emitter formed with a capping layer |
US7064697B2 (en) | 2003-01-29 | 2006-06-20 | The University Of Connecticut | Photonic sigma delta analog-to-digital conversation employing dual heterojunction thyristors |
US6800880B1 (en) * | 2003-08-08 | 2004-10-05 | National Kaohsiung Normal University | Heterojunction bipolar transistors with extremely low offset voltage and high current gain |
US7064359B2 (en) * | 2003-08-20 | 2006-06-20 | Matsushita Electric Industrial Co., Ltd. | Switching semiconductor device and switching circuit |
US7696536B1 (en) * | 2003-08-22 | 2010-04-13 | The Board Of Trustees Of The University Of Illinois | Semiconductor method and device |
US7091082B2 (en) * | 2003-08-22 | 2006-08-15 | The Board Of Trustees Of The University Of Illinois | Semiconductor method and device |
US7354780B2 (en) | 2003-08-22 | 2008-04-08 | The Board Of Trustees Of The University Of Illinois | Semiconductor light emitting devices and methods |
US7998807B2 (en) * | 2003-08-22 | 2011-08-16 | The Board Of Trustees Of The University Of Illinois | Method for increasing the speed of a light emitting biopolar transistor device |
US7286583B2 (en) * | 2003-08-22 | 2007-10-23 | The Board Of Trustees Of The University Of Illinois | Semiconductor laser devices and methods |
US7289547B2 (en) * | 2003-10-29 | 2007-10-30 | Cubic Wafer, Inc. | Laser and detector device |
US7253015B2 (en) * | 2004-02-17 | 2007-08-07 | Velox Semiconductor Corporation | Low doped layer for nitride-based semiconductor device |
JP2005266632A (ja) * | 2004-03-22 | 2005-09-29 | Yokogawa Electric Corp | 光スイッチ |
US7333731B2 (en) * | 2004-04-26 | 2008-02-19 | The University Of Connecticut | Multifunctional optoelectronic thyristor and integrated circuit and optical transceiver employing same |
WO2006006312A1 (ja) * | 2004-07-07 | 2006-01-19 | Nec Corporation | 光半導体装置及び光通信装置 |
CN100412518C (zh) * | 2004-07-30 | 2008-08-20 | 中国科学院物理研究所 | 利用氧化物多层膜材料制作的激光探测器 |
DE102004044835B4 (de) * | 2004-09-14 | 2008-12-11 | Atmel Germany Gmbh | Integrierte Halbleiter-Kaskodenschaltung für Hochfrequenzanwendungen |
JP4584066B2 (ja) * | 2004-12-10 | 2010-11-17 | 韓國電子通信研究院 | 光感知器を備えた面発光レーザ素子及びこれを用いた光導波路素子 |
JP5369325B2 (ja) * | 2005-01-26 | 2013-12-18 | フィリップス ウニベルジテート マールブルグ | Iii/v半導体 |
JP4474292B2 (ja) * | 2005-01-28 | 2010-06-02 | トヨタ自動車株式会社 | 半導体装置 |
US7385230B1 (en) * | 2005-02-08 | 2008-06-10 | The University Of Connecticut | Modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit |
US7439557B2 (en) * | 2005-03-29 | 2008-10-21 | Coldwatt, Inc. | Semiconductor device having a lateral channel and contacts on opposing surfaces thereof |
US7439556B2 (en) * | 2005-03-29 | 2008-10-21 | Coldwatt, Inc. | Substrate driven field-effect transistor |
US7675090B2 (en) * | 2005-05-13 | 2010-03-09 | Flextronics International Usa, Inc. | Semiconductor device having a contact on a buffer layer thereof and method of forming the same |
US7339208B2 (en) | 2005-05-13 | 2008-03-04 | Coldwatt, Inc. | Semiconductor device having multiple lateral channels and method of forming the same |
US7420226B2 (en) * | 2005-06-17 | 2008-09-02 | Northrop Grumman Corporation | Method for integrating silicon CMOS and AlGaN/GaN wideband amplifiers on engineered substrates |
US7564074B2 (en) * | 2005-08-25 | 2009-07-21 | Flextronics International Usa, Inc. | Semiconductor device including a lateral field-effect transistor and Schottky diode |
US7285807B2 (en) * | 2005-08-25 | 2007-10-23 | Coldwatt, Inc. | Semiconductor device having substrate-driven field-effect transistor and Schottky diode and method of forming the same |
US7462891B2 (en) * | 2005-09-27 | 2008-12-09 | Coldwatt, Inc. | Semiconductor device having an interconnect with sloped walls and method of forming the same |
US7535034B2 (en) * | 2006-02-27 | 2009-05-19 | The Board Of Trustees Of The University Of Illinois | PNP light emitting transistor and method |
US8415737B2 (en) | 2006-06-21 | 2013-04-09 | Flextronics International Usa, Inc. | Semiconductor device with a pillar region and method of forming the same |
US7663183B2 (en) * | 2006-06-21 | 2010-02-16 | Flextronics International Usa, Inc. | Vertical field-effect transistor and method of forming the same |
US7541640B2 (en) * | 2006-06-21 | 2009-06-02 | Flextronics International Usa, Inc. | Vertical field-effect transistor and method of forming the same |
US7945158B2 (en) * | 2006-08-18 | 2011-05-17 | Tellabs Operations, Inc. | Transponder-less verification of the configuration of an optical network node |
US9197132B2 (en) | 2006-12-01 | 2015-11-24 | Flextronics International Usa, Inc. | Power converter with an adaptive controller and method of operating the same |
US7681852B2 (en) * | 2007-01-22 | 2010-03-23 | Charles Magee | Vehicle cup and plate holders |
US7711015B2 (en) * | 2007-04-02 | 2010-05-04 | The Board Of Trustees Of The University Of Illinois | Method for controlling operation of light emitting transistors and laser transistors |
US7551826B2 (en) * | 2007-06-26 | 2009-06-23 | The University Of Connecticut | Integrated circuit employing low loss spot-size converter |
US7657131B2 (en) * | 2007-06-28 | 2010-02-02 | Intel Corporation | Systems and methods for integrated optical circuitry for high data rate optical transmission and reception |
US7764850B2 (en) * | 2008-01-25 | 2010-07-27 | Hewlett-Packard Development Company, L.P. | Optical modulator including electrically controlled ring resonator |
US8080821B2 (en) * | 2008-03-18 | 2011-12-20 | The University Of Connecticut | Thyristor radiation detector array and applications thereof |
JP2009286048A (ja) * | 2008-05-30 | 2009-12-10 | Fuji Xerox Co Ltd | 光源ヘッド、及び画像形成装置 |
WO2010041756A1 (ja) * | 2008-10-10 | 2010-04-15 | 独立行政法人産業技術総合研究所 | 光検出素子 |
US7759142B1 (en) | 2008-12-31 | 2010-07-20 | Intel Corporation | Quantum well MOSFET channels having uni-axial strain caused by metal source/drains, and conformal regrowth source/drains |
CN102342008B (zh) | 2009-01-19 | 2016-08-03 | 伟创力国际美国公司 | 用于功率转换器的控制器 |
US20100276699A1 (en) * | 2009-05-04 | 2010-11-04 | University Of South Carolina | Silicon Carbide and Related Wide Bandgap Semiconductor Based Optically-Controlled Power Switching Devices |
US8269931B2 (en) * | 2009-09-14 | 2012-09-18 | The Aerospace Corporation | Systems and methods for preparing films using sequential ion implantation, and films formed using same |
CN101666919B (zh) * | 2009-09-21 | 2012-06-27 | 浙江大学 | 一种具有刻蚀容差的硅狭缝波导电极 |
KR20110050203A (ko) * | 2009-11-06 | 2011-05-13 | 한국전자통신연구원 | 광전 소자 |
RU2472248C2 (ru) * | 2010-03-03 | 2013-01-10 | Общество с ограниченной ответственностью "Интелсоб" (ООО "Интелсоб") | Высоковольтный высокотемпературный быстродействующий тиристор с полевым управлением |
CN101814527A (zh) * | 2010-04-22 | 2010-08-25 | 复旦大学 | 一种使用光电子注入进行电导调制的功率器件与方法 |
CN101937873B (zh) * | 2010-08-31 | 2012-07-11 | 中国科学院半导体研究所 | 双极型晶体管与半导体激光器单片集成器件的制作方法 |
JP5845568B2 (ja) | 2010-11-02 | 2016-01-20 | 富士通株式会社 | 半導体装置及びその製造方法 |
US8946864B2 (en) | 2011-03-16 | 2015-02-03 | The Aerospace Corporation | Systems and methods for preparing films comprising metal using sequential ion implantation, and films formed using same |
WO2012124830A1 (ja) * | 2011-03-17 | 2012-09-20 | 日本碍子株式会社 | 光変調素子 |
CN102299170B (zh) * | 2011-08-08 | 2013-07-24 | 中国电子科技集团公司第五十五研究所 | 一种砷化镓赝配高电子迁移率晶体管外延材料 |
KR20140092804A (ko) | 2011-08-18 | 2014-07-24 | 오펄 솔라, 인코포레이티드 | 광 폐쇄 루프 마이크로 공진기 및 사이리스터 메모리 디바이스 |
EP2752096A4 (en) | 2011-09-02 | 2015-07-29 | Quantum Electro Opto Sys Sdn | OPTOELECTRONICS CIRCUITS AND TECHNIQUES |
US8842706B2 (en) | 2011-10-07 | 2014-09-23 | The Board Of Trustees Of The University Of Illinois | Opto-electronic oscillator and method |
US8970126B2 (en) | 2011-10-07 | 2015-03-03 | The Board Of Trustees Of The University Of Illinois | Opto-electronic devices and methods |
US9159873B2 (en) | 2011-11-14 | 2015-10-13 | Quantum Electro Opto Systems Sdn. Bhd. | High speed optical tilted charge devices and methods |
CN103489860B (zh) * | 2012-06-13 | 2016-02-10 | 稳懋半导体股份有限公司 | 一种化合物半导体晶圆结构 |
TWI505409B (zh) * | 2012-06-13 | 2015-10-21 | Win Semiconductors Corp | 一種化合物半導體晶圓結構 |
US9082637B2 (en) | 2012-08-17 | 2015-07-14 | The University Of Connecticut | Optoelectronic integrated circuit |
US8947925B2 (en) | 2012-08-17 | 2015-02-03 | The University Of Connecticut | Thyristor memory cell integrated circuit |
JP5920128B2 (ja) * | 2012-09-07 | 2016-05-18 | 住友電気工業株式会社 | 光導波路型受光素子の製造方法および光導波路型受光素子 |
WO2014093616A1 (en) | 2012-12-13 | 2014-06-19 | Poet Technologies, Inc. | Fiber optic coupler array |
US9324579B2 (en) | 2013-03-14 | 2016-04-26 | The Aerospace Corporation | Metal structures and methods of using same for transporting or gettering materials disposed within semiconductor substrates |
US9111956B2 (en) * | 2013-03-14 | 2015-08-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Rectifier structures with low leakage |
US9306672B2 (en) * | 2013-03-14 | 2016-04-05 | Encore Corporation | Method of fabricating and operating an optical modulator |
JP2014209522A (ja) * | 2013-04-16 | 2014-11-06 | 富士通株式会社 | 半導体装置及びその製造方法 |
US9614112B2 (en) | 2013-09-11 | 2017-04-04 | The University Of Connecticut | Imaging cell array integrated circuit |
US9166035B2 (en) * | 2013-09-12 | 2015-10-20 | Taiwan Semiconductor Manufacturing Company Limited | Delta doping layer in MOSFET source/drain region |
JP6213103B2 (ja) * | 2013-09-27 | 2017-10-18 | 三菱電機株式会社 | 半導体光素子および光モジュール |
CN103745989B (zh) * | 2013-12-31 | 2016-07-06 | 上海新傲科技股份有限公司 | 高电子迁移率晶体管 |
US9625647B2 (en) * | 2014-01-29 | 2017-04-18 | The University Of Connecticut | Optoelectronic integrated circuit |
US9508707B2 (en) * | 2014-02-27 | 2016-11-29 | Texas Instruments Incorporated | Quantum well-modulated bipolar junction transistor |
US9523815B2 (en) | 2014-03-31 | 2016-12-20 | Stmicroelectronics Sa | ESD protection thyristor adapted to electro-optical devices |
US9276160B2 (en) | 2014-05-27 | 2016-03-01 | Opel Solar, Inc. | Power semiconductor device formed from a vertical thyristor epitaxial layer structure |
US10553633B2 (en) * | 2014-05-30 | 2020-02-04 | Klaus Y.J. Hsu | Phototransistor with body-strapped base |
US9698457B2 (en) | 2014-07-28 | 2017-07-04 | The University Of Connecticut | Optoelectronic integrated circuitry for transmitting and/or receiving wavelength-division multiplexed optical signals |
CN104319626A (zh) * | 2014-10-11 | 2015-01-28 | 北京工业大学 | 一种微波载流子直接调制的垂直腔面发射激光器 |
US9209815B1 (en) | 2014-12-22 | 2015-12-08 | Opel Solar, Inc. | Thyristor-based optical charge pump for an optical phase lock loop |
US9544062B2 (en) | 2014-12-22 | 2017-01-10 | Opel Solar, Inc. | Coherent optical receiver |
US9559636B2 (en) | 2014-12-22 | 2017-01-31 | Opel Solar, Inc. | Thyristor-based optoelectronic oscillator with tunable frequency and optical phase lock loop employing same |
US9590742B2 (en) | 2014-12-22 | 2017-03-07 | Opel Solar, Inc. | Thyristor-based optical XOR circuit |
US9541945B2 (en) | 2014-12-22 | 2017-01-10 | Opel Solar, Inc. | Thyristor based optical and gate and thyristor-based electrical and gate |
US9553715B2 (en) | 2014-12-22 | 2017-01-24 | Opel Solar, Inc. | Optical phase detector for an optical phase lock loop |
US9590600B2 (en) | 2014-12-22 | 2017-03-07 | Opel Solar, Inc. | Thyristor-based optical flip-flop |
CN104795409B (zh) * | 2015-03-11 | 2018-10-12 | 北京工业大学 | GaAs基PHEMT和长波长谐振腔单片集成光探测器 |
US9201287B1 (en) | 2015-04-28 | 2015-12-01 | Opel Solar, Inc. | Photonic analog-to-digital converter |
US9490336B1 (en) | 2015-06-11 | 2016-11-08 | Opel Solar, Inc. | Fabrication methodology for optoelectronic integrated circuits |
US9450124B1 (en) | 2015-06-11 | 2016-09-20 | Opel Solar, Inc. | Fabrication methodology for optoelectronic integrated circuits |
US9679987B2 (en) | 2015-06-11 | 2017-06-13 | The University Of Connecticut | Fabrication methodology for optoelectronic integrated circuits |
US9590136B2 (en) | 2015-06-11 | 2017-03-07 | Opel Solar, Inc. | Semiconductor device for optoelectronic integrated circuits |
US9755060B2 (en) | 2015-06-11 | 2017-09-05 | Opel Solar, Inc. | Fabrication methodology for optoelectronic integrated circuits |
DE102016108700A1 (de) | 2016-05-11 | 2017-11-16 | Osram Opto Semiconductors Gmbh | Laseranordnung und Betriebsverfahren |
JP6737008B2 (ja) * | 2016-06-30 | 2020-08-05 | 富士ゼロックス株式会社 | 光スイッチ |
US10116115B2 (en) | 2017-02-22 | 2018-10-30 | Geoff W. Taylor | Integrated circuit implementing a VCSEL array or VCSEL device |
CN106887789B (zh) * | 2017-03-13 | 2019-10-18 | 中国科学院苏州纳米技术与纳米仿生研究所 | 半导体激光器及其制作方法 |
US11309412B1 (en) * | 2017-05-17 | 2022-04-19 | Northrop Grumman Systems Corporation | Shifting the pinch-off voltage of an InP high electron mobility transistor with a metal ring |
US11520014B2 (en) | 2017-06-08 | 2022-12-06 | Geoff W. Taylor | Thyristor-based lidar detector array |
US11125689B2 (en) * | 2018-07-13 | 2021-09-21 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Highly stable semiconductor lasers and sensors for III-V and silicon photonic integrated circuits |
RU2723910C1 (ru) * | 2019-08-06 | 2020-06-18 | федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (Южный федеральный университет) | Фотодетектор с управляемой передислокацией максимумов плотности носителей заряда |
US11799268B2 (en) | 2020-08-24 | 2023-10-24 | Geoff W. Taylor | Semiconductor integrated circuit and methodology for making same |
JP2022080639A (ja) * | 2020-11-18 | 2022-05-30 | 株式会社村田製作所 | 半導体装置 |
US11973075B2 (en) | 2021-02-22 | 2024-04-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Dual substrate side ESD diode for high speed circuit |
CN113540283B (zh) * | 2021-06-18 | 2023-01-24 | 西安理工大学 | 一种二维电子气型光电导纵向开关及其制作方法 |
JPWO2023042420A1 (ja) * | 2021-09-17 | 2023-03-23 | ||
CN114614340B (zh) * | 2022-05-12 | 2022-07-29 | 山东大学 | 一种共面电极垂直腔面发射激光器及其制备方法 |
DE102023116888A1 (de) | 2022-06-29 | 2024-01-04 | Ifm Electronic Gmbh | Optoelektronisches Bauelement ausgebildet als VCSEL mit Wärmespreizschicht und Verfahren zur Herstellung eines solchen |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3919656A (en) * | 1973-04-23 | 1975-11-11 | Nathan O Sokal | High-efficiency tuned switching power amplifier |
DE3072175D1 (de) | 1979-12-28 | 1990-04-26 | Fujitsu Ltd | Halbleitervorrichtungen mit heterouebergang. |
JPS60101990A (ja) | 1983-11-08 | 1985-06-06 | Sharp Corp | 半導体レ−ザ素子 |
US4611235A (en) * | 1984-06-04 | 1986-09-09 | General Motors Corporation | Thyristor with turn-off FET |
US4806997A (en) * | 1985-06-14 | 1989-02-21 | AT&T Laboratories American Telephone and Telegraph Company | Double heterostructure optoelectronic switch |
US4683484A (en) * | 1985-08-23 | 1987-07-28 | Bell Communications Research, Inc. | Lateral confinement of charge carriers in a multiple quantum well structure |
US4814774A (en) * | 1986-09-05 | 1989-03-21 | Herczfeld Peter R | Optically controlled phased array system and method |
US4827320A (en) * | 1986-09-19 | 1989-05-02 | University Of Illinois | Semiconductor device with strained InGaAs layer |
US5105248A (en) * | 1987-05-14 | 1992-04-14 | Massachusetts Institute Of Technology | Spatial light modulator using charge coupled device with quantum wells |
US4829272A (en) * | 1987-06-10 | 1989-05-09 | Elmec Corporation | Electromagnetic variable delay line system |
US5104823A (en) * | 1988-03-31 | 1992-04-14 | Northern Telecom Limited | Monolithic integration of optoelectronic and electronic devices |
US4899200A (en) * | 1988-06-03 | 1990-02-06 | Regents Of The University Of Minnesota | Novel high-speed integrated heterostructure transistors, photodetectors, and optoelectronic circuits |
US4949350A (en) * | 1989-07-17 | 1990-08-14 | Bell Communications Research, Inc. | Surface emitting semiconductor laser |
US5204871A (en) * | 1990-03-29 | 1993-04-20 | Larkins Eric C | Bistable optical laser based on a heterostructure pnpn thyristor |
US5111255A (en) * | 1990-06-05 | 1992-05-05 | At&T Bell Laboratories | Buried channel heterojunction field effect transistor |
US5010374A (en) * | 1990-06-05 | 1991-04-23 | At&T Bell Laboratories | Quantum well laser utilizing an inversion layer |
US5099299A (en) * | 1990-06-15 | 1992-03-24 | International Business Machines Corporation | Modulation doped base heterojunction bipolar transistor |
JP2710171B2 (ja) * | 1991-02-28 | 1998-02-10 | 日本電気株式会社 | 面入出力光電融合素子 |
US5166083A (en) * | 1991-03-28 | 1992-11-24 | Texas Instruments Incorporated | Method of integrating heterojunction bipolar transistors with heterojunction FETs and PIN diodes |
US5202896A (en) * | 1991-07-16 | 1993-04-13 | The United States Of America As Represented By The Secretary Of The Air Force | Bipolar inversion channel field effect transistor laser |
US5224115A (en) * | 1991-07-17 | 1993-06-29 | The United States Of America As Represented By The Secretary Of The Air Force | Distributed feedback laser implemented using an active lateral grating |
JP3016302B2 (ja) * | 1992-04-23 | 2000-03-06 | 日本電気株式会社 | pnpn半導体素子とその駆動回路 |
US5337328A (en) * | 1992-05-08 | 1994-08-09 | Sdl, Inc. | Semiconductor laser with broad-area intra-cavity angled grating |
JP3323544B2 (ja) * | 1992-08-21 | 2002-09-09 | 株式会社日立製作所 | 半導体装置 |
US5278427A (en) * | 1993-02-04 | 1994-01-11 | The United States Of America As Represented By The Secretary Of The Army | Quantum collector hot-electron transistor |
US5652439A (en) * | 1993-12-03 | 1997-07-29 | Imec | Fast electrical complete turn-off optical device |
US5386128A (en) * | 1994-01-21 | 1995-01-31 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output |
US5970324A (en) * | 1994-03-09 | 1999-10-19 | Driscoll; John Cuervo | Methods of making dual gated power electronic switching devices |
US5436759A (en) * | 1994-06-14 | 1995-07-25 | The Regents Of The University Of California | Cross-talk free, low-noise optical amplifier |
DE69522075T2 (de) * | 1994-11-02 | 2002-01-03 | Trw Inc., Redondo Beach | Verfahren zum Herstellen von multifunktionellen, monolithisch-integrierten Schaltungsanordnungen |
US5828987A (en) * | 1995-08-28 | 1998-10-27 | Data Tec Co., Ltd. | Movement detecting device |
US5847414A (en) * | 1995-10-30 | 1998-12-08 | Abb Research Limited | Semiconductor device having a hetero-junction between SiC and a Group 3B-nitride |
JP3310514B2 (ja) * | 1995-12-22 | 2002-08-05 | シャープ株式会社 | 半導体装置 |
US5698900A (en) * | 1996-07-22 | 1997-12-16 | The United States Of America As Represented By The Secretary Of The Air Force | Field effect transistor device with single layer integrated metal and retained semiconductor masking |
US6043519A (en) * | 1996-09-12 | 2000-03-28 | Hughes Electronics Corporation | Junction high electron mobility transistor-heterojunction bipolar transistor (JHEMT-HBT) monolithic microwave integrated circuit (MMIC) and single growth method of fabrication |
US6031243A (en) * | 1996-10-16 | 2000-02-29 | Geoff W. Taylor | Grating coupled vertical cavity optoelectronic devices |
FR2764118B1 (fr) * | 1997-05-30 | 2000-08-04 | Thomson Csf | Transistor bipolaire stabilise avec elements isolants electriques |
AUPP147398A0 (en) * | 1998-01-23 | 1998-02-19 | Defence Science And Technology Organisation | Dual non-parallel electronic field electro-optic effect device |
GB2341974A (en) * | 1998-09-22 | 2000-03-29 | Secr Defence | Semiconductor device incorporating a superlattice structure |
US6229189B1 (en) * | 1998-12-24 | 2001-05-08 | Hughes Electronics Corporation | Multi-function optoelectronic device structure |
US6287946B1 (en) * | 1999-05-05 | 2001-09-11 | Hrl Laboratories, Llc | Fabrication of low resistance, non-alloyed, ohmic contacts to InP using non-stoichiometric InP layers |
US6320212B1 (en) * | 1999-09-02 | 2001-11-20 | Hrl Laboratories, Llc. | Superlattice fabrication for InAs/GaSb/AISb semiconductor structures |
US6625183B1 (en) * | 2000-01-31 | 2003-09-23 | New Focus, Inc. | External cavity laser apparatus |
US6765242B1 (en) * | 2000-04-11 | 2004-07-20 | Sandia Corporation | Npn double heterostructure bipolar transistor with ingaasn base region |
US6870207B2 (en) * | 2000-04-24 | 2005-03-22 | The University Of Connecticut | III-V charge coupled device suitable for visible, near and far infra-red detection |
US6934431B2 (en) * | 2000-12-06 | 2005-08-23 | Lucent Technologies Inc. | Variable optical delay lines and methods for making same |
US6479844B2 (en) * | 2001-03-02 | 2002-11-12 | University Of Connecticut | Modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit |
US6954473B2 (en) * | 2002-10-25 | 2005-10-11 | Opel, Inc. | Optoelectronic device employing at least one semiconductor heterojunction thyristor for producing variable electrical/optical delay |
US6841795B2 (en) * | 2002-10-25 | 2005-01-11 | The University Of Connecticut | Semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation |
-
2001
- 2001-03-02 US US09/798,316 patent/US6479844B2/en not_active Expired - Lifetime
-
2002
- 2002-03-04 US US10/469,649 patent/US7012274B2/en not_active Expired - Lifetime
- 2002-03-04 KR KR1020037011558A patent/KR100912358B1/ko not_active IP Right Cessation
- 2002-03-04 JP JP2002570306A patent/JP2004534380A/ja active Pending
- 2002-03-04 WO PCT/US2002/006802 patent/WO2002071490A1/en active Application Filing
- 2002-03-04 CN CNB028093135A patent/CN100530680C/zh not_active Expired - Fee Related
- 2002-03-04 EP EP02721270A patent/EP1371098A4/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004534380A5 (ja) | ||
KR100912358B1 (ko) | 모노리식 광전자 집적회로용의 변조 도핑된 사이리스터 및상보 트랜지스터 조합 | |
US6849866B2 (en) | High performance optoelectronic and electronic inversion channel quantum well devices suitable for monolithic integration | |
US7173293B2 (en) | Semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation | |
US6936839B2 (en) | Monolithic integrated circuit including a waveguide and quantum well inversion channel devices and a method of fabricating same | |
US6954473B2 (en) | Optoelectronic device employing at least one semiconductor heterojunction thyristor for producing variable electrical/optical delay | |
US6873273B2 (en) | Photonic serial digital-to-analog converter employing a heterojunction thyristor device | |
US6995407B2 (en) | Photonic digital-to-analog converter employing a plurality of heterojunction thyristor devices | |
US20060141682A1 (en) | Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation | |
JP2020508588A (ja) | Vcselアレイを実装した集積回路又はvcsel装置 | |
US9590136B2 (en) | Semiconductor device for optoelectronic integrated circuits | |
US9679987B2 (en) | Fabrication methodology for optoelectronic integrated circuits | |
US7385230B1 (en) | Modulation doped thyristor and complementary transistor combination for a monolithic optoelectronic integrated circuit | |
EP0530942B1 (en) | Novel quantum well optoelectric switching device with stimulated emission | |
US7776753B2 (en) | Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation | |
US9755060B2 (en) | Fabrication methodology for optoelectronic integrated circuits | |
US7333733B2 (en) | Optoelectronic clock generator producing high frequency optoelectronic pulse trains with variable frequency and variable duty cycle and low jitter | |
US7015120B2 (en) | Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation | |
US5224115A (en) | Distributed feedback laser implemented using an active lateral grating | |
US9490336B1 (en) | Fabrication methodology for optoelectronic integrated circuits | |
US9450124B1 (en) | Fabrication methodology for optoelectronic integrated circuits | |
US20230317819A1 (en) | Semiconductor optoelectronic integrated circuit and methodology for making same employing gate-all-around epitaxial structures | |
WO2004038764A2 (en) | Semiconductor device with quantum well and etch stop |