JP2004360025A - 直接電解法による金属チタンの製造方法 - Google Patents
直接電解法による金属チタンの製造方法 Download PDFInfo
- Publication number
- JP2004360025A JP2004360025A JP2003161201A JP2003161201A JP2004360025A JP 2004360025 A JP2004360025 A JP 2004360025A JP 2003161201 A JP2003161201 A JP 2003161201A JP 2003161201 A JP2003161201 A JP 2003161201A JP 2004360025 A JP2004360025 A JP 2004360025A
- Authority
- JP
- Japan
- Prior art keywords
- molten salt
- titanium
- calcium
- concentration
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
【課題】溶融塩中直接電解にて金属チタンを製造する際の、炭素による汚染の低減、およびチタンの生成効率を高くする方法の提供。
【解決手段】原料となる陰極には酸化チタン、陽極には炭素または黒鉛の電極を用い、電解液は塩化カルシウムを10質量%以上含有する溶融塩とし、電解還元する。その場合、液中の金属カルシウムの濃度は1%以下に維持すること、または酸化カルシウムの濃度は0.005〜6%とすることを、いずれか一方または両方を実施し、通電還元する。この電解液中金属カルシウムの低減は酸化マグネシウムを液に接触させることにより、酸化カルシウムの上記範囲への制御は、MgCl2を電解液に添加することによりおこなう。
【選択図】なし。
【解決手段】原料となる陰極には酸化チタン、陽極には炭素または黒鉛の電極を用い、電解液は塩化カルシウムを10質量%以上含有する溶融塩とし、電解還元する。その場合、液中の金属カルシウムの濃度は1%以下に維持すること、または酸化カルシウムの濃度は0.005〜6%とすることを、いずれか一方または両方を実施し、通電還元する。この電解液中金属カルシウムの低減は酸化マグネシウムを液に接触させることにより、酸化カルシウムの上記範囲への制御は、MgCl2を電解液に添加することによりおこなう。
【選択図】なし。
Description
【0001】
【発明が属する技術分野】
本発明は、酸化物形態のチタン原材料を溶融塩中で電解還元して金属とする金属チタンの製造方法に関する。
【0002】
【従来の技術】
金属チタンは、耐食性、意匠性などにすぐれ、適度の弾性を有し、かつ同じ質量にて得られる強度、すなわち比強度が高い材料として航空機材料、屋根材、ゴルフのヘッド、熱交換器用材料、化学プラントなど広く使用されている。近年では、人体に対して毒性のない金属として医療関係の機器類への使用など、用途は拡大される一方である。しかしながら、金属チタンの製造は製錬に多工程を要し、金属として高価であるため、生産性の高い、より安価な工業的製造方法が望まれている。
【0003】
通常の金属チタンの製造方法は、原料である酸化チタン(主としてTiO2)を塩素処理して四塩化チタン(TiCl4)とし、これを蒸留精製した後、マグネシウム(Mg)と反応させて還元しスポンジ状の金属Tiとする。還元にナトリウム(Na)を用いる方法もあり、Mgを用いる方法はクロール法、Naを用いる方法はハンター法と呼ばれている。この四塩化チタンの還元反応は発熱反応であり、急激に進行させるのは危険であることから、十分制御して反応させるために長時間を要し、バッチ方式なので生産性が大きく制限される。その上、還元により生じた塩化マグネシウム(MgCl2)は、溶融塩電解法によりマグネシウムと塩素とに分離し再利用するが、金属チタン製錬にて使用する電力の約2/3がこの溶融塩電解で消費される。このため、反応時間を短くし、かつ電力を有効利用することにより製造コストを低下し得る、より合理的な製造方法が求められている。
【0004】
最近、金属酸化物を塩化物溶融塩中で通電還元し金属とする直接電解法が提案され、チタンに適用できれば直接電解が可能になり、製造方法が大幅に合理化されるとして注目されている。これは特許文献1にて開示された方法で、たとえば酸素を含む金属チタンを陰極とし溶融塩中で通電すると、電解質である溶融塩中の金属イオンが陰極のチタンの表面に析出するよりも、チタン中の酸素が電解質中に移動する反応の方が優先的に進行するという現象を利用する。
【0005】
この溶融塩中での通電電解により、酸化チタンを原料とし電解して金属チタンを得ようとする場合、陰極には導電体を取り付けた多孔質の酸化チタン、陽極には炭素または黒鉛が用いられる。しかし、このような構成の装置にて実際に酸化チタンを電解してみると、多くの対処すべき問題がある。その主要な問題に電解の初期には金属チタンの生成効率は高いが、継続していくと生成効率が大きく低下してくること、および得られた金属チタンに炭素が混入してくることがある。
【0006】
電解を継続すると生成効率が大きく低下することに対しては、電流密度の制御、溶融塩中に増加してくる酸素濃度の管理などの対策が取られるが、必ずしも十分ではない。また、炭素による汚染は、陽極に黒鉛が用いられることから生じると考えられる。黒鉛は酸素との反応により消耗し、電極間距離の制御が必要という操業上の問題があるが、安価なので消耗品として使用することができる。そして、何よりも、高温の溶融塩に対し陽電極溶解せず、塩素に対し反応しない適当な電極用導電体であり、さらには、酸素との燃焼反応により電解時の電圧が下げられるという利点がある。
【特許文献1】
特表2002−517613号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、陰極に酸化チタン、陽極に炭素または黒鉛を用いて溶融塩中で金属チタンを直接電解にて製造する際の、炭素による汚染を低減し、チタンの生成効率を高くする製造方法の提供にある。
【0008】
【課題を解決するための手段】
本発明者らは、酸化チタン(TiO2)を原料とし、種々の塩化物塩(CaCl2、BaCl2、MgCl2、NaClなど)の溶融塩電解液中で電気分解することにより、直接金属チタンを得る製造方法について検討をおこなった。陰極にする酸化チタンは、電気伝導体の金属チタンなどを芯に用いた焼結体、あるいは電気伝導体に近接して網籠などにより保持したペレット状の酸化チタン焼結体とし、陽極は炭素または黒鉛とする。
【0009】
この電解方法では、溶融塩電解液に塩化物を用いるが、塩化物としては、とくに塩化カルシウム(CaCl2)またはCaCl2を含む溶融塩が金属チタンの生成効率を高めるのに好ましい。しかし、CaCl2を含む溶融塩中電解は、得られた金属チタンへの炭素混入の多いことがわかってきた。炭素源は陽極に用いた黒鉛以外にはなく、塩化物溶融塩への炭素の溶解はあり得ないので、これは電解の結果生じる金属カルシウムが原因ではないかと推測された。
【0010】
電解により陰極で金属カルシウムが生じると、陰極近傍では酸化チタンを還元して、金属チタンの生成効率を向上させると考えられる。しかし溶融塩中に溶け込んで陽極にまで達するとカルシウムカーバイド(CaC2)が形成され、金属チタンはカルシウムより炭素との親和力が大きいので、CaC2の炭素が金属チタンに溶け込むのではないかと思われる。
【0011】
電解中の溶融塩中の金属カルシウム濃度を調べてみると、その濃度が高いほど得られた金属チタンの炭素混入量が大きいことがあきらかになった。金属カルシウムが炭素のキャリヤーとなって、得られた金属チタンを汚染しているようである。この金属カルシウムの濃度を低下させるとすれば、溶融塩中の酸素濃度を高め金属カルシウムを酸化させてしまうことが考えられた。しかし、単に酸素濃度を高くすることは、電解の進行を阻害し、さらにはできた金属チタンも再酸化してしまうおそれがある。
【0012】
そこで、この金属カルシウムの濃度を低下させ、その上で、電解の進行に影響を及ぼさない方法を種々検討してみた結果、溶融塩中に粉末状の酸化マグネシウム(MgO)を添加するか、棒状あるいは板状等の塊状のMgOを浸漬させること、すなわちMgOを溶融塩に接触させるのがよいことを見出した。
【0013】
このような方法にて効果があるのは、次のような理由によると考えられる。CaはMgよりも酸素との親和力が大きいので、次式によりMgOに接すると酸化されて酸化カルシウム(CaO)となり、MgOは還元されて金属マグネシウムとなる。
【0014】
Ca+MgO=CaO+Mg (1)
金属マグネシウムは、溶融塩には溶け込まず、そして密度が低く溶融塩より軽いので容易に浮上し、しかも蒸気圧が高いので、蒸発して溶融塩液から容易に排除される。このため、上式の左辺から右辺への反応は遅滞することなく進行する。また、MgOは溶融塩液には溶けないので、溶融塩液の酸素量を増加させない。その上、Mgは炭素とは反応せず、金属チタンにも溶けないので、得られた金属チタンを汚染することもない。
【0015】
このようにして、電解液中の金属カルシウムの濃度を低下させることができたが、電解を継続していくと還元反応が急速に低下しチタンの生成効率が低下していく傾向が現れた。調べてみると溶融塩中のCaOの増加が電解還元反応を阻害しているものと思われた。
【0016】
電解還元は酸化チタンから酸素を排除することにより、金属チタンを得ているが、一部金属カルシウムによる還元によっても金属チタンを生じていると考えられる。その結果生じたCaOは、濃度が高くない間は溶融塩液中に溶解し、溶融塩液は十分流動性が大きいので陽極へも移動して、電極の炭素と反応し炭酸ガスとなり酸素は排出される。それとともに、陰極で塩化カルシウムが分解して生じた塩素が溶融塩中に溶け込んでいるので、この塩素と、酸素を放出したカルシウムとが結合して、CaCl2となるが、その際の炭酸ガスの発生は、電解時の電圧を低下させる効果がある。
【0017】
ところが、電解を継続していくと溶融塩中のCaOの濃度が増し、ある値を超えると急激にチタンの生成効率が低下してしまう。調べてみると電解液の粘性が増大し流動性が低下している。このため、陽極への酸化カルシウムの供給が不足し、陽極で塩素が発生し始め、塩素が発生し始めると分解電圧が上昇し、電解の進行が大きく低下してしまったと推定された。
【0018】
溶融塩中のCaOは、電解を容易に進行させるためにある程度存在している必要があるが、多くなりすぎるとこのように液の粘性を低下させ、電解の進行を阻害する。したがって、適正な範囲に管理されなければならない。他方、MgOによる上述の金属カルシウムの低減処理方法は、液中のCaOを増加させるので、炭素汚染を低減できても、金属チタン生成の進行を阻害する結果となると推測された。
【0019】
そこで、溶融塩中のCaO濃度を低下させる方法について検討の結果、塩化マグネシウムを添加すると、下式のような反応により液中の酸化カルシウム量を制御できることがわかった。
【0020】
CaO+MgCl2=CaCl2+MgO (2)
はじめからMgCl2を配合した溶融塩電解液も検討したが、CaOの濃度が低くなりすぎたためか、チタン生成効率は向上しない。また、電解中の溶融塩液にMgCl2を添加する方法は、反応を阻害したり、MgOが浴槽の底に沈殿したりして、電解の進行に影響を及ぼす。したがって、電解中、液のCaO濃度が高くなってきたとき、溶融塩電解液の一部を電解槽より取り出して別の槽に移し、そこで塩化マグネシウムを添加してCaOの濃度を低下させ、酸化マグネシウムを沈殿させ除去してから、元の電解槽へ戻す方法が好ましいと考えられた。
【0021】
以上のようにして、金属チタンの炭素汚染を抑止し、効率を低下させることなく電解を継続できる方法がわかったので、さらに諸限界条件をそれぞれ確認し本発明を完成させた。本発明の要旨は次のとおりである。
【0022】
(1) 原料となる酸化チタンを陰極、または陰極近傍に置き、陽極に黒鉛を用いた溶融塩中の直接電解法による金属チタンの製造法において、電解液に塩化カルシウムを10質量%以上含有する溶融塩を用い、液中の金属カルシウムの濃度を1質量%以下に維持して、通電還元をおこなうことを特徴とする金属チタンの製造方法。
【0023】
(2) 原料となる酸化チタンを陰極、または陰極近傍に置き、陽極に黒鉛を用いた溶融塩中の直接電解法による金属チタンの製造法において、電解液に塩化カルシウムを10質量%以上含有する溶融塩を用い、液中の酸化カルシウムの濃度を0.005〜6質量%として、通電還元をおこなうことを特徴とする金属チタンの製造方法。
【0024】
(3) 原料となる酸化チタンを陰極、または陰極近傍に置き、陽極に黒鉛を用いた溶融塩中の直接電解法による金属チタンの製造法において、電解液に塩化カルシウムを10質量%以上含有する溶融塩を用い、液中の金属カルシウムの濃度を1質量%以下に維持し、かつ酸化カルシウムの濃度を0.005〜6質量%として、通電還元をおこなうことを特徴とする金属チタンの製造方法。
【0025】
(4) 上記(1)または(3)の直接電解法による金属チタンの製造方法において、酸化マグネシウムを溶融塩電解液に接触させることにより、液中の金属カルシウムの濃度を低減することを特徴とする金属チタンの製造方法。
【0026】
(5) 上記(2)または(3)の直接電解法による金属チタンの製造方法において、塩化マグネシウムを溶融塩電解液に添加することにより、酸化カルシウムの濃度を制御することを特徴とする金属チタンの製造方法。
【0027】
【発明の実施の形態】
本発明にて、電解製造条件を限定した理由を以下に説明する。まず、原料となる酸化チタンの陰極は、酸化チタンの焼結体を用いるが、焼結体の中に金属導電体を芯にして埋め込み、一体化した形状のものでもよいし、電極となる導電体の周囲に電解液が流通できる籠を設け、その中にペレット状の酸化チタン焼結体を置いた形状のものでもよい。陰極としての形状は棒状、板状等、特に限定するものではない。原料焼結体は多孔質体とし気孔率を高めると、金属チタンの生成効率はより向上する。
【0028】
陽極は前述のように炭素または黒鉛製が好ましい。電解液は溶融塩を用いるが、その組成は、少なくとも10質量%以上の塩化カルシウム(CaCl2)が含まれているものとする。これは、溶融塩電解液には塩化カルシウムが十分含まれていないと、酸化チタンの還元が進まないからで、10質量%未満では金属チタンの製造が困難である。その他は、溶融塩電解液の融点の低下、流動性の向上を目的に、BaCl2、NaCl、KCl等の塩化物や、フッ化物塩等を混合してもよいが、CaCl2のみの電解液であってもよい。
【0029】
電解時の溶融塩電解液中の金属カルシウムの平均濃度は1.0質量%以下とする。陰極の近傍にて、電極に接する液中に含まれる金属カルシウムは、酸化チタンの還元に消費されるので局部的に濃度が高くてもかまわないが、それ以外の溶融塩電解液中の金属カルシウムの濃度は低ければ低いほどよい。これは、液中の金属カルシウムは、陽極の炭素を陰極に持ち来すキャリヤーの作用をしており、濃度が高くなると得られた金属チタンの炭素汚染が増大するからである。電解液中の金属カルシウムの平均濃度を1.0質量%以下とすれば、炭素の汚染を0.5質量%以下にすることができる。
【0030】
電解時の溶融塩電解液中のCaO濃度は、0.005〜6質量%に管理するものとする。これは、0.005質量%を下回ると陽極で塩素を発生し、電流を大きくしようとすれば電圧が上がってしまうため、目的とする電解の進行が困難になるからである。この酸化カルシウムは電解を開始してしばらくすると液中に生じてくるが、初めて用いる溶融塩の場合、あらかじめ0.005質量%以上の酸化カルシウムを配合しておくことが望ましい。しかし、6質量%を超えると電流は流れても還元が進まなくなる。これは溶融塩電解液の流動性が大きく低下するからである。
【0031】
溶融塩電解液中の金属カルシウムは、その存在が得られた金属チタンの炭素汚染をもたらすが、低減させた結果として液中のCaO濃度を増加させる傾向がある。CaOは0.005質量%以上の存在が好ましいが、多くなりすぎると電解反応を阻害する。したがって、炭素汚染の少ない金属チタンを効率よく製造するためには、溶融塩電解液中の金属カルシウムを1.0質量%以下に抑制しつつ、CaO濃度を0.005〜6質量%に管理することが望ましい。
【0032】
溶融塩電解液中の金属カルシウムは、酸素を供給しCaOとしてその濃度を低下すればよいが、液中の酸素量が増すと、金属チタンの生成効率が大きく低下する傾向がある。好ましいのはMgOを溶融塩電解液と接触させ、液中のカルシウムを酸化させる方法である。MgOは、粉末を溶融塩電解液に少量ずつ添加してもよいし、液と接触させるよう棒状や板状など塊状のMgOを液中に挿入してもよい。
【0033】
酸化マグネシウムは溶融塩電解液には溶解しないので、液を酸化マグネシウムに接触させると、接触面で液中の金属カルシウムが反応し酸化される。生じたマグネシウムは溶融塩電解液の表面に浮上し蒸発するので、液の表面に近い位置に冷却できる蓋などを配置すれば回収することができる。このように、MgOは金属カルシウムがあれば反応し、なければ溶融塩電解液に何も影響を及ぼさない。したがって、その量を特に限定しなくても、液に接触させるだけで、溶融塩電解液中の金属カルシウムの量を1.0質量%以下に低減させることができる。
【0034】
前述のように、溶融塩液中のCaO濃度は、電解の進行とともに増加してくる。そして、その濃度が6質量%を超えるようになると反応が進まなくなるので、液中のCaO濃度を6質量%以下に維持する必要がある。
【0035】
CaOの濃度は、MgCl2を溶融塩液に添加することにより低減可能であるが、式(2)の反応によりMgOが生じる。MgOは式(1)で示したように溶融塩液中の金属Caを低減させる効果がある。そこで、MgCl2を電解中の溶融塩液に適量添加していけば、CaO濃度と、金属カルシウムの濃度とを同時に制御することも可能である。しかし、現実にはCaO濃度が低下しすぎると電解が困難になることや、生じたMgOは電解槽の底に沈殿し、電解液との接触を制御できないなど、電解液の成分濃度管理が十分おこなえない。
【0036】
したがって、金属カルシウムの濃度とCaO濃度とは個別に管理し、たとえば金属カルシウムに対しては、濃度が高くなりすぎるときはMgOの粉末を添加して電解槽内の液を攪拌するか、あるいはMgOを電解液に接触させることとし、CaOについては、溶融塩液の一部を電解槽から他の容器に移し、そこでMgCl2添加による処理をおこない、CaO量を低減しMgOを除去して成分を調整後、また電解槽に戻すというような方法を用いるのが好ましい。
【0037】
【実施例】
純度99.99%の酸化チタン粉末を原料に用い、金型を用いプレス加圧して直径25mm、高さ10mmの円柱状とし1000℃、4時間の仮焼結をおこない、10mm角で長さ15mmの角柱に切断加工し、長さ方向の中心軸に沿って深さ12mmの孔をあけ、1250℃で4時間の焼結をした後、直径2.0mmのチタン棒を挿入し1000℃〜1150℃にて2時間の熱処理をおこなって、導電体の付いた酸化チタン電極とした。
【0038】
これらの陰極を用い、陽極を黒鉛とし、表1に示す組成の溶融塩を、用いて、電流密度を電極間隔の調整により制御し、1時間の電解をおこなった。この場合、電解液中のCa濃度およびCaO濃度は、それぞれ金属カルシウムまたはCaOを添加して調整し、電極に対し十分大きい電解浴槽を用い、1時間の電解の間には、溶融塩電解液の各成分の濃度がほとんど変化しない状態にして電解した。
【0039】
【表1】
【0040】
電解の開始および終了時に電解液をサンプリングして金属カルシウム濃度および酸化カルシウム濃度を測定し、濃度が所定値の±10%以内に保たれていることを確認した。
【0041】
この溶融塩液中の金属カルシウム量は、液試料を冷却後、一定量の塩酸に溶解して発生した水素量から測定し、その溶液の塩酸の濃度から、全Ca量を求め、金属カルシウム量との差で、CaO濃度を求めた。また、金属チタン中の炭素濃度は、生成したチタンの燃焼により測定した。これらの結果も合わせて表1に示す。表のチタン生成効率は、ファラデーの法則から計算される金属チタンの生成量に対する、電解により実際に得られた金属チタン量の比率とした。
【0042】
表1の結果からあきらかなように、溶融塩電解液中の金属カルシウム濃度および酸化カルシウム濃度を本発明にて規制する範囲内として電解をおこなったものは、いずれも炭素の混入は低く、金属チタンの生成効率がすぐれていることがわかる。
【0043】
【発明の効果】
本発明によれば、溶融塩中で陰極に原料の酸化チタン、陽極に炭素または黒鉛を用い、直接電解にて金属チタンを製造するとき、炭素による汚染がすくなく、しかもすぐれた生成効率で金属チタンを得ることができる。この方法は、金属チタンの直接電解の実用化を大きく促進させる。
【発明が属する技術分野】
本発明は、酸化物形態のチタン原材料を溶融塩中で電解還元して金属とする金属チタンの製造方法に関する。
【0002】
【従来の技術】
金属チタンは、耐食性、意匠性などにすぐれ、適度の弾性を有し、かつ同じ質量にて得られる強度、すなわち比強度が高い材料として航空機材料、屋根材、ゴルフのヘッド、熱交換器用材料、化学プラントなど広く使用されている。近年では、人体に対して毒性のない金属として医療関係の機器類への使用など、用途は拡大される一方である。しかしながら、金属チタンの製造は製錬に多工程を要し、金属として高価であるため、生産性の高い、より安価な工業的製造方法が望まれている。
【0003】
通常の金属チタンの製造方法は、原料である酸化チタン(主としてTiO2)を塩素処理して四塩化チタン(TiCl4)とし、これを蒸留精製した後、マグネシウム(Mg)と反応させて還元しスポンジ状の金属Tiとする。還元にナトリウム(Na)を用いる方法もあり、Mgを用いる方法はクロール法、Naを用いる方法はハンター法と呼ばれている。この四塩化チタンの還元反応は発熱反応であり、急激に進行させるのは危険であることから、十分制御して反応させるために長時間を要し、バッチ方式なので生産性が大きく制限される。その上、還元により生じた塩化マグネシウム(MgCl2)は、溶融塩電解法によりマグネシウムと塩素とに分離し再利用するが、金属チタン製錬にて使用する電力の約2/3がこの溶融塩電解で消費される。このため、反応時間を短くし、かつ電力を有効利用することにより製造コストを低下し得る、より合理的な製造方法が求められている。
【0004】
最近、金属酸化物を塩化物溶融塩中で通電還元し金属とする直接電解法が提案され、チタンに適用できれば直接電解が可能になり、製造方法が大幅に合理化されるとして注目されている。これは特許文献1にて開示された方法で、たとえば酸素を含む金属チタンを陰極とし溶融塩中で通電すると、電解質である溶融塩中の金属イオンが陰極のチタンの表面に析出するよりも、チタン中の酸素が電解質中に移動する反応の方が優先的に進行するという現象を利用する。
【0005】
この溶融塩中での通電電解により、酸化チタンを原料とし電解して金属チタンを得ようとする場合、陰極には導電体を取り付けた多孔質の酸化チタン、陽極には炭素または黒鉛が用いられる。しかし、このような構成の装置にて実際に酸化チタンを電解してみると、多くの対処すべき問題がある。その主要な問題に電解の初期には金属チタンの生成効率は高いが、継続していくと生成効率が大きく低下してくること、および得られた金属チタンに炭素が混入してくることがある。
【0006】
電解を継続すると生成効率が大きく低下することに対しては、電流密度の制御、溶融塩中に増加してくる酸素濃度の管理などの対策が取られるが、必ずしも十分ではない。また、炭素による汚染は、陽極に黒鉛が用いられることから生じると考えられる。黒鉛は酸素との反応により消耗し、電極間距離の制御が必要という操業上の問題があるが、安価なので消耗品として使用することができる。そして、何よりも、高温の溶融塩に対し陽電極溶解せず、塩素に対し反応しない適当な電極用導電体であり、さらには、酸素との燃焼反応により電解時の電圧が下げられるという利点がある。
【特許文献1】
特表2002−517613号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、陰極に酸化チタン、陽極に炭素または黒鉛を用いて溶融塩中で金属チタンを直接電解にて製造する際の、炭素による汚染を低減し、チタンの生成効率を高くする製造方法の提供にある。
【0008】
【課題を解決するための手段】
本発明者らは、酸化チタン(TiO2)を原料とし、種々の塩化物塩(CaCl2、BaCl2、MgCl2、NaClなど)の溶融塩電解液中で電気分解することにより、直接金属チタンを得る製造方法について検討をおこなった。陰極にする酸化チタンは、電気伝導体の金属チタンなどを芯に用いた焼結体、あるいは電気伝導体に近接して網籠などにより保持したペレット状の酸化チタン焼結体とし、陽極は炭素または黒鉛とする。
【0009】
この電解方法では、溶融塩電解液に塩化物を用いるが、塩化物としては、とくに塩化カルシウム(CaCl2)またはCaCl2を含む溶融塩が金属チタンの生成効率を高めるのに好ましい。しかし、CaCl2を含む溶融塩中電解は、得られた金属チタンへの炭素混入の多いことがわかってきた。炭素源は陽極に用いた黒鉛以外にはなく、塩化物溶融塩への炭素の溶解はあり得ないので、これは電解の結果生じる金属カルシウムが原因ではないかと推測された。
【0010】
電解により陰極で金属カルシウムが生じると、陰極近傍では酸化チタンを還元して、金属チタンの生成効率を向上させると考えられる。しかし溶融塩中に溶け込んで陽極にまで達するとカルシウムカーバイド(CaC2)が形成され、金属チタンはカルシウムより炭素との親和力が大きいので、CaC2の炭素が金属チタンに溶け込むのではないかと思われる。
【0011】
電解中の溶融塩中の金属カルシウム濃度を調べてみると、その濃度が高いほど得られた金属チタンの炭素混入量が大きいことがあきらかになった。金属カルシウムが炭素のキャリヤーとなって、得られた金属チタンを汚染しているようである。この金属カルシウムの濃度を低下させるとすれば、溶融塩中の酸素濃度を高め金属カルシウムを酸化させてしまうことが考えられた。しかし、単に酸素濃度を高くすることは、電解の進行を阻害し、さらにはできた金属チタンも再酸化してしまうおそれがある。
【0012】
そこで、この金属カルシウムの濃度を低下させ、その上で、電解の進行に影響を及ぼさない方法を種々検討してみた結果、溶融塩中に粉末状の酸化マグネシウム(MgO)を添加するか、棒状あるいは板状等の塊状のMgOを浸漬させること、すなわちMgOを溶融塩に接触させるのがよいことを見出した。
【0013】
このような方法にて効果があるのは、次のような理由によると考えられる。CaはMgよりも酸素との親和力が大きいので、次式によりMgOに接すると酸化されて酸化カルシウム(CaO)となり、MgOは還元されて金属マグネシウムとなる。
【0014】
Ca+MgO=CaO+Mg (1)
金属マグネシウムは、溶融塩には溶け込まず、そして密度が低く溶融塩より軽いので容易に浮上し、しかも蒸気圧が高いので、蒸発して溶融塩液から容易に排除される。このため、上式の左辺から右辺への反応は遅滞することなく進行する。また、MgOは溶融塩液には溶けないので、溶融塩液の酸素量を増加させない。その上、Mgは炭素とは反応せず、金属チタンにも溶けないので、得られた金属チタンを汚染することもない。
【0015】
このようにして、電解液中の金属カルシウムの濃度を低下させることができたが、電解を継続していくと還元反応が急速に低下しチタンの生成効率が低下していく傾向が現れた。調べてみると溶融塩中のCaOの増加が電解還元反応を阻害しているものと思われた。
【0016】
電解還元は酸化チタンから酸素を排除することにより、金属チタンを得ているが、一部金属カルシウムによる還元によっても金属チタンを生じていると考えられる。その結果生じたCaOは、濃度が高くない間は溶融塩液中に溶解し、溶融塩液は十分流動性が大きいので陽極へも移動して、電極の炭素と反応し炭酸ガスとなり酸素は排出される。それとともに、陰極で塩化カルシウムが分解して生じた塩素が溶融塩中に溶け込んでいるので、この塩素と、酸素を放出したカルシウムとが結合して、CaCl2となるが、その際の炭酸ガスの発生は、電解時の電圧を低下させる効果がある。
【0017】
ところが、電解を継続していくと溶融塩中のCaOの濃度が増し、ある値を超えると急激にチタンの生成効率が低下してしまう。調べてみると電解液の粘性が増大し流動性が低下している。このため、陽極への酸化カルシウムの供給が不足し、陽極で塩素が発生し始め、塩素が発生し始めると分解電圧が上昇し、電解の進行が大きく低下してしまったと推定された。
【0018】
溶融塩中のCaOは、電解を容易に進行させるためにある程度存在している必要があるが、多くなりすぎるとこのように液の粘性を低下させ、電解の進行を阻害する。したがって、適正な範囲に管理されなければならない。他方、MgOによる上述の金属カルシウムの低減処理方法は、液中のCaOを増加させるので、炭素汚染を低減できても、金属チタン生成の進行を阻害する結果となると推測された。
【0019】
そこで、溶融塩中のCaO濃度を低下させる方法について検討の結果、塩化マグネシウムを添加すると、下式のような反応により液中の酸化カルシウム量を制御できることがわかった。
【0020】
CaO+MgCl2=CaCl2+MgO (2)
はじめからMgCl2を配合した溶融塩電解液も検討したが、CaOの濃度が低くなりすぎたためか、チタン生成効率は向上しない。また、電解中の溶融塩液にMgCl2を添加する方法は、反応を阻害したり、MgOが浴槽の底に沈殿したりして、電解の進行に影響を及ぼす。したがって、電解中、液のCaO濃度が高くなってきたとき、溶融塩電解液の一部を電解槽より取り出して別の槽に移し、そこで塩化マグネシウムを添加してCaOの濃度を低下させ、酸化マグネシウムを沈殿させ除去してから、元の電解槽へ戻す方法が好ましいと考えられた。
【0021】
以上のようにして、金属チタンの炭素汚染を抑止し、効率を低下させることなく電解を継続できる方法がわかったので、さらに諸限界条件をそれぞれ確認し本発明を完成させた。本発明の要旨は次のとおりである。
【0022】
(1) 原料となる酸化チタンを陰極、または陰極近傍に置き、陽極に黒鉛を用いた溶融塩中の直接電解法による金属チタンの製造法において、電解液に塩化カルシウムを10質量%以上含有する溶融塩を用い、液中の金属カルシウムの濃度を1質量%以下に維持して、通電還元をおこなうことを特徴とする金属チタンの製造方法。
【0023】
(2) 原料となる酸化チタンを陰極、または陰極近傍に置き、陽極に黒鉛を用いた溶融塩中の直接電解法による金属チタンの製造法において、電解液に塩化カルシウムを10質量%以上含有する溶融塩を用い、液中の酸化カルシウムの濃度を0.005〜6質量%として、通電還元をおこなうことを特徴とする金属チタンの製造方法。
【0024】
(3) 原料となる酸化チタンを陰極、または陰極近傍に置き、陽極に黒鉛を用いた溶融塩中の直接電解法による金属チタンの製造法において、電解液に塩化カルシウムを10質量%以上含有する溶融塩を用い、液中の金属カルシウムの濃度を1質量%以下に維持し、かつ酸化カルシウムの濃度を0.005〜6質量%として、通電還元をおこなうことを特徴とする金属チタンの製造方法。
【0025】
(4) 上記(1)または(3)の直接電解法による金属チタンの製造方法において、酸化マグネシウムを溶融塩電解液に接触させることにより、液中の金属カルシウムの濃度を低減することを特徴とする金属チタンの製造方法。
【0026】
(5) 上記(2)または(3)の直接電解法による金属チタンの製造方法において、塩化マグネシウムを溶融塩電解液に添加することにより、酸化カルシウムの濃度を制御することを特徴とする金属チタンの製造方法。
【0027】
【発明の実施の形態】
本発明にて、電解製造条件を限定した理由を以下に説明する。まず、原料となる酸化チタンの陰極は、酸化チタンの焼結体を用いるが、焼結体の中に金属導電体を芯にして埋め込み、一体化した形状のものでもよいし、電極となる導電体の周囲に電解液が流通できる籠を設け、その中にペレット状の酸化チタン焼結体を置いた形状のものでもよい。陰極としての形状は棒状、板状等、特に限定するものではない。原料焼結体は多孔質体とし気孔率を高めると、金属チタンの生成効率はより向上する。
【0028】
陽極は前述のように炭素または黒鉛製が好ましい。電解液は溶融塩を用いるが、その組成は、少なくとも10質量%以上の塩化カルシウム(CaCl2)が含まれているものとする。これは、溶融塩電解液には塩化カルシウムが十分含まれていないと、酸化チタンの還元が進まないからで、10質量%未満では金属チタンの製造が困難である。その他は、溶融塩電解液の融点の低下、流動性の向上を目的に、BaCl2、NaCl、KCl等の塩化物や、フッ化物塩等を混合してもよいが、CaCl2のみの電解液であってもよい。
【0029】
電解時の溶融塩電解液中の金属カルシウムの平均濃度は1.0質量%以下とする。陰極の近傍にて、電極に接する液中に含まれる金属カルシウムは、酸化チタンの還元に消費されるので局部的に濃度が高くてもかまわないが、それ以外の溶融塩電解液中の金属カルシウムの濃度は低ければ低いほどよい。これは、液中の金属カルシウムは、陽極の炭素を陰極に持ち来すキャリヤーの作用をしており、濃度が高くなると得られた金属チタンの炭素汚染が増大するからである。電解液中の金属カルシウムの平均濃度を1.0質量%以下とすれば、炭素の汚染を0.5質量%以下にすることができる。
【0030】
電解時の溶融塩電解液中のCaO濃度は、0.005〜6質量%に管理するものとする。これは、0.005質量%を下回ると陽極で塩素を発生し、電流を大きくしようとすれば電圧が上がってしまうため、目的とする電解の進行が困難になるからである。この酸化カルシウムは電解を開始してしばらくすると液中に生じてくるが、初めて用いる溶融塩の場合、あらかじめ0.005質量%以上の酸化カルシウムを配合しておくことが望ましい。しかし、6質量%を超えると電流は流れても還元が進まなくなる。これは溶融塩電解液の流動性が大きく低下するからである。
【0031】
溶融塩電解液中の金属カルシウムは、その存在が得られた金属チタンの炭素汚染をもたらすが、低減させた結果として液中のCaO濃度を増加させる傾向がある。CaOは0.005質量%以上の存在が好ましいが、多くなりすぎると電解反応を阻害する。したがって、炭素汚染の少ない金属チタンを効率よく製造するためには、溶融塩電解液中の金属カルシウムを1.0質量%以下に抑制しつつ、CaO濃度を0.005〜6質量%に管理することが望ましい。
【0032】
溶融塩電解液中の金属カルシウムは、酸素を供給しCaOとしてその濃度を低下すればよいが、液中の酸素量が増すと、金属チタンの生成効率が大きく低下する傾向がある。好ましいのはMgOを溶融塩電解液と接触させ、液中のカルシウムを酸化させる方法である。MgOは、粉末を溶融塩電解液に少量ずつ添加してもよいし、液と接触させるよう棒状や板状など塊状のMgOを液中に挿入してもよい。
【0033】
酸化マグネシウムは溶融塩電解液には溶解しないので、液を酸化マグネシウムに接触させると、接触面で液中の金属カルシウムが反応し酸化される。生じたマグネシウムは溶融塩電解液の表面に浮上し蒸発するので、液の表面に近い位置に冷却できる蓋などを配置すれば回収することができる。このように、MgOは金属カルシウムがあれば反応し、なければ溶融塩電解液に何も影響を及ぼさない。したがって、その量を特に限定しなくても、液に接触させるだけで、溶融塩電解液中の金属カルシウムの量を1.0質量%以下に低減させることができる。
【0034】
前述のように、溶融塩液中のCaO濃度は、電解の進行とともに増加してくる。そして、その濃度が6質量%を超えるようになると反応が進まなくなるので、液中のCaO濃度を6質量%以下に維持する必要がある。
【0035】
CaOの濃度は、MgCl2を溶融塩液に添加することにより低減可能であるが、式(2)の反応によりMgOが生じる。MgOは式(1)で示したように溶融塩液中の金属Caを低減させる効果がある。そこで、MgCl2を電解中の溶融塩液に適量添加していけば、CaO濃度と、金属カルシウムの濃度とを同時に制御することも可能である。しかし、現実にはCaO濃度が低下しすぎると電解が困難になることや、生じたMgOは電解槽の底に沈殿し、電解液との接触を制御できないなど、電解液の成分濃度管理が十分おこなえない。
【0036】
したがって、金属カルシウムの濃度とCaO濃度とは個別に管理し、たとえば金属カルシウムに対しては、濃度が高くなりすぎるときはMgOの粉末を添加して電解槽内の液を攪拌するか、あるいはMgOを電解液に接触させることとし、CaOについては、溶融塩液の一部を電解槽から他の容器に移し、そこでMgCl2添加による処理をおこない、CaO量を低減しMgOを除去して成分を調整後、また電解槽に戻すというような方法を用いるのが好ましい。
【0037】
【実施例】
純度99.99%の酸化チタン粉末を原料に用い、金型を用いプレス加圧して直径25mm、高さ10mmの円柱状とし1000℃、4時間の仮焼結をおこない、10mm角で長さ15mmの角柱に切断加工し、長さ方向の中心軸に沿って深さ12mmの孔をあけ、1250℃で4時間の焼結をした後、直径2.0mmのチタン棒を挿入し1000℃〜1150℃にて2時間の熱処理をおこなって、導電体の付いた酸化チタン電極とした。
【0038】
これらの陰極を用い、陽極を黒鉛とし、表1に示す組成の溶融塩を、用いて、電流密度を電極間隔の調整により制御し、1時間の電解をおこなった。この場合、電解液中のCa濃度およびCaO濃度は、それぞれ金属カルシウムまたはCaOを添加して調整し、電極に対し十分大きい電解浴槽を用い、1時間の電解の間には、溶融塩電解液の各成分の濃度がほとんど変化しない状態にして電解した。
【0039】
【表1】
【0040】
電解の開始および終了時に電解液をサンプリングして金属カルシウム濃度および酸化カルシウム濃度を測定し、濃度が所定値の±10%以内に保たれていることを確認した。
【0041】
この溶融塩液中の金属カルシウム量は、液試料を冷却後、一定量の塩酸に溶解して発生した水素量から測定し、その溶液の塩酸の濃度から、全Ca量を求め、金属カルシウム量との差で、CaO濃度を求めた。また、金属チタン中の炭素濃度は、生成したチタンの燃焼により測定した。これらの結果も合わせて表1に示す。表のチタン生成効率は、ファラデーの法則から計算される金属チタンの生成量に対する、電解により実際に得られた金属チタン量の比率とした。
【0042】
表1の結果からあきらかなように、溶融塩電解液中の金属カルシウム濃度および酸化カルシウム濃度を本発明にて規制する範囲内として電解をおこなったものは、いずれも炭素の混入は低く、金属チタンの生成効率がすぐれていることがわかる。
【0043】
【発明の効果】
本発明によれば、溶融塩中で陰極に原料の酸化チタン、陽極に炭素または黒鉛を用い、直接電解にて金属チタンを製造するとき、炭素による汚染がすくなく、しかもすぐれた生成効率で金属チタンを得ることができる。この方法は、金属チタンの直接電解の実用化を大きく促進させる。
Claims (5)
- 原料となる酸化チタンを陰極または陰極近傍に置き、陽極に黒鉛を用いた溶融塩中の直接電解法による金属チタンの製造法において、電解液に塩化カルシウムを10質量%以上含有する溶融塩を用い、液中の金属カルシウムの濃度を1質量%以下に維持して、通電還元をおこなうことを特徴とする金属チタンの製造方法。
- 原料となる酸化チタンを陰極、または陰極近傍に置き、陽極に黒鉛を用いた溶融塩中の直接電解法による金属チタンの製造法において、電解液に塩化カルシウムを10質量%以上含有する溶融塩を用い、液中の酸化カルシウムの濃度を0.005〜6質量%として、通電還元をおこなうことを特徴とする金属チタンの製造方法。
- 原料となる酸化チタンを陰極、または陰極近傍に置き、陽極に黒鉛を用いた溶融塩中の直接電解法による金属チタンの製造法において、電解液に塩化カルシウムを10質量%以上含有する溶融塩を用い、液中の金属カルシウムの濃度を1質量%以下に維持し、かつ酸化カルシウムの濃度を0.005〜6質量%として、通電還元をおこなうことを特徴とする金属チタンの製造方法。
- 請求項1または3に記載の直接電解法による金属チタンの製造方法において、酸化マグネシウムを溶融塩電解液に接触させることにより、液中の金属カルシウムの濃度を低減することを特徴とする金属チタンの製造方法。
- 請求項2または3に記載の直接電解法による金属チタンの製造方法において、塩化マグネシウムを溶融塩電解液に添加することにより、酸化カルシウムの濃度を制御することを特徴とする、金属チタンの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003161201A JP2004360025A (ja) | 2003-06-05 | 2003-06-05 | 直接電解法による金属チタンの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003161201A JP2004360025A (ja) | 2003-06-05 | 2003-06-05 | 直接電解法による金属チタンの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004360025A true JP2004360025A (ja) | 2004-12-24 |
Family
ID=34053727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003161201A Pending JP2004360025A (ja) | 2003-06-05 | 2003-06-05 | 直接電解法による金属チタンの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004360025A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006000025A1 (en) * | 2004-06-28 | 2006-01-05 | Bhp Billiton Innovation Pty Ltd | Production of titanium |
EP1920087A1 (en) * | 2005-08-01 | 2008-05-14 | BHP Billiton Innovation Pty Ltd | Electrochemical reduction of metal oxides |
AU2006275304B2 (en) * | 2005-08-01 | 2012-02-02 | Metalysis Limited | Electrochemical reduction of metal oxides |
KR101264597B1 (ko) | 2006-12-20 | 2013-05-23 | 재단법인 포항산업과학연구원 | 용융염속의 칼슘티탄산화물로부터 금속 티탄을 제조하는방법 |
JP2017043819A (ja) * | 2015-08-28 | 2017-03-02 | 株式会社神戸製鋼所 | 金属チタンの製造方法 |
-
2003
- 2003-06-05 JP JP2003161201A patent/JP2004360025A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006000025A1 (en) * | 2004-06-28 | 2006-01-05 | Bhp Billiton Innovation Pty Ltd | Production of titanium |
EP1920087A1 (en) * | 2005-08-01 | 2008-05-14 | BHP Billiton Innovation Pty Ltd | Electrochemical reduction of metal oxides |
EP1920087A4 (en) * | 2005-08-01 | 2011-07-27 | Metalysis Ltd | ELECTROCHEMICAL REDUCTION OF METAL OXIDES |
AU2006275304B2 (en) * | 2005-08-01 | 2012-02-02 | Metalysis Limited | Electrochemical reduction of metal oxides |
KR101264597B1 (ko) | 2006-12-20 | 2013-05-23 | 재단법인 포항산업과학연구원 | 용융염속의 칼슘티탄산화물로부터 금속 티탄을 제조하는방법 |
JP2017043819A (ja) * | 2015-08-28 | 2017-03-02 | 株式会社神戸製鋼所 | 金属チタンの製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10081874B2 (en) | Method for electrowinning titanium from titanium-containing soluble anode molten salt | |
JP4602986B2 (ja) | 溶融塩電解による金属カルシウムの製造方法 | |
Kilby et al. | Current efficiency studies for graphite and SnO2-based anodes for the electro-deoxidation of metal oxides | |
NZ508686A (en) | Removal of oxygen from metal oxides and solid soultions by electrolysis in a fused salt | |
CN101949038B (zh) | 一种电解法制备碳氧钛复合阳极的方法 | |
RU2463387C2 (ru) | Получение вольфрама и вольфрамовых сплавов из соединений, содержащих вольфрам, электрохимическим способом | |
JP2007016293A (ja) | 懸濁電解による金属の製造方法 | |
JP3718691B2 (ja) | チタンの製造方法、純金属の製造方法、及び純金属の製造装置 | |
CN113699560B (zh) | 一种氟氯混合熔盐体系可溶阳极电解制备金属钛的方法 | |
JP4763169B2 (ja) | 金属リチウムの製造方法 | |
JP2012136766A (ja) | 電気分解による金属の製造方法 | |
KR101185836B1 (ko) | 금속산화물로부터 금속을 제조하기 위한 전해환원공정 | |
JP2004360025A (ja) | 直接電解法による金属チタンの製造方法 | |
JP7097572B2 (ja) | 金属チタンの製造方法 | |
GB2534332A (en) | Method and apparatus for producing metallic tantalum by electrolytic reduction of a feedstock | |
JP4198434B2 (ja) | 金属チタンの製錬方法 | |
CN113279022B (zh) | 一种还原性熔盐介质及其制备方法 | |
JP4975431B2 (ja) | 硫化アルミニウムの電解方法 | |
JP2004360053A (ja) | 直接電解法による低炭素金属チタンの製造方法 | |
WO2023276440A1 (ja) | チタン含有電析物の製造方法及び金属チタン電析物 | |
CN114016083B (zh) | 一种碱金属热还原金属氧化物制备金属过程中再生碱金属还原剂的方法 | |
JP2006274340A (ja) | Ti又はTi合金の製造方法 | |
JP5853826B2 (ja) | 希土類元素の金属および合金の製造方法 | |
WO2022230403A1 (ja) | 金属チタンの製造方法及び金属チタン電析物 | |
JP6444058B2 (ja) | ハロゲン化リチウムを用いた溶融塩電解によるジスプロシウムの回収方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050314 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050519 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050519 |