WO2006000025A1 - Production of titanium - Google Patents
Production of titanium Download PDFInfo
- Publication number
- WO2006000025A1 WO2006000025A1 PCT/AU2005/000907 AU2005000907W WO2006000025A1 WO 2006000025 A1 WO2006000025 A1 WO 2006000025A1 AU 2005000907 W AU2005000907 W AU 2005000907W WO 2006000025 A1 WO2006000025 A1 WO 2006000025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pellets
- titanium metal
- powders
- method defined
- semi
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C3/00—Electrolytic production, recovery or refining of metals by electrolysis of melts
- C25C3/26—Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
- C25C3/28—Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/2406—Binding; Briquetting ; Granulating pelletizing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/129—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C5/00—Electrolytic production, recovery or refining of metal powders or porous metal masses
- C25C5/04—Electrolytic production, recovery or refining of metal powders or porous metal masses from melts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
Definitions
- the present invention relates to the production of titanium metal and titanium metal alloys.
- the present invention relates particularly, although by no means exclusively, to a method of producing semi-finished or ready-to-use products, such as products in sheet, bar, tube and other forms, of titanium metal (which term includes titanium alloy) from titanium oxide powders and/or pellets.
- These processes include chemical reduction of TiCl 4 with molten magnesium or sodium metal in a sealed reactor that has been evacuated and back-filled with an inert gas.
- the material in the hot reactor is vacuum distilled to vaporise magnesium and sodium metal and chlorides.
- the reactor is allowed to cool and the solid material, ie titanium sponge, is then recovered from the reactor.
- the titanium sponge may be processed by two process routes.
- One process route includes melting the sponge in an inert atmosphere and forming ingots from the melt. Thereafter, the ingots are then converted into semi-finished or ready-to-use products, such as sheet, bar, tube and other forms, by hot working techniques such as forging, rolling and extrusion.
- the other process route includes crushing the sponge into particulate form, typically powders, and directly compacting particles into semi-finished or ready-to-use products using standard powder metallurgy processing, such as roll compaction.
- Kroll and Hunter products formed by the direct compaction route is poor weldability when welded using arc welding technology.
- the poor weldability has been attributed to high levels of chlorine, typically 1000-1500 ppm, in the products reacting with tungsten electrodes causing unstable arcs when arc welding the products.
- the Kroll process was the source technology for the titanium sponge used by Du Pont in the Du Pont technology.
- the chlorine was present in amounts greater than 50 ppm.
- Du Pont was not able to reduce the concentration of chlorine in the titanium metal or otherwise solve the poor weldability problem caused by the chlorine and consequently Du Pont did not commercialise the technology.
- the applicant has been carrying out extensive research into an electrochemical method for reducing metal oxides, such as titania.
- the electrochemical method of the applicant is an alternative technology to the Kroll and Hunter processes.
- the electrochemical method of the applicant is concerned with reducing a metal oxide in a solid state in an electrolytic cell of the type that includes an anode, a cathode, and a molten electrolyte that includes cations of a metal that is capable of chemically reducing the metal oxide.
- the International application focuses particularly on reducing titanium oxides, such as titania, to titanium metal.
- the electrochemical method of the applicant is characterised by a step of operating the cell at a potential that is above a potential at which cations of the metal that is capable of chemically reducing the metal oxide can deposit as the metal on the cathode, whereby the metal chemically reduces the metal oxide.
- the chlorine in the Kroll and Hunter products formed by the direct compaction route appears to be in a more volatile form that readily reacts with tungsten welding electrodes and makes the arcs unstable.
- titanium metal which term includes titanium alloy
- semi-finished or ready-to-use products from titanium oxide powders and/or pellets which includes the steps of:
- step (b) processing the titanium metal powders and/or pellets produced in step (a) and forming semi-finished or ready-to-use products having a concentration of chlorine of at least 100 ppm.
- the chlorine concentration of the semi-finished or ready-to-use products produced by step (b) may be at least 200 ppm, typically may be at least 500 ppm, and more typically may be at least 1000 ppm without affecting adversely the weldability of the products.
- the chlorine concentration of the semi-finished or ready-to- use products is less than 2000 ppm.
- the titanium oxide powders and/or pellets have a size of 3.5 mm or less in a minor dimension of the powders and/or pellets.
- the "minor" dimension will be the diameter of the powders and/or pellets and the reference to "minor” dimension is not significant.
- the reference to "minor” dimension is significant. For example, in a situation in which the pellet is disc shaped with a cylindrical side wall and flat top and bottom walls and a diameter of 20mm and a thickness of 2mm, identifying the dimension to be measured as the minimum dimension is an important consideration.
- the size of the titanium oxide powders and/or pellets is less than 2.5 mm.
- the size of the powders and pellets is 1-2 mm.
- step (a) includes electrochemically reducing titanium oxide to titanium metal having a concentration of oxygen that is no more than 0.5% by weight.
- oxygen concentration is no more than 0.3% by weight.
- oxygen concentration is no more than 0.1% by weight.
- the electrolyte is a CaCl 2 -based electrolyte that includes CaO as one of the constituents.
- step (a) includes maintaining the cell potential above the decomposition potential for CaO.
- step (a) includes maintaining the cell potential below the decomposition potential for CaCl 2 .
- Step (a) may be carried out on a batch, continuous, or semi-continuous basis.
- step (a) may be carried out on a continuous or semi-continuous basis as described in International application PCT/AU03/001657 in the name of the applicant.
- the disclosure in the International application is incorporated herein by cross reference.
- step (b) includes processing the titanium metal powders and/or pellets produced in step (a) by quenching the titanium metal powders and/or pellets from an elevated temperature to a lower temperature at which there is a comparatively low rate of oxidation of titanium metal in air.
- the lower temperature is ambient temperature.
- step (b) includes quenching the titanium metal powders and/or pellets with water.
- Step (b) may include processing the titanium metal powders and/or pellets produced in step (a) by compacting titanium metal powders and/or pellets into semi-finished or ready-to-use products.
- step (b) may include the steps of roll compacting the titanium metal powders and/or pellets into strip, sintering the strip to increase the mechanical properties of the strip, ant cold rolling the sintered strip into sheet.
- step (b) may include processing the titanium metal powders and/or pellets produced in step (a) by powder metallurgically processing the titanium metal powders and/or pellets into semi-finished or ready- to-use products other than by roll compacting the powders and/or pellets.
- step (b) includes compacting the titanium metal powders and/or pellets to form semi ⁇ finished or ready-to-use products, such as products in sheet, bar, tube and other forms.
- a titanium metal semi-finished or ready-to-use product having a concentration of chlorine of at least 100 ppm produced by the above-described method.
- the chlorine concentration of the semi-finished or ready-to-use products may be at least 200 ppm, typically may be at least 500 ppm, and more typically may be at least 1000 ppm without affecting adversely the weldability of the products.
- the chlorine concentration of the semi-finished or ready-to- use products is less than 2000 ppm.
- the NTC samples were prepared by the following procedure.
- the titanium metal pellets produced in accordance with the method described in International application PCT/AU03/0030 were of the order of 15mm.
- the pellets were washed to remove retained electrolyte and thereafter processed to remove carbides adhered to the surface of the pellets.
- the pellets were then crushed to a particle size of 1-1.5mm and washed again to remove further retained electrolyte.
- the particles were then die compacted to a density of 80-85% and thereafter sintered to increase the density to 85-90%.
- the particles were then cold rolled to form fully dense strips, ie strips having a density of at least 98%, and cut into the strips of the above-mentioned size.
- the WM samples were formed by cutting small strips of the above-mentioned size from titanium strip having a chlorine concentration of less than 20ppm produced from Kroll or Hunter products formed by the remelting route.
- the WK samples were made from commercially available Kroll or Hunter powders formed by the direct compaction route into fully dense strips by the same sequence of die compacting, sintering, and cold rolling steps described above in relation to the MTC samples and then cut into the strips of the above-mentioned size.
- An initial weld run was made on an austenitic stainless steel strip with approximately the same dimensions as the titanium metal strips to establish the welding parameters and shielding effectiveness.
- the titanium metal strips were welded using standard practice for titanium in an inert gas enclosure using GTAW.
- the samples NTC(I) TO NTC(3) produced in accordance with the present invention were weldable with good arc stability and good weld bead appearance.
- samples WK(I) to WK(4) made from Kroll/Hunter powders and pellets having 1000-1500ppm chlorine were easily identified by arc instability, unacceptable weld beads and severe electrode erosion.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05752414A EP1776491A4 (en) | 2004-06-28 | 2005-06-23 | Production of titanium |
CA002572300A CA2572300A1 (en) | 2004-06-28 | 2005-06-23 | Production of titanium |
BRPI0512782-3A BRPI0512782A (en) | 2004-06-28 | 2005-06-23 | method for producing ready-to-use or semi-finished titanium metal and ready-to-use titanium metal products |
AU2005256146A AU2005256146B2 (en) | 2004-06-28 | 2005-06-23 | Production of titanium |
JP2007518407A JP2008504438A (en) | 2004-06-28 | 2005-06-23 | Titanium production |
US11/616,419 US20070181436A1 (en) | 2004-06-28 | 2006-12-27 | Production of Titanium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2004903532 | 2004-06-28 | ||
AU2004903532A AU2004903532A0 (en) | 2004-06-28 | Production of titanium |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/616,419 Continuation-In-Part US20070181436A1 (en) | 2004-06-28 | 2006-12-27 | Production of Titanium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006000025A1 true WO2006000025A1 (en) | 2006-01-05 |
Family
ID=35781502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2005/000907 WO2006000025A1 (en) | 2004-06-28 | 2005-06-23 | Production of titanium |
Country Status (10)
Country | Link |
---|---|
US (1) | US20070181436A1 (en) |
EP (1) | EP1776491A4 (en) |
JP (1) | JP2008504438A (en) |
CN (1) | CN101018894A (en) |
AU (1) | AU2005256146B2 (en) |
BR (1) | BRPI0512782A (en) |
CA (1) | CA2572300A1 (en) |
RU (1) | RU2370575C2 (en) |
WO (1) | WO2006000025A1 (en) |
ZA (1) | ZA200700107B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT509526B1 (en) * | 2010-02-26 | 2012-01-15 | Univ Wien Tech | METHOD AND DEVICE FOR PREPARING METALS FROM THEIR OXIDES |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005123986A1 (en) * | 2004-06-22 | 2005-12-29 | Bhp Billiton Innovation Pty Ltd | Electrochemical reduction of metal oxides |
CN101068955A (en) * | 2004-07-30 | 2007-11-07 | Bhp比利顿创新公司 | Electrochemical reduction for metal oxide |
EP1789609A4 (en) * | 2004-07-30 | 2008-11-12 | Bhp Billiton Innovation Pty | Electrochemical reduction of metal oxides |
GB201208698D0 (en) * | 2012-05-16 | 2012-06-27 | Metalysis Ltd | Electrolytic method,apparatus and product |
CN109082686B (en) * | 2018-09-20 | 2020-04-07 | 成都先进金属材料产业技术研究院有限公司 | Rod-shaped titanium powder and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003016594A1 (en) * | 2001-08-16 | 2003-02-27 | Bhp Billiton Innovation Pty Ltd | Method of manufacturing titanium and titanium alloy products |
US20030057101A1 (en) * | 2000-02-22 | 2003-03-27 | Ward Close Charles M | Method for the manufacture of metal foams by electrolytic reduction of porous oxidic preforms |
WO2003076690A1 (en) * | 2002-03-13 | 2003-09-18 | Bhp Billiton Innovation Pty Ltd | Reduction of metal oxides in an electrolytic cell |
WO2003076692A1 (en) * | 2002-03-13 | 2003-09-18 | Bhp Billiton Innovation Pty Ltd | Minimising carbon transfer in an electrolytic cell |
CA2498563A1 (en) * | 2002-09-11 | 2004-03-25 | Sumitomo Titanium Corporation | Porous sintered compact of titanium oxide for production of metallic titanium through direct electrolytic process and process for producing the same |
JP2004360025A (en) * | 2003-06-05 | 2004-12-24 | Sumitomo Titanium Corp | Method for manufacturing metallic titanium with direct electrolysis method |
JP2004360053A (en) * | 2003-06-09 | 2004-12-24 | Sumitomo Titanium Corp | Method for manufacturing low-carbon metallic titanium with direct electrolysis method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2225373A (en) * | 1937-07-29 | 1940-12-17 | Norman P Goss | Method and apparatus for casting metal |
US6143241A (en) * | 1999-02-09 | 2000-11-07 | Chrysalis Technologies, Incorporated | Method of manufacturing metallic products such as sheet by cold working and flash annealing |
WO2003022741A2 (en) * | 2001-09-12 | 2003-03-20 | F.W. Gartner Thermal Spraying Company | Nanostructured titania coated titanium |
JP2003129268A (en) * | 2001-10-17 | 2003-05-08 | Katsutoshi Ono | Method for smelting metallic titanium and smelter therefor |
WO2004053201A1 (en) * | 2002-12-12 | 2004-06-24 | Bhp Billiton Innovation Pty Ltd | Electrochemical reduction of metal oxides |
JP4347089B2 (en) * | 2004-03-01 | 2009-10-21 | 株式会社大阪チタニウムテクノロジーズ | Method for producing Ti or Ti alloy by Ca reduction |
-
2005
- 2005-06-23 BR BRPI0512782-3A patent/BRPI0512782A/en not_active IP Right Cessation
- 2005-06-23 CN CNA2005800253377A patent/CN101018894A/en active Pending
- 2005-06-23 WO PCT/AU2005/000907 patent/WO2006000025A1/en active Application Filing
- 2005-06-23 JP JP2007518407A patent/JP2008504438A/en active Pending
- 2005-06-23 CA CA002572300A patent/CA2572300A1/en not_active Abandoned
- 2005-06-23 RU RU2007103181/02A patent/RU2370575C2/en not_active IP Right Cessation
- 2005-06-23 AU AU2005256146A patent/AU2005256146B2/en not_active Ceased
- 2005-06-23 EP EP05752414A patent/EP1776491A4/en not_active Withdrawn
-
2006
- 2006-12-27 US US11/616,419 patent/US20070181436A1/en not_active Abandoned
-
2007
- 2007-01-02 ZA ZA200700107A patent/ZA200700107B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030057101A1 (en) * | 2000-02-22 | 2003-03-27 | Ward Close Charles M | Method for the manufacture of metal foams by electrolytic reduction of porous oxidic preforms |
WO2003016594A1 (en) * | 2001-08-16 | 2003-02-27 | Bhp Billiton Innovation Pty Ltd | Method of manufacturing titanium and titanium alloy products |
WO2003076690A1 (en) * | 2002-03-13 | 2003-09-18 | Bhp Billiton Innovation Pty Ltd | Reduction of metal oxides in an electrolytic cell |
WO2003076692A1 (en) * | 2002-03-13 | 2003-09-18 | Bhp Billiton Innovation Pty Ltd | Minimising carbon transfer in an electrolytic cell |
CA2498563A1 (en) * | 2002-09-11 | 2004-03-25 | Sumitomo Titanium Corporation | Porous sintered compact of titanium oxide for production of metallic titanium through direct electrolytic process and process for producing the same |
JP2004360025A (en) * | 2003-06-05 | 2004-12-24 | Sumitomo Titanium Corp | Method for manufacturing metallic titanium with direct electrolysis method |
JP2004360053A (en) * | 2003-06-09 | 2004-12-24 | Sumitomo Titanium Corp | Method for manufacturing low-carbon metallic titanium with direct electrolysis method |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN * |
See also references of EP1776491A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT509526B1 (en) * | 2010-02-26 | 2012-01-15 | Univ Wien Tech | METHOD AND DEVICE FOR PREPARING METALS FROM THEIR OXIDES |
Also Published As
Publication number | Publication date |
---|---|
AU2005256146B2 (en) | 2010-11-25 |
US20070181436A1 (en) | 2007-08-09 |
RU2007103181A (en) | 2008-08-10 |
EP1776491A1 (en) | 2007-04-25 |
EP1776491A4 (en) | 2007-10-10 |
CA2572300A1 (en) | 2006-01-05 |
ZA200700107B (en) | 2008-05-28 |
JP2008504438A (en) | 2008-02-14 |
BRPI0512782A (en) | 2008-04-08 |
CN101018894A (en) | 2007-08-15 |
RU2370575C2 (en) | 2009-10-20 |
AU2005256146A1 (en) | 2006-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005256146B2 (en) | Production of titanium | |
EP2322693B1 (en) | Electrochemical process for titanium production | |
EP3512970B1 (en) | A method for producing titanium-aluminum-vanadium alloy | |
US20060037867A1 (en) | Method of manufacturing titanium and titanium alloy products | |
US20120230860A1 (en) | Purification process | |
JP2005199354A (en) | Apparatus for production or refining of metal, and related process | |
JP6835036B2 (en) | Titanium material | |
KR20120070612A (en) | Method for production of titanium welding wire | |
WO2018016778A1 (en) | Method for refining metal by using electrolytic reduction and electrolytic refining processes | |
JP2018164943A5 (en) | ||
EP2945764B1 (en) | Process for producing tantalum alloys | |
JPH06146049A (en) | Molten salt electrolytic sampling method for high-fusion-point active metal such as titanium | |
JPH0873960A (en) | Production of extra-low oxygen titanium | |
JPH1025527A (en) | Manufacture of high purity titanium material, and multistage melting method of titanium ingot | |
GB2393450A (en) | Method of Manufacture of Metal Alloy Stock | |
LV15464B (en) | Method and device for continuous production of metallic titanium and its alloys | |
GB2393451A (en) | A Method of Manufacture of Metal Alloy Sheet | |
AU2002331406A1 (en) | Method of manufacturing titanium and titanium alloy products | |
Ward-Close et al. | Powder Manufacturing and Processing: Advances in Titanium Alloy Powder | |
JPH05309461A (en) | Continuous casting mold powder for copper alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005752414 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2572300 Country of ref document: CA Ref document number: 11616419 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007518407 Country of ref document: JP Ref document number: 2005256146 Country of ref document: AU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007/00107 Country of ref document: ZA Ref document number: 200700107 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 151/DELNP/2007 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2005256146 Country of ref document: AU Date of ref document: 20050623 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2005256146 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580025337.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007103181 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2005752414 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11616419 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0512782 Country of ref document: BR |