JP2004349635A - レーザアニール方法及び装置 - Google Patents

レーザアニール方法及び装置 Download PDF

Info

Publication number
JP2004349635A
JP2004349635A JP2003147968A JP2003147968A JP2004349635A JP 2004349635 A JP2004349635 A JP 2004349635A JP 2003147968 A JP2003147968 A JP 2003147968A JP 2003147968 A JP2003147968 A JP 2003147968A JP 2004349635 A JP2004349635 A JP 2004349635A
Authority
JP
Japan
Prior art keywords
laser
film
laser beam
optical path
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003147968A
Other languages
English (en)
Other versions
JP4660074B2 (ja
Inventor
Masahiro Toida
昌宏 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003147968A priority Critical patent/JP4660074B2/ja
Priority to US10/852,155 priority patent/US7365285B2/en
Publication of JP2004349635A publication Critical patent/JP2004349635A/ja
Application granted granted Critical
Publication of JP4660074B2 publication Critical patent/JP4660074B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】薄膜に対し、レーザエネルギーを無駄なく利用してレーザアニール処理をし、大結晶粒を形成可能とする。
【解決手段】レーザ光源300から出射されたレーザビームを、アニールの基板150のa−Si層に透過させる光路上で折り返し照射することにより、a−Si層にレーザビームを複数回透過させる。よってレーザビームがa−Si層を透過する際にエネルギーが吸収される操作が複数回繰り返されるので、レーザビームの入力エネルギーを無駄なく利用可能である。さらに、a−Si層は、そのレーザビームを複数回透過された部分で、透過方向に生じるエネルギー吸収分布を一定にして固液界面を光路に沿った平坦なものとすることにより、a−Si層における横方向結晶成長を実現して大結晶粒の形成を可能とする。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
この発明は、レーザビームを折り返し照射することにより対象物に対し複数回伝搬透過させてアニール処理を行う、レーザアニール方法及び装置に関する。
【0002】
【従来の技術】
一般に、液晶ディスプレイ(LCD)、有機EL(エレクトロ・ルミネッセンス)ディスプレイ等のフラットパネル・ディスプレイの小型軽量化、低コスト化の観点から、画素表示ゲート用の薄膜トランジスタ(TFT)だけでなく、駆動回路や信号処理回路、画像処理回路などをLCDのガラス基板上に直接形成するシステム・オン・ガラス(SOG)−TFTが注目されている。
【0003】
このような画素表示ゲート用のTFTには、アモルファスシリコン(a−Si)が使用されてきたが、SOG−TFTにはキャリア移動度の大きいポリシリコン(Poly−Si)が必要である。しかしながら、ガラスの変形温度は600°Cと低いことから、ポリシリコン膜の形成に600℃以上の高温を利用した結晶成長技術を使用することができない。このため、ポリシリコン膜の形成には、アモルファスシリコン膜を低温(100〜300°C)で形成した後、波長308nmのXeClエキシマレーザによるパルス照射でアモルファスシリコン膜を熱溶融し、冷却過程で結晶化させるエキシマ・レーザアニール(ELA)が用いられている。このELAを用いることにより、ガラス基板に熱的損傷を与えずにポリシリコン膜を形成することができる。
【0004】
従来のアモルファスシリコン(a−Si)をポリシリコン(Poly−Si)化させるレーザニール処理は、XeClエキシマレーザの波長308nm光を、a−Si膜に対し片側から一方向のみ照射して行われている。このXeClエキシマレーザの波長308nm光のa−Siに対する吸収係数は1×10cm−1と大きいので、入力エネルギーは表面の極近傍(<1nm)で吸収される。
【0005】
このため、エキシマ・レーザアニールでは、レーザエネルギーの吸収および熱伝搬によって溶融したSi層では深度方向に大きな温度勾配が生じ、例えば図29に示す部分溶融の状態となることがある。
【0006】
この場合には、熱が主に基板方向に拡散し、溶融しないで残存したa−Siが800℃で固相間で結晶相へ相転移を起すため、溶融Si相とa−Si相の境界部に結品核が発生する。発生した結晶核は、それを起点として、温度勾配に沿って図の上向き方向に結晶成長する。隣接結晶核から成長した結晶粒とぶつかり、結晶粒が小さく結晶粒界が多い状態で結晶成長が止まる。
【0007】
ここで、TFTの高性能化には、高い電荷移動度が要求される。電子にとって結晶粒界は移動の障壁になるため、電荷移動度を上げるためには、結晶粒界の少ないすなわち大きい結晶粒の生成が重要である。
【0008】
そこで、エキシマ・レーザアニールでは、図30に示すように、エキシマレーザの出力を上げ残存a−Si相を島状にすると、発生する結晶核の数が少なくなり一つひとつの結晶粒が大きく成長する状態となる。
【0009】
またエキシマ・レーザアニールでは、図31に示すように、さらにエキシマレーザの出力を上げa−Si相を完全溶融してしまうと、融点以下になっても結晶化しない過冷却状態となる。そして温度が下がると一転して結晶核が一斉に発生し微小結晶粒で全体が埋め尽くされる状態となる。
【0010】
上述したレーザ強度と結晶粒径の関係を定性的に表すと図32のように、なる。レーザ強度を上げていくと、それにつれ部分溶融(a)の状態から残存a−Si相を島状にする溶融状態(b)となるように結晶粒径は増大するが、a−Siが完全溶融するレーザ強度を超えた途端に完全溶融状態(c)となり、結晶粒径は一気に微細化する。一方エキシマレーザの出力安定度は悪く通常10〜15%程度の強度揺らぎ(図32にハッチングで例示)が避けられない。このため実効的にはエキシマレーザアニールで得られる結晶粒径は現状0.3μm程度に止まる。これは、結晶成長方向を鉛直方向(図29、図30に向かって鉛直方向)にしたことの限界でもある。
【0011】
こうした問題に対し、a−Siを完全溶融させ過冷却状態を生じさせないようにゆっくりと基板を走査し、結晶成長を横方向に制御するアニール法が考案されている。
【0012】
このアニール法では、図33に示すようにレーザが照射されないa−Si層から結晶核が発生するが、温度勾配のためa−Siと溶融層境界の底部の結晶核から斜め上方に結晶成長が進む。これは深度方向に温度勾配があるため、固液界面が斜め方向にねてしまい斜めの固液界面に垂直に結晶成長が進むと考えられる。
【0013】
いずれにしても膜厚と反対側からの結晶粒との衝突により、結晶粒界の大きさが制限されてしまう。これは溶融層深度方向の温度勾配が大きいことが本質的原因である。
【0014】
そこで、エキシマレーザ横方向結晶成長の問題点を解決するものとして、レーザ出力安定度の高い(1%)高出力Nd:YVOレーザの532nm光によるレーザアニールが考案されている。
【0015】
Nd:YVOレーザの532nm光のa−Siに対する吸収係数は、5×10cm−1のため入力エネルギーの90%を吸収するのに460nmの膜厚を必要とする。このNd:YVOレーザの532nm光は、エキシマレーザの波長308nm光に比べて吸収係数が1.5桁ほど少ないため、図34に示すように、同じ膜厚で比較すれば532nmのほうが深度方向に対する温度勾配は平坦となり、固液界面は垂直に立ちやすい。このため横方向への成長距離が長くとれ大きな結晶粒界が生成される。
【0016】
また、エキシマレーザ横方向結晶成長の問題点を解決するものとして、a−Si/SiO絶縁薄膜/Cr光吸収薄膜/基板の4層構造の試料をエキシマレーザ光(308nm)で両面照射するレーザアニール方法が開示されている。これは裏面からのレーザエネルギーをCrの光吸収薄膜層で吸収しSiO層下熱浴を発生させ、表面側からのレーザエネルギーにより生じたSi層の熱を基板方向へ流出しにくくし、Si膜内に蓄えられた熱エネルギーの流出速度を下げるとともにSi膜面方向へ伝搬させ、横方向への結晶成長を制御するものである(例えば、非特許文献1参照。)。
【0017】
また、固体レーザによる両面照射のレーザアニール装置として、Nd:YAGレーザの第2高調波(532nm)、第3高調波(355nm)、第4高調波(266nm)を利用したものが開示されている。
【0018】
この両面照射のレーザアニール装置では、別々のレーザ光ビームが表裏両面からSi膜を1回通過するものである。すなわち、Si膜の同一箇所を、表面側から通過させると共に、裏面側からも通過させることによって、アニール処理するものである(例えば、特許文献1参照。)。
【0019】
【非特許文献1】
松村 正清 著 表面科学21巻 第5号 pp278−287、2000
2000年3月28日受理
【特許文献1】
特開2001−144027号公報
【0020】
【発明が解決しようとする課題】
前述のような、XeClエキシマレーザを利用したレーザアニール法では、光出力が不安定で出力強度が±10%の範囲で変動する。このため、ELAでは、ポリシリコン膜中の結晶粒径サイズがばらつき、再現性が悪い。また、XeClエキシマレーザは、パルス駆動の繰り返し周波数が300Hzと低いので、ELAでは、連続的な結晶粒界の形成が困難で、高いキャリア移動度が得られないし、大面積を高速にアニールできない。さらに、レーザチューブやレーザガスの寿命が1×10ショット程度と短くメンテナンスコストが高い、装置が大型化し、エネルギー効率が3%と低い、という固有の問題もある。
【0021】
ところでTFTの性能向上には、結晶粒径の増大とともに結晶膜の薄層化(50nm以下)も重要である。
【0022】
しかし、大結晶粒形成に有効な固液界面の垂直形成が可能なNd:YVOレーザの532nm光によるレーザアニール法では、Nd:YVOレーザの532nm光のa−Siに対する吸収係数が小さいため固液界面は垂直方向に立つものの、a−Si膜を溶融させるのに必要なエネルギー吸収を確保するためには150nm以上の膜厚が必要となる。
【0023】
よって、レーザアニール法では、大結晶粒形成に有効な固液界面の垂直形成させることと、薄膜結晶化こととが、a−Siの光物性に起因する相反事項となっており、これらの相反する要求を両立することが困難である。
【0024】
さらに、Nd:YVOレーザの532nm光によるレーザアニール法では、入力エネルギーの90%を吸収するのに460nmの膜厚を必要とするから、a−Si膜を薄くすると、それだけ入力エネルギーの無駄が増大する傾向にある。
【0025】
本発明は上述の事実を考慮し、レーザエネルギーを無駄なく利用して大結晶粒を形成可能とすると共に、薄膜結晶化を可能としたレーザアニール方法及び装置を新たに提供することを目的とする。
【0026】
【課題を解決するための手段】
本発明の請求項1に記載のレーザアニール方法は、レーザ光源から出射されたレーザビームを、アニールの対象物内に透過させる光路上で折り返し照射することにより、対象物にレーザビームを複数回透過させて、対象物内の透過方向に生じるエネルギー吸収分布を一定に保つようにすることを特徴とする。
【0027】
上述のレーザアニール方法によれば、レーザビームが対象物を透過する際にエネルギーが吸収される操作が複数回繰り返されるので、レーザビームの入力エネルギーを無駄なく利用可能である。また、レーザビームが対象物に対して同一光路上を折り返し照射されるので、アニールの対象物における厚さ方向に生じるエネルギー吸収分布を一定にして固液界面を光路に沿った平坦なものとすることによって、横方向結晶成長を実現して大結晶粒の形成を可能とする。
【0028】
本発明の請求項2に記載のレーザアニール装置は、レーザビームを出射するレーザ光源と、レーザビームをアニールの対象物内に透過させる光路と、光路上における、レーザ光源と、対象物との間に配置されて、レーザ光源から出射されたレーザビームを透過させる偏光ビームスプリッターと、対象物を透過したレーザビームを、対象物内に透過させる光路上で折り返し照射するように反射させるミラーと、対象物と、ミラーとの間の光路上に配置されたλ/4板と、対象物を透過したレーザビームである入射偏光がλ/4板を通り、ミラーに反射されて再びλ/4板を通って入射偏光に対して直交する偏光とされてから、対象物内を再度透過してから偏光ビームスプリッターで反射されたレーザビームを、対象物内に透過させる光路上に折り返すように反射させるミラーと、を有することを特徴とする。
【0029】
上述のように構成することにより、レーザ光源から出射されたレーザビームが、対象物を第1回目に透過し、λ/4板を通りミラーに反射されて再びλ/4板を通って入射偏光に対して直交する偏光とされてから対象物内を第2回目に透過してから、偏光ビームスプリッターで反射し、ミラーで反射されて対象物内に透過させる光路上に折り返され、対象物内を第3回目に透過してから、λ/4板を通りミラーに反射されて再びλ/4板を通って入射偏光と同じ偏光とされてから対象物内を第4回目に透過する。
【0030】
よって、レーザビームが対象物を透過する際にエネルギーが吸収される操作が4回繰り返されるので、レーザビームの入力エネルギーを無駄なく利用可能である。また、レーザビームが対象物に対して同一光路上を折り返し照射されるので、アニールの対象物における厚さ方向に生じるエネルギー吸収分布を一定にして固液界面を光路に沿った平坦なものとすることによって、横方向結晶成長を実現して大結晶粒の形成を可能とする。
【0031】
本発明の請求項3に記載のレーザアニール装置は、アニールさせる膜と、アニールさせる膜を透過したレーザビームを、アニールさせる膜内に透過させる光路上で折り返すように反射させる反射膜と、アニールさせる膜と反射膜との間に配置されたλ/4板の機能を有するバッファ層とを有する対象物をアニール処理の対象とし、レーザビームを出射するレーザ光源と、レーザビームを対象物に設けたアニールさせる膜に透過させる光路と、光路上における、レーザ光源と対象物との間に配置されて、レーザ光源から出射されたレーザビームをアニールさせる膜に透過させる偏光ビームスプリッターと、アニールさせる膜を透過したレーザビームである入射偏光がλ/4板の機能を有するバッファ層を通り、反射膜に反射されて再びλ/4板の機能を有するバッファ層を通って入射偏光に対して直交する偏光とされてから、アニールさせる膜内を再度透過してから偏光ビームスプリッターで反射されたレーザビームを、対象物内に透過させる光路上に折り返すように反射させるミラーと、を有することを特徴とする。
【0032】
上述のように構成することにより、レーザ光源から出射されたレーザビームが、対象物を第1回目に透過し、λ/4板の機能を有するバッファ層を通り反射膜に反射されて再びλ/4板の機能を有するバッファ層を通って入射偏光に対して直交する偏光とされてから対象物内を第2回目に透過してから、偏光ビームスプリッターで反射し、ミラーで反射されて対象物内に透過させる光路上に折り返され、対象物内を第3回目に透過してから、λ/4板の機能を有するバッファ層を通り反射膜に反射されて再びλ/4板の機能を有するバッファ層を通って入射偏光と同じ偏光とされてから対象物内を第4回目に透過する。
【0033】
よって、レーザビームが対象物を透過する際にエネルギーが吸収される操作が4回繰り返されるので、レーザビームの入力エネルギーを無駄なく利用可能である。また、レーザビームが対象物に対して同一光路上を折り返し照射されるので、アニールの対象物における厚さ方向に生じるエネルギー吸収分布を一定にして固液界面を光路に沿った平坦なものとすることによって、横方向結晶成長を実現して大結晶粒の形成を可能とする。
【0034】
本発明の請求項4に記載のレーザアニール装置は、レーザビームを出射するレーザ光源と、レーザビームをアニールの対象物内に透過させる光路と、対象物を透過したレーザビームを、対象物内に透過させる光路上で折り返し照射するように反射させるミラーと、を有することを特徴とする。
【0035】
上述のように構成することにより、レーザ光源から出射されたレーザビームが、対象物を第1回目に透過し、ミラーに反射されて対象物内を第2回目に透過する。
【0036】
よって、レーザビームが対象物を透過する際にエネルギーが吸収される操作が2回繰り返されるので、レーザビームの入力エネルギーを有効に利用可能である。また、レーザビームが対象物に対して同一光路上を折り返し照射されるので、アニールの対象物における厚さ方向に生じるエネルギー吸収分布を一定にして固液界面を光路に沿った平坦なものとすることによって、横方向結晶成長を実現して大結晶粒の形成を可能とする。
【0037】
請求項5に記載の発明は、請求項2又は請求項3に記載のレーザアニール装置において、アニールの対象物が、膜厚25〜230nmに構成されたアモルファスシリコンであり、レーザ光源が、Nd系固体レーザを発振源とするレーザの第2高調波の光ビームを発振するものであることを特徴とする。
【0038】
上述のように構成することにより、アニールの対象物をアモルファスシリコン(a−Si)とした場合に、Nd系固体レーザをレーザ光源とすることで高い出力安定性が得られると同時に、波長500nm前後のレーザビームに対するアモルファスシリコンにおける吸収係数が比較的小さいため、アモルファスシリコンの膜厚を略25〜230nmに構成したときには、レーザビームが対象物であるアモルファスシリコン層に対して同一光路上を折り返し照射することで、アモルファスシリコン層の厚さ方向に生じるエネルギー吸収分布を一定にして固液界面を光路に沿った平坦なものとし、固液界面を垂直に立ちやすくして横方向への成長距離が長くとれ大きな結晶粒界が生成されるようにできる。よって、キャリア移動度の大きいポリシリコン(Poly−Si)が生成でき、SOG−TFTの高性能化を図ることができる。
【0039】
請求項6に記載の発明は、請求項2乃至請求項5の何れかに記載のレーザアニール装置において、レーザ光源が、GaN系半導体レーザによる400nmから460nmの波長の光ビームを出射するものであることを特徴とする。
【0040】
上述のように構成することにより、レーザ波長λが、λ<400nmとなって紫外線域となると、光分解性が高くなり、ミラーやレンズ等に付着している埃に照射された際に、ミラーやレンズ等に付着している埃を光分解して汚染させる虞があるが、GaN系半導体レーザの波長λを、λ≧400nmとして、ミラーやレンズ等の汚染防止をすることができる。また、GaN系半導体レーザの発振上限のレーザ波長λは、λ≦460nmである。
【0041】
【発明の実施の形態】
以下、図面を参照して、本発明のレーザアニール方法及び装置を低温ポリシリコンTFT形成に適用した実施の形態について詳細に説明する。
【0042】
本実施の形態に係わるレーザアニール装置が用いられる低温ポリシリコンTFT形成プロセスでは、まず、図17(A)に示すように、ガラス製又はプラスチック製の透明な基板150上に、酸化ケイ素(SiO)絶縁膜190を堆積し、SiO絶縁膜190上にアモルファスシリコン膜192を堆積する。
【0043】
このアモルファスシリコン膜192をレーザアニールにより多結晶化してポリシリコン膜を形成する。その後、フォトリソグラフィ技術を用いて、例えば、図17(B)に示すように、透明な基板150上に、SiO絶縁膜190を介して、ポリシリコンゲート194、ポリシリコンソース/ポリシリコンドレイン196、ゲート電極198、ソース/ドレイン電極200、及び層間絶縁膜202を備えたポリシリコンTFTを形成する。
[レーザアニール装置の構成]
本実施の形態に係るレーザアニール装置は、図1に示すように、対象物としてのアモルファスシリコン膜が堆積された透明な基板150を表面に吸着して保持する平板状のステージ152を備えている。4本の脚部154に支持された厚い板状の設置台156の上面には、ステージ移動方向に沿って延びた2本のガイド158が設置されている。ステージ152は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド158によって往復移動可能に支持されている。なお、このレーザアニール装置には、ステージ152をガイド158に沿って駆動するための図示しない駆動装置が設けられている。
【0044】
設置台156の中央部には、ステージ152の移動経路を跨ぐようにコ字状のゲート160が設けられている。コ字状のゲート160の各端部は、それぞれ設置台156の両側面に固定されている。このゲート160を挟んで一方の側にはスキャナ162が設けられ、他方の側には透明な基板150の先端及び後端を検知する複数(例えば、2個)の検知センサ164が設けられている。スキャナ162及び検知センサ164はゲート160に各々取り付けられて、ステージ152の移動経路の上方に固定配置されている。なお、スキャナ162及び検知センサ164は、これらを制御する図示しないコントローラに接続されている。
【0045】
このレーザアニール装置では、a−Si膜内に複数回透過するように折り返し照射するレーザアニール方法を実施可能とするため、スキャナ162からステージ152の裏側にかけて、図2に示すレーザ折り返し照射手段が構成されている。
【0046】
このレーザ折り返し照射手段では、レーザ光源300としてNd系固体レーザを発振源とするレーザ光の第2高調波を用いる。また、レーザ光源300には、図示しないが第3高調波、第4高調波に対する波長変調器を設けても良い。
【0047】
このようにレーザ光源300としてNd系固体レーザを発振源とするレーザ光の第2高調波を用いるのは、次の理由による。
【0048】
まず、レーザ光源300から対象物としての基板150へ投射された光エネルギーがa−Si層で吸収される様子を説明する。いまa−Si層内部の薄層Δdを考え、このΔdで吸収されるエネルギー量を考える。入力エネルギーをPとすると深さdまでで吸収されるエネルギーはPexp(−αd)である。また深さd+Δdまでで吸収されるエネルギーはPexp(−α(d+Δd))である。したがってΔdの層厚で吸収されるエネルギーはP{exp(−αd)−exp(−α(d+Δd))}であるから、次式が成立する。
【0049】
【数1】
Figure 2004349635
よって、上式から、ある深さdで吸収されるエネルギーPdは、Pd=Pαexp(−αd)sと表せる。
【0050】
ここで、図3は532nm光のa−Si膜内でのエネルギー吸収の様子を示している。表面から吸収が起こり膜内で指数開数的に吸収が少なくなりながら、500nmの膜厚で入力エネルギーPを全て吸収し終わる。図中のX軸、Y軸、指数関数曲線で囲まれた面積は入力エネルギーPに対応する。エネルギー吸収が図3のように起こるため、膜内の温度もほぼ図3と同様の分布を持つこととなる。
【0051】
このため固液界面も温度分布を反映し、a−Si膜面に対し垂直に近くなる(前述した図3に示す如くになる)。このため結晶成長は膜面方向に進むので膜厚に制限されない。
【0052】
しかし532nmのレーザ光の吸収係数は5×10cm−1であるから、50nmの膜厚では入力エネルギーの約22%が吸収されるだけとなり、結晶化に必要なエネルギーをa−Si層へ投入するためにはそれだけ入力エネルギーを大きくする必要が生じる。このため本発明は50nm程度の薄層で532nmが十分に吸収され、入力エネルギーを無駄なく利用して、かつ膜厚に制限されない横方向結晶成長を実現し、大結晶粒形成に有効な固液界面の垂直形成と薄膜結晶化とを同時に実現するため、532nmのレーザ光が、Si膜内を複数回透過するように折り返し照射するレーザアニール方法を適用することで、膜内の膜厚方向に生じるエネルギー吸収分布を一定に保つものである。
【0053】
次に、膜内を複数回透過するように折り返し照射するレーザアニール方法における、吸収係数α(λ)、膜厚d及び折り返し数nとの関係について説明する。
【0054】
ここで、入力パワーPが、吸収係数α(λ)の膜厚dを透過するときのパワーPは、P=Pexp(−α(λ)・d)である。よって、膜厚dで吸収されるパワーPは、P=P(1−exp(−α(λ)・d)である。
【0055】
したがって吸収率ηabsはηabs=1−exp(−α(λ)・d)…▲1▼である。
【0056】
また、膜厚内に入力された光エネルギーの実効的な吸収領域が存在することを、ηabs=0.99…▲2▼で規定する。さらに入力された光エネルギーを有効利用できることを、ηabs=0.4…▲3▼で規定する。
【0057】
▲1▼、▲2▼よりexp(−α(λ)・d)=0.01だからα(λ)・d〜4.6…▲4▼を得る。
【0058】
また▲2▼、▲3▼よりexp(−α(λ)・d)=0.6だからα(λ)・d〜0.5…▲5▼を得る。
【0059】
よって▲4▼▲5▼より、エネルギーロスが許容範囲にあり、かつ両面照射の効果が有効に生じる範囲は、0.5≦α(λ)・d≦4.6…▲6▼となる。
【0060】
ここで、折り返し照射の有効性が顕著にでるのは、「行き」「帰り」の往復パスが形成される場合である。したがって折り返し数をnとすると▲6▼は
0.5/2n≦α(λ)・d≦4.6/2n…▲7▼となる。
【0061】
よって▲7▼で吸収係数α(λ)と膜厚dおよび折り返し数nの関係が規定される。
【0062】
例えば、532nmのレーザ光を、a−Si膜内に複数回透過するように折り返し照射するレーザアニール方法について見ると、▲7▼は以下の通りである。
【0063】
0.5/2n≦α(532nm)・d≦4.6/2n ▲7▼
d:膜厚 実際に照射するa−Siの厚さ
α(532nm):a−Siと波長に依存する係数
▲7▼式を満たす整数nは、
α(532nm)=5×10cm−1
d=50nm
0.5≦2nα(532nm)d≦4.6
0.5≦0.5n≦4.6
n=1.2...9
となる。
【0064】
次に、レーザアニール処理の一例として、アニールの対象物をアモルファスシリコン(a−Si)とし、その膜厚を25nm〜230nmとし、レーザ光源がNd系固体レーザを発振源とするレーザの第2高調波の光ビームを発振するものとされ、レーザビームを2回折り返し照射(折り返し数n)する場合について説明する。
【0065】
この場合には、Nd系固体レーザをレーザ光源とすることで高い出力安定性が得られると同時に、波長500nm前後のレーザビームに対するアモルファスシリコンにおける吸収係数が比較的小さいため、アニールの対象物であるアモルファスシリコンの膜厚を略25nm〜230nmに構成したときには、レーザビームが対象物であるアモルファスシリコン層に対して同一光路上を折り返し照射することで、アモルファスシリコン層の厚さ方向に生じるエネルギー吸収分布を一定にして固液界面を光路に沿った平坦なものとし、固液界面を垂直に立ちやすくして横方向への成長距離が長くとれ大きな結晶粒界が生成されるようにできる。よって、キャリア移動度の大きいポリシリコン(Poly−Si)が生成でき、SOG−TFTの高性能化を図ることができる。
【0066】
ここで、アニールの対象物であるアモルファスシリコンは、その膜厚を略25nm〜230nmとすることの根拠は、以下の通りである。
【0067】
前述した、有効に折り返し照射が行える条件式
0.5/2n≦α(532nm)・d≦4.6/2n ▲7▼
に、折り返し数n=2、α(532nm)=5×10cm−1の数値を代入して、膜厚dについての不等式として整理すると、25nm≦d≦230nmとなる。よって、2回折り返し照射が有効なアモルファスシリコンの膜厚は、略25nm〜230nmとなる。
【0068】
図2において、レーザ光源にNd系固体レーザとしてNd:YVOレーザを使用した複数のNd:YVOSHGレーザ光源を用いた場合を考える。このレーザアニール装置におけるレーザ折り返し照射手段では、複数のNd:YVOSHGレーザ光源300でそれぞれ発振された波長532nm(第2高調波)の光ビームを、各対応するビーム成形光学系302及び空間光変調器304とにより所望のビーム強度の光ビームに成形するよう構成する。
【0069】
さらに、レーザ折り返し照射手段には、所望のビーム強度の光ビームに成形された各波長532nmのレーザ光を、それぞれ全てのレーザ光源300からの波長532nmのレーザ光に対応して構成したミラー306により反射し、偏光ビームスプリッター308を透過させて、レンズ310(シリンドリカルレンズ)により、対象物としての基板150上のa−Si膜に投射する光路が構成されている。
【0070】
このように対象物としての基板150上のa−Si膜に投射された光エネルギーはa−Si膜により一部吸収され、一部は光ビームとして透過する。
【0071】
このレーザ折り返し照射手段には、対象物としての基板150の裏側に、透過した光ビームをレンズ312(シリンドリカルレンズ)により成形し、λ/4波長板314を透過し円偏光の光ビームとされてからミラー316により反射され、再びλ/4波長板314を透過し、Nd:YVOSHGレーザ光源300でそれぞれ発振された波長532nm(第2高調波)の光ビームとは直交した直線偏光の光ビームとなり、再びレンズ312により対象物としての基板150のa−Si膜の裏面より第2回目の投射をさせる光路が構成されている。
【0072】
このように、基板150のa−Si膜の裏面から投射された光エネルギーは、再度一部がa−Si膜により吸収され、一部は光ビームとして透過する。
【0073】
このレーザ折り返し照射手段には、a−Si膜を透過した、直交した直線偏光の光ビームをレンズ310に通してから偏光ビームスプリッター308で反射し、さらにミラー318で反射し、再び偏光ビームスプリッター308で反射させて、再度レンズ310により、基板150上のa−Si膜に第3回目の投射をする光路が構成されている。
【0074】
このように基板150上のa−Si膜に第3回目の投射がされた光エネルギーはa−Si膜により一部吸収され、一部は光ビームとして透過する。
【0075】
そして、第3回目の投射で透過した光ビームは、基板150の裏側に構成された光路における、レンズ312により成形され、λ/4波長板314を透過し円偏光の光ビームとされてからミラー316により反射され、再びλ/4波長板314を透過し、Nd:YVOSHGレーザ光源300でそれぞれ発振された波長532nm(第2高調波)の光ビームと同一偏光方向の光ビームとなり、再びレンズ312により基板150のa−Si膜の裏面より第4回目の投射がされる。
【0076】
このように、基板150のa−Si膜の裏面から第4回目に投射された光エネルギーは、再度一部がa−Si膜により吸収され、一部は光ビームとして透過し、レンズ310に通してから、Nd:YVOSHGレーザ光源300でそれぞれ発振された波長532nm(第2高調波)の光ビームと同一偏光方向の光ビームとして、偏光ビームスプリッター4を透過する。
【0077】
上述のような過程を経ることで、532nm光ビームはa−Si膜を2往復(4回透過)することとなり50nmの膜厚において、200nmの膜厚に相当する光エネルギーの吸収を実現できる。
【0078】
すなわち、図4(A)にハッチングで示すように、200nmの膜厚で吸収する光エネルギーに相当するエネルギーを吸収することとなり、入力エネルギーの約66%に高めることができる。
【0079】
さらに、図4(B)に示すように、光エネルギーは、50nm膜厚のなかで4つに折り返される(4回透過される)ため、吸収した入力エネルギーが、図4(C)に示すように、50nm膜厚内で、膜厚深さ方向に対しほぼ均一に吸収された分布状態となる。
【0080】
この場合のa−Si膜内の温度分布は、この均一な吸収エネルギー分布に追随し、図4(D)に示すように、膜厚深さ方向に対しほぼ一定の分布となる。
【0081】
これにより入力エネルギーの無駄を少なくし、532nm光ビームを一回透過させたワンパスの場合よりも、さらに膜厚深さ方向(深度方向)に対する均一な温度分布が実現される。この結果、50nm程度の比較的薄い膜厚で入力エネルギーを無駄なく利用して、かつ膜厚の薄さに制限されない横方向結晶成長を実現でき、大結晶粒形成に有効な固液界面の垂直形成と薄膜結晶化の相反する要求を両立することができる。
【0082】
すなわち、レーザビームが対象物を透過する際にエネルギーが吸収される操作が複数回繰り返されるので、レーザビームの入力エネルギーを無駄なく利用可能である。また、レーザビームが対象物に対して同一光路上を折り返し照射されるので、アニールの対象物における厚さ方向に生じるエネルギー吸収分布を一定にして固液界面を光路に沿った平坦なものとすることによって、横方向結晶成長を実現して大結晶粒の形成を可能とする。
【0083】
なお、上述したレーザアニール装置におけるレーザ折り返し照射手段では、複数のレーザ光源300に各々対応した、各光学系302及び各空間光変調器(DMD)304と、複数のレーザ光源300等の全体に対応したミラー306、偏光ビームスプリッター308、レンズ310、レンズ312、λ/4波長板314、ミラー316及びミラー318とで構成した例について説明したが、複数のレーザ光源300に一対一に対応するよう、それぞれミラー306、偏光ビームスプリッター308、レンズ310、レンズ312、λ/4波長板314、ミラー316及びミラー318を設けて構成しても良い。
【0084】
図2に示すレーザアニール装置におけるレーザ折り返し照射手段では、その空間光変調器304を、入射された光ビームをデータに応じて各画素毎に変調する空間光変調素子であるデジタル・マイクロミラー・デバイス(DMD)で構成することができる。この空間光変調器(DMD)304は、データ処理部とミラー駆動制御部とを備えた図示しないコントローラに接続されている。このコントローラのデータ処理部では、入力されたデータに基づいて、各空間光変調器304毎に制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。このデータは、各画素の濃度を2値(ドットの記録の有無)で表したデータである。また、ミラー駆動制御部では、データ処理部で生成した制御信号に基づいて、空間光変調器304毎に各マイクロミラーの反射面の角度を制御する。
【0085】
空間光変調器(DMD)304は、図5に示すように、SRAMセル(メモリセル)60上に、微小ミラー(マイクロミラー)62が支柱により支持されて配置されたものであり、画素(ピクセル)を構成する多数の(例えば、600個×800個)の微小ミラーを格子状に配列して構成されたミラーデバイスである。各ピクセルには、最上部に支柱に支えられたマイクロミラー62が設けられており、マイクロミラー62の表面にはアルミニウム等の反射率の高い材料が蒸着されている。なお、マイクロミラー62の反射率は90%以上である。また、マイクロミラー62の直下には、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのSRAMセル60が配置されており、全体はモノリシック(一体型)に構成されている。
【0086】
空間光変調器(DMD)304のSRAMセル60にデジタル信号が書き込まれると、支柱に支えられたマイクロミラー62が、対角線を中心として空間光変調器(DMD)304が配置された基板側に対して±α度(例えば±10度)の範囲で傾けられる。図6(A)は、マイクロミラー62がオン状態である+α度に傾いた状態を示し、図6(B)は、マイクロミラー62がオフ状態である−α度に傾いた状態を示す。従って、データ信号に応じて、空間光変調器(DMD)304の各ピクセルにおけるマイクロミラー62の傾きを、図6に示すように制御することによって、空間光変調器(DMD)304に入射された光はそれぞれのマイクロミラー62の傾き方向へ反射される。
【0087】
なお、図6には、空間光変調器(DMD)304の一部を拡大し、マイクロミラー62が+α度又は−α度に制御されている状態の一例を示す。それぞれのマイクロミラー62のオンオフ制御は、空間光変調器(DMD)304に接続された図示しないコントローラによって行われる。なお、オフ状態のマイクロミラー62により光ビームが反射される方向には、光吸収体(図示せず)が配置されている。
【0088】
また、空間光変調器(DMD)304は、その短辺が副走査方向と所定角度θ(例えば、1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図7(A)は空間光変調器(DMD)304を傾斜させない場合の各マイクロミラーによる反射光像(照射ビーム)53の走査軌跡を示し、図7(B)は空間光変調器(DMD)304を傾斜させた場合の照射ビーム53の走査軌跡を示している。
【0089】
空間光変調器(DMD)304には、長辺方向にマイクロミラーが多数個(例えば、800個)配列されたマイクロミラー列が、短辺方向に多数組(例えば、600組)配列されているが、図7(B)に示すように、空間光変調器(DMD)304を傾斜させることにより、各マイクロミラーによる照射ビーム53の走査軌跡(走査線)のピッチPが、空間光変調器(DMD)304を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、空間光変調器(DMD)304の傾斜角は微小であるので、空間光変調器(DMD)304を傾斜させた場合の走査幅Wと、空間光変調器(DMD)304を傾斜させない場合の走査幅Wとは略同一である。
【0090】
また、異なるマイクロミラー列により同じ走査線上が重ねてレーザ照射(多重露光)されることになる。このように、多重露光されることで、レーザ照射位置の微少量をコントロールすることができ、高精細なアニールを実現することができる。また、主走査方向に配列された複数のレーザ光源300の間のつなぎ目を微少量のレーザ照射位置制御により段差無くつなぐことができる。
【0091】
なお、空間光変調器(DMD)304を傾斜させる代わりに、各マイクロミラー列を副走査方向と直交する方向に所定間隔ずらして千鳥状に配置しても、同様の効果を得ることができる。
【0092】
このレーザアニール装置におけるレーザ折り返し照射手段では、空間光変調器(DMD)304を利用することにより、基板150のa−Si膜に対して、微細な帯状の範囲に投射される光エネルギーの分布を、基板150の搬送方向前端側で強く、搬送方向後端側に行くのに従って弱くする等の調整を行い、a−Si膜内の温度分布をより均一化し、膜厚深さ方向に対しほぼ一定の分布となるよう制御することも可能となる。
[レーザアニール装置の他の構成例]
次に、図18に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成について説明する。
【0093】
この図18に示すレーザ折り返し照射手段では、レーザ光源300としてファイバアレイ光源300Aを用い、副走査方向と直交する主走査方向に沿って1列に配列されたレーザ出射部から照射されたレーザビームを所望のビーム強度の光ビームに成形するビーム成形光学系302Aを利用して構成する。なお、その他の構成は、前述した図2に示すレーザ折り返し照射手段と同等である。
【0094】
このファイバアレイ光源300Aは、図8(A)に示すように、多数のレーザモジュール64を備えており、各レーザモジュール64には、マルチモード光ファイバ30の一端が結合されている。マルチモード光ファイバ30の他端には、コア径がマルチモード光ファイバ30と同一で且つクラッド径がマルチモード光ファイバ30より小さい光ファイバ31が結合され、光ファイバ31の出射端部(発光点)が副走査方向と直交する主走査方向に沿って1列に配列されてレーザ出射部68が構成されている。なお、発光点を主走査方向に沿って複数列に配列することもできる。
【0095】
光ファイバ31の出射端部は、図8(B)に示すように、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、光ファイバ31の光出射側には、光ファイバ31の端面を保護するために、ガラス等の透明な保護板63が配置されている。保護板63は、光ファイバ31の端面と密着させて配置してもよく、光ファイバ31の端面が密封されるように配置してもよい。光ファイバ31の出射端部は、光密度が高く集塵し易く劣化し易いが、保護板63を配置することにより端面への塵埃の付着を防止することができると共に劣化を遅らせることができる。
【0096】
この例では、クラッド径が小さい光ファイバ31の出射端を隙間無く1列に配列するために、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30の間にマルチモード光ファイバ30を積み重ね、積み重ねられたマルチモード光ファイバ30に結合された光ファイバ31の出射端が、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30に結合された光ファイバ31の2つの出射端の間に挟まれるように配列されている。
【0097】
このような光ファイバは、例えば、図9に示すように、クラッド径が大きいマルチモード光ファイバ30のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ31を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ31の入射端面が、マルチモード光ファイバ30の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ31のコア31aの径は、マルチモード光ファイバ30のコア30aの径と同じ大きさである。
【0098】
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタ等を介してマルチモード光ファイバ30の出射端に結合してもよい。コネクタ等を用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合等に先端部分の交換が容易になり、照射ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ31を、マルチモード光ファイバ30の出射端部と称する場合がある。
【0099】
マルチモード光ファイバ30及び光ファイバ31としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ30及び光ファイバ31は、ステップインデックス型光ファイバであり、マルチモード光ファイバ30は、クラッド径=125μm、コア径=25μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ31は、クラッド径=60μm、コア径=25μm、NA=0.2である。
【0100】
レーザモジュール64は、図10に示す合波レーザ光源(ファイバ光源)によって構成されている。この合波レーザ光源は、ヒートブロック10上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードの半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,及びLD7と、半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズ11,12,13,14,15,16,及び17と、1つの集光レンズ20と、1本のマルチモード光ファイバ30と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、照射ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。
【0101】
上記の合波レーザ光源は、例えば図11及び図12に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ40内に収納されている。パッケージ40は、その開口を閉じるように作成されたパッケージ蓋41を備えており、脱気処理後に封止ガスを導入し、パッケージ40の開口をパッケージ蓋41で閉じることにより、パッケージ40とパッケージ蓋41とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。
【0102】
パッケージ40の底面にはベース板42が固定されており、このベース板42の上面には、ヒートブロック10と、集光レンズ20を保持する集光レンズホルダー45と、マルチモード光ファイバ30の入射端部を保持するファイバホルダー46とが取り付けられている。マルチモード光ファイバ30の出射端部は、パッケージ40の壁面に形成された開口からパッケージ外に引き出されている。
【0103】
また、ヒートブロック10の側面にはコリメータレンズホルダー44が取り付けられており、コリメータレンズ11〜17が保持されている。パッケージ40の横壁面には開口が形成され、この開口を通して半導体レーザLD1〜LD7に駆動電流を供給する配線47がパッケージ外に引き出されている。
【0104】
なお、図12においては、図の煩雑化を避けるために、複数の半導体レーザのうち半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズ17にのみ番号を付している。
【0105】
図13は、このコリメータレンズ11〜17の取り付け部分の正面形状を示すものである。コリメータレンズ11〜17の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズ11〜17は、長さ方向が半導体レーザLD1〜LD7の発光点の配列方向(図13の左右方向)と直交するように、発光点の配列方向に密接して配置されている。
【0106】
一方、半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザビームB1〜B7を発するレーザが用いられている。これら半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。
【0107】
従って、各発光点から発せられたレーザビームB1〜B7は、上述のように細長形状の各コリメータレンズ11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズ11〜17の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザビームB1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズ11〜17の各々は、焦点距離f=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
【0108】
集光レンズ20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズ11〜17の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ20は、焦点距離f=23mm、NA=0.2である。この集光レンズ20も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。
【0109】
このように構成されたファイバアレイ光源300Aでは、合波レーザ光源を構成する半導体レーザLD1〜LD7の各々から発散光状態で出射したレーザビームB1,B2,B3,B4,B5,B6,及びB7の各々が、対応するコリメータレンズ11〜17によって平行光化される。平行光化されたレーザビームB1〜B7は、集光レンズ20によって集光され、マルチモード光ファイバ30のコア30aの入射端面に収束する。
【0110】
このコリメータレンズ11〜17及び集光レンズ20によって集光光学系が構成され、その集光光学系とマルチモード光ファイバ30とによって合波光学系が構成されている。すなわち、集光レンズ20によって上述のように集光されたレーザビームB1〜B7が、このマルチモード光ファイバ30のコア30aに入射して光ファイバ内を伝搬し、1本のレーザビームBに合波されてマルチモード光ファイバ30の出射端部に結合された光ファイバ31から出射する。
【0111】
各レーザモジュールにおいて、例えば、レーザビームB1〜B7のマルチモード光ファイバ30への結合効率が0.85で、半導体レーザLD1〜LD7の各出力が30mWの場合(シングルモードレーザを使用する場合)には、アレイ状に配列された光ファイバ31の各々について、出力180mW(=30mW×0.85×7)の合波レーザビームBを得ることができる。従って、100本の光ファイバ31がアレイ状に配列されたレーザ出射部68での出力は約18W(=180mW×100)である。
【0112】
ファイバアレイ光源300Aのレーザ出射部68には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、本実施の形態で使用する合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。
【0113】
例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約18W(ワット)の出力を得ようとすれば、マルチモード光ファイバを864本(8×108)束ねなければならず、発光領域の面積は13.5mm(1mm×13.5mm)であるから、レーザ出射部68での輝度は1.3(MW(メガワット)/m)、光ファイバ1本当りの輝度は8(MW/m)である。
【0114】
これに対し、本実施の形態では、上述した通り、マルチモード光ファイバ100本で約18Wの出力を得ることができ、レーザ出射部68での発光領域の面積は0.3125mm(0.025mm×12.5mm)であるから、レーザ出射部68での輝度は57.6(MW/m)となり、従来に比べ約44倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は288(MW/m)であり、従来に比べ約36倍の高輝度化を図ることができる。
【0115】
次に、図19に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成について説明する。
【0116】
この図19に示すレーザ折り返し照射手段では、レーザ光源300としてファイバアレイ光源300Aを用い、副走査方向と直交する主走査方向に沿って1列に配列されたレーザ出射部から照射されたレーザビームを所望のビーム強度の光ビームに成形するビーム成形光学系302Aを利用して構成する。
【0117】
これと共に、空間光変調器(DMD)304を無くして、ファイバアレイ光源300Aにおける各半導体レーザ毎に駆動制御するように構成して、空間光変調器(DMD)304を設けたものと同様の作用を奏するようにされている。なお、その他の構成は、前述した図2に示すレーザ折り返し照射手段と同等である。
【0118】
次に、図20に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成について説明する。
【0119】
この図20に示すレーザ折り返し照射手段では、レーザビームを1往復(2回透過)するよう構成する。このため、前述した図2に示すレーザ折り返し照射手段における偏光ビームスプリッター308、λ/4波長板314及びミラー318を取り除き、その他は、図2に示すレーザ折り返し照射手段と同等である。
【0120】
このように構成した図20に示すレーザ折り返し照射手段は、1往復(2回透過)だけで十分にa−Si膜吸収させることができる、膜圧、レーザ光の波長等の条件下で使用するのに好適である。また、構成を簡素化して廉価に製造可能とできる。
【0121】
次に、図21に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成について説明する。
【0122】
この図21に示すレーザ折り返し照射手段では、基板150におけるSi膜厚が10nm〜15nm程度の薄い膜厚の場合に、GaN系半導体レーザの405nmの光を用いてレーザアニールを行うように構成されている。このため、前述した図2に示すレーザ折り返し照射手段におけるレーザ光源300をGaN系半導体レーザ光源として構成する。なお、その他の構成は、前述した図2に示すレーザ折り返し照射手段と同等である。
【0123】
このように構成した図21に示すレーザ折り返し照射手段では、GaN系半導体レーザの405nmの光が、膜厚が10nm程度の薄いSi膜を1回透過するときの吸収率が、図3に示すように20%程度と低いものであっても、2往復(4回透過)させることにより、吸収率を80%程度以上に向上させることができる。
【0124】
また、GaN系半導体レーザの発振上限のレーザ波長λは、λ≦460nmである。さらに、レーザ波長λは、λ>400nmとなり、紫外線域となると、光分解性が高くなる。このため、ミラーやレンズ等に付着している埃に、この紫外線域のレーザビームが照射されると、ミラーやレンズ等に付着している埃が光分解されて汚染された状態となる。よって、GaN系半導体レーザの波長λを、λ≧400nmとすれば、ミラーやレンズ等の汚染防止の効果が高い。
【0125】
次に、図22に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成について説明する。
【0126】
この図22に示すレーザ折り返し照射手段では、a−Si膜の表面側(第1回目のレーザビームを照射する側)から照射されてa−Si膜を透過したレーザビームを、これとは直交した直線偏光のレーザビームにして同一光路上を折り返しa−Si膜の裏側から照射するため、λ/4板(四分の一波長板)機能及び反射機能を兼ね備えた光学手段がa−Si膜を設けた基板150に一体に構成されたものを利用する。すなわち、この光学手段は、入射されたレーザビームが同一光路上を折り返すように反射されるようにする反射機能と、入射偏光に対して直交する偏光をつくる機能を合わせ持つように構成する。
【0127】
このため、光学手段を一体に構成した基板150Aは、例えば、図23に例示するように、ガラス基板320の上面にバッファ層322を形成しその上にa−Si層324を形成し、ガラス基板320の下面に反射膜326を形成して構成することができる。
【0128】
このバッファ層322は、λ/4板314の機能をもつように構成するもので、SiO(二酸化ケイ素)の膜をレーザ波長のλ/4の厚さに構成(すなわち、バッファ層322の厚さ×屈折率=λ/4となるように構成)したものである。
【0129】
また、反射膜326は、Ag(銀)の反射膜、又は多層膜(SiOとTiOとの多層反射膜)で構成する。
【0130】
また、光学手段を一体に構成した基板150Aは、例えば図24に例示するように、ガラス基板320の上面に、SiOとTiOとの多層反射膜である反射膜326を形成し、その上にバッファ層322を形成し、さらにその上にa−Si層324を形成して構成することができる。
【0131】
前述のように構成したλ/4板(四分の一波長板)機能及び反射機能を兼ね備えた光学手段を一体に構成した基板150Aと組み合わせて使用される、図22に示すレーザ折り返し照射手段では、図2に示すレーザ折り返し照射手段と比較して、レンズ312、λ/4波長板314及びレンズ312が不要になるので、これらを省略した構成とする。なお、その他の構成は、前述した図2に示すレーザ折り返し照射手段と同等である。
【0132】
また、このλ/4板(四分の一波長板)機能及び反射機能を兼ね備えた光学手段を一体に構成した基板150Aと組み合わせて使用される、図22に示すレーザ折り返し照射手段では、バッファ層322がλ/4波長板314の機能を果たし、反射膜326がミラー316の機能を果たすので、図2に示すレーザ折り返し照射手段と同様の作用、効果を奏する。
【0133】
次に、図25に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成について説明する。
【0134】
この図25に示すレーザ折り返し照射手段は、前述した図18に示す、レーザ光源300としてファイバアレイ光源300Aを用い、副走査方向と直交する主走査方向に沿って1列に配列されたレーザ出射部から照射されたレーザビームを所望のビーム強度の光ビームに成形するビーム成形光学系302Aを利用した構成と、λ/4板(四分の一波長板)機能及び反射機能を兼ね備えた光学手段を一体に構成した基板150Aの構成とを組み合わせたものである。なお、その他の構成は、前述した図2に示すレーザ折り返し照射手段と同等である。
【0135】
次に、図26に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成について説明する。
【0136】
この図26に示すレーザ折り返し照射手段は、前述した図19に示す、レーザ光源300としてファイバアレイ光源300Aを用い、副走査方向と直交する主走査方向に沿って1列に配列されたレーザ出射部から照射されたレーザビームを所望のビーム強度の光ビームに成形するビーム成形光学系302Aを利用した構成と、空間光変調器(DMD)304を無くして、ファイバアレイ光源300Aにおける各半導体レーザ毎に駆動制御する構成と、λ/4板(四分の一波長板)機能及び反射機能を兼ね備えた光学手段を一体に構成した基板150Aの構成とを組み合わせたものである。なお、その他の構成は、前述した図2に示すレーザ折り返し照射手段と同等である。
【0137】
次に、図27に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成について説明する。
【0138】
この図27に示すレーザ折り返し照射手段では、前述した図20に示す、レーザビームを1往復(2回透過)させるため、偏光ビームスプリッター308を取り除いた構成と、反射機能を備えた光学手段(λ/4板(四分の一波長板)機能を取り除いたもの)を一体に構成した基板150Aの構成とを組み合わせたものである。すなわち、この図27に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成では、図20に示す構成からレンズ312とλ/4波長板314とを取り除いた構成と、図23及び図24における反射膜326を取り除いた構成とを組み合わせたものである。なお、その他の構成は、前述した図2に示すレーザ折り返し照射手段と同等である。この図27に示すレーザ折り返し照射手段は、前述した図20に示すレーザ折り返し照射手段と同様の作用、効果を奏する。
【0139】
次に、図28に示す、レーザアニール装置におけるレーザ折り返し照射手段の構成について説明する。
【0140】
この図28に示すレーザ折り返し照射手段では、前述した図21に示す、基板150におけるSi膜厚が10nm〜15nm程度の薄い膜厚の場合に、GaN半導体レーザの405nmの光を用いてレーザアニールを行う構成と、λ/4板(四分の一波長板)機能及び反射機能を兼ね備えた光学手段を一体に構成した基板150Aの構成とを組み合わせたものである。なお、その他の構成は、前述した図2に示すレーザ折り返し照射手段と同等である。
【0141】
この図28に示すレーザ折り返し照射手段は、前述した図21に示すレーザ折り返し照射手段と同様の作用、効果を奏する。
[レーザアニール装置の動作]
次に、レーザアニール装置の動作について説明する。
【0142】
図1に示すように、このレーザアニール装置では、基板150(基板150Aでも同様)を表面に吸着したステージ152が、図示しない駆動装置により、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。ステージ152がゲート160下を通過する際に、ゲート160に取り付けられた検知センサ164により基板150の先端が検出されると、これより露光開始位置が決定され、レーザ光源300が駆動制御されて、レーザアニール処理が開始される。
【0143】
また、この際、空間光変調器(DMD)304を備えるものでは、ミラー駆動制御部から制御信号を空間光変調器(DMD)304に送信して空間光変調器(DMD)304のマイクロミラーの各々がオンオフ制御され、レーザ光源300から空間光変調器(DMD)304に照射されたレーザ光を、マイクロミラーがオン状態のときに反射することにより、基板150のa−Si膜面上に結像してレーザアニール処理される。このようにして、レーザ光源300から出射されたレーザ光が画素毎にオンオフされて、基板150が空間光変調器(DMD)304の使用画素数と略同数の画素単位(照射エリア)でレーザ照射されアニールされる。
【0144】
このレーザアニール装置では、基板150がステージ152と共に一定速度で移動されることにより、基板150がステージ移動方向と反対の方向に副走査され、スキャナ162により、図15及び図16に例示するように帯状の照射済み領域が形成される。
【0145】
また、空間光変調器(DMD)304を備えるものでは、図14(A)及び(B)に示すように、例えば、空間光変調器(DMD)304が、主走査方向にマイクロミラーを800個配列したマイクロミラー列を、副走査方向に600組配列した構成とされている場合に、コントローラにより一部のマイクロミラー列(例えば、800個×10列)だけが駆動されるように制御しても良い。
【0146】
ここで、図14(A)に示すように、空間光変調器(DMD)304の中央部に配置されたマイクロミラー列を使用してもよく、図14(B)に示すように、空間光変調器(DMD)304の端部に配置されたマイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適宜変更してもよい。
【0147】
空間光変調器(DMD)304のデータ処理速度には限界があり、使用する画素数に比例して1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで1ライン当りの変調速度が速くなる。
【0148】
このレーザアニール装置では、スキャナ162による基板150の副走査が終了し、検知センサ164で基板150の後端が検出されると、ステージ152は、図示しない駆動装置により、ガイド158に沿ってゲート160の最上流側にある原点に復帰し、再度、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。
【0149】
このレーザアニール装置は、エキシマレーザに代えて高品位な半導体レーザをレーザ光源に用いているので、以下の1)〜6)の利点がある。
【0150】
1)光出力が安定化し、結晶粒径サイズの揃ったポリシリコン膜を再現性良く作製することができる。
【0151】
2)半導体レーザは、全部固体の半導体レーザであるため、数万時間に亘り駆動可能で高信頼性を有している。また、半導体レーザは、光出射端面の破損が生じ難く、高信頼性であり、高ピークパワーを実現できる。
【0152】
3)ガスレーザであるエキシマレーザを用いる場合と比べると、小型化が可能で、メンテナンスが非常に簡便になる。また、エネルギー効率も10%〜20%と高い。
【0153】
4)半導体レーザは、基本的にCW(連続)駆動が可能なレーザであるため、パルス駆動する場合にも、アモルファスシリコンの吸収量、発熱量に応じて繰り返し周波数、パルス幅(duty)を自由に設定することができる。例えば、数Hz〜数MHzまでの任意の繰り返し動作を実現でき、数psec〜数100msecの任意のパルス幅を実現できる。特に、繰り返し周波数を数10MHz帯程度までとすることができ、CW駆動する場合と同様に、連続的な結晶粒界を形成することができる。また、繰り返し周波数を大きくすることができるので、高速アニールが可能である。
【0154】
5)半導体レーザをCW駆動して連続したレーザ光でアニール面上を所定方向に走査することができるので、結晶成長の方向が制御され、連続的な結晶粒界を形成することができ、高キャリア移動度のポリシリコン膜を形成することが可能になる。
【0155】
また、このレーザアニール装置で、レーザ光源に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列したファイバアレイ光源300Aを用いた場合には、以下の1)〜3)の利点がある。
【0156】
1)一般に、レーザアニール装置では、アニール面(露光面)において400mJ/cm〜700mJ/cmの範囲の高い光密度が必要であるが、本実施の形態では、アレイ化するファイバ本数、合波するレーザビームの本数を増加することで、容易にマルチビームでの高出力化、高光密度化を図ることができる。例えば、1本の合波レーザ光源のファイバ出力を180mWとすると、556本をバンドルすれば100Wの高出力を安定に得ることができる。加えて、ビーム品位も安定しており、高パワー密度である。従って、将来の低温ポリシリコンの成膜面積の大面積化やハイスループット化へも対応することができる。
【0157】
2)光ファイバの出射端部はコネクタ等を用いて交換可能に取り付けることが可能であり、メンテナンスが容易になる。
【0158】
3)小型の半導体レーザを合波した小型の合波モジュールなので、光源部をエキシマレーザより非常に小型化することができる。
【0159】
さらに、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくした場合には、発光部径がより小さくなり、ファイバアレイ光源300Aの高輝度化が図られる。これにより、より深い焦点深度を備えたレーザアニール装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度でのアニールの場合にも、深い焦点深度を得ることができ、高速且つ高精細なアニールが可能となる。
【0160】
なお、前述したレーザアニール装置におけるレーザ光源は、例えば、Nd:YAGSHGレーザを利用して構成しても良い。
【0161】
また、前述したレーザアニール装置におけるレーザ光源は、Pr3+が添加された固体レーザ結晶を利用した固体レーザで波長465〜495nmのレーザビームを発振させるもの、又は波長515〜555nmの緑色領域のレーザビームを発振させるもので構成しても良い。
【0162】
また、Nd3+がドープされたYAG(YAl)、liYF、YVO等の固体レーザ結晶を、半導体レーザダイオードによって励起させる半導体レーザ励起Nd系固体レーザのSH光(第2高調波)を発生させるSHG(第2高調波発生)固体レーザで構成しても良い。
【0163】
さらに、このレーザアニール装置におけるレーザ光源は、Arレーザ(気体レーザ)における波長488nmのレーザ光又は波長514.5nmのレーザ光を用いても良い。さらに、マルチラインArレーザを用いても良い。
【0164】
【発明の効果】
本発明のレーザアニール方法及び装置によれば、レーザエネルギーを無駄なく利用して大結晶粒を形成可能とすると共に、薄膜結晶化を可能とするという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るレーザアニール装置の外観を示す斜視図である。
【図2】本発明の実施の形態に係るレーザアニール装置におけるアニール処理用の光路を示す光路図である。
【図3】本発明の実施の形態に係るレーザアニール装置における各レーザの波長に対するアモルファスシリコンの吸収特性を示す線図である。
【図4】(A)は、本発明の実施の形態に係るレーザアニール装置における532nmの波長のレーザビームにおける200nmの膜厚に相当する光エネルギーの吸収量を例示するアモルファスシリコンの吸収特性を示す線図、(B)は、532nmの波長のレーザビームが50nm膜厚のなかで4回折り返されるときの吸収状態を例示する線図、(C)は、532nmの波長のレーザビームが50nm膜厚のなかで4回折り返されたときに膜厚深さ方向に対しほぼ均一に吸収された分布状態となることを示す線図、(D)は、532nmの波長のレーザビームが50nm膜厚のなかで4回折り返されたときの、膜内の厚さ方向に対する温度分布状態を示す線図である。
【図5】本発明の実施の形態に係るレーザアニール装置におけるデジタルマイクロミラーデバイス(DMD)の構成を示す部分拡大図である。
【図6】(A)及び(B)はDMDの動作を説明するための説明図である。
【図7】(A)及び(B)は、DMDを傾斜配置しない場合と傾斜配置する場合とで、走査ビームの配置及び走査線を比較して示す平面図である。
【図8】(A)は、本発明の実施の形態に係るレーザアニール装置におけるファイバアレイ光源の構成を示す斜視図であり、(B)は(A)の部分拡大図である。
【図9】マルチモード光ファイバの構成を示す図である。
【図10】合波レーザ光源の構成を示す平面図である。
【図11】レーザモジュールの構成を示す平面図である。
【図12】図11に示すレーザモジュールの構成を示す側面図である。
【図13】図12に示すレーザモジュールの構成を示す部分側面図である。
【図14】(A)及び(B)は、DMDの使用領域の例を示す図である。
【図15】スキャナによる1回の走査で透明基板をアニールするアニール方式を説明するための平面図である。
【図16】(A)及び(B)はスキャナによる複数回の走査で透明基板をアニールするアニール方式を説明するための平面図である。
【図17】(A)及び(B)は、低温ポリシリコンTFT形成プロセスを説明するための図である。
【図18】本発明の実施の形態に係るレーザアニール装置における、ファイバアレイ光源を用いたアニール処理用の光路を示す光路図である。
【図19】本発明の実施の形態に係るレーザアニール装置における、ファイバアレイ光源を用い、DMDを無くしたアニール処理用の光路を示す光路図である。
【図20】本発明の実施の形態に係るレーザアニール装置における、レーザビームを一往復させるアニール処理用の光路を示す光路図である。
【図21】本発明の実施の形態に係るレーザアニール装置における、GaN半導体レーザの405nmの光ビームを出射する光源を用いたアニール処理用の光路を示す光路図である。
【図22】本発明の実施の形態に係るレーザアニール装置における、光学手段を一体に構成した基板をアニール処理する光路を示す光路図である。
【図23】本発明の実施の形態に係るレーザアニール装置で利用する、光学手段を一体に構成した基板を例示する要部拡大断面図である。
【図24】本発明の実施の形態に係るレーザアニール装置で利用する、光学手段を一体に構成した基板の他の構成例を示す要部拡大断面図である。
【図25】本発明の実施の形態に係るレーザアニール装置における、ファイバアレイ光源を利用して光学手段を一体に構成した基板をアニール処理する光路を示す光路図である。
【図26】本発明の実施の形態に係るレーザアニール装置における、DMD無しで、ファイバアレイ光源を利用して光学手段を一体に構成した基板をアニール処理する光路を示す光路図である。
【図27】本発明の実施の形態に係るレーザアニール装置における、レーザビームを一往復させて光学手段を一体に構成した基板をアニール処理する光路を示す光路図である。
【図28】本発明の実施の形態に係るレーザアニール装置における、GaN半導体レーザの405nmの光ビームを出射する光源を利用して光学手段を一体に構成した基板をアニール処理する光路を示す光路図である。
【図29】従来のエキシマ・レーザアニールにより部分溶融された状態を示す説明図である。
【図30】従来のエキシマ・レーザアニールにより、残存a−Si相を島状にして結晶粒が成長する状態を示す説明図である。
【図31】従来のエキシマ・レーザアニールにより、a−Si相を完全溶融してから過冷却状態となり、微小結晶粒で全体が埋め尽くされる状態を示す説明図である。
【図32】従来のエキシマ・レーザアニールにおけるレーザ強度と結晶粒径の関係を定性的に示す説明図である。
【図33】従来の結晶成長を横方向に制御するアニール法において、膜厚と反対側からの結晶粒との衝突により結晶粒界の大きさが制限されてしまう状態を示す説明図である。
【図34】従来の結晶成長を横方向に制御するアニール法において、Nd:YVOレーザの532nm光で深度方向に対する温度勾配を平坦とし、固液界面を垂直に立たせて結晶粒界を横方向へ大きく成長させる状態を示す説明図である。
【符号の説明】
150 基板
150A 基板
152 ステージ
162 スキャナ
300 レーザ光源
300A ファイバアレイ光源
302 ビーム成形光学系
302A ビーム成形光学系
304 空間光変調器
306 ミラー
308 偏光ビームスプリッター
310 レンズ
312 レンズ
314 λ/4波長板
316 ミラー
318 ミラー
320 ガラス基板
322 バッファ層
324 a−Si層
326 反射膜

Claims (6)

  1. レーザ光源から出射されたレーザビームを、アニールの対象物内に透過させる光路上で折り返し照射することにより、前記対象物に前記レーザビームを複数回透過させて、前記対象物内の透過方向に生じるエネルギー吸収分布を一定に保つようにすることを特徴とするレーザアニール方法。
  2. レーザビームを出射するレーザ光源と、
    前記レーザビームをアニールの対象物内に透過させる光路と、
    前記光路上における、前記レーザ光源と、前記対象物との間に配置されて、前記レーザ光源から出射されたレーザビームを透過させる偏光ビームスプリッターと、
    前記対象物を透過したレーザビームを、前記対象物内に透過させる光路上で折り返し照射するように反射させるミラーと、
    前記対象物と、前記ミラーとの間の前記光路上に配置されたλ/4板と、
    前記対象物を透過したレーザビームである入射偏光が前記λ/4板を通り、前記ミラーに反射されて再び前記λ/4板を通って入射偏光に対して直交する偏光とされてから、前記対象物内を再度透過してから前記偏光ビームスプリッターで反射されたレーザビームを、前記対象物内に透過させる光路上に折り返すように反射させるミラーと、
    を有することを特徴とするレーザアニール装置。
  3. アニールさせる膜と、前記アニールさせる膜を透過したレーザビームを、前記アニールさせる膜内に透過させる光路上で折り返すように反射させる反射膜と、前記アニールさせる膜と前記反射膜との間に配置されたλ/4板の機能を有するバッファ層とを有する対象物をアニール処理の対象とし、
    レーザビームを出射するレーザ光源と、
    前記レーザビームを前記対象物に設けた前記アニールさせる膜に透過させる光路と、
    前記光路上における、前記レーザ光源と前記対象物との間に配置されて、前記レーザ光源から出射されたレーザビームを前記アニールさせる膜に透過させる偏光ビームスプリッターと、
    前記アニールさせる膜を透過したレーザビームである入射偏光が前記λ/4板の機能を有する前記バッファ層を通り、前記反射膜に反射されて再び前記λ/4板の機能を有するバッファ層を通って入射偏光に対して直交する偏光とされてから、前記アニールさせる膜内を再度透過してから前記偏光ビームスプリッターで反射されたレーザビームを、前記対象物内に透過させる光路上に折り返すように反射させるミラーと、
    を有することを特徴とするレーザアニール装置。
  4. レーザビームを出射するレーザ光源と、
    前記レーザビームをアニールの対象物内に透過させる光路と、
    前記対象物を透過したレーザビームを、前記対象物内に透過させる光路上で折り返し照射するように反射させるミラーと、
    を有することを特徴とするレーザアニール装置。
  5. 前記アニールの対象物が、膜厚25〜230nmに構成されたアモルファスシリコンであり、前記レーザ光源が、Nd系固体レーザを発振源とするレーザの第2高調波の光ビームを発振するものであることを特徴とする請求項2又は請求項3に記載のレーザアニール装置。
  6. 前記レーザ光源が、GaN系半導体レーザによる400nmから460nmの波長の光ビームを出射するものであることを特徴とする請求項2乃至請求項5の何れかに記載のレーザアニール装置。
JP2003147968A 2003-05-26 2003-05-26 レーザアニール装置 Expired - Fee Related JP4660074B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003147968A JP4660074B2 (ja) 2003-05-26 2003-05-26 レーザアニール装置
US10/852,155 US7365285B2 (en) 2003-05-26 2004-05-25 Laser annealing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147968A JP4660074B2 (ja) 2003-05-26 2003-05-26 レーザアニール装置

Publications (2)

Publication Number Publication Date
JP2004349635A true JP2004349635A (ja) 2004-12-09
JP4660074B2 JP4660074B2 (ja) 2011-03-30

Family

ID=33447634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147968A Expired - Fee Related JP4660074B2 (ja) 2003-05-26 2003-05-26 レーザアニール装置

Country Status (2)

Country Link
US (1) US7365285B2 (ja)
JP (1) JP4660074B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191546A (ja) * 2003-12-02 2005-07-14 Semiconductor Energy Lab Co Ltd レーザ照射装置、レーザ照射方法及び半導体装置の作製方法
JP2005210103A (ja) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd レーザ照射装置、レーザ照射方法及び結晶質半導体膜の作製方法
JPWO2007114031A1 (ja) * 2006-03-30 2009-08-13 日立コンピュータ機器株式会社 レーザ照射装置及びレーザ照射方法及び改質された被対象物の製造方法
WO2012060104A1 (ja) * 2010-11-02 2012-05-10 パナソニック株式会社 トランジスタの製造方法、トランジスタ、および、表示装置
US8644665B2 (en) 2008-09-29 2014-02-04 Hitachi Information & Telecommunication Engineering, Ltd. Semiconductor manufacturing apparatus
KR20140052965A (ko) * 2011-03-08 2014-05-07 쌩-고벵 글래스 프랑스 코팅이 제공된 기판의 획득 방법
KR101842421B1 (ko) * 2010-03-24 2018-05-14 리모 게엠베하 레이저 광선 제공 장치 및 선형 배광 재생 장치

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079915B2 (en) * 2004-10-28 2006-07-18 National Cheng Kung University Method for rapid prototyping by using plane light as sources
JP2008535007A (ja) * 2005-04-02 2008-08-28 パンチ グラフィックス プレプレス ジャーマニー ゲーエムベーハー 印刷版の露光装置
US7700463B2 (en) * 2005-09-02 2010-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2008003163A (ja) * 2006-06-20 2008-01-10 Shinko Electric Ind Co Ltd 描画方法およびそのコンピュータプログラム
US11590606B2 (en) * 2008-08-20 2023-02-28 Foro Energy, Inc. High power laser tunneling mining and construction equipment and methods of use
US20120074110A1 (en) * 2008-08-20 2012-03-29 Zediker Mark S Fluid laser jets, cutting heads, tools and methods of use
US9669492B2 (en) 2008-08-20 2017-06-06 Foro Energy, Inc. High power laser offshore decommissioning tool, system and methods of use
US9080425B2 (en) 2008-10-17 2015-07-14 Foro Energy, Inc. High power laser photo-conversion assemblies, apparatuses and methods of use
US9089928B2 (en) 2008-08-20 2015-07-28 Foro Energy, Inc. Laser systems and methods for the removal of structures
US9664012B2 (en) 2008-08-20 2017-05-30 Foro Energy, Inc. High power laser decomissioning of multistring and damaged wells
US9719302B2 (en) 2008-08-20 2017-08-01 Foro Energy, Inc. High power laser perforating and laser fracturing tools and methods of use
US10301912B2 (en) 2008-08-20 2019-05-28 Foro Energy, Inc. High power laser flow assurance systems, tools and methods
TWI417017B (zh) * 2009-07-30 2013-11-21 Unimicron Technology Corp 線路板的基材及其鑽孔方法
US20110177665A1 (en) * 2010-01-21 2011-07-21 Chan-Lon Yang Thermal process
FR2989388B1 (fr) 2012-04-17 2019-10-18 Saint-Gobain Glass France Procede d'obtention d'un substrat muni d'un revetement
US9558973B2 (en) 2012-06-11 2017-01-31 Ultratech, Inc. Laser annealing systems and methods with ultra-short dwell times
FR2991980A1 (fr) * 2012-06-13 2013-12-20 Saint Gobain Procede de depot de couches minces avec etape de traitement sous vide et produit obtenu
WO2014204535A1 (en) 2013-03-15 2014-12-24 Foro Energy, Inc. High power laser fluid jets and beam paths using deuterium oxide
DE102013215442A1 (de) * 2013-08-06 2015-02-12 Robert Bosch Gmbh Vorrichtung zur Materialbearbeitung mit einem Laserstrahl
CN103500756A (zh) * 2013-10-22 2014-01-08 深圳市华星光电技术有限公司 有机电致发光器件及其制作方法
JP6254036B2 (ja) * 2014-03-31 2017-12-27 三菱重工業株式会社 三次元積層装置及び三次元積層方法
CN105448681B (zh) * 2014-07-04 2018-11-09 上海微电子装备(集团)股份有限公司 激光退火装置
US10083843B2 (en) 2014-12-17 2018-09-25 Ultratech, Inc. Laser annealing systems and methods with ultra-short dwell times
CN106098599B (zh) * 2016-08-17 2020-04-21 京东方科技集团股份有限公司 一种激光退火装置及其控制方法
KR102589001B1 (ko) * 2019-06-07 2023-10-16 삼성디스플레이 주식회사 레이저 결정화 시스템 및 레이저 결정화 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127304A (ja) * 1999-08-18 2001-05-11 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法並びに電子装置
JP2001144027A (ja) * 1999-08-13 2001-05-25 Semiconductor Energy Lab Co Ltd レーザー装置及びレーザーアニール方法並びに半導体装置の作製方法
JP2002261013A (ja) * 2000-11-29 2002-09-13 Semiconductor Energy Lab Co Ltd レーザ照射方法並びに半導体装置の作製方法
JP2002280322A (ja) * 2001-03-15 2002-09-27 Ishikawajima Harima Heavy Ind Co Ltd レーザ照射装置及びレーザ照射方法
WO2003043070A1 (en) * 2001-11-12 2003-05-22 Sony Corporation Laser annealing device and thin-film transistor manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4480168A (en) * 1982-03-29 1984-10-30 Canadian Patents & Development Limited Laser-surface coupler
JPS60216986A (ja) * 1984-04-13 1985-10-30 Nippon Steel Corp レ−ザによる薄鋼板の溶接法
FR2662513B1 (fr) * 1990-05-28 1992-08-07 Snecma Dispositif recuperateur de l'energie d'un faisceau laser.
JP3562389B2 (ja) * 1999-06-25 2004-09-08 三菱電機株式会社 レーザ熱処理装置
TW544727B (en) * 1999-08-13 2003-08-01 Semiconductor Energy Lab Method of manufacturing a semiconductor device
US6605796B2 (en) * 2000-05-25 2003-08-12 Westar Photonics Laser beam shaping device and apparatus for material machining
US6955956B2 (en) * 2000-12-26 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
JP4748873B2 (ja) * 2001-04-06 2011-08-17 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2003059858A (ja) * 2001-08-09 2003-02-28 Sony Corp レーザアニール装置及び薄膜トランジスタの製造方法
US7105048B2 (en) * 2001-11-30 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus
KR20030095313A (ko) * 2002-06-07 2003-12-18 후지 샤신 필름 가부시기가이샤 레이저 어닐링장치 및 레이저 박막형성장치
US7154066B2 (en) * 2002-11-06 2006-12-26 Ultratech, Inc. Laser scanning apparatus and methods for thermal processing
US7098155B2 (en) * 2003-09-29 2006-08-29 Ultratech, Inc. Laser thermal annealing of lightly doped silicon substrates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144027A (ja) * 1999-08-13 2001-05-25 Semiconductor Energy Lab Co Ltd レーザー装置及びレーザーアニール方法並びに半導体装置の作製方法
JP2001127304A (ja) * 1999-08-18 2001-05-11 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法並びに電子装置
JP2002261013A (ja) * 2000-11-29 2002-09-13 Semiconductor Energy Lab Co Ltd レーザ照射方法並びに半導体装置の作製方法
JP2002280322A (ja) * 2001-03-15 2002-09-27 Ishikawajima Harima Heavy Ind Co Ltd レーザ照射装置及びレーザ照射方法
WO2003043070A1 (en) * 2001-11-12 2003-05-22 Sony Corporation Laser annealing device and thin-film transistor manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191546A (ja) * 2003-12-02 2005-07-14 Semiconductor Energy Lab Co Ltd レーザ照射装置、レーザ照射方法及び半導体装置の作製方法
JP2005210103A (ja) * 2003-12-26 2005-08-04 Semiconductor Energy Lab Co Ltd レーザ照射装置、レーザ照射方法及び結晶質半導体膜の作製方法
JPWO2007114031A1 (ja) * 2006-03-30 2009-08-13 日立コンピュータ機器株式会社 レーザ照射装置及びレーザ照射方法及び改質された被対象物の製造方法
US8644665B2 (en) 2008-09-29 2014-02-04 Hitachi Information & Telecommunication Engineering, Ltd. Semiconductor manufacturing apparatus
KR101842421B1 (ko) * 2010-03-24 2018-05-14 리모 게엠베하 레이저 광선 제공 장치 및 선형 배광 재생 장치
WO2012060104A1 (ja) * 2010-11-02 2012-05-10 パナソニック株式会社 トランジスタの製造方法、トランジスタ、および、表示装置
KR20140052965A (ko) * 2011-03-08 2014-05-07 쌩-고벵 글래스 프랑스 코팅이 제공된 기판의 획득 방법
JP2014515719A (ja) * 2011-03-08 2014-07-03 サン−ゴバン グラス フランス 被覆物を備えた基材を得る方法
KR101982357B1 (ko) * 2011-03-08 2019-05-27 쌩-고벵 글래스 프랑스 코팅이 제공된 기판의 획득 방법

Also Published As

Publication number Publication date
JP4660074B2 (ja) 2011-03-30
US20040241922A1 (en) 2004-12-02
US7365285B2 (en) 2008-04-29

Similar Documents

Publication Publication Date Title
JP4660074B2 (ja) レーザアニール装置
JP4727135B2 (ja) レーザアニール装置
JP4698460B2 (ja) レーザアニーリング装置
US7112760B2 (en) Laser annealer and laser thin-film forming apparatus
JP4838982B2 (ja) レーザアニール方法およびレーザアニール装置
KR100885904B1 (ko) 레이저 어닐링장치 및 반도체장치의 제작방법
JP3903761B2 (ja) レ−ザアニ−ル方法およびレ−ザアニ−ル装置
JP2004001244A (ja) 露光ヘッド及び露光装置
JP2003068644A (ja) シリコン結晶化方法とレーザアニール装置
JP2004064066A (ja) レーザアニール装置
JP5133548B2 (ja) レーザアニール方法およびそれを用いたレーザアニール装置
JP2004342875A (ja) レーザアニール装置
JP2010118409A (ja) レーザアニール装置及びレーザアニール方法
JP2004064064A (ja) レーザアニール装置
JP2005109359A (ja) レーザ装置及び液晶表示装置の製造方法
JP4908269B2 (ja) レーザ光照方法および装置
JP5068972B2 (ja) レーザアニール装置、半導体膜基板、素子基板、及び電気光学装置
JP2006134986A (ja) レーザ処理装置
JP2005333150A (ja) Tft基板及び表示装置
JP5068975B2 (ja) レーザアニール技術、半導体膜、半導体装置、及び電気光学装置
JP5053609B2 (ja) レーザアニール技術、半導体膜、半導体装置、及び電気光学装置
WO2021039920A1 (ja) レーザアニール装置およびレーザアニール方法
KR101372869B1 (ko) 레이저 어닐 기술, 반도체 막, 반도체 장치, 및 전기 광학장치
JP2004064065A (ja) レーザアニール装置
JP5064750B2 (ja) レーザアニール技術、半導体膜、半導体装置、及び電気光学装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees