JP2004334184A - 三次元構造物形成方法および露光装置 - Google Patents

三次元構造物形成方法および露光装置 Download PDF

Info

Publication number
JP2004334184A
JP2004334184A JP2004116003A JP2004116003A JP2004334184A JP 2004334184 A JP2004334184 A JP 2004334184A JP 2004116003 A JP2004116003 A JP 2004116003A JP 2004116003 A JP2004116003 A JP 2004116003A JP 2004334184 A JP2004334184 A JP 2004334184A
Authority
JP
Japan
Prior art keywords
light
dimensional structure
photosensitive material
exposure
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004116003A
Other languages
English (en)
Inventor
Minoru Ueda
稔 上田
Noriaki Okada
訓明 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004116003A priority Critical patent/JP2004334184A/ja
Publication of JP2004334184A publication Critical patent/JP2004334184A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 所望の三次元構造物を高い精度で形成することができる三次元構造物形成方法および露光装置を提供する。
【解決手段】 基板の厚み方向一端面部に、感光性材料から成り、形成すべき三次元構造物の厚み寸法に予め定める嵩上げ寸法を加算した厚み寸法を有する感光性材料層を形成する第1工程と、感光性材料層全体にわたって、予め定める最小光量以上の光量で露光光を照射して、三次元構造物を形成する第2工程とを有する。
【選択図】 図2

Description

本発明は、三次元構造物形成方法および露光装置に関し、たとえばマイクロレンズおよびマイクロレンズアレイを形成する際などに適用される三次元構造物形成方法および露光装置に関する。
たとえば液晶表示素子および液晶プロジェクタ、または光通信などの分野においては、三次元構造物を含む透明基板が使用されつつある。三次元構造物としては、たとえばマイクロレンズおよびマイクロレンズアレイなどのように、少なくとも一表面部に球面部分またはプリズムなどが形成されたものが実用化されている。このような三次元構造物の微小化に伴い、型成形または研磨を行うことなく、透明基板の一表面部に三次元構造物を形成する技術が提案されている。
その一例としては、透明基板の一表面部に所定厚さの感光性材料を塗布して感光性材料層を形成する。その後感光性材料層の位置によって異なる露光量でハーフトーン露光する。これによって感光性材料層の現像処理後の残膜厚を変化させ、所望の三次元構造物を形成する。
具体的には、マイクロレンズを微小な複数の領域に分割し、各領域におけるレンズの厚さに応じて、フォトマスクに透過率分布を与える技術が提案されている(特許文献1)。この特許文献1に記載の技術によれば、フォトマスクを介して露光されたフォトレジストの残膜厚が所望の厚さになるようにしている。
一方、露光光の光強度分布を段階的に微調整する技術も提案されている(特許文献2)。この特許文献2に記載の技術においては、光源と感光性材料層との光路途中に第1および第2のフォトマスクを介在させている。これによって1枚のフォトマスクではなし得ない細かな透過率変化量を実現している。
特表平8−504515号公報 特表2002−278079号公報
特許文献1に記載の従来技術では、露光量が非常に少ない領域においては、感光性材料の残膜厚の制御は、以下の理由から困難となる。図9は、ネガ型の感光性材料における露光量と残膜厚との関係を示す図である。ネガ型感光性材料における露光量Eに対する残膜厚dは次式で表される。d=A・ln(E/B)ここでAおよびBは感光性材料固有の定数で、用いる材料によって異なる。これらの関係から、厚い残膜厚を得るために露光量を大きくした範囲では、露光量に対する残膜厚の変化は緩やかである。したがって前記範囲では感光性材料の残膜厚の制御は容易である。
これに対して、薄い残膜厚を得るため露光量を少なくするほど、露光量に対する残膜厚の変化が急激になる。領域aで示される露光量の範囲、すなわち三次元構造物の高さが領域bで示される範囲においては、所望の残膜厚に対し、露光量を高精度に設定しなければならない。逆に言えば露光量が非常に少ない領域においては、感光性材料の残膜厚の制御は困難となる。
特許文献2に記載の従来技術において、フォトマスクの透過率を高い精度で制御したとしても、光源の光強度の誤差、露光時間の誤差、および光強度の不均一性のうちの少なくともいずれか1つによって、露光量の精度は制限される。このため量産の際に、たとえば1つの感光性材料層を露光する毎に、露光時間を正確に制御しなければならない。たとえば広範囲の領域に対して露光する場合、光強度の均一性を非常に高くしなければならない。また露光量の少ない領域では、現像条件のわずかな差によっても残膜厚が大きく変化するため、現像温度および時間を厳密に制御しなければならない。しかしながら、一枚の基板上でもわずかな温度分布が残るため、現像ムラが生じ、均一な形状の三次元構造物を得ることが難しかった。さらに薄い感光性材料層を得るために露光量を少なくした場合、得られる感光性材料の表面部には、気泡または凹凸などの表面荒れが発生したり、基板に対する感光性材料層の密着性が低下するなどの問題が生じることもあり、表面部が滑らかで形状精度の高い三次元構造物を得るうえで障害となる。
したがって本発明の目的は、所望の三次元構造物を高い精度で形成することができる三次元構造物形成方法および露光装置を提供することである。
本発明は、基板に感光性材料から成る層を形成し、この層を少なくとも露光することで三次元構造物を形成する三次元構造物形成方法であって、
基板の厚み方向一端面部に、感光性材料から成り、形成すべき三次元構造物の厚み寸法に予め定める嵩上げ寸法を加算した厚み寸法を有する感光性材料層を形成する第1工程と、
感光性材料から成る感光性材料層全体にわたって、予め定める最小光量以上の光量で露光光を照射して、三次元構造物を形成する第2工程とを有することを特徴とする三次元構造物形成方法である。
本発明に従えば、第1工程において、基板の厚み方向一端面部に、感光性材料から成る感光性材料層を形成する。この感光性材料層は、形成すべき三次元構造物の厚み寸法に予め定める嵩上げ寸法を加算した厚み寸法を有する。第2工程において、感光性材料から成る感光性材料層全体にわたって、予め定める最小光量以上の光量で露光光を照射して三次元構造物を形成する。
特に、形成すべき三次元構造物の厚み寸法に、予め定める嵩上げ寸法を加算した厚み寸法を有する感光性材料層を形成した後、前記感光性材料層全体にわたって、予め定める最小光量以上の光量で露光光を照射しているので、次のような作用を奏する。たとえばネガ型の感光性材料から成る感光性材料層に露光光を照射して露光するとき、露光量に対し感光性材料層の残留厚さが急激に変化するような露光量を用いることなく三次元構造物を形成することが可能となる。
したがって三次元構造物の厚み、換言すれば三次元構造物の基板からの高さの制御を、従来の三次元構造物形成方法よりも向上することができる。露光量に対し残留厚さが急激に変化するような露光量を用いることなく三次元構造物を形成することが可能となるので、従来の露光量が少ないことに起因する気泡および表面荒れを解消することもできる。
また本発明は、第2工程は、
三次元構造物の前駆体を形成する段階と、
前記段階の後、前駆体全体を基板垂直方向に嵩上げ量エッチングして三次元構造物を形成する段階とを含むことを特徴とする。
本発明に従えば、第1工程の後最初の段階で、三次元構造物の前駆体を形成する。次の段階で、前駆体全体を基板垂直方向に嵩上げ量エッチングして三次元構造物を形成する。このように所望の三次元構造物を形成することが可能となる。
また本発明は、嵩上げ量を、感光性材料層の厚みの5%以上になるように設定することを特徴とする。
本発明に従えば、必要十分な嵩上げ寸法部分の厚みを設定することができる。これによって感光性材料層全体にわたって、予め定める最小光量以上の光量で露光光を照射することができる。したがって三次元構造物を所望の厚みに正確に形成することが可能となる。
また本発明は、光透過性基板に形成されたネガ型の感光性材料から成る層に、三次元構造物を形成する露光装置であって、
光透過性基板を透過させて、ネガ型の感光性材料から成る感光性材料層に露光光を照射する光源と、
光透過性基板によって発生し得る収差を補正する光学素子であって、前記光透過性基板と光源との間に介在される光学素子とを有することを特徴とする露光装置である。
本発明に従えば、光源から発する露光光を、光学素子および光透過性基板を介してネガ型の感光性材料から成る感光性材料層に照射する。ここで露光光が光透過性基板を透過することによって、収差が発生する場合がある。光学素子を、光透過性基板と光源との間に介在させることによって、前記収差を補正することができる。したがって所望の三次元構造物を高い精度で形成することができる。
また光源からの露光光を、少なくとも光透過性基板を介してネガ型の感光性材料から成る感光性材料層に照射しているので、たとえば現像処理するとき、三次元構造物が基板から剥がれ落ちることを防止することができる。すなわち前記感光性材料層においては、光源からの距離が離れるに従って光強度分布が減少するので感光性材料は光が入射された面から感光していき、入射面から離れた未感光部分は現像処理で順次除去されていく。逆に言えば、基板に臨む感光性材料層部分を除去することなく、三次元構造物を形成している。したがって三次元構造物が基板から剥がれ落ちることを防止することができる。
また本発明は、三次元構造物および三次元構造物の前駆体の少なくともいずれか一方を形成する領域全体部分に対応するフォトマスクであって、透過率が予め定める値となる透過率分布を有するフォトマスクをさらに備えることを特徴とする。
本発明に従えば、光源から発する露光光を、フォトマスクおよび光透過性基板を介してネガ型の感光性材料から成る感光性材料層に照射する。前記フォトマスクは、三次元構造物および三次元構造物の前駆体の少なくともいずれか一方を形成する領域全体部分に対応する。しかもフォトマスクは、透過率が予め定める値となる透過率分布を有するので、露光量に対し感光性材料層の残留厚さが急激に変化するような露光量を用いることなく、三次元構造物の形成を実現することが可能となる。またフォトマスクは、たとえば透過率が「0」とならないような予め定める値となる透過率分布を有するので、露光光を照射する全面にわたって感光性材料層を残留させることが可能となる。したがって露光量が少ないことに起因する気泡および表面荒れを解消することができる。
また本発明は、光透過性基板と光源との間に、レンズアレイを介在させることを特徴とする。
本発明に従えば、光源から発する露光光を、少なくともレンズアレイおよび光透過性基板を介してネガ型の感光性材料から成る感光性材料層に照射する。前記レンズアレイを光透過性基板と光源との間に介在させることで、たとえば一度の露光によって一つのフォトマスク形状を感光性材料層に複数形成することが可能となる。
また本発明は、光源は光ビームを発する光源であり、前記光ビームを感光性材料から成る感光性材料層に集光し、その焦点位置を露光位置に合わせて変化させ得る光学手段と、
光ビームを感光性材料層に対して相対的に走査可能な走査手段とをさらに有することを特徴とする。
本発明に従えば、光ビームを、光学手段によって、感光性材料層に集光するとともにその焦点位置を露光位置に合わせて変化させる。また光ビームを、走査手段によって感光性材料層に対して相対的に走査させる。このように所望の三次元構造物を形成することができる。
特に、光ビームを感光性材料層に集光するとともに、その焦点位置を露光位置に合わせて変化させることができるので、たとえばフォトマスクを用いる従来のものと比べて解像度の高い露光を行うことが可能となる。このようにフォトマスクを用いることなく所望の三次元構造物を形成することができるので、フォトマスクを作製するのに必要な時間および費用を削減することができる。
以上のように本発明によれば、特に、形成すべき三次元構造物の厚み寸法に、予め定める嵩上げ寸法を加算した厚み寸法を有する感光性材料層を形成した後、前記感光性材料層全体にわたって、予め定める最小光量以上の光量で露光光を照射しているので、次のような効果を奏する。たとえばネガ型の感光性材料から成る感光性材料層に露光光を照射して露光するとき、露光量に対し感光性材料層の残留厚さが急激に変化するような露光量を用いることなく三次元構造物を形成することが可能となる。
したがって三次元構造物の厚み、換言すれば三次元構造物の基板からの高さの制御を、従来の三次元構造物形成方法よりも向上することができる。露光量に対し残留厚さが急激に変化するような露光量を用いることなく三次元構造物を形成することが可能となるので、従来の露光量が少ないことに起因する気泡および表面荒れを解消することもできる。
また本発明によれば、第1工程の後最初の段階で、三次元構造物の前駆体を形成する。次の段階で、前駆体全体を基板垂直方向に嵩上げ量エッチングして三次元構造物を形成する。このように所望の三次元構造物を形成することが可能となる。
また本発明によれば、必要十分な嵩上げ寸法部分の厚みを設定することができる。これによって感光性材料層全体にわたって、予め定める最小光量以上の光量で露光光を照射することができる。したがって三次元構造物を所望の厚みに正確に形成することが可能となる。
また本発明によれば、光源から発する露光光を、光学素子および光透過性基板を介してネガ型の感光性材料から成る感光性材料層に照射する。ここで露光光が光透過性基板を透過することによって、収差が発生する場合がある。光学素子を、光透過性基板と光源との間に介在させることによって、前記収差を補正することができる。したがって所望の三次元構造物を高い精度で形成することができる。
また光源からの露光光を、少なくとも光透過性基板を介してネガ型の感光性材料から成る感光性材料層に照射しているので、たとえば現像処理するとき、三次元構造物が基板から剥がれ落ちることを防止することができる。すなわち前記感光性材料層においては、光源からの距離が離れるに従って光強度分布が減少するので感光性材料は光が入射された面から感光していき、入射面から離れた未感光部分は現像処理で順次除去されていく。逆に言えば、基板に臨む感光性材料層部分を除去することなく、三次元構造物を形成している。したがって三次元構造物が基板から剥がれ落ちることを防止することができる。
また本発明によれば、光源から発する露光光を、フォトマスクおよび光透過性基板を介してネガ型の感光性材料から成る感光性材料層に照射する。前記フォトマスクは、三次元構造物および三次元構造物の前駆体の少なくともいずれか一方を形成する領域全体部分に対応する。しかもフォトマスクは、透過率が予め定める値となる透過率分布を有するので、露光量に対し感光性材料層の残留厚さが急激に変化するような露光量を用いることなく、三次元構造物の形成を実現することが可能となる。またフォトマスクは、たとえば透過率が「0」とならないような予め定める値となる透過率分布を有するので、露光光を照射する全面にわたって感光性材料層を残留させることが可能となる。したがって露光量が少ないことに起因する気泡および表面荒れを解消することができる。
また本発明によれば、光源から発する露光光を、少なくともレンズアレイおよび光透過性基板を介してネガ型の感光性材料から成る感光性材料層に照射する。前記レンズアレイを光透過性基板と光源との間に介在させることで、たとえば一度の露光によって一つのフォトマスク形状を感光性材料層に複数形成することが可能となる。
また本発明によれば、光ビームを、光学手段によって、感光性材料層に集光するとともにその焦点位置を露光位置に合わせて変化させる。また光ビームを、走査手段によって感光性材料層に対して相対的に走査させる。このように所望の三次元構造物を形成することができる。
特に、光ビームを感光性材料層に集光するとともに、その焦点位置を露光位置に合わせて変化させることができるので、たとえばフォトマスクを用いる従来のものと比べて解像度の高い露光を行うことが可能となる。このようにフォトマスクを用いることなく所望の三次元構造物を形成することができるので、フォトマスクを作製するのに必要な時間および費用を削減することができる。
図1は、本発明の実施形態に係る三次元構造物を形成する工程を示すフローチャートである。図2は、三次元構造物を形成する工程を段階的に示し、基板1の表面部に垂直な仮想平面で切断して見た断面図であり、(a)は基板1に感光性材料層2を塗布し、基板1および感光性材料層2に照射する露光光3を説明する断面図、(b)は露光量に応じたフォトレジストの三次元構造物4を示す断面図、(c)はフォトレジストの形状が基板1に転写された状態を示す断面図である。
本実施形態の三次元構造物形成方法は、液晶表示素子および液晶プロジェクタなどで用いられるたとえばマイクロレンズを形成する際に適用される。本実施形態においてはマイクロレンズが三次元構造物に相当する。ただし三次元構造物は、マイクロレンズに限定されるものではない。また本実施形態においては感光性材料の一例として、ネガ型のフォトレジストを用いた場合について説明する。前記ネガ型のフォトレジストを、ネガ型フォトレジストまたは単にフォトレジストと表記する場合がある。
図1のステップs1および図2(a)に示すように、光透過性基板1の厚み方向一端面部1aに、感光性材料から成る感光性材料層であるフォトレジスト2を形成する。光透過性基板1を単に、基板1と表記する場合がある。この感光性材料層としてのフォトレジスト2は、形成すべき三次元構造物4の厚み寸法に、予め定める後述の嵩上げ寸法を加算した厚み寸法δを有する。次にステップs2に移行して、フォトレジスト2全体にわたって、予め定める最小光量以上の光量で露光光3を照射する。ステップs1が第1工程に相当し、ステップs2が第2工程に相当する。
前記フォトレジスト2に、所望の三次元構造物4に対応する強度分布を有する露光光3を照射することで、フォトレジスト2をハーフトーン露光する。これによってレジストの露光量に三次元的な分布を与える。このように一定の露光量分布を与えたフォトレジスト2に現像およびベークなどの処理を施す。これによって図2(b)に示すような露光量に応じた三次元構造物4の前駆体4Aが得られる。
ここでネガ型フォトレジスト2を用いるのは、以下の理由による。つまりハーフトーン露光による三次元構造物4の形成において、ポジ型フォトレジストに比べてネガ型フォトレジスト2の方が、三次元構造物4の高さの制御が容易であるためである。ポジ型のものは、露光された部分が現像によって除去され、露光されなかった部分または露光量が少なかった部分が残留する。このような残留部分によって、三次元構造物を形成する。
したがってポジ型においては、露光量を制御することによって得られる三次元構造物の高さ、つまり基板厚み方向の高さは、基板の厚み方向一端面部に初期に形成されたレジスト層の厚さから、現像および露光によって除去されるレジストの厚さを引いた値となる。このため同一高さの三次元構造物を得る場合であっても、基板の厚み方向一端面部に初期に塗布されたレジストの厚みが異なると、与えるべき露光量も異なる。またレジストを塗布するときの厚み誤差および厚みむらが、露光によって形成される三次元構造物の形状にも影響する。
これに対しネガ型においては、露光された部分が残留する。このような残留部分によって三次元構造物4を形成する。したがってネガ型においては、三次元構造物4の高さは基板1の厚み方向一端面部に初期に塗布されたレジスト2の厚みとは関係なく、露光量だけで決定される。このためネガ型レジスト2を用いたハーフトーン露光による三次元構造物4の形成では、与える露光量分布は塗布されたレジスト2の厚みによらず、所望の三次元構造物4に対して一定となる。またレジスト2を塗布するときの厚み誤差および厚みむらの影響も皆無である。
図2(b)に示す三次元構造物4の前駆体4Aが得られた後、前駆体4A全体に対して基板垂直方向に異方性ドライエッチング6を行う。これによって前駆体4Aはその形状を維持したまま嵩上げ量だけ全体の高さが下がり、三次元構造物4が形成される。得られたフォトレジストの三次元構造物4および基板1に対して、フォトレジスト2がなくなるまで異方性ドライエッチング6を行う。これによって図2(c)に示すように、フォトレジストの形状が光透過性基板1の一表面部1aに転写される。このときフォトレジスト2と基板1とのエッチング選択比を、エッチング条件によって選択することも可能である。これによってフォトレジスト形状を矢符D1で示す基板厚み方向に拡大して転写することもできる。フォトレジスト2に形成する形状はこのようなエッチング選択比も考慮して決定する。
本実施形態においては、フォトレジスト2で形成された三次元構造物の形状を、光透過性基板1の表面部に転写する形態について説明したが、必ずしもこの形態に限定されるものではない。たとえば前述の転写工程を省略して、フォトレジスト2で形成された三次元構造物をそのまま用いてもよい。この場合においても、本実施形態と同様の効果を奏する。
図3は、露光量とレジスト残膜厚との関係を示す図である。本実施形態のハーフトーン露光においては、露光量に対するフォトレジスト2の残膜厚は、使用するフォトレジスト材料によって異なる。図3の実験においては、フォトレジストとしてたとえば市販のフォトレジスト材料(JSR社製THB−120N)が用いられる。図3には、基板1の一表面部1aに、このフォトレジスト材料をたとえば約30μm塗布した場合における各露光量とレジスト残膜量の実験結果を示している。
この図からも明らかなように、露光量が増えるに従いフォトレジストの残膜厚が大きくなっており、この露光量とレジスト残膜圧との関係から、所望の三次元構造物を得るために必要な露光量が求められる。
図3における破線はデータの近似曲線である。フォトレジストの残膜厚が、たとえば約4μm以下の範囲においては、露光量とレジスト残膜厚との関係が近似曲線から外れ、不安定になっている。これはフォトレジストの残膜厚が約4μm以下となるような露光量が少ない範囲H1においては、露光量に対するフォトレジストの残膜厚の変化が非常に大きいためである。逆に言えば、約4μm以下のレジスト残膜厚を制御するには、露光量を非常に高い精度で制御しなければならない。このため露光量を減らして、レジスト残膜厚が約4μm以下となるような形状を精度良く形成することは困難である。さらに現像条件のわずかな差によってもレジスト残膜厚が大きく変化する。そのため現像温度および時間も厳密に制御しなければならないが、一枚の基板上でもわずかな温度分布が残るため、現像ムラが生じ、均一な三次元構造物を得ることが難しい。
さらにレジスト残膜厚が約2μm以下の非常に薄い領域では、残留するレジスト表面に荒れが確認されており滑らかな面を得ることができない。また基板に対するフォトレジストの密着性が弱くなるという問題も生じていた。このことからも露光量を減らしフォトレジストの残膜厚を非常に薄くすることは、精度の良いレジスト形状を得るうえで課題となる。
そこで本実施形態においては、形成すべき三次元構造物4の厚み寸法に予め定める嵩上げ寸法を加算した厚み寸法δを有するフォトレジスト2を形成する。その後、フォトレジスト2全体にわたって、予め定める最小光量Pmin.以上の光量で露光光3を照射する。図3に示す実験結果から、前記嵩上げ寸法は、表面の荒れを防ぐために少なくとも約2μm、フォトレジスト2の残膜厚の制御精度を向上させるために少なくとも約4μm必要である。
図4は、三次元構造物形成方法の概念を表す断面図であり、(a)は所望の三次元構造物4および基板1を示す断面図、(b)は、形成すべき三次元構造物4の厚み寸法tに嵩上げ寸法Dを加算した状態を示す断面図である。たとえば図4(a)に示すようにフォトレジスト2を略球面形状に形成しようとする場合、レジスト残膜厚が約4μm以下に薄くなる部分、たとえば半径方向外周縁部4aでは、露光量が非常に少なくなる。したがって所望のレジスト残膜厚を精度よく得ることはできない。
したがって形成すべき三次元構造物4の厚み寸法tに、約4μm以上の嵩上げ寸法Dを加算した厚み寸法δを有するフォトレジスト2を形成する。本実施形態においては、嵩上げ寸法Dを約4μm以上に設定しているが、必ずしもこれに限定されるものではない。図示外の実験結果から、嵩上げ寸法部分5の厚みDを、感光性材料層2の厚みの5%以上になるように設定する場合がある。このように嵩上げ寸法Dを設定した場合でも、後述する同様の効果を奏する。
その後フォトレジスト2全体にわたって、露光光3を照射し、レジスト残膜厚約4μm以上となるような光量を与える。この嵩上げ寸法部分5は、たとえば前述の異方性ドライエッチング6によってエッチングされる。そのため最終的に得られる表面形状には、影響しない。このようにフォトレジスト2の残膜厚は、所望の形状、部位によらず常に約4μm以上となる。これによってフォトレジスト2全体にわたって、予め定める最小光量Pmin.以上の光量で露光光3を照射することが可能となる。したがってレジスト残膜厚を高精度で制御できるとともに、表面の滑らかな形状を実現することが可能となる。
以上説明した三次元構造物形成方法によれば、第1工程において、光透過性基板1の厚み方向一端面部1aに、感光性材料から成る感光性材料層2を形成する。この感光性材料は、形成すべき三次元構造物4の厚み寸法tに予め定める嵩上げ寸法Dを加算した厚み寸法δを有する。第2工程において、感光性材料層2全体にわたって、予め定める最小光量Pmin.以上の露光光3を照射して三次元構造物4を形成する。
特に、形成すべき三次元構造物4の厚み寸法tに、予め定める嵩上げ寸法Dを加算した厚み寸法δを有する感光性材料層2を形成した後、前記感光性材料層2全体にわたって、予め定める最小光量Pmin.以上の光量で露光光3を照射しているので、次のような効果を奏する。すなわちネガ型の感光性材料から成る感光性材料層2に露光光3を照射して露光するとき、露光量に対し感光性材料層2の残留厚さが急激に変化するような露光量を用いることなく三次元構造物4を形成することが可能となる。
したがって三次元構造物4の厚み、換言すれば三次元構造物4の基板1からの高さの制御を、従来の三次元構造物形成方法よりも向上することができる。露光量に対し残留厚さが急激に変化するような露光量を用いることなく三次元構造物4を形成することが可能となるので、従来の露光量が少ないことに起因する気泡および表面荒れおよび密着性不良を解消することもできる。
第2工程は、三次元構造物4の前駆体4Aを形成する段階と、前記段階の後、前駆体4A全体を基板垂直方向に嵩上げ量エッチングして三次元構造物4を形成する段階とを含んでいる。このように所望の三次元構造物4を形成することが可能となる。たとえば嵩上げ寸法部分5の厚みDを、感光性材料層2の厚みの5%以上になるように設定することで、必要十分な嵩上げ寸法部分5の厚みDを設定することができる。
図5は、透過率分布型マスク7を含む露光装置8を概略示す図である。露光装置8は、具体的にフォトレジスト2に露光量分布を与える装置であり、光透過性基板1に形成されたネガ型の感光性材料層2に、三次元構造物を形成する装置である。露光装置8は、光源9と、透過率分布型フォトマスク7と、光学素子10と、コリメートレンズ11とを有する。光透過性基板1の一表面部1bに対向するように、順次コリメートレンズ11、光学素子10、透過率分布型フォトマスク7、および光源9が配設される。
光源9は、光透過性基板1を透過させて、感光性材料層2に露光光を照射する機能を有する。透過率分布型フォトマスク7は、光透過率が段階的に変化するフォトマスクであって、前記実験から得られた露光量とフォトレジスト残膜厚との関係から、所望の形状を得るために必要な露光量分布を実現するような透過率分布が設定されている。
本露光方法では、露光領域全面にわたってフォトレジスト2が一定量残留するように露光量を設定する。したがって前記フォトマスク7の透過率分布も通常のフォトマスクとは異なり、露光領域全面にわたって透過率が「0」とならない一定の値を有する。この「0」とならない一定の値が、透過率の予め定める値に相当する。光源9から発せられた露光光は、この透過率分布型フォトマスク7を透過する。透過した露光光は、フォトマスク7の透過率分布に対応した強度分布を有して光透過性基板1の一表面部1aのフォトレジスト2にコリメートレンズ11で投影される。この光強度分布によって、フォトレジスト2は所望の露光量分布を有する。
光学素子10は、露光光を光透過性基板1に透過させることによって発生し得る収差を補正する光学素子10であり、光透過性基板1と光源9との間に介在される。このような光学素子10として、たとえば可動レンズ、または空間的な位相調整機能を有する液晶パネルを光透過性基板1と光源9との間に配設することで、収差を補正する。これによってパターンの解像度を向上させる、換言すれば解像度の高い露光を実現することができる。これはたとえば、光透過性基板1とフォトマスク7との間に、レンズおよび光学素子を配設する形態、ステッパー露光装置を用いた投影露光による形態などが挙げられる。
以上説明した露光装置8によれば、光源9から発する露光光を、光学素子10および光透過性基板1を介してネガ型の感光性材料から成る感光性材料層2に照射する。ここで露光光が光透過性基板1を透過することによって、収差が発生する場合があるが、前記光学素子10を、光透過性基板1と光源9との間に介在させることによって、前記収差を補正することができる。したがって所望の三次元構造物を高い精度で形成することができる。
また光源9からの露光光を、少なくとも光透過性基板1を介してネガ型の感光性材料から成る感光性材料層2に照射しているので、たとえば現像処理するとき、三次元構造物が基板1から剥がれ落ちることを防止することができる。すなわち前記感光性材料層2においては、光源9からの距離が離れるに従って光強度分布が減少し露光光による未露光部分が除去される。逆に言えば、光透過性基板1に臨む感光性材料層部分を除去することなく、三次元構造物を形成している。したがって三次元構造物が基板1から剥がれ落ちることを防止することができる。
また本露光装置8によれば、光源9から発する露光光を、フォトマスク7および光透過性基板1を介して感光性材料層2に照射する。前記フォトマスク7は、三次元構造物および三次元構造物の前駆体の少なくともいずれか一方を形成する領域全体部分に対応する。しかもフォトマスク7は、透過率が予め定める値となる透過率分布を有するので、露光量に対し感光性材料層2の残留厚さが急激に変化するような露光量を用いることなく、三次元構造物の形成を実現することが可能となる。
またフォトマスク7は、たとえば透過率が「0」とならないような予め定める値となる透過率分布を有するので、露光光を照射する全面にわたって感光性材料層2を残留させることが可能となる。したがって露光量が少ないことに起因する気泡および表面荒れを解消することができる。
図6は、マイクロレンズアレイ12を含む露光装置8Aを概略示す図である。ただし前記実施形態と同一の部材には同一の符号を付し、その詳細な説明は省略する。フォトレジスト2とフォトマスク7との間に介在させる光学系として、レンズアレイ12がある。つまり露光装置8Aは、光源9と、透過率分布型フォトマスク7と、光学素子10と、コリメートレンズ11と、レンズアレイ12とを有する。光透過性基板1の一表面部1bに対向するように、順次レンズアレイ12、コリメートレンズ11、光学素子10、透過率分布型フォトマスク7、および光源9が配設される。
光源9から発せられた露光光は、透過率分布型フォトマスク7を透過することで、所望の光強度分布を与えられる。さらに露光光は、光学素子10、コリメートレンズ11、およびレンズアレイ12によって、光透過性基板1を透過して前記レンズアレイ12を構成する各レンズ12aの焦点位置に結像する。透過率分布型フォトマスク7は、前述の実施形態と同様に、所望の三次元構造物形状を得るために必要な露光量分布を実現するような透過率分布が設定されている。これによって、フォトマスク7のパターンに応じた露光強度分布がレンズアレイ12を構成するレンズ12aの焦点位置それぞれに実現される。
したがってフォトマスク7のパターンを、たとえば一回の露光でレンズアレイ12のレンズの数だけ二次元的に並べて露光することができる。したがって一つのマスクパターンを複数回露光する場合に必要なアライメント作業が不要となる。露光光回数も一回ですむので、露光時間を大幅に短縮することができる。マイクロレンズアレイなど同一形状の繰り返し構造を作製する場合に、特に露光時間を大幅に短縮することができる。
図10は、本発明の他の実施形態に係り、複数の開口21aが形成されたフォトマスク21を用いて三次元構造物を形成するための露光装置8Bを概略示す図である。ただし、前記実施形態と同一の部材には同一の符号を付し、その詳細な説明は省略する。この他の実施形態に係る露光装置8Bにおいては、特に前述のマイクロレンズアレイの代わりにフォトマスク21を用いて三次元構造物を形成することが可能である。
露光装置8Bは、光源9と、コリメートレンズ11と、複数の開口21aが形成されたフォトマスク21と、感光性材料層2が形成された基板22とを有する。基板22の一表面部とコリメートレンズ11との間に、フォトマスク21が介在される。フォトマスク21は、基板22の一表面部に対し平行でかつ近接離隔可能に構成されている。コリメートレンズ11は、光源9から発せられた露光光を平行光化する機能を有する。したがって露光装置8Bによれば、光源9から発せられた露光光は、コリメートレンズ11によって平行光化され、フォトマスク21の複数の開口21aを通過し、基板22上の感光性材料層2を感光する。
このときフォトマスク21に形成された開口21aを通過した光は回折されるが、フォトマスク21と感光性材料層2との間の距離を調整することによって、曲面部を有する三次元構造物、たとえばマイクロレンズを形成するような露光量分布を与えることができる。感光性材料層2の感光後、未硬化部分を溶剤で除去すれば、各開口21aに対応する曲面部2a形状のレンズを形成することができる。この場合、感光性材料層として光吸収係数の高いフォトレジストを用いると、光照射側のフォトレジスト面から感光、硬化され、硬化物と基板との密着力が弱くなる。それ故、感光性材料層2としては透過率の高い可視光硬化樹脂または紫外線硬化樹脂を用いる。またこの場合、基板22は光透過性のものでなくてもよい。
図11は、本発明のさらに他の実施形態に係り、回転機構および複数の開口21aが形成されたフォトマスク21を用いて三次元構造物を形成するための露光装置8Cを概略示す図である。ただし前述の他の実施形態と同一の部材には同一の符号を付し、その詳細な説明は省略する。さらに他の実施形態に係る露光装置8Cは、光源9と、コリメートレンズ11と、複数の開口21aが形成されたフォトマスク21と、感光性材料層2が形成された光透過性基板1と、図示外の回転機構とを有する。
回転機構は、後述する第1軸L1および第2軸L2を中心に回転可能な2軸回転機構であって、フォトマスク21および光透過性基板1が、この回転機構に一体に保持されている。前記第1軸L1は、光照射方向に直交するように配設され、第2軸L2は、第1軸L1に直交しかつ光透過性基板1の一表面部に対し平行に配設される。また光透過性基板1は、該基板を透過した光によって感光性材料層2が感光されるように配設されている。光透過性基板1のうち光源9およびコリメートレンズ11に臨む側に、フォトマスク21が配設されている。
以上説明した露光装置8Cによれば、光源9から発せられた露光光は、コリメートレンズ11によって平行光化され、順次、フォトマスク21の複数の開口21a、光透過性基板1を透過し、感光性材料層2を感光する。前記回転機構によって、第1軸L1および第2軸L2の少なくともいずれか一方の回転軸線まわりにフォトマスク21および光透過性基板1を、光源9およびコリメートレンズ11に対して相対的に角変位させると、感光される領域がシフトする。この回転角度と露光時間とを制御することによって、積算露光量分布を制御することができる。これによって所望の形状の三次元構造物つまり所望形状のマイクロレンズアレイ2aを作製することができる。この場合フォトマスク21を変更する代わりに、回転機構の駆動プログラム(回転角度および露光時間を制御するプログラム)を変更するだけで、三次元構造物の形状を制御することができる。そのため、様々な形状の三次元構造物を、その形状に対応するフォトマスクを用いることなく作製することができる。このように複数種類のフォトマスクを準備する必要がないので、その分製作コストの低減を図ることが可能となるうえ、作製可能な三次元構造物の汎用性を高くすることができる。またフォトマスク21を用いる代わりに、光透過性基板1の光源側に臨む一表面部に、複数の開口部を形成してもよい。この場合にも、前記と同様の効果を奏する。
また、ブラックマトリクスを有する透過型液晶パネルにも、この技術を適用してマイクロレンズアレイを形成し、液晶パネルの光利用効率を向上させることができる。すなわち、ブラックマトリクスが複数の開口部であり、ここを通過した光を用いて、液晶パネル上にマイクロレンズアレイを形成する。マイクロレンズアレイが設けられていない液晶パネルでは、液晶パネルを照明する光の一部がブラックマトリクス遮光部でけられるため光利用効率が低かったが、レンズの焦点がブラックマトリクス面に一致するようなマイクロレンズアレイが設けられていれば、液晶パネルを照明する光はマイクロレンズにより集光されてブラックマトリクス開口部に導かれるため、光利用効率が高くなる。この場合、ブラックマトリクス開口部の位置にあわせてレンズが形成されるため、開口とレンズの位置合わせ工程が不要で、さらに開口とレンズの位置ずれによる光損失も生じない。
図7は、レーザービームを用いて走査露光する露光装置13を示す図である。この露光装置13は、主に、光源14と、光学部品と、走査機構15とを有する。光源14は、光ビームとしてレーザー光を発するレーザー光源である。前記レーザー光は、フォトレジストが光反応を示す波長のレーザー光が適用される。光源14の発光方向一方にフィルター16を介してミラー17が配設される。ミラー17による光の反射方向一方には、順次、収差を補正する光学素子10、対物レンズ18、および走査機構15が配設される。
走査手段としての走査機構15は、後述するXY方向に走査可能に構成されるステージ15aと、このステージ15aを走査駆動する図示外の駆動手段とを有する。ステージ15aはたとえば略直方体状に形成され、その一表面部に、光透過性基板19を載置支持するように構成されている。このステージ15aの長辺L1に沿った方向をX方向と定義し、ステージ15aの短辺L2に沿った方向であって、X方向およびステージ15aの厚み方向に直交する方向をY方向と定義する。これらXおよびY方向を、XY方向と定義する。
光源14から発せられたレーザー光は、対物レンズ18によって光透過性基板19を透過してレジスト層に集光される。光透過性基板19を透過することによって生じる収差は、光学素子10によって解消される。ステージ15aの一表面部に載置支持された光透過性基板19を透過したレーザー光は、フォトレジストに照射される。このようにレーザー光を照射するとともに、ステージ15aの速度を制御しつつ走査する。
これによって、露光量分布を有するフォトレジストを得ることができる。ステージ15aの走査方法は、ステージ15aの速度を変更しつつ連続的に走査してもよい。ステージ15aを一定時間停止して露光し、次のXY方向の所定位置にステージ15aを移動する方法でもよい。また光強度変調型のレーザーを用いて光源自体の強度を変化させることで、露光量分布を与えることも可能である。透過率が可変のフィルター16を用いてレーザービームの強度を変化させることで、露光量分布を与えることも可能である。
図8は、光ビームを感光性材料層2に集光するとともに、その焦点位置を露光位置Pa,Pb,Pcに合わせて変化させて三次元構造物を形成する方法を説明する図である。ただし前記実施形態と同一の部材には同一の符号を付し、その詳細な説明は省略する。フォトレジスト2にレーザー光を集光する対物レンズ18を、フォトレジスト2に対してXY方向および矢符D1で示す基板厚み方向に相対的に移動させる構成にすることも可能である。この対物レンズ18が光学手段および走査手段に相当する。
このような構成によって、焦点位置K1,K2,K3を三次元構造物4の厚みの位置に合わせて、基板厚み方向に調節する。これによって解像度の高い露光を行うことが可能となる。特に基板厚み方向の高低差の大きな構造物を作製する場合、本露光装置20によれば、常に構造物の表面部に焦点が合致する。したがって本露光装置20によれば、フォトマスクを用いた露光装置よりも解像度の高い露光を行うことが可能となる。この露光装置20においては、フォトマスクが不要となるので、フォトマスクを作製するための時間および費用を削減することができる。
本実施形態においては、透過率分布型フォトマスクを採用しているが、必ずしもこの透過率分布型フォトマスクに限定されるものではない。本発明の実施の他の形態として、たとえばフォトマスクは、光透過性基板の一表面部に形成された金属膜などに、露光装置の解像度以下の微小開口を設け、透過率を制限したものを採用してもよい。また前記金属膜の膜厚を段階的にあるいは連続的に変化させ、透過率を制御したものを採用してもよい。
光学系に用いるレンズアレイは、光透過性基板とフォトマスクとの間に必ずしも介在させるとは限らない。たとえば光透過性基板にレンズアレイを直接作りこむことも可能である。このときレンズアレイの焦点位置がレジスト層内部となるようにレンズアレイの焦点距離、およびレンズアレイからフォトレジストまでの距離を設定する。
光源および光学部品に対し、ステージをXY方向に走査可能に構成しているが、ステージを固定的に配置し、光源および光学部品をXY方向に走査可能に構成してもよい。その他前記実施形態に、特許請求の範囲を逸脱しない範囲において種々の部分的変更を行う場合もある。
本発明の実施形態に係る三次元構造物を形成する工程を示すフローチャートである。 三次元構造物を形成する工程を段階的に示し、基板1の表面部に垂直な仮想平面で切断して見た断面図であり、(a)は基板1に感光性材料層2を塗布し、基板1および感光性材料層2に照射する露光光3を説明する断面図、(b)は露光量に応じたフォトレジストの三次元構造物4を示す断面図、(c)はフォトレジストの形状が基板1に転写された状態を示す断面図である。 露光量とレジスト残膜厚との関係を示す図である。 三次元構造物形成方法の概念を表す断面図であり、(a)は所望の三次元構造物4および基板1を示す断面図、(b)は、形成すべき三次元構造物4の厚み寸法tに嵩上げ寸法Dを加算した状態を示す断面図である。 透過率分布型マスク7を含む露光装置8を概略示す図である。 マイクロレンズアレイ12を含む露光装置8Aを概略示す図である。 レーザービームを用いて走査露光する露光装置13を示す図である。 光ビームを感光性材料層2に集光するとともに、その焦点位置を露光位置Pa,Pb,Pcに合わせて変化させて三次元構造物を形成する方法を説明する図である。 ネガ型の感光性材料における露光量と残膜厚との関係を示す図である。 本発明の他の実施形態に係り、複数の開口21aが形成されたフォトマスク21を用いて三次元構造物を形成するための露光装置8Bを概略示す図である。 本発明のさらに他の実施形態に係り、回転機構および複数の開口21aが形成されたフォトマスク21を用いて三次元構造物を形成するための露光装置8Cを概略示す図である。
符号の説明
1 基板
2 感光性材料層
4 三次元構造物
4A 前駆体
5 嵩上げ寸法部分
7 透過率分布型マスク
8,8A,8B,8C 露光装置
9 光源
10 光学素子
12 レンズアレイ
14 光源
15 走査機構
18 対物レンズ

Claims (7)

  1. 基板に感光性材料から成る層を形成し、この層を少なくとも露光することで三次元構造物を形成する三次元構造物形成方法であって、
    基板の厚み方向一端面部に、感光性材料から成り、形成すべき三次元構造物の厚み寸法に予め定める嵩上げ寸法を加算した厚み寸法を有する感光性材料層を形成する第1工程と、
    感光性材料から成る感光性材料層全体にわたって、予め定める最小光量以上の光量で露光光を照射して、三次元構造物を形成する第2工程とを有することを特徴とする三次元構造物形成方法。
  2. 第2工程は、
    三次元構造物の前駆体を形成する段階と、
    前記段階の後、前駆体全体を基板垂直方向に嵩上げ量エッチングして三次元構造物を形成する段階とを含むことを特徴とする請求項1に記載の三次元構造物形成方法。
  3. 嵩上げ量を、感光性材料層の厚みの5%以上になるように設定することを特徴とする請求項1または2に記載の三次元構造物形成方法。
  4. 光透過性基板に形成されたネガ型の感光性材料から成る層に、三次元構造物を形成する露光装置であって、
    光透過性基板を透過させて、ネガ型の感光性材料から成る感光性材料層に露光光を照射する光源と、
    光透過性基板によって発生し得る収差を補正する光学素子であって、前記光透過性基板と光源との間に介在される光学素子とを有することを特徴とする露光装置。
  5. 三次元構造物および三次元構造物の前駆体の少なくともいずれか一方を形成する領域全体部分に対応するフォトマスクであって、透過率が予め定める値となる透過率分布を有するフォトマスクをさらに備えることを特徴とする請求項4に記載の露光装置。
  6. 光透過性基板と光源との間に、レンズアレイを介在させることを特徴とする請求項4または5に記載の露光装置。
  7. 光源は光ビームを発する光源であり、前記光ビームを感光性材料から成る感光性材料層に集光し、その焦点位置を露光位置に合わせて変化させ得る光学手段と、
    光ビームを感光性材料層に対して相対的に走査可能な走査手段とをさらに有することを特徴とする請求項4に記載の露光装置。
JP2004116003A 2003-04-16 2004-04-09 三次元構造物形成方法および露光装置 Pending JP2004334184A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004116003A JP2004334184A (ja) 2003-04-16 2004-04-09 三次元構造物形成方法および露光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003112071 2003-04-16
JP2004116003A JP2004334184A (ja) 2003-04-16 2004-04-09 三次元構造物形成方法および露光装置

Publications (1)

Publication Number Publication Date
JP2004334184A true JP2004334184A (ja) 2004-11-25

Family

ID=33513223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004116003A Pending JP2004334184A (ja) 2003-04-16 2004-04-09 三次元構造物形成方法および露光装置

Country Status (1)

Country Link
JP (1) JP2004334184A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121113A1 (ja) * 2005-05-12 2006-11-16 Tokyo Ohka Kogyo Co., Ltd. 三次元微小成形体製造用感光性ドライフィルムおよび感光性樹脂組成物
WO2006121112A1 (ja) * 2005-05-12 2006-11-16 Tokyo Ohka Kogyo Co., Ltd. 三次元微小成形体の光学的安定性を高める方法
JP2007114758A (ja) * 2005-09-21 2007-05-10 Tohoku Univ 露光方法
JP2008103523A (ja) * 2006-10-19 2008-05-01 Sekisui Chem Co Ltd 半導体装置及びその製造方法
JP2008125864A (ja) * 2006-11-22 2008-06-05 Toppan Printing Co Ltd 針状体の製造方法
JP2008129558A (ja) * 2006-11-27 2008-06-05 Keio Gijuku 露光光源として光源アレイを用いた曲面製造方法
WO2014054250A1 (ja) * 2012-10-01 2014-04-10 株式会社クラレ 微細構造体の製造方法、および微細構造体
JP2018165811A (ja) * 2017-03-28 2018-10-25 富士フイルム株式会社 平板形金型原盤製造方法及び成形用金型製造方法並びにロール金型製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006121112A1 (ja) * 2005-05-12 2008-12-18 東京応化工業株式会社 三次元微小成形体の光学的安定性を高める方法
WO2006121112A1 (ja) * 2005-05-12 2006-11-16 Tokyo Ohka Kogyo Co., Ltd. 三次元微小成形体の光学的安定性を高める方法
JP2006317698A (ja) * 2005-05-12 2006-11-24 Tokyo Ohka Kogyo Co Ltd 三次元微小成形体製造用感光性ドライフィルムおよび感光性樹脂組成物
WO2006121113A1 (ja) * 2005-05-12 2006-11-16 Tokyo Ohka Kogyo Co., Ltd. 三次元微小成形体製造用感光性ドライフィルムおよび感光性樹脂組成物
KR101012574B1 (ko) * 2005-05-12 2011-02-07 도쿄 오카 고교 가부시키가이샤 3차원 미소 성형체의 광학적 안정성을 높이는 방법
JP4583449B2 (ja) * 2005-05-12 2010-11-17 東京応化工業株式会社 三次元微小成形体の製造方法
KR100904576B1 (ko) * 2005-05-12 2009-06-25 도쿄 오카 고교 가부시키가이샤 3차원 미소 성형체 제조용 감광성 드라이 필름 및 감광성수지 조성물
DE112006001162T5 (de) 2005-05-12 2008-08-21 Tokyo Ohka Kogyo Co., Ltd., Kawasaki Verfahren zur Verbesserung der optischen Stabilität von dreidimensionalen, mikrogeformten Produkten
JP2007114758A (ja) * 2005-09-21 2007-05-10 Tohoku Univ 露光方法
JP2008103523A (ja) * 2006-10-19 2008-05-01 Sekisui Chem Co Ltd 半導体装置及びその製造方法
JP2008125864A (ja) * 2006-11-22 2008-06-05 Toppan Printing Co Ltd 針状体の製造方法
JP2008129558A (ja) * 2006-11-27 2008-06-05 Keio Gijuku 露光光源として光源アレイを用いた曲面製造方法
WO2014054250A1 (ja) * 2012-10-01 2014-04-10 株式会社クラレ 微細構造体の製造方法、および微細構造体
JPWO2014054250A1 (ja) * 2012-10-01 2016-08-25 株式会社クラレ 微細構造体の製造方法、および微細構造体
JP2018165811A (ja) * 2017-03-28 2018-10-25 富士フイルム株式会社 平板形金型原盤製造方法及び成形用金型製造方法並びにロール金型製造方法

Similar Documents

Publication Publication Date Title
US7095484B1 (en) Method and apparatus for maskless photolithography
US7651822B2 (en) Method of manufacturing gray scale mask and microlens, microlens, spatial light modulating apparatus and projector
CN103080843A (zh) 用于印刷具有大焦深的周期图案的方法和设备
CN102236265A (zh) 光刻设备和制造物品的方法
KR20060120672A (ko) 편광된 레티클, 포토리소그래피 시스템, 및 편광광에 의해편광된 레티클을 이용하여 패턴을 형성하는 방법
JP2007101833A (ja) マイクロレンズの製造方法、マイクロレンズ、空間光変調装置、スクリーン及びプロジェクタ
JP2001255660A (ja) 特殊表面形状の創成方法及び光学素子
JP2004170628A (ja) マイクロレンズ基板の作製方法およびマイクロレンズ露光光学系
JP2007101592A (ja) 走査型露光装置及びマイクロデバイスの製造方法
JP2004334184A (ja) 三次元構造物形成方法および露光装置
KR101214657B1 (ko) 디지털 노광 장치 및 그 방법
US8072580B2 (en) Maskless exposure apparatus and method of manufacturing substrate for display using the same
JP7130068B2 (ja) ラインうねりを低減するためのパターンのシフト
JP2008185908A (ja) マスクの製造方法、露光方法、露光装置、および電子デバイスの製造方法
JP2001296649A (ja) 濃度分布マスクとその製造方法及び表面形状の形成方法
JP2002072497A (ja) 露光方法
JP2005070666A (ja) マイクロレンズ基板の製造方法
JP2004119570A (ja) 露光量設定方法、露光方法およびこれを用いた露光装置
JP2008152010A (ja) 鮮鋭化素子の製造方法
JP2002278079A (ja) レジストパターン形成方法とそれを用いた露光装置およびそれにより作製したレジストパターンとマイクロレンズ
JP2006140393A (ja) 照明光学装置、露光装置、および露光方法
KR102151254B1 (ko) 노광장치 및 그 방법
JP3905877B2 (ja) リアプロジェクションディスプレイ用スクリーンに用いるマイクロレンズアレイ用母型の製造方法
JP4196076B2 (ja) 柱面レンズの製造方法及びグレースケールマスク
JP2005165225A (ja) 3次元構造物の形成方法および露光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707