JP2004334157A - 電子写真用球形トナー及び製造方法 - Google Patents

電子写真用球形トナー及び製造方法 Download PDF

Info

Publication number
JP2004334157A
JP2004334157A JP2003298325A JP2003298325A JP2004334157A JP 2004334157 A JP2004334157 A JP 2004334157A JP 2003298325 A JP2003298325 A JP 2003298325A JP 2003298325 A JP2003298325 A JP 2003298325A JP 2004334157 A JP2004334157 A JP 2004334157A
Authority
JP
Japan
Prior art keywords
powder
gas
filling
toner
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003298325A
Other languages
English (en)
Other versions
JP4172640B2 (ja
Inventor
Hiroshi Takahashi
寛 高橋
Takahiro Kadota
孝洋 門田
Noboru Kuroda
昇 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003298325A priority Critical patent/JP4172640B2/ja
Publication of JP2004334157A publication Critical patent/JP2004334157A/ja
Application granted granted Critical
Publication of JP4172640B2 publication Critical patent/JP4172640B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Basic Packing Technique (AREA)

Abstract

【課題】 潜像に忠実に現像でき、高画質のフルカラー画像を再現できるトナー及び製造方法を提供すること。
【解決手段】 少なくとも2種類以上の異なる樹脂、着色剤、離型剤を含有するトナー組成物を有機溶剤に溶解または分散し、該溶解物または分散物を固体微粒子分散剤の存在する水系媒体中で連続的に乳化する乳化工程と、得られた乳化分散液から溶媒を除去してトナーを得る工程とを含むトナーの製造方法において、該乳化工程において圧力を0.005MPa〜0.7MPaとして乳化することによりトナーを得る。トナーの体積平均粒径(Dv)は3〜10μmであり、体積平均粒径を個数分布から求めた個数基準の個数平均粒径(Dp)で除した値Dv/Dpが1.05〜1.25であることが好ましい。
【選択図】 なし

Description

本発明は、電子写真や静電記録などにおいて、感光体表面に形成された静電荷像を顕像化する静電荷像現像用トナー及び製造方法に関する。
更に本発明は、トナー等の微細粉体の充填方法に関する。
電子写真、静電記録静電印刷等に於いて使用される現像剤は、その現像工程において、例えば、静電荷像が形成されている感光体等の像担持体に一旦付着され、次に転写工程において感光体から転写紙等の転写媒体に転写された後、定着工程において紙面に定着される。その際、潜像保持面上に形成される静電荷像を現像する為の現像剤として、キャリアとトナーから成る二成分系現像剤及び、キャリアを必要としない一成分系現像剤(磁性トナー、非磁性トナー)が知られている。従来、電子写真、静電記録、静電印刷などに用いられる乾式トナーとしては、スチレン系樹脂、ポリエステルなどのトナーバインダーを着色剤などと共に溶融混練し、微粉砕したものが用いられている。
高品位、高画質の画像を得るために、トナーの粒子径を小さくすることにより改良が図られているが、通常の混練、粉砕法による製造方法ではその粒子形状が不定形であり、機械内部では現像部内でのキャリアとの攪拌や、一成分系現像剤として用いる場合は現像ローラとトナー供給ローラ、層厚規制ブレードや摩擦帯電ブレードなどとによる接触ストレスによりさらにトナーが粉砕され、極微粒子が発生したり、流動化剤がトナー表面に埋め込まれるために画像品質が低下するという現象が発生している。またその形状ゆえに粉体としての流動性が悪く、多量の流動化剤を必要としたり、トナーボトル内への充填率が低く、コンパクト化への阻害要因となっている。そのため小粒径化したメリットが生かされていないのが現状である。また粉砕法では粒子径の限界が存在し、さらなる小粒径化には対応できない。
このような不定形の形状効果の欠点を補うために種々の球状のトナー製造法が考案されている。一般的に用いられている方法にポリマー懸濁法がある。この方法においては樹脂、顔料等の着色剤、ワックス等のトナー組成物を有機溶剤に溶解、分散した油相を水相中に機械的乳化手段によってトナーサイズの液滴まで乳化する工程が含まれる。この時水相中に固体の有機微粒子分散剤を乳化液滴の安定剤に用いると比較的粒度分布(Dv/Dp)の狭い微細な液滴を作ることができる。しかしランダムに油相がせん断を受けるため極微粒子の発生を防止することが困難であるという問題が生じている。この様な問題を解決するために、以下のような案が提案されている。
<特許文献1>
洗浄工程・乾燥工程を経た生成トナーの中から、凝集成分・固着成分等の粗粒成分とトナー製造工程にて副生する超微粒子成分とを所定のトナー成分から分離する工程(気流式分級機)を有する。分離された所定外粒子は再度溶解工程、ろ過工程を経て樹脂・着色剤溶解工程、分散工程に再投入される。
<特許文献2>
洗浄工程にタ−ボ形ポンプを用いて樹脂・着色剤溶解を移送して、未反応モノマーなどの揮発性成分の除去もしくは分散安定剤などの水溶性成分の除去を行うことによって粗大粒子や微細粒子を減らす。
<特許文献3>
従来技術は、トナー粒子を乾燥後に乾式分級工程を設けて分級を行っていたが、非効率であるために重合後の液体分散液を静置し、微粉を多く含む上澄み液をポンプや減圧吸引機等により容器上部から抜き取る方法。
しかしながら、上記のいずれの方法も、乳化後の洗浄工程や乾燥工程後に設備を追加したり、工程を追加したりして極微粒子を減らす試みであり、生産コストという面では難題が残る。そこで本発明では、乳化後の設備や工程に依存せず、乳化中に圧力条件を制御することで極微粒子を減らし且つ狭い粒度分布の液滴を作り出すことが可能であることを見出した。
特開平10−301330号公報 特開2002−278150号公報 特開2002−28527号公報
本発明の課題は、潜像に忠実に現像でき、高画質のフルカラー画像を再現できるトナー及び製造方法を提供することである。
更に本発明の課題は、流動充填によりトナー充填時の負荷を避けることでトナーの変形を避ける充填方法を提供することにある。
本発明者等は、上記課題を達成するために鋭意検討を重ねた結果、連続的な乳化手法を取り入れ、且つ乳化中の圧力値を規制することで2μm以下の極微粒子の発生を抑え、且つシャープな粒度分布を作り出すことが可能であることを見出した。
すなわち本発明は、以下の(1)から(16)に示すトナー、その製造方法および充填方法の構成を採用することにより前記課題を解決することができる。
(1)少なくとも2種類以上の異なる樹脂、着色剤、離型剤を含有するトナー組成物を有機溶剤に溶解または分散し、該溶解物または分散物を固体微粒子分散剤の存在する水系媒体中で連続的に乳化する乳化工程と、得られた乳化分散液から溶媒を除去してトナーを得る工程とを含むトナーの製造方法において、該乳化工程において圧力を0.005MPa〜0.7MPaとして乳化することを特徴とするトナーの製造方法。
(2)乳化時の圧力を0.01MPa〜0.5MPaとすることを特徴とする上記(1)記載のトナーの製造方法。
(3)得られたトナーの体積分布から求めた体積基準の体積平均粒径(Dv)が3〜10μmであり、体積平均粒径を個数分布から求めた個数基準の個数平均粒径(Dp)で除した値Dv/Dpが1.05〜1.25であることを特徴とする上記(1)又は(2)記載のトナーの製造方法。
(4)Dv/Dpが1.05〜1.15であることを特徴とする上記(3)記載のトナーの製造方法。
(5)上記(1)〜(4)のいずれか1つに記載のトナーの製造方法によって得られたトナー。
(6)粉体の流動化のための気体が導入される気体導入開口部を上流部に有する密閉可能な容器状の収納粉体流動化手段と、該気体が排出される気体排出開口部を下流部に有する充填ノズルと、前記収納粉体流動化手段と充填ノズルを連結し、排出される流動化粉体の経路とを有し、該充填ノズルは充填用容器の口を密閉可能である粉体充填手段を用いた微細粉体の充填方法であって、該微細粉体として上記(5)記載のトナーを用い、該収納粉体流動化手段上流の気体導入開口部及び充填ノズル下流部の気体排出開口部に、共に気体を通過させるが粉体は通過させない粉体−気体分離篩を設けたものとすることにより、該気体排出開口部の気体の流速が前記気体排出開口部の気体の流速よりも高くされて、流動化粉体が前記収納粉体流動化装置から流動化粉体の経路及び充填ノズルを経由して前記充填用容器に自然排出されることを特徴とする微細粉体の充填方法。
(7)充填用粉体及び気体を収納する前記密閉可能な容器状の収納粉体流動化手段中の該粉体を気体により流動化した後、該流動化された粉体を該収納粉体流動化手段から前記経路を介して前記充填ノズルまで排出することを特徴とする上記(6)に記載の微細粉体の充填方法。
(8)前記収納粉体流動化手段内への追加気体の導入により、粉体の流動化が行なわれることを特徴とする上記(6)に記載の微細粉体の充填方法。
(9)前記収納粉体流動化手段が振動されることにより、粉体の流動化が行なわれることを特徴とする上記(6)に記載の微細粉体の充填方法。
(10)前記粉体の粉体流動化手段から充填ノズルまでの排出が、該粉体流動化手段内の圧力を昇圧することにより行なわれることを特徴とする上記(6)〜(9)のいずれか1つに記載の微細粉体の充填方法。
(11)前記粉体の粉体流動化手段から充填ノズルまでの排出が、該粉体流動化手段に外部圧力を加えて該粉体流動化手段の内容積を減容させることにより行なわれることを特徴とする上記(6)〜(9)いずれか1つに記載の微細粉体の充填方法。
(12)前記粉体流動化手段が、導入気体の流速を加減可能な導入気体調節弁と、前記流動化粉体の排出経路の排出粉体の流速を調節可能な排出粉体流速調節弁とを有し、前記流動化粉体の排出量及び排出程度が、該導入気体調節弁の開閉程度の調節又は/及び該排出粉体流速調節弁の開閉程度の調節により制御されることを特徴とする上記(6)〜(11)のいずれか1つに記載の微細粉体の充填方法。
(13)前記粉体流動化手段が更に、全開及び全閉自在な圧力開放弁を有し、前記流動化粉体の排出の開始及び終了が該圧力開放弁の開閉により迅速に行なわれることを特徴とする上記(12)に記載の微細粉体の充填方法。
(14)前記粉体流動化手段が更に、前記粉体流動化のための気体導入手段を有し、該気体導入手段が、気体を前記粉体流動化手段に送出可能に収納する圧力容器であることを特徴とする上記(6)〜(13)のいずれか1つに記載の微細粉体の充填方法。
(15)前記粉体流動化手段が更に、前記粉体流動化のための気体導入手段を有し、該気体導入手段が、逆止弁付きの送気ポンプであることを特徴とする上記(6)〜(14)のいずれか1つに記載の微細粉体の充填方法。
(16)前記粉体流動化手段が更に、前記粉体流動化のための気体導入手段との間に、気体を該粉体流動化手段内に均一に導入するための気体分配手段を有することを特徴とする上記(6)〜(15)のいずれか1つに記載の微細粉体の充填方法。
本発明の製造方法によれば潜像に忠実に現像して高画質のフルカラー画像を形成するトナーを効率よく製造することができる。
本発明により、粉体中に均一に気体を導入し最少の気体量で制御された粉体の流動状態を得て、小口径充填容器や複雑な形状の充填容器の奥または底部に流動粉体を流入し、容器内で充填ノズルに設けられた気体粉体分離篩により充填後の粉体から脱気させ、簡単に高密度、無粉塵で充填できる方法を提供でき、さらに、誰でも、どんな場所でも充填できるように、小型で持ち運びができ、操作が簡単である充填機を提供することができるという極めて優れた効果を奏するものである。
以下に本発明を詳細に説明する。
図1に本発明の連続乳化プロセスの一例を示す。少なくとも樹脂、着色剤、離型剤を含有するトナー組成物を有機溶剤に溶解または分散した液体に必要に応じて伸長剤を混ぜたもの(以下、「油相A」という)と、イソシアネート結合を有するプレポリマー(以下、「油相B」という)と、固体の樹脂微粒子分散剤の存在する水系媒体(以下、水相と呼ぶ)とを、ある一定量で連続的に送液し、油相Aと油相Bとを、水相と混合する前にスタティクミキサー(以下STM)でプレ攪拌を行う(プレ攪拌後の液体を油相と呼ぶ)。次にSTMで混合された油相と水相が混じり合い、ホールドアップ内のパイプラインホモミキサー(以下PLHM)によりせん断を受け乳化が行われる。ここで、全送液量、ホールドアップ内容積、PLHMの回転数、ホールドアップ内圧は乳化粒子の体積平均径Dvや粒度分布Dv/Dpに大きく関与してくる因子である。乳化後は脱溶剤、洗浄、乾燥の工程を経てトナー粒子母体が生成される。
ここで、「ホールドアップ内圧」とは、パイプラインホモミキサー(PLHM)の吸い込み口付近で測定した圧力値である。また、図1に示すように連続乳化系に真空ポンプが取り付けられているため、系内の圧力調整が可能となる。
この乳化工程における圧力を0.005〜0.7MPa、好ましくは0.01〜0.5MPaとすることにより、粒径2μm以下の極微粒子のトナーの発生を抑え、且つシャープな粒度分布を作り出すことが可能となった。
(Dv、Dv/Dpの数値限定について)
本発明のトナーの製造方法で得られる乾式トナーにおいて、該トナーの Dvが3〜10μmであり、Dv/Dpが1.05〜1.25である乾式トナーにより、耐熱保存性、低温定着性、耐ホットオフセット性のいずれにも優れ、とりわけフルカラー複写機などに用いた場合に画像の光沢性に優れ、更に二成分現像剤においては、長期にわたるトナーの収支が行われても、現像剤中のトナーの粒子径の変動が少なくなり、現像装置における長期の攪拌においても、良好で安定した現像性が得られる。また、一成分現像剤として用いた場合においても、トナーの収支が行われても、トナーの粒子径の変動が少なくなると共に、現像ローラーへのトナーのフィルミングや、トナーを薄層化する為のブレード等の部材へのトナーの融着がなく、現像装置の長期の使用(攪拌)においても、良好で安定した現像性及び画像が得られた。
一般的には、トナーの粒子径は小さければ小さい程、高解像で高画質の画像を得る為に有利であると言われているが、逆に転写性やクリーニング性に対しては不利である。また、本発明の範囲よりも体積平均粒子径が小さい場合、二成分現像剤では現像装置における長期の攪拌においてキャリアの表面にトナーが融着し、キャリアの帯電能力を低下させたり、一成分現像剤として用いた場合には、現像ローラーへのトナーのフィルミングや、トナーを薄層化する為のブレード等の部材へのトナーの融着を発生させやすくなる。また、これらの現象は微粉の含有率が本発明の範囲より多いトナーにおいても同様である。
逆に、トナーの粒子径が本発明の範囲よりも大きい場合には、高解像で高画質の画像を得ることが難しくなると共に、現像剤中のトナーの収支が行われた場合にトナーの粒子径の変動が大きくなる場合が多い。また、Dv/Dpが1.25よりも大きい場合も同様であることが明らかとなった。
また、Dv/Dpが1.05より小さい場合には、トナーの挙動の安定化、帯電量の均一化の面から好ましい面もあるが、トナーを十分に帯電出来なかったり、クリーニング性を悪化させる場合があることが明らかとなった。
(粒度分布測定法)
トナーの平均粒径及び粒度分布はコールターマルチサイザーIII(コールター社製)を用い、パーソナルコンピューター(IBM社製)を接続し専用解析ソフト(コールター社製)を用いてデータ解析した。Kd値は10μmの標準粒子を用いて設定し、アパーチャカレントはオートマティックの設定で行なった。電解液は1級塩化ナトリウムを用いて1%NaCl水溶液を調製する。その他に、ISOTON −II(コールターサイエンティフィックジャパン社製)が使用できる。測定法としては、前記電解水溶液100〜150ml中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を0.1〜5ml加え、更に測定試料を2〜20mg加える。
試料を懸濁した電解液は超音波分散器で約1〜3分間分散処理を行ない、100μmアパーチャーチューブを用いて、2μm以上のトナーの体積、個数を5万カウント測定して体積分布(Dv)と個数分布(Dn)とを算出した。それから、本発明に係わる体積分布から求めた体積基準の体積平均粒径及び個数分布から求めた個数基準の個数平均粒径を求めた。Dv/Dnが1.0に近いほど粒度分布がシャープである。
本発明に用いられる樹脂としてはスチレンアクリル樹脂、ポリオール樹脂、ポリエステル樹脂など通常のトナー用に用いられる樹脂であればどのようなものでも適用可能である。特に定着性の観点からフルカラー画像の再現にはポリエステル樹脂が好適である。
有機溶剤に溶解または分散する2種以上の異なる樹脂としては、同系の樹脂であっても分子量や樹脂中の結合基が異なればよく、例えばポリエステル樹脂と変性ポリエステル樹脂等を好ましく用いることができる。
(変性ポリエステル樹脂)
変性ポリエステル樹脂とは、ポリエステル樹脂中に酸、アルコールのモノマーユニットに含まれる官能基とエステル結合以外の結合基が存在したり、またポリエステル樹脂中に構成の異なる樹脂成分が共有結合、イオン結合などで結合した状態をさす。
例えば、ポリエステル末端をエステル結合以外のもので反応させたもの、具体的には末端に酸基、水酸基と反応するイソシアネート基などの官能基を導入し、活性水素化合物とさらに反応させ末端を変性したり伸長反応させたものも含まれる。さらに活性水素基が複数存在する化合物であればポリエステル末端同士を結合させたものも含まれる(ウレア変性ポリエステル、ウレタン変性ポリエステルなど)。
また、ポリエステル主鎖中に二重結合などの反応性基を導入し、そこからラジカル重合を起こして側鎖に炭素−炭素結合のグラフト成分を導入したり二重結合同士を橋かけしたものも含まれる(スチレン変性、アクリル変性ポリエステルなど)。
また、ポリエステルの主鎖中に構成の異なる樹脂成分を共重合させたり末端のカルボキシル基や水酸基と反応させたもの、例えば末端がカルボキシル基、水酸基、エポキシ基、メルカプト基によって変性されたシリコーン樹脂と共重合させたものも含まれる(シリコーン変性ポリエステルなど)。
以下変性ポリエステル樹脂について具体的に説明する。
(ウレア変性ポリエステル樹脂)
ウレア結合で変性されたポリエステル(i)としては、イソシアネート基を有するポリエステルプレポリマー(A)とアミン類(B)との反応物などが挙げられる。イソシアネート基を有するポリエステルプレポリマー(A)としては、ポリオール(1)とポリカルボン酸(2)の重縮合物でかつ活性水素基を有するポリエステルをさらにポリイソシアネート(3)と反応させた物などが挙げられる。上記ポリエステルの有する活性水素基としては、水酸基(アルコール性水酸基およびフェノール性水酸基)、アミノ基、カルボキシル基、メルカプト基などが挙げられ、これらのうち好ましいものはアルコール性水酸基である。
ポリオール(1)としては、ジオール(1−1)および3価以上のポリオール(1−2)が挙げられ、(1−1)単独、または(1−1)と少量の(1−2)の混合物が好ましい。ジオール(1−1)としては、アルキレングリコール(エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオールなど);アルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなど);脂環式ジオール(1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなど);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど);上記脂環式ジオールのアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物;上記ビスフェノール類のアルキレンオキサイド(エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドなど)付加物などが挙げられる。
これらのうち好ましいものは、炭素数2〜12のアルキレングリコールおよびビスフェノール類のアルキレンオキサイド付加物であり、特に好ましいものはビスフェノール類のアルキレンオキサイド付加物、およびこれと炭素数2〜12のアルキレングリコールとの併用である。3価以上のポリオール(1−2)としては、3〜8価またはそれ以上の多価脂肪族アルコール(グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなど);3価以上のフェノール類(トリスフェノールPA、フェノールノボラック、クレゾールノボラックなど);上記3価以上のポリフェノール類のアルキレンオキサイド付加物などが挙げられる。
ポリカルボン酸(2)としては、ジカルボン酸(2−1)および3価以上のポリカルボン酸(2−2)が挙げられ、(2−1)単独、および(2−1)と少量の(2−2)の混合物が好ましい。ジカルボン酸(2−1)としては、アルキレンジカルボン酸(コハク酸、アジピン酸、セバシン酸など);アルケニレンジカルボン酸(マレイン酸、フマール酸など);芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸など)などが挙げられる。
これらのうち好ましいものは、炭素数4〜20のアルケニレンジカルボン酸および炭素数8〜20の芳香族ジカルボン酸である。3価以上のポリカルボン酸(2−2)としては、炭素数9〜20の芳香族ポリカルボン酸(トリメリット酸、ピロメリット酸など)などが挙げられる。なお、ポリカルボン酸(2)としては、上述のものの酸無水物または低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステルなど)を用いてポリオール(1)と反応させてもよい。
ポリオール(1)とポリカルボン酸(2)の比率は、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、通常2/1〜1/1、好ましくは1.5/1〜1/1、さらに好ましくは1.3/1〜1.02/1である。
ポリイソシアネート(3)としては、脂肪族ポリイソシアネート(テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,6−ジイソシアナトメチルカプロエートなど);脂環式ポリイソシアネート(イソホロンジイソシアネート、シクロヘキシルメタンジイソシアネートなど);芳香族ジイソシアネート(トリレンジイソシアネート、ジフェニルメタンジイソシアネートなど);芳香脂肪族ジイソシアネート(α,α,α',α'−テトラメチルキシリレンジイソシアネートなど);イソシアヌレート類;前記ポリイソシアネートをフェノール誘導体、オキシム、カプロラクタムなどでブロックしたもの;およびこれら2種以上の併用が挙げられる。
ポリイソシアネート(3)の比率は、イソシアネート基[NCO]と、水酸基を有するポリエステルの水酸基[OH]の当量比[NCO]/[OH]として、通常5/1〜1/1、好ましくは4/1〜1.2/1、さらに好ましくは2.5/1〜1.5/1である。[NCO]/[OH]が5を超えると低温定着性が悪化する。[NCO]のモル比が1未満では、変性ポリエステル中のウレア含量が低くなり、耐ホットオフセット性が悪化する。末端にイソシアネート基を有するプレポリマー(A)中のポリイソシアネート(3)構成成分の含有量は、通常0.5〜40重量%、好ましくは1〜30重量%、さらに好ましくは2〜20重量%である。0.5重量%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。また、40重量%を超えると低温定着性が悪化する。
イソシアネート基を有するプレポリマー(A)中の1分子当たりに含有するイソシアネート基は、通常1個以上、好ましくは、平均1.5〜3個、さらに好ましくは、平均1.8〜2.5個である。1分子当たり1個未満では、ウレア変性ポリエステルの分子量が低くなり、耐ホットオフセット性が悪化する。
アミン類(B)としては、ジアミン(B1)、3価以上のポリアミン(B2)、アミノアルコール(B3)、アミノメルカプタン(B4)、アミノ酸(B5)、およびB1〜B5のアミノ基をブロックしたもの(B6)などが挙げられる。
ジアミン(B1)としては、芳香族ジアミン(フェニレンジアミン、ジエチルトルエンジアミン、4,4’ジアミノジフェニルメタンなど);脂環式ジアミン(4,4’−ジアミノ−3,3’ジメチルジシクロヘキシルメタン、ジアミンシクロヘキサン、イソホロンジアミンなど);および脂肪族ジアミン(エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなど)などが挙げられる。3価以上のポリアミン(B2)としては、ジエチレントリアミン、トリエチレンテトラミンなどが挙げられる。アミノアルコール(B3)としては、エタノールアミン、ヒドロキシエチルアニリンなどが挙げられる。アミノメルカプタン(B4)としては、アミノエチルメルカプタン、アミノプロピルメルカプタンなどが挙げられる。アミノ酸(B5)としては、アミノプロピオン酸、アミノカプロン酸などが挙げられる。B1〜B5のアミノ基をブロックしたもの(B6)としては、前記B1〜B5のアミン類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど)から得られるケチミン化合物、オキサゾリン化合物などが挙げられる。これらアミン類(B)のうち好ましいものは、B1およびB1と少量のB2の混合物である。
さらに、必要により伸長停止剤を用いてウレア変性ポリエステルの分子量を調整することができる。伸長停止剤としては、モノアミン(ジエチルアミン、ジブチルアミン、ブチルアミン、ラウリルアミンなど)、およびそれらをブロックしたもの(ケチミン化合物)などが挙げられる。
アミン類(B)の比率は、イソシアネート基を有するプレポリマー(A)中のイソシアネート基[NCO]と、アミン類(B)中のアミノ基[NHx]の当量比[NCO]/[NHx]として、通常2/1〜1/2、好ましくは1.5/1〜1/1.5、さらに好ましくは1.2/1〜1/1.2である。[NCO]/[NHx]が2を超えたり1/2未満では、ウレア変性ポリエステル(i)の分子量が低くなり、耐ホットオフセット性が悪化する。本発明においては、ウレア結合で変性されたポリエステル(i)中に、ウレア結合と共にウレタン結合を含有していてもよい。ウレア結合含有量とウレタン結合含有量のモル比は、通常100/0〜10/90であり、好ましくは80/20〜20/80、さらに好ましくは、60/40〜30/70である。ウレア結合のモル比が10%未満では、耐ホットオフセット性が悪化する。
本発明のウレア変性ポリエステル(i)は、ワンショット法、プレポリマー法により製造される。ウレア変性ポリエステル(i)の重量平均分子量は、通常1万以上、好ましくは2万〜1000万、さらに好ましくは3万〜100万である。1万未満では耐ホットオフセット性が悪化する。ウレア変性ポリエステルの数平均分子量は、後述の変性されていないポリエステル(ii)を用いる場合は特に限定されるものではなく、前記重量平均分子量とするのに得やすい数平均分子量でよい。(i)単独の場合は、数平均分子量は、通常20000以下、好ましくは1000〜10000、さらに好ましくは2000〜8000である。20000を超えると低温定着性およびフルカラー装置に用いた場合の光沢性が悪化する。
(未変性ポリエステル樹脂)
本発明においては、前記ウレア結合で変性されたポリエステル(i)単独使用だけでなく、この(i)と共に、変性されていないポリエステル(ii)をトナーバインダー成分として含有させることもできる。(ii)を併用することで、低温定着性およびフルカラー装置に用いた場合の光沢性が向上し、単独使用より好ましい。(ii)としては、前記(i)のポリエステル成分と同様なポリオール(1)とポリカルボン酸(2)との重縮合物などが挙げられ、好ましいものも(i)と同様である。また、(ii)は無変性のポリエステルだけでなく、ウレア結合以外の化学結合で変性されているものでもよく、例えばウレタン結合で変性されていてもよい。
(i)と(ii)は少なくとも一部が相溶していることが低温定着性、耐ホットオフセット性の面で好ましい。従って、(i)のポリエステル成分と(ii)は類似の組成が好ましい。(ii)を含有させる場合の(i)と(ii)の重量比は、通常5/95〜80/20、好ましくは5/95〜30/70、さらに好ましくは5/95〜25/75、特に好ましくは7/93〜20/80である。(i)の重量比が5%未満では、耐ホットオフセット性が悪化するとともに、耐熱保存性と低温定着性の両立の面で不利になる。
(ii)のピーク分子量は、通常1000〜30000、好ましくは1500〜10000、さらに好ましくは2000〜8000である。1000未満では耐熱保存性が悪化し、0000を超えると低温定着性が悪化する。(ii)の水酸基価は5以上であることが好ましく、さらに好ましくは10〜120、特に好ましくは20〜80である。5未満では耐熱保存性と低温定着性の両立の面で不利になる。(ii)の酸価は通常1〜30、好ましくは5〜20である。酸価を持たせることで負帯電性となりやすい傾向がある。
本発明において、トナーバインダーのガラス転移点(Tg)は通常50〜70℃、好ましくは55〜65℃である。50℃未満ではトナーの耐熱保存性が悪化し、70℃を超えると低温定着性が不十分となる。ウレア変性ポリエステル樹脂の共存により、本発明の乾式トナーにおいては、公知のポリエステル系トナーと比較して、ガラス転移点が低くても耐熱保存性が良好な傾向を示す。トナーバインダーの貯蔵弾性率としては、測定周波数20Hzにおいて10000dyne/cmとなる温度(TG’)が、通常100℃以上、好ましくは110〜200℃である。100℃未満では耐ホットオフセット性が悪化する。
トナーバインダーの粘性としては、測定周波数20Hzにおいて1000ポイズとなる温度(Tη)が、通常180℃以下、好ましくは90〜160℃である。180℃を超えると低温定着性が悪化する。すなわち、低温定着性と耐ホットオフセット性の両立の観点から、TG’はTηより高いことが好ましい。言い換えるとTG’とTηの差(TG’−Tη)は0℃以上が好ましい。さらに好ましくは10℃以上であり、特に好ましくは20℃以上である。差の上限は特に限定されない。また、耐熱保存性と低温定着性の両立の観点から、TηとTgの差は0〜100℃が好ましい。さらに好ましくは10〜90℃であり、特に好ましくは20〜80℃である。
(着色剤)
本発明の着色剤としては公知の染料及び顔料が全て使用でき、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ポグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトポン及びそれらの混合物が使用できる。
着色剤の含有量はトナーに対して通常1〜15重量%、好ましくは3〜10重量%である。
本発明で用いる着色剤は樹脂と複合化されたマスターバッチとして用いることもできる。 マスターバッチの製造またはマスターバッチとともに混練されるバインダー樹脂としては、先にあげた変性、未変性ポリエステル樹脂の他にポリスチレン、ポリp−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体;スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族叉は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックスなどが挙げられ、単独あるいは混合して使用できる。
本マスターバッチはマスターバッチ用の樹脂と着色剤とを高せん断力をかけて混合、混練してマスターバッチを得る事ができる。この際着色剤と樹脂の相互作用を高めるために、有機溶剤を用いる事ができる。またいわゆるフラッシング法と呼ばれる着色剤の水を含んだ水性ペーストを樹脂と有機溶剤とともに混合混練し、着色剤を樹脂側に移行させ、水分と有機溶剤成分を除去する方法も着色剤のウエットケーキをそのまま用いる事ができるため乾燥する必要がなく、好ましく用いられる。混合混練するには3本ロールミル等の高せん断分散装置が好ましく用いられる。
(離型剤)
また、トナーバインダー、着色剤とともにワックスを含有させることもできる。本発明のワックスとしては公知のものが使用でき、例えばポリオレフィンワッックス(ポリエチレンワックス、ポリプロピレンワックスなど);長鎖炭化水素(パラフィンワッックス、サゾールワックスなど);カルボニル基含有ワックスなどが挙げられる。これらのうち好ましいものは、カルボニル基含有ワックスである。
カルボニル基含有ワックスとしては、ポリアルカン酸エステル(カルナバワックス、モンタンワックス、トリメチロールプロパントリベヘネート、ペンタエリスリトールテトラベヘネート、ペンタエリスリトールジアセテートジベヘネート、グリセリントリベヘネート、1,18-オクタデカンジオールジステアレートなど);ポリアルカノールエステル(トリメリット酸トリステアリル、ジステアリルマレエートなど);ポリアルカン酸アミド(エチレンジアミンジベヘニルアミドなど);ポリアルキルアミド(トリメリット酸トリステアリルアミドなど);およびジアルキルケトン(ジステアリルケトンなど)などが挙げられる。
これらカルボニル基含有ワックスのうち好ましいものは、ポリアルカン酸エステルである。
本発明のワックスの融点は、通常40〜160℃であり、好ましくは50〜120℃、さらに好ましくは60〜90℃である。融点が40℃未満のワックスは耐熱保存性に悪影響を与え、160℃を超えるワックスは低温での定着時にコールドオフセットを起こしやすい。また、ワックスの溶融粘度は、融点より20℃高い温度での測定値として、5〜1000cpsが好ましく、さらに好ましくは10〜100cpsである。1000cpsを超えるワックスは、耐ホットオフセット性、低温定着性への向上効果に乏しい。トナー中のワックスの含有量は通常0〜40重量%であり、好ましくは3〜30重量%である。
(帯電制御剤)
本発明のトナーは、必要に応じて帯電制御剤を含有してもよい。
帯電制御剤としては公知のものが全て使用でき、例えばニグロシン系染料、トリフェニルメタン系染料、クロム含有金属錯体染料、モリブデン酸キレート顔料、ローダミン系染料、アルコキシ系アミン、四級アンモニウム塩(フッ素変性四級アンモニウム塩を含む)、アルキルアミド、燐の単体または化合物、タングステンの単体または化合物、フッ素系活性剤、サリチル酸金属塩及び、サリチル酸誘導体の金属塩等である。具体的にはニグロシン系染料のボントロン03、第四級アンモニウム塩のボントロンP−51、含金属アゾ染料のボントロンS−34、オキシナフトエ酸系金属錯体のE−82、サリチル酸系金属錯体のE−84、フェノール系縮合物のE−89(以上、オリエント化学工業社製)、第四級アンモニウム塩モリブデン錯体のTP−302、TP−415(以上、保土谷化学工業社製)、第四級アンモニウム塩のコピーチャージPSY VP2038、トリフェニルメタン誘導体のコピーブルーPR、第四級アンモニウム塩のコピーチャージ NEG VP2036、コピーチャージNX VP434(以上、ヘキスト社製)、LRA−901、ホウ素錯体であるLR−147(日本カーリット社製)、銅フタロシアニン、ペリレン、キナクリドン、アゾ系顔料、その他スルホン酸基、カルボキシル基、四級アンモニウム塩等の官能基を有する高分子系の化合物が挙げられる。
本発明において帯電制御剤の使用量は、バインダー樹脂の種類、必要に応じて使用される添加剤の有無、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、好ましくはバインダー樹脂100重量部に対して、0.1〜10重量部の範囲で用いられる。好ましくは、0.2〜5重量部の範囲がよい。10重量部を越える場合にはトナーの帯電性が大きすぎ、主帯電制御剤の効果を減退させ、現像ローラとの静電的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招く。これらの帯電制御剤、離型剤はマスターバッチ、樹脂とともに溶融混練する事もできるし、もちろん有機溶剤に溶解、分散する際に加えても良い。
(水系媒体中でのトナー製造法)
本発明に用いる水系媒体としては、水単独でもよいが、水と混和可能な溶剤を併用することもできる。混和可能な溶剤としては、アルコール(メタノール、イソプロパノール、エチレングリコールなど)、ジメチルホルムアミド、テトラヒドロフラン、セルソルブ類(メチルセルソルブなど)、低級ケトン類(アセトン、メチルエチルケトンなど)などが挙げられる。
トナーバインダーは以下の方法などで製造することができる。
ポリオール(1)とポリカルボン酸(2)を、テトラブトキシチタネート、ジブチルチンオキサイドなど公知のエステル化触媒の存在下、150〜280℃に加熱し、必要により減圧としながら生成する水を溜去して、水酸基を有するポリエステルを得る。次いで40〜140℃にて、これにポリイソシアネート(3)を反応させ、イソシアネート基を有するプレポリマー(A)を得る。さらに(A)にアミン類(B)を0〜140℃にて反応させ、ウレア結合で変性されたポリエステルを得る。
(3)を反応させる際および(A)と(B)を反応させる際には、必要により溶剤を用いることもできる 。使用可能な溶剤としては、芳香族溶剤(トルエン、キシレンなど);ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトンなど);エステル類(酢酸エチルなど);アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)およびエーテル類(テトラヒドロフランなど)などのイソシアネート(3)に対して不活性なものが挙げられる。ウレア結合で変性されていないポリエステル(ii)を併用する場合は、水酸基を有するポリエステルと同様な方法で(ii)を製造し、これを前記(i)の反応完了後の溶液に溶解し、混合する。
トナー組成物の油相の粘度を低くし、乳化可能とするために、変性ポリエステル(i)や(A)が可溶の揮発性溶剤を使用する。該溶剤は沸点が100℃未満の揮発性であることが除去が容易である点から好ましい。該溶剤としては、例えば、トルエン、キシレン、ベンゼン、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン、酢酸メチル、酢酸エチル、メチルエチルケトン、メチルイソブチルケトンなどを単独あるいは2種以上組合せて用いることができる。特に、トルエン、キシレン等の芳香族系溶媒および塩化メチレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素が好ましい。その他アルコール、水等の水性媒体に溶解可能な溶剤を併用することによりトナー形状をさらに調節したりすることもできる。トナー組成物100部に対する溶剤の使用量は、通常10〜900部である。
トナー粒子は、水系媒体中で例えばイソシアネート基を有するプレポリマー(A)とその他のトナー組成物からなる揮発性有機溶剤中の分散体を、(B)と反応させて形成しても良いし、あらかじめ製造した変性ポリエステル(i)を用いても良い。水系媒体中で変性ポリエステル(i)やプレポリマー(A)とトナー組成物からなる分散体を安定して形成させる方法としては、水系媒体中にウレア変性ポリエステル(i)やプレポリマー(A)からなるトナー原料の組成物を加えて、せん断力により分散させる方法などが挙げられる。
プレポリマー(A)と他のトナー組成物である(以下トナー原料と呼ぶ)着色剤、着色剤マスターバッチ、離型剤、帯電制御剤、未変性ポリエステル樹脂などは、水系媒体中で分散体を形成させる際に混合してもよいが、あらかじめトナー原料を混合した後、水系媒体中にその混合物を加えて分散させたほうがより好ましい。分散には通常の攪拌による混合機、より好ましくは高速回転体とステータを有すホモジナイザー、高圧ホモジナイザーの他ボールミル、ビーズミル、サンドミルといったメディアを用いた分散機などが用いられる。
また、本発明においては、着色剤、離型剤、帯電制御剤などの他のトナー原料は、必ずしも、水系媒体中で粒子を形成させる時に混合しておく必要はなく、粒子を形成せしめた後、添加してもよい。たとえば、着色剤を含まない粒子を形成させた後、公知の染着の方法で着色剤を添加することもできる。
分散の方法としては特に限定されるものではないが、低速せん断式、高速せん断式、摩擦式、高圧ジェット式、超音波などの公知の設備が適用できる。分散体の粒径を2〜20μmにするために高速せん断式が好ましい。回転羽根を有する乳化機としては、特に限定されるものではなく、乳化機、分散機として一般に市販されているものであれば使用することができる。
例えば、ウルトラタラックス(IKA社製)、ポリトロン(キネマティカ社製)、TKオートホモミクサー(特殊機化工業(株)製)、エバラマイルダー(荏原製作所(株)製)、TKパイプラインホモミクサー、TKホモミックラインフロー(特殊機化工業(株)製)、コロイドミル(神鋼パンテック社製)、スラッシャー、トリゴナル湿式微粉砕機(三井三池化工機(株)製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工(株)製)等の連続式乳化機、クレアミックス(エムテクニック社製) 、フィルミックス(特殊機化工業(株)製)等のバッチまたは連続両用乳化機等が挙げられる。
高速せん断式分散機を使用した場合、回転数は特に限定はないが、通常1000〜30000rpm、好ましくは5000〜20000rpmである。分散時間は特に限定はないが、バッチ方式の場合は、通常0.1〜5分である。分散時の温度としては、通常、0〜150℃(加圧下)、好ましくは10〜98℃である。高温なほうが、変性ポリエステル(i)やプレポリマー(A)からなる分散体の粘度が低く、分散が容易な点で好ましい。
ウレア変性ポリエステル(i)やプレポリマー(A)を含むトナー組成物100部に対する水系媒体の使用量は、通常50〜2000重量部、好ましくは100〜1000重量部である。50重量部未満ではトナー組成物の分散状態が悪く、所定の粒径のトナー粒子が得られない。20000重量部を超えると経済的でない。
水系媒体には固体微粒子を分散させておくが、先に示したように固体分散剤の液滴への吸着性を調整するためにその他の分散剤を併用することができる。その他の分散剤はトナー組成物を乳化する前や乳化後揮発成分を除去する時などに添加できる。
(固体微粒子分散剤)
固体微粒子分散剤は水系媒体中で水に難溶の固体状で存在するものであり、平均粒径が0.01〜1μmの微粒子のものが好ましい。
無機微粒子の具体例としては、例えばシリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ペンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素などを挙げることができる。
さらに好ましくはリン酸三カルシウム、炭酸カルシウム、コロイド状酸化チタン、コロイダルシリカ、ヒドロキシアパタイトなども用いる事が出来る。特に水中でリン酸ナトリウムと塩化カルシウムを塩基性下反応させて合成したヒドロキシアパタイトが好ましい。
有機物の固体微粒子分散剤としては低分子有機化合物の微結晶や高分子系微粒子たとえばソープフリー乳化重合や懸濁重合、分散重合によって得られるメタクリル酸等のカルボキシル基を有するモノマーと共重合されたポリスチレン、メタクリル酸エステルやアクリル酸エステル共重合体やシリコーン、ベンゾグアナミン、ナイロンなどの重縮合系、熱硬化性樹脂による重合体粒子が挙げられる。
固体微粒子分散剤を水中で調整後、リン酸三カルシウム塩などの酸に溶解可能な無機物質はあらかじめ塩酸等を必要量加え、部分的に溶解しておく。酸の添加量は無機物質を完全に溶解できる量の0.01%から10%が好ましく、より好ましくは0.1%から5%である。
カルボキシル基を有する(メタ)アクリル酸と共重合された高分子微粒子などのアルカリに溶解可能なものを用いた場合は、水酸化ナトリウム等の塩基を必要量加え、部分的に溶解しておく。アルカリの添加量は無機物質を完全に溶解できる量の0.01%から10%が好ましく、より好ましくは0.1%から5%である。
(その他、乳化時に併用するかもしくは後で加える分散剤)
アルキルベンゼンスルホン酸塩、α−オレフィンスルホン酸塩、リン酸エステルなどの陰イオン界面活性剤、アルキルアミン塩、アミノアルコール脂肪酸誘導体、ポリアミン脂肪酸誘導体、イミダゾリンなどのアミン塩型や、アルキルトリメチルアンモニム塩、ジアルキルジメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩、ピリジニウム塩、アルキルイソキノリニウム塩、塩化ベンゼトニウムなどの四級アンモニウム塩型の陽イオン界面活性剤、脂肪酸アミド誘導体、多価アルコール誘導体などの非イオン界面活性剤、例えばアラニン、ドデシルジ(アミノエチル)グリシン、ジ(オクチルアミノエチル)グリシンやN−アルキル−N,N−ジメチルアンモニウムべタインなどの両性界面活性剤が挙げられる。
またフルオロアルキル基を有する界面活性剤を用いることにより、非常に少量でその効果をあげることができる。好ましく用いられるフルオロアルキル基を有するアニオン性界面活性剤としては、炭素数2〜10のフルオロアルキルカルボン酸及びその金属塩、パーフルオロオクタンスルホニルグルタミン酸ジナトリウム、3−[オメガ−フルオロアルキル(C6〜C11)オキシ〕−1−アルキル(C3〜C4)スルホン酸ナトリウム、3−[オメガーフルオロアルカノイル(C6〜C8)−N−エチルアミノ]−1−プロパンスルホン酸ナトリウム、フルオロアルキル(C11〜C20)カルボン酸及びその金属塩、パーフルオロアルキルカルボン酸(C7〜C13)及びその金属塩、パーフルオロアルキル(C4〜C12)スルホン酸及びその金属塩、パーフルオロオクタンスルホン酸ジエタノールアミド、N−プロピルーN−(2ヒドロキシエチル)パーフルオロオクタンスルホンアミド、パーフルオロアルキル(C6〜C10)スルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル(C6〜C10)−N−エチルスルホニルグリシン塩、モノパーフルオロアルキル(C6〜C16)エチルリン酸エステルなどが挙げられる。
商品名としては、サーフロンS−111、S−112、S−113(旭硝子社製)、フロラードFC−93、FC−95、FC−98、FC−l29(住友3M社製)、ユニダインDS−101、DS−l02、(タイキン工業社製)、メガファックF−ll0、F−l20、F−113、F−191、F−812、F−833(大日本インキ社製)、エクトップEF−102、l03、104、105、112、123A、123B、306A、501、201、204、(トーケムプロダクツ社製)、フタージェントF−100、F−150(ネオス社製)などが挙げられる。
また、カチオン界面活性剤としては、フルオロアルキル基を有する脂肪族一級、二級もしくは三級アミン酸、パーフルオロアルキル(C6〜C10)スルホンアミドプロピルトリメチルアンモニウム塩などの脂肪族四級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩、商品名としてはサーフロンS−l21(旭硝子社製)、フロラードFC−135(住友3M社製)、ユニダインDS−202(ダイキン工業社製)、メガファックF−150、F−824(大日本インキ社製)、エクトップEF−l32(トーケムプロダクツ社製)、フタージェントF−300(ネオス社製)などが挙げられる。
高分子系保護コロイドにより分散液滴の安定化を調節しても良い。例えばアクリル酸、メタクリル酸、α−シアノアクリル酸、α−シアノメタクリル酸、イタコン酸、クロトン酸、フマール酸、マレイン酸または無水マレイン酸などの酸類、あるいは水酸基を含有する(メタ)アクリル系単量体、例えばアクリル酸β一ヒドロキシエチル、メタクリル酸β−ヒドロキシエチル、アクリル酸β−ヒドロキシプロビル、メタクリル酸β−ヒドロキシプロピル、アクリル酸γ−ヒドロキシプロピル、メタクリル酸γ−ヒドロキシプロピル、アクリル酸3−クロロ2−ヒドロキシプロビル、メタクリル酸3−クロロ−2−ヒドロキシプロピル、ジエチレングリコールモノアクリル酸エステル、ジエチレングリコールモノメタクリル酸エステル、グリセリンモノアクリル酸エステル、グリセリンモノメタクリル酸エステル、N−メチロールアクリルアミド、N−メチロールメタクリルアミドなど、ビニルアルコールまたはビニルアルコールとのエ一テル類、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテルなど、またはビニルアルコールとカルボキシル基を含有する化合物のエステル類、例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなど、アクリルアミド、メタクリルアミド、ジアセトンアクリルアミドあるいはこれらのメチロール化合物、アクリル酸クロライド、メタクリル酸クロライドなどの酸クロライド類、ピニルビリジン、ビニルピロリドン、ビニルイミダゾール、エチレンイミンなどの窒素原子、またはその複素環を有するものなどのホモポリマーまたは共重合体、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシエチレンアルキルアミン、ポリオキシプロピレンアルキルアミン、ポリオキシエチレンアルキルアミド、ポリオキシプロピレンアルキルアミド、ポリオキシエチレンノニルフエニルエーテル、ポリオキシエチレンラウリルフェニルエーテル、ポリオキシエチレンステアリルフェニルエステル、ポリオキシエチレンノニルフェニルエステルなどのポリオキシエチレン系、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース類などが使用できる。
分散剤を使用した場合には、該分散剤がトナー粒子表面に残存したままとすることもできるが、伸長および/または架橋反応後、残りの固体微粒子分散剤を溶解洗浄除去するほうがトナーの帯電面から好ましい。
伸長および/または架橋反応時間は、プレポリマー(A)の有するイソシアネート基構造とアミン類(B)の組み合わせによる反応性により選択されるが、通常10分〜40時間、好ましくは2〜24時間である。反応温度は、通常、0〜150℃、好ましくは40〜98℃である。また、必要に応じて公知の触媒を使用することができる。具体的にはジブチルチンラウレート、ジオクチルチンラウレートなどが挙げられる。
得られた乳化分散体から有機溶媒を除去するためには、系全体を徐々に昇温し、液滴中の有機溶媒を完全に蒸発除去する方法を採用することができる。あるいはまた、乳化分散体を乾燥雰囲気中に噴霧して、液滴中の非水溶性有機溶媒を完全に除去してトナー微粒子を形成し、合せて水系分散剤を蒸発除去することも可能である。乳化分散体が噴霧される乾燥雰囲気としては、空気、窒素、炭酸ガス、燃焼ガス等を加熱した気体、特に使用される最高沸点溶媒の沸点以上の温度に加熱された各種気流が一般に用いられる。スプレイドライアー、ベルトドライアー、ロータリーキルンなどの短時間の処理で十分目的とする品質が得られる。
乳化分散時の粒度分布が広く、その粒度分布を保って洗浄、乾燥処理が行われた場合、所望の粒度分布に分級して粒度分布を整えることができる。
分級操作は液中でサイクロン、デカンター、遠心分離等により、微粒子部分を取り除くことができる。もちろん乾燥後に粉体として取得した後に分級操作を行っても良いが、液体中で行うことが効率の面で好ましい。得られた不要の微粒子、または粗粒子は再び混練工程に戻して粒子の形成に用いることができる。その際微粒子、または粗粒子はウェットの状態でも構わない。
用いた分散剤は得られた分散液からできるだけ取り除くことが好ましいが、先に述べた分級操作と同時に行うのが好ましい。
得られた乾燥後のトナーの粉体と離型剤微粒子、帯電制御性微粒子、流動化剤微粒子、着色剤微粒子などの異種粒子とともに混合したり、混合粉体に機械的衝撃力を与えることによって表面で固定化、融合化させ、得られる複合体粒子の表面からの異種粒子の脱離を防止することができる。
具体的手段としては、高速で回転する羽根によって混合物に衝撃力を加える方法、高速気流中に混合物を投入し、加速させ、粒子同士または複合化した粒子を適当な衝突板に衝突させる方法などがある。装置としては、オングミル(ホソカワミクロン社製)、I式ミル(日本ニューマチック社製)を改造して、粉砕エアー圧力を下げた装置、ハイブリダイゼイションシステム(奈良機械製作所社製)、クリプトロンシステム(川崎重工業社製)、自動乳鉢などがあげられる。
(乾式トナー製造方法)
乾式トナーは以下の方法で製造することができるが勿論これらに限定されることはない。
また、現像剤を調製する際には、現像剤の流動性や保存性、現像性、転写性を高めるために、以上のようにして製造された現像剤にさらに先に挙げた疎水性シリカ微粉末等の無機微粒子を添加混合してもよい。
外添剤の混合は一般の粉体の混合機が用いられるがジャケット等を装備して、内部の温度を調節できることが好ましい。外添剤に与える負荷の履歴を変えるには、途中または漸次外添剤を加えていけばよい。もちろん混合機の回転数、転動速度、時間、温度などを変化させてもよい。はじめに強い負荷を、次に比較的弱い負荷を与えても良いし、その逆でも良い。
使用できる混合設備の例としては、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサーなどが挙げられる。
(外添剤)
本発明で得られた着色粒子の流動性や現像性、帯電性を補助するための外添剤としては、無機微粒子を好ましく用いることができる。この無機微粒子の一次粒子径は、5mμ〜2μmであることが好ましく、特に5mμ〜500mμであることが好ましい。また、BET法による比表面積は、20〜500m/gであることが好ましい。この無機微粒子の使用割合は、トナーの0.01〜5重量%であることが好ましく、特に0.01〜2.0重量%であることが好ましい。
無機微粒子の具体例としては、例えばシリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ペンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素などを挙げることができる。
この他 高分子系微粒子たとえばソープフリー乳化重合や懸濁重合、分散重合によって得られるポリスチレン、メタクリル酸エステルやアクリル酸エステル共重合体やシリコーン、ベンゾグアナミン、ナイロンなどの重縮合系、熱硬化性樹脂による重合体粒子が挙げられる。
このような流動化剤は表面処理を行って、疎水性を上げ、高湿度下においても流動特性や帯電特性の悪化を防止することができる。例えばシランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤、シリコーンオイル、変性シリコーンオイルなどが好ましい表面処理剤として挙げられる。
感光体や一次転写媒体に残存する転写後の現像剤を除去するためのクリーニング性向上剤としては、例えばステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸など脂肪酸金属塩、例えばポリメチルメタクリレート微粒子、ポリスチレン微粒子などのソープフリー乳化重合などによって製造された、ポリマー微粒子などを挙げることができる。ポリマー微粒子は比較的粒度分布が狭く、体積平均粒径が0.01から1μmのものが好ましい。
(二成分用キャリア)
本発明のトナーを二成分系現像剤に用いる場合には、磁性キャリアと混合して用いれば良く、現像剤中のキャリアとトナーの含有比は、キャリア100重量部に対してトナー1〜10重量部が好ましい。磁性キャリアとしては、粒子径20〜200μm程度の鉄粉、フェライト粉、マグネタイト粉、磁性樹脂キャリアなど従来から公知のものが使用できる。
また、被覆材料としては、アミノ系樹脂、例えば尿素−ホルムアルデヒド樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ユリア樹脂、ポリアミド樹脂、エポキシ樹脂等があげられる。またポリビニルおよびポリビニリデン系樹脂、例えばアクリル樹脂、ポリメチルメタクリレート樹脂、ポリアクリロニトリル樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂およびスチレンアクリル共重合樹脂等のポリスチレン系樹脂、ポリ塩化ビニル等のハロゲン化オレフィン樹脂、ポリエチレンテレフタレート樹脂およびポリブチレンテレフタレート樹脂等のポリエステル系樹脂、ポリカーボネート系樹脂、ポリエチレン樹脂、ポリ弗化ビニル樹脂、ポリ弗化ビニリデン樹脂、ポリトリフルオロエチレン樹脂、ポリヘキサフルオロプロピレン樹脂、弗化ビニリデンとアクリル単量体との共重合体、弗化ビニリデンと弗化ビニルとの共重合体、テトラフルオロエチレンと弗化ビニリデンと非弗化単量体とのターポリマー等のフルオロターポリマー、およびシリコーン樹脂等が使用できる。
また必要に応じて、導電粉等を被覆樹脂中に含有させてもよい。導電粉としては、金属粉、カーボンブラック、酸化チタン、酸化錫、酸化亜鉛等が使用できる。これらの導電粉は、平均粒子径1μm以下のものが好ましい。平均粒子径が1μmよりも大きくなると、電気抵抗の制御が困難になる。
また、本発明のトナーはキャリアを使用しない一成分系の磁性トナー或いは、非磁性トナーとしても用いることができる。
次に、本発明の微細粉体の充填方法を詳細に説明する。粉体を流動化し、例えばパイプによりニューマティック輸送することは、気体と粉体の混合により可能であることが良く知られている。しかし、流動化した直径20μm以下の粉体、特に直径10μm以下のトナーのような極微粉体を単に例えば容器中に排出するだけでは、粉体(粉塵)の飛散防止や充填後の脱気が不十分で、工場内の大型の設備では粉塵対策や脱気用の設備を追加して実施可能であっても、一般のオフィスなどの環境では、実用的ではない。トナーのような極微粉体は、体積に対する表面積比が極めて大であるため通常は2次凝集していることが多いが、例えばアジテータ等により2次凝集が解かれた極微粉体は、極微粉化する前の塊状材質の比重にほとんど関係なく、表面状態のみが主に反映されて、気体中をブラウン運動し続け、したがってトナーのような極微粉体をニューマティック輸送した場合には、随伴する気体から極微粉体を自然沈降により分離するには一般的に途方もない長時間を要することが経験上知られている。
図3には、本発明による微粉体の充填系が説明のため簡略化されて示されている。この微粉体の充填系において、微粉体は、充填操作中、収納粉体流動化手段である粉体流動化装置Aの上流の気体導入開口部に設けられた粉体−気体分離篩aと、充填用容器B下流の気体排出開口部に設けられた粉体−気体分離篩bとの間にのみ存在でき、分離篩a又はbから系外に出ることができない。しかし、本発明において実際には、分離篩bは充填用容器Bに設けられるのではなく、充填ノズルに設けられている。
そして、分離篩bの部分の開口面積S2に対する分離篩aの部分の開口面積S1の比が大きい場合には、その比の程度に応じて、開口面積S2の箇所では開口面積S1の箇所よりも気体の流速を大にすることができ、したがって、開口面積S1の箇所における気体流速が小さくても、気体により流動化された粉体を速やかに充填用容器Bまで排出できるような流速が得られることを意味する。これは、最近のようにOA機器の小型化、軽量化と高性能化に対する要求が高まる中で必然的にトナーや現像剤のための充填容器及び充填口径、つまり開口面積S2を小さく押さえざるを得ない状況下では、特に有利である。また、本発明における流動化された粉体のこのような速やかな充填用容器Bへの排出は、粉体流動化装置Aと充填用容器Bとを連結する途中経路が、図中点線で示されるように充分太い途中経路C1であっても、或いは1点鎖線で示されるように充分細い途中経路C2であっても変わらない。
したがって、本発明における分離篩aの部分への粉体流動化のための流入気体は、開口面積S1が開口面積S2よりも大きいときには、理屈上では、分離篩b部分における排出圧力、即ち1気圧よりも僅かでも高い圧力で流入させればよいことになるが、実際には充填系の中の流体粘度、装置内壁との摩擦及び流体体積減少等によるヘッド圧損が生じ得る。
本発明における粉体流動化のための流入気体の加圧の程度は、上記のように、常圧より僅かに高い程度でよく、あまり高圧に加圧すると反って、容器内に滞留する微粉体雲による捕捉効果が損なわれることがある。容器中に滞留する微粉体雲の量や流動化済みの微粉体の充填態様にもよるが、一般的には加圧の程度(粉体排出路として3.5m以内の長さのウレタンチューブを用いた場合)は、2〜1500ゲージヘクトpa/cm2、好ましくは3〜800ゲージヘクトpa/cm2、より好ましくは10〜500ゲージヘクトpa/cm2である。2ゲージヘクトpa/cm2未満の加圧では、充填に長時間を要する。
さらに、本発明においては、分離篩a及び分離篩bは、同一の微粉体を対象とする粉体−気体分離篩であるので、材質を変える必要がない。本発明における分離篩(通気板)としては、例えば焼結金属板、金属メッシュ、焼結樹脂パネルのようなものが挙げられる。
このような篩材料の中で、篩材料の選択は重要であり、特にトナーのような微粉体を対象として、支障なく均一な通気ができ長期間目詰りを生ぜず、比較的低圧での送風が可能であるような全ての要件を満たす篩材料の選択は困難なことでもある。本発明においては、分離篩(通気多孔板)として焼結樹脂製のパネル(商品名:フィルタレン)をアクリル円筒と下部フランジ間に挟む構造としたときに最も良好な結果が得られたので、粉体の均質で安定的な流動状態を維持するために、焼結樹脂板(商品名:フィルタレン)を用いた場合について、以下説明している。通気多孔板としてはゴアテックス、焼結金属板などもあるが、焼結樹脂板フィルタレンからの空気流入が一番均一であったことも理由の1つである。
また、本発明においては、密閉可能な充填用粉体流動化装置(粉体切出し装置)中の充填用粉体に気体を、導入気体調節弁により導入程度を調節し、充填用粉体流動化装置(粉体切出し装置)内の圧力を調節、制御し、また、気体を均等に導入する手段により、均一に流動化した後、粉体を充填用粉体流動化装置外に排出して容器に充填することが好ましい。この気体の均等導入手段により、空気を緩やかに充填用粉体流動化装置に導入して必要最小限度の、したがって粉体の例えばブラウン運動を低く抑えた流動化を達成することができる。流動化された後には粉体が高い流動性を有するため、充填用粉体流動化装置内の圧力を外圧より僅かに高くするだけで、粉体を充填用粉体流動化装置外に排出でき、排出、移送路中を充填ノズル先端まで円滑にニューマティック輸送し、充填用容器中で余分な撹拌を伴うことなく充填することができる。
気体により粉体を流動化する際、充填用粉体流動化装置の気体のみを用いるのでなく、装置外から気体を導入する場合には、気体を均一に導入することが重要であり、そのためには、例えばヘッド圧損をあまり激しく生じない目の細かい金網などの気体分配手段を通して気体を導入することが特に好ましい。流動化した粉体を排出し、容器に充填するときの開始および終了の制御は、充填用粉体流動化装置内の圧力を速やかに調節することにより行なうことができ、これは、例えば充填用粉体流動化装置に設けた圧力開放弁によって行なうことができ、また、外部の加圧手段等によって補助することができる。また、別に設けられ圧力微調整に適した粉体流速調節弁により、粉体充填操作中で充填用粉体流動化装置及び/又は粉体排出路中の圧力を変更することができ、さらに、粉体の流出状態を例えば粉体充填操作の最初と途中で変化させる圧力微調整を行なうこともできる。
また、本発明は、粉体と気体とが封入され密閉された充填用粉体収納装置を揺り動かすことで流動化した後、充填用粉体収納装置内を加圧することができるが、装置内の加圧は、外部圧力により充填用粉体収納装置の内容積を減少させることにより行なうことができ、例えば、押し潰して内容積を減容化し、粉体を装置外に排出して、充填ノズル先端までニューマティック輸送し、充填容器に充填する。この方法によれば、粉体を流動化するための装置が不要又は少なくとも小型化でき、排出するための手段を可能な限り省略できる。充填用粉体収納装置は、手で振ることができる大きさ、重さであってもよく、また、加圧空気導入用のポンプ動力により容易に振動又は揺動できる大きさ、重さであってもよい。充填用粉体収納装置は、小型化することにより、あらかじめ必要量を秤量しておくと、使い切りタイプの簡易充填機としても利用することができる。
[装置例1]
図4に、本発明の充填方法に用いる装置の一例の概要を示す。この例の粉体充填装置(1)は、密閉可能な(通常密閉)容器状の収納粉体流動化手段としての充填用粉体流動化装置(10)、この粉体流動化装置(10)の下部の気体導入開口部に、フランジで、取付取外し自在に結合され、粉体の流動層を形成するための空気の通気多孔板としての気体−粉体分離篩(2)(焼結金属板、焼結樹脂板、目の細かい金網など)を取外し自在に収納し、導入気体調節弁(20)が付された通気管としての圧縮空気配管(7)、圧縮空気配管(7)が取付取外し自在に嵌め込まれた気体導入手段としての空気ヘッダ(3)、閉鎖弁付粉体の投入口(11)、内部圧力の開放及び密封のための圧力開放弁(13)、圧力微調整用の排出粉体流速調節弁(15)、粉体流動化装置(10)内部の圧力をチェックするための圧力計(14)、粉体導出管(24)に連なる流動粉体輸送管(12)としてのポリウレタンチューブの先に取外自在に結合された粉体充填ノズル(17)から構成され、粉体充填ノズル(17)の根本には粉体充填用の粉体容器(18)の口部に嵌合する程度の大きさの、この例では裁頭円錐形のポリプロピレン環からなる軟質パッキン(19)で周囲が巻かれた形の気体−粉体分離篩(16)が設けられている。
空気ヘッダ(3)は充填用粉体流動化装置(10)内部の圧力の昇圧することができる程度の若干耐圧性のものであり、空気ヘッダ(3)には第3圧力計(P3)が設けられる。空気ヘッダ(3)に接続する圧縮空気配管(7)には順に、第1減圧弁(25)、第2減圧弁(26)、空気流量計(27)が設けられ、第1減圧弁(25)と第2減圧弁(26)の間には第1圧力計(P1)が、第2減圧弁(26)と空気流量計(27)の間には第2圧力計(P2)がそれぞれ設けられている。また、この例の粉体充填装置における粉体充填用容器(18)としては、透明の樹脂製のトナー容器のような容器を好ましく用いることができる。
この例の装置においては、充填しようとする粉体を閉鎖弁付き粉体投入口(11)から充填用粉体流動化装置(10)内に投入し、内部圧力の開放及び密封のための圧力開放弁(13)を開放しておく。一方、圧力微調整用の粉体流速調節弁(15)の操作は人力または電磁弁などで自動化されても良い。その後粉体投入口(11)の圧力開放弁(13)を閉じ、気体導入手段としての加圧空気溜である空気ヘッダ(3)に圧縮空気配管(7)から気体を導入する。この気体の流入は圧力調整、流量調整としての第1減圧弁(25)、第2減圧弁(26)により調整されても良く装置が運転中は流入を継続する。
導入された気体は、通気多孔板(2)で均一に粉体中に分散され粉体を流動化する。先端が粉体容器の底面に密着しないよう斜めまたは一部突起を備えた流動粉体輸送管(12)に連らなる充填ノズルとしての充填管(17)の先端を粉体充填用容器(18)の内部に挿入し圧力開放弁(13)を閉じると粉体はその流動化に使用した気体の圧力で充填用粉体流動化装置(10)内から流動粉体輸送管(12)に押出され、先端を粉体充填用容器(18)の内部に挿入された管状の充填ノズル(17)の先端から粉体充填用容器(18)内に排出される。
この例の装置においては、充填の最初、特に、粉体充填用容器(18)の内部が完全に空である場合には、最初、充填用粉体流動化装置(10)の粉体流速調節弁(15)の開閉度を加減して、充填用粉体流動化装置(10)からの粉体排出速度を控え目にして、充填された流動性の粉体の粉体充填用容器(18)内部でのアバレ、拡散を避け、次に、容器(18)中に滞留する微粉体雲の量が、管状充填ノズル(17)の先端から吐出される流動化済み粉体流をほぼ囲繞できる程度に増した後、粉体流速調節弁(15)をより開にして、充填操作を続けることができる。
充填ノズル(17)は粉体充填用容器(18)の充填口上部に置かれ、粉体充填用容器(18)のセット後に粉体充填用容器(18)内部に自動的に挿入されても手動で挿入されても良い。そして、圧力開放弁(13)を開放することにより輸送力となっていた充填用粉体流動化装置(10)内の内圧がなくなり粉体の排出を停止できる。
粉体の輸送原動力となっている充填用粉体流動化装置(10)の内圧をすばやく上げるために、充填用粉体流動化装置(10)には流動のための圧縮空気導入口とは別の圧縮空気導入口が流動化した粉体の粉面以上の位置に設けられても良い。粉体充填用容器(18)内の管状充填ノズル(17)は単純な配管としても、また、図に示されるように二重管としての外壁の一部を3000メッシュ以上の細かい金属スクリーンまたは焼結プラスチック板で通気構造とし、内外壁間の圧力を空気インクジェクション効果で減圧することにより、二重管外壁の通気構造を介し充填した粉体中の気体を抜き、粉体密度を更に上げても良い。
[装置例2]
図10には、本発明の装置の他の一例の概要が示される。この例の粉体充填装置(1)においては、軟質プラスチック等の可撓性材質で作成された充填用粉体流動化装置(10)、充填用粉体流動化装置(10)の下部に、フランジで取付取外し自在に結合され、粉体の流動層を形成するための空気の通気多孔板(2)(焼結金属板、焼結樹脂板、目の細かい金網など)を取外し自在に収納し、通気管(7)としての圧縮空気配管、通気管(7)が取付取外し自在に嵌め込まれた気体導入手段としての空気ヘッダ(3)、閉鎖弁付粉体の投入口(11)、内部圧力の開放及び密封のための圧力開放弁(13)、圧力微調整用の粉体流速調節弁(15)、流動粉体導出管(24)としてステンレス管、流動化された粉体の前記充填ノズル(17)への排出路(導管)(12)としての取付取外し自在に接続されたウレタンチューブ、排出路(12)(ウレタンチューブ)に取付取外し自在に接続されたステンレス製の充填ノズル(17)の根本には粉体充填用の粉体容器(18)の口部に嵌合する程度の大きさの、この例では裁頭円錐形のポリプロピレン環からなる軟質パッキン(19)で周囲が巻かれた形の気体−粉体分離篩(16)が設けられている。
但し、例1の装置と異なり、気体導入手段として、気体出口に逆止弁(8)を有し小型電動機(モータ)(5)により伸縮して空気ヘッダ(3)に空気を送る蛇腹構造のポンプ(6)を有する。ポンプ(6)は保持枠(9)中に取外自在に固定されており、小型電動機(5)によりポンプ(6)が伸縮すると、保持枠(9)を介して充填用粉体流動化装置(10)が振動され、この振動により、充填用粉体流動化装置(10)中の粉体が気体で流動化される。
この例の装置においては、充填用粉体流動化装置(10)も空気ヘッダ(3)も加圧容器特有の肉厚材料で構成する必要がなく、装置全体の軽量化、小型化を一層促進することができ、小型電動機(5)のための電源プラグ(21)を、例えば複写機に設けたコンセントに差し込むだけで、稼働させることができる。
[装置例3]
さらに、本発明においては、粉体と共に気体が充填され、一本の配管接続口がついた密閉容器で容器が人力で容易に変形するポリエチレンなどの軟質プラスチックで形成し、外部から圧力を加えて該プラスチック容器を変形させ、内圧を高めて配管接続口に接続されたウレタンチューブなどを得て粉体を充填容器の底部に導いても良い。または変形しない硬質プラスチック等の容器に少なくとも2本の配管接続口を設け、一本には0.2Mpa以下の圧縮空気を接続し、他の一本は粉体輸送管とし粉体をチューブを通して容器底部に導くようにしても良い。圧縮空気元としては通常のコンプレッサの他に、手動の例えば自転車の空気入れも代用できる。
このように、本発明においては、収納粉体流動化装置(10)の通気多孔板としての気体排出開口部(2)の開口面積を、充填ノズル(17)の通気多孔板としての気体排出開口部(16)の開口面積の1.002倍以上とすることにより、気体排出開口部(16)の気体の流速が気体排出開口部(2)の気体の流速よりも高くされて、流動化粉体を前記収納粉体流動化装置から流動化粉体の経路及び充填ノズルを経由して前記充填用容器に自然流出に近い状態で排出することができる。無論、上記のように、粉体の粉体流動化装置(10)から充填ノズル(17)までの排出を、粉体流動化装置(10)内の圧力を昇圧することにより行なってもよく、また、粉体流動化装置(10)に外部圧力を加えて粉体流動化装置(10)の内容積を減容させることにより行なってもよい。
そしてこのような本発明は、前記のように、充填される粉体が、平均体積粒径0.2μm〜20μmの静電潜像現像用トナーである場合に特に効果的である。
以下、実施例により本発明を更に説明するが、本発明はこれに限定されるものではない。また、部は重量部を示す。
[実施例1]
(1)油相Aの調製
先ず、油相Aを構成する成分である次の各成分の合成方法について述べる。
低分子ポリエステル
MB(マスターバッチ)
ケチミン
<低分子ポリエステルの合成>
冷却管、撹拌機および窒素導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物229部、ビスフェノールAプロピレンオキサイド3モル付加物529部、テレフタル酸208部、アジピン酸46部およびジブチルチンオキサイド2部を入れ、常圧で230℃で8時間反応させ、さらに10〜15mmHgの減圧で5時聞反応させた後、反応容器に無水トリメリット酸44部を入れ、180℃、常圧で2時間反応させ、[低分子ポリエステル1]を得た。[低分子ポリエステル1〕は、数平均分子量2500、重量平均分子量6700、Tg43℃、酸価25であった。
<MBの合成>
水1200部、カーボンブラック(Printex35 デクサ製)540部〔DBP吸油量=42ml/100mg、pH=9.5〕、ポリエステル樹脂1200部を加え、ヘンシェルミキサー(三井鉱山社製)で混合し、混合物を2本ロールを用いて150℃で30分混練後、圧延冷却しパルペライザーで粉砕、[マスターバッチ1]を得た。
<ケチミン(伸長剤)の合成>
撹拌棒および温度計をセットした反応容器に、イソホロンジアミン170部とメチルエチルケトン75部を仕込み、50℃で5時間反応を行い、[ケチミン化合物1]を得た。[ケチミン化合物1]のアミン価は418であった。
次に油相Aの調製例を示す。
撹拌棒および温度計をセットした容器に、[低分子ポリエステル1]378部、カルナバWAX110部、CCA(サリチル酸金属錯体E−84:オリエント化学工業)22部、酢酸エチル947部を仕込み、撹拌下80℃に昇温し、80℃のまま5時間保持した後、1時間で30℃に冷却した。
次いで容器に[マスターバッチ1]500部、酢酸エチル500部を仕込み、1時間混合し[原料溶解液1]を得た。
[原料溶解液1]1324部を容器に移し、ビーズミル(ウルトラビスコミル、アイメックス社製)を用いて、送液速度1kg/hr、ディスク周速度6m/秒、0.5mmジルコニアビーズを80体積%充填、3パスの条件で、カーボンブラック、WAXの分散を行った。
次いで、[低分子ポリエステル1]の65%酢酸エチル溶液1324部加え、上記条件のビーズミルで1パスし、[顔料・WAX分散液1]を得た([顔料・WAX分散液1]の固形分濃度(130℃、30分)は50%であった)。
[顔料・WAX分散液1]749部、[ケチミン化合物1]2.9部を容器に入れ、ホモディスパー(特殊機化製)で5,000rpmで1分間混合して油相Aを得た。
(2)油相Bの調製
冷却管、撹拌機および窒索導入管の付いた反応容器中に、ビスフェノールAエチレンオキサイド2モル付加物682部、ビスフェノールAプロピレンオキサイド2モル付加物81部、テレフタル酸283部、無水トリメリット酸22部およびジブチルチンオキサイド2部を入れ、常圧で230℃で8時間反応し、さらに10〜15mmHgの減圧で5時間反応した[中間体ポリエステル1]を得た。
[中間体ポリエステル1]は、数平均分子量2100、重量平均分子量9500、Tg55℃、酸価0.5、水酸基価51であった。
次に、冷却管、撹拌機および窒素導入管の付いた反応容器中に、[中間体ポリエステル1]410部、イソホロンジイソシアネート89部、酢酸エチル500部を入れ100℃で5時間反応し、[プレポリマー1]を得た。[プレポリマー1]の遊離イソシアネート重量%は、1.53%であった。
(3)水相の調製
撹拌棒および温度計をセットした反応容器に、水683部、メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩(エレミノールRS−30、三洋化成工業製)11部、スチレン83部、メタクリル酸83部、アクリル酸ブチル110部、過硫酸アンモニウム1部を仕込み、400回転/分で15分間撹拌したところ、白色の乳濁液が得られた。これを加熱して、系内温度75℃まで昇温し5時間反応させた。さらに、1%過硫酸アンモニウム水溶液30部加え、75℃で5時間熟成してビニル系樹脂(スチレン−メタクリル酸−アクリル酸ブチル−メタクリル酸エチレンオキサイド付加物硫酸エステルのナトリウム塩の共重合体)の水性分散液[微粒子分散液1]を得た。[微粒子分散液1]をLA−920で測定した体積平均粒径は、105nmであった。
[微粒子分散液1]の一部を乾燥して樹脂分を単離した。該樹脂分のTgは59℃であり、重量平均分子量は15万であった。この[微粒子分散液1]83部、水990部、ドデシルジフェニルェーテルジスルホン酸ナトリウムの48.5%水溶液(エレミノールMON−7):三洋化成工業製)37部、酢酸エチル90部を混合撹拌し、乳白色の液体を得た。これを[水相1]とする。
(4)乳化工程
上記に示す油相A60.4部、油相B7.4部、水相101.6部を用いてあらかじめDvが狙いの値になるような条件出しをプレ実験として実施して、ハード側の基本条件を表1のように決めた。ホールドアップの内圧に関しては、プレ実験の結果から0.001〜0.7MPaが好ましい条件であることを把握した。
次に表1の条件且つホールドアップ内圧を0.005MPaにして連続乳化を実施し、乳化分散液を得た。
Figure 2004334157
(5)トナーの製造
得られた乳化分散液を以下のように処理することでトナーを得た。
まず脱溶剤工程を次の方法で行った。
45℃まで昇温して、攪拌翼外周端周速10.5m/s、大気圧下(101.3kPa)で溶剤を除去した。脱溶剤時間は20時間を要した。
その後、濾別、洗浄、乾燥した後、実施例1のトナーを得た。
次に、得られた母体粒子100部及び帯電制御剤(オリエント化学社製 ボントロンE−84)0.25部をQ型ミキサー(三井鉱山社製)に仕込み、タービン型羽根の周速を50m/secに設定し、2分間運転、1分間休止を5サイクル行い、合計の処理時間を10分間とした。さらに、疎水性シリカ(H2000、クラリアントジャパン社製)を0.5部添加し、周速を15m/secとして30秒混合1分間休止を5サイクル行った。更に、疎水性シリカ0.5部と、疎水化酸化チタン0.5部をヘンシェルミキサーにて混合し、目開き37μmのスクリーンにて粗大粒子を除去して、ブラックトナーを得た。
[実施例2]
実施例1において、ホールドアップの内圧を0.01MPaで連続乳化を行うこと以外は実施例1と同様にして実施例2のトナーを得た。次に得られた母体粒子を実施例1と同様の処理方法により、ブラックトナーを得た。
[実施例3]
実施例1において、ホールドアップの内圧を0.2MPaで連続乳化を行うこと以外は同様の方法で実施例3のトナーを得た。次に得られた母体粒子を実施例1と同様の処理方法により、ブラックトナーを得た。
[実施例4]
実施例1において、ホールドアップの内圧を0.5MPaで連続乳化を行うこと以外は実施例1と同様にして実施例4のトナーを得た。次に得られた母体粒子を実施例1と同様の処理方法により、ブラックトナーを得た。
[実施例5]
実施例1においてホールドアップの内圧を0.7MPaで連続乳化を行うこと以外は実施例1と同様にして実施例5のトナーを得た。次に得られた母体粒子を実施例1と同様の処理方法により、ブラックトナーを得た。
[比較例1]
実施例1において連続乳化系全体を負圧にすることで、ホールドアップの内圧を−0.1MPaにして連続乳化を行った。それ以外は実施例1と同様にして比較例1のトナーを得た。次に得られた母体粒子を実施例1と同様の処理方法により、ブラックトナーを得た。
[比較例2]
実施例1においてホールドアップの内圧を0.8MPaで連続乳化を行うこと以外は実施例1と同様にして比較例2のトナーを得た。次に得られた母体粒子を実施例1と同様の処理方法により、ブラックトナーを得た。
[評 価]
実施例及び比較例のサンプルについて画像評価を次に示す細線再現性の評価を行なうことにより行なった。
(細線再現性の評価方法)
現像剤を中間転写方式の市販カラー複写機(イマジオカラー5000;リコー社製)の定着オイル部分を除去した改造機に入れ、画像占有率7%の印字率でリコー社製6000ペーパーを用いてランニングを実施した。その時の初期10枚目の画像と3万枚目の画像の細線部を原稿と比較し、光学顕微鏡で100倍で拡大観察し、ラインの抜けの状態を段階見本と比較しながら5段階で評価した。
1〜5のうち5が一番良い評価である。
また、実施例及び比較例のホールドアップの内圧と画像ランク(画像評価)の関係を図2に示す。
Figure 2004334157
以上の試験結果で示されるように、内圧が高くなるにつれてDv値が小さくなる傾向があり、Dvを狙いの値に抑えるためには0.01〜0.5MPaが適していることがわかる。また、Dv/Dpについては最適な内圧範囲が存在することがわかり、0.2MPa前後が適していることがわかる。
画像評価についてはDv、Dv/Dpが規定値を満たしていると良い結果になっている。また、図1に示すように、ホールドアップ内圧を調整することで、狙いの粒径値で且つ狭い粒度分布のトナーが生成し、結果的に良い画像が得られることがわかった。
本発明のトナーを製造するための連続乳化プロセスの一例を示す図である。 ホールドアップ内圧と画像ランクとの関係を示す図である。 本発明における微粉体の充填系を簡略化して示した図である。 本発明における微細粉体充填方法に用いる粉体充填装置の一例を示す概略図である。 本発明における微細粉体充填方法に用いる粉体充填装置の他の例を示す概略図である。
符号の説明
A 粉体流動化装置
a 粉体−気体分離篩
B 充填用容器
b 粉体−気体分離篩
1、C2 途中経路
1、S2 開口面積

Claims (16)

  1. 少なくとも2種類以上の異なる樹脂、着色剤、離型剤を含有するトナー組成物を有機溶剤に溶解または分散し、該溶解物または分散物を固体微粒子分散剤の存在する水系媒体中で連続的に乳化する乳化工程と、得られた乳化分散液から溶媒を除去してトナーを得る工程とを含むトナーの製造方法において、該乳化工程において圧力を0.005MPa〜0.7MPaとして乳化することを特徴とするトナーの製造方法。
  2. 乳化時の圧力を0.01MPa〜0.5MPaとすることを特徴とする請求項1記載のトナーの製造方法。
  3. 得られたトナーの体積分布から求めた体積基準の体積平均粒径(Dv)が3〜10μmであり、体積平均粒径を個数分布から求めた個数基準の個数平均粒径(Dp)で除した値Dv/Dpが1.05〜1.25であることを特徴とする請求項1又は2に記載のトナーの製造方法。
  4. Dv/Dpが1.05〜1.15であることを特徴とする請求項3に記載のトナーの製造方法。
  5. 請求項1〜4のいずれか1つに記載のトナーの製造方法によって得られたトナー。
  6. 粉体の流動化のための気体が導入される気体導入開口部を上流部に有する密閉可能な容器状の収納粉体流動化手段と、該気体が排出される気体排出開口部を下流部に有する充填ノズルと、前記収納粉体流動化手段と充填ノズルを連結し、排出される流動化粉体の経路とを有し、該充填ノズルは充填用容器の口を密閉可能である粉体充填手段を用いた微細粉体の充填方法であって、該微細粉体として請求項5記載のトナーを用い、該収納粉体流動化手段上流の気体導入開口部及び充填ノズル下流部の気体排出開口部に、共に気体を通過させるが粉体は通過させない粉体−気体分離篩を設けたものとすることにより、該気体排出開口部の気体の流速が前記気体排出開口部の気体の流速よりも高くされて、流動化粉体が前記収納粉体流動化装置から流動化粉体の経路及び充填ノズルを経由して前記充填用容器に自然排出されることを特徴とする微細粉体の充填方法。
  7. 充填用粉体及び気体を収納する前記密閉可能な容器状の収納粉体流動化手段中の該粉体を気体により流動化した後、該流動化された粉体を該収納粉体流動化手段から前記経路を介して前記充填ノズルまで排出することを特徴とする請求項6に記載の微細粉体の充填方法。
  8. 前記収納粉体流動化手段内への追加気体の導入により、粉体の流動化が行なわれることを特徴とする請求項6に記載の微細粉体の充填方法。
  9. 前記収納粉体流動化手段が振動されることにより、粉体の流動化が行なわれることを特徴とする請求項6に記載の微細粉体の充填方法。
  10. 前記粉体の粉体流動化手段から充填ノズルまでの排出が、該粉体流動化手段内の圧力を昇圧することにより行なわれることを特徴とする請求項6〜9のいずれか1つに記載の微細粉体の充填方法。
  11. 前記粉体の粉体流動化手段から充填ノズルまでの排出が、該粉体流動化手段に外部圧力を加えて該粉体流動化手段の内容積を減容させることにより行なわれることを特徴とする請求項6〜9いずれか1つに記載の微細粉体の充填方法。
  12. 前記粉体流動化手段が、導入気体の流速を加減可能な導入気体調節弁と、前記流動化粉体の排出経路の排出粉体の流速を調節可能な排出粉体流速調節弁とを有し、前記流動化粉体の排出量及び排出程度が、該導入気体調節弁の開閉程度の調節又は/及び該排出粉体流速調節弁の開閉程度の調節により制御されることを特徴とする請求項6〜11のいずれか1つに記載の微細粉体の充填方法。
  13. 前記粉体流動化手段が更に、全開及び全閉自在な圧力開放弁を有し、前記流動化粉体の排出の開始及び終了が該圧力開放弁の開閉により迅速に行なわれることを特徴とする請求項12に記載の微細粉体の充填方法。
  14. 前記粉体流動化手段が更に、前記粉体流動化のための気体導入手段を有し、該気体導入手段が、気体を前記粉体流動化手段に送出可能に収納する圧力容器であることを特徴とする請求項6〜13のいずれか1つに記載の微細粉体の充填方法。
  15. 前記粉体流動化手段が更に、前記粉体流動化のための気体導入手段を有し、該気体導入手段が、逆止弁付きの送気ポンプであることを特徴とする請求項6〜14のいずれか1つに記載の微細粉体の充填方法。
  16. 前記粉体流動化手段が更に、前記粉体流動化のための気体導入手段との間に、気体を該粉体流動化手段内に均一に導入するための気体分配手段を有することを特徴とする請求項6〜15のいずれか1つに記載の微細粉体の充填方法。

JP2003298325A 2003-04-17 2003-08-22 電子写真用球形トナー及び製造方法 Expired - Fee Related JP4172640B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298325A JP4172640B2 (ja) 2003-04-17 2003-08-22 電子写真用球形トナー及び製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003112459 2003-04-17
JP2003298325A JP4172640B2 (ja) 2003-04-17 2003-08-22 電子写真用球形トナー及び製造方法

Publications (2)

Publication Number Publication Date
JP2004334157A true JP2004334157A (ja) 2004-11-25
JP4172640B2 JP4172640B2 (ja) 2008-10-29

Family

ID=33513237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298325A Expired - Fee Related JP4172640B2 (ja) 2003-04-17 2003-08-22 電子写真用球形トナー及び製造方法

Country Status (1)

Country Link
JP (1) JP4172640B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178407A (ja) * 2004-09-16 2006-07-06 Ricoh Co Ltd トナー及びその製造方法、並びに、画像形成方法
JP2007079231A (ja) * 2005-09-15 2007-03-29 Konica Minolta Business Technologies Inc 現像剤充填方法、現像剤充填装置、現像装置、プロセスカートリッジ
JP2007077338A (ja) * 2005-09-16 2007-03-29 Ricoh Co Ltd 静電荷像現像用トナーの製造方法
JP2007140264A (ja) * 2005-11-21 2007-06-07 Ricoh Co Ltd 電子写真用トナーの製造方法、電子写真用トナー、電子写真用現像剤、画像形成方法及び画像形成装置
CN115581930A (zh) * 2022-09-09 2023-01-10 佛山市南海华昊华丰淀粉有限公司 一种喷雾干燥系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178407A (ja) * 2004-09-16 2006-07-06 Ricoh Co Ltd トナー及びその製造方法、並びに、画像形成方法
JP4597821B2 (ja) * 2004-09-16 2010-12-15 株式会社リコー トナー及びその製造方法、並びに、画像形成方法
JP2007079231A (ja) * 2005-09-15 2007-03-29 Konica Minolta Business Technologies Inc 現像剤充填方法、現像剤充填装置、現像装置、プロセスカートリッジ
JP2007077338A (ja) * 2005-09-16 2007-03-29 Ricoh Co Ltd 静電荷像現像用トナーの製造方法
JP2007140264A (ja) * 2005-11-21 2007-06-07 Ricoh Co Ltd 電子写真用トナーの製造方法、電子写真用トナー、電子写真用現像剤、画像形成方法及び画像形成装置
CN115581930A (zh) * 2022-09-09 2023-01-10 佛山市南海华昊华丰淀粉有限公司 一种喷雾干燥系统

Also Published As

Publication number Publication date
JP4172640B2 (ja) 2008-10-29

Similar Documents

Publication Publication Date Title
JP3793920B2 (ja) 電子写真用トナーの製造方法、このトナーを用いた現像剤、現像方法、転写方法及びプロセスカートリッジ
JP4213067B2 (ja) 画像形成用トナーおよび現像剤とその製造方法、並びにこれらを用いた画像形成方法、画像形成装置
JP4093416B2 (ja) 電子写真用トナー及びその製造方法
JP4616774B2 (ja) 静電荷像現像用トナーの製造方法
JP4030937B2 (ja) 静電荷像現像用トナーの製造方法、トナー、及び画像形成装置
JP2003177568A (ja) 乾式トナー及びその製造方法、並びに現像方法、転写方法
JP4467005B2 (ja) 画像形成粒子の製造方法、画像形成粒子、プロセスカートリッジ及び画像形成装置
JP2004037516A (ja) 静電荷像現像用トナー
JP2004226669A (ja) 静電荷像現像用トナー
JP4172640B2 (ja) 電子写真用球形トナー及び製造方法
JP2005077776A (ja) 静電荷像現像用トナーの製造方法およびトナー
JP4700679B2 (ja) 静電荷像現像用トナーの製造方法、トナー、画像形成装置及び容器
JP4219872B2 (ja) トナーとその製造方法、画像形成方法及び装置とプロセスカートリッジ
JP4090043B2 (ja) 電子写真用トナーの製造方法
JP4097265B2 (ja) 電子写真用トナーの製造方法
JP2005202420A (ja) 電子写真用トナーの製造方法
JP4178086B2 (ja) 連続乳化装置及び該装置を用いたトナーの製造方法
JP4037325B2 (ja) 電子写真用トナーおよび製造方法
JP2009282134A (ja) 連続乳化装置及び該装置を用いたトナーの製造方法
JP3908636B2 (ja) 電子写真用トナー及びその製造方法並びにこのトナーを用いた画像形成方法
JP4266796B2 (ja) 電子写真用トナー、およびその製造方法
JP4221319B2 (ja) 電子写真用トナー及び画像形成プロセス
JP4445418B2 (ja) 画像形成用トナーの製造方法
JP2004117912A (ja) 静電荷像現像用トナー
JP2005067643A (ja) 粉体の充填方法及び充填装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080806

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees