JP2004332400A - 地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラム - Google Patents

地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラム Download PDF

Info

Publication number
JP2004332400A
JP2004332400A JP2003130250A JP2003130250A JP2004332400A JP 2004332400 A JP2004332400 A JP 2004332400A JP 2003130250 A JP2003130250 A JP 2003130250A JP 2003130250 A JP2003130250 A JP 2003130250A JP 2004332400 A JP2004332400 A JP 2004332400A
Authority
JP
Japan
Prior art keywords
displacement
ground
load
load value
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003130250A
Other languages
English (en)
Inventor
Hirotaka Kawasaki
廣貴 川崎
Akio Saraumi
章雄 皿海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003130250A priority Critical patent/JP2004332400A/ja
Publication of JP2004332400A publication Critical patent/JP2004332400A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】多くの地点の地盤係数を求めるために必要な時間と労力を軽減する。
【解決手段】地盤を建設等した後、その地盤における多数地点においてFWD計測を行う(ステップS1)。そして、FWD試験を行った地点の中から、1または複数の地点を選択し、選択した地点について平板載荷試験を行う(ステップS2)。そして、同地点のFWD試験の測定結果と平板載荷試験の測定結果である地盤係数との相関関係を求め(ステップS3)、その相関関係から多数地点の地盤係数を求める(ステップS4)。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
この発明は、地盤係数を測定する地盤係数測定方法、地盤係数導出装置、建設方法およびプログラムに関する。
【0002】
【従来の技術】
従来、盛土、路盤などの地盤の剛性を評価するために道路や滑走路などの地盤係数を求める平板載荷試験方法が用いられており、平板載荷試験方法については規格に定められている(非特許文献1参照、非特許文献2参照)。
【0003】
上述した規格にあるように平板載荷試験はおおよそ次のような手順で行われる。
▲1▼水平にならした地盤に載荷板を設置する
▲2▼載荷板の上にジャッキをおき、荷重装置と組み合わせて所要の反力が得られるようにする
▲3▼載荷板の沈下量を測るためのダイヤルゲージを取り付ける
▲4▼載荷板に加ええる荷重を段階的に増加していき、荷重をあげるごとにその荷重による沈下の進行がとまるのを待って沈下量を読み取る
▲5▼沈下量が所定値に達する、または降伏点に達した場合に試験を終了する
【0004】
上記のような試験を行った後、沈下量が所定値(例えば、道路についての試験であれば、1.25mm)の時の荷重値Pと変位D(=1.25)とに以下の式により求まるk30が地盤係数として用いられる。
30=P/1.25
【0005】
【非特許文献1】
日本工業規格JIS−A1215(道路の平板載荷試験方法)
【非特許文献2】
日本道路公団規格JHS−103(繰返し平板載荷試験方法)
【0006】
【発明が解決しようとする課題】
上記のように平板載荷試験によって求められる地盤係数は地盤の剛性を評価する上で重要な値であるが、上記の平板載荷試験はおおがかりな試験であるので、平板載荷試験を行うにはある程度の時間(通常1地点の試験について30分〜60分程度)および労力が必要となる。したがって、測定対象たる地盤面積が大きい場合において、多くの地点における測定を行うためには多大な時間および労力を要することになってしまう。このような試験のための時間と労力を削減するため、測定箇所を減らすことも考えられるが、かかる場合には正確な評価を行えなくなるおそれがある。
【0007】
この発明は上記に鑑みてなされたもので、多くの地点の地盤係数を求めるために必要な時間と労力を軽減することができる地盤係数測定方法、地盤係数導出装置、建設方法およびプログラムを得ることを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1にかかる発明は、測定対象である地盤に設置した載荷面に重錘を落下させた際に発生する時系列の荷重値および前記地盤の変位を取得する工程を、前記地盤の複数の異なる測定地点で行い、各々の測定地点における時系列の荷重値および変位を取得する取得ステップと、前記複数の測定地点の中に含まれる地点であって、当該測定地点の数より少ない数の測定地点において平板載荷試験を行い、その測定地点の地盤係数を求める平板載荷試験ステップと、前記取得ステップで得られた荷重値および変位の中から、予め決められた値の変位とそれに対応する荷重値との関係を求める変位荷重値関係導出ステップと、前記平板載荷試験ステップで得られた地盤係数と、前記平板載荷試験が行われた測定地点の測定結果から前記変位荷重関係導出ステップで得られた変位と荷重値との関係とに基づいて、両者の相関関係を求める相関関係導出ステップと、前記変位荷重関係導出ステップで得られた前記複数の測定地点の各々における前記変位と荷重値の関係と、前記相関関係導出ステップで求められた相関関係とに基づいて、前記複数の測定地点における地盤係数を求める地盤係数導出ステップとを具備することを特徴とする地盤係数測定方法である。
【0009】
請求項1にかかる発明によれば、地盤に設置した載荷面に重錘を落下させた時に発生する時系列の荷重値と変位を取得する測定を複数の地点で行われる。そして、これらの複数地点のうちの1または複数の地点においては平板載荷試験が行われる。そして、平板載荷試験が行われた地点における測定により取得された時系列の荷重値と変位のうちの予め決められた値の変位とそれに対応する荷重値が抽出され、その変位と荷重値との関係が求められる。同地点における変位と荷重値の関係と、平板載荷試験により得られた地盤係数とから両者の相関関係が求められ、この相関関係を利用することで平板載荷試験を行っていない地点の地盤係数を導出することができる。
【0010】
また、請求項2にかかる発明は、請求項1にかかる発明の構成において、前記取得ステップによって取得された時系列の荷重値および変位を補正するステップであって、前記取得ステップで取得された荷重の出現時から最大値となる時までの最大荷重到達時間と、前記取得ステップで取得された変位の出現時から最大値となる時までの最大変位到達時間とを一致させるとともに、荷重および変位の出現時を一致させる補正ステップをさらに具備し、前記変位荷重関係導出ステップでは、前記補正ステップによって補正された荷重値および変位の中から、予め決められた変位とそれに対応する荷重値との関係を求めることを特徴とする。
【0011】
請求項2にかかる発明によれば、地盤に設置した載荷面に重錘を落下させた際に生じる時系列の荷重値および変位を取得し、取得した時系列の荷重値および変位が、荷重値が出現時から最大値に達するまでの最大荷重到達時間と、変位が出現時から最大値に到達するまでの最大変位到達時間とが一致するように補正されるとともに、荷重値と変位の出現時とが一致するように補正される。したがって、地盤に加える種々の荷重値とそれによって生じる変位との対応関係を求めることができ、つまり実際には非線形の関係となる荷重値と変位との関係を求めることができる。このような関係を地盤係数導出に用いることができるので、より正確な導出が可能となる。
【0012】
また、請求項3にかかる発明は、測定対象である地盤に設置した載荷面に重錘を落下させた際に発生する時系列の荷重値および前記地盤の変位を取得する工程を、前記地盤の複数の異なる測定地点で行うことで得られる各々の測定地点における時系列の荷重値および変位を取得する取得手段と、前記複数の測定地点の中に含まれる地点であって、当該測定地点の数より少ない数の測定地点において平板載荷試験を行うことで得られた測定地点の地盤係数を取得する平板載荷試験結果取得手段と、前記取得手段により得られた荷重値および変位の中から、予め決められた値の変位とそれに対応する荷重値との関係を求める変位荷重値関係導出手段と、前記平板載荷試験結果取得手段によって得られた地盤係数と、前記平板載荷試験が行われた測定地点の測定結果から前記変位荷重関係導出ステップで得られた変位と荷重値との関係とに基づいて、両者の相関関係を求める相関関係導出手段と、前記変位荷重関係導出手段により得られた前記複数の測定地点の各々における前記変位と荷重値の関係と、前記相関関係導出ステップで求められた相関関係とに基づいて、前記複数の測定地点における地盤係数を求める地盤係数導出手段とを具備することを特徴とする地盤係数導出装置である。
【0013】
請求項3にかかる発明によれば、地盤に設置した載荷面に重錘を落下させた時に発生する時系列の荷重値と変位を取得する測定を複数の地点で行われる。そして、これらの複数地点のうちの1または複数の地点においては平板載荷試験が行われる。そして、平板載荷試験が行われた地点における測定により取得された時系列の荷重値と変位のうちの予め決められた値の変位とそれに対応する荷重値が抽出され、その変位と荷重値との関係が求められる。同地点における変位と荷重値の関係と、平板載荷試験により得られた地盤係数とから両者の相関関係が求められ、この相関関係を利用することで平板載荷試験を行っていない地点の地盤係数を導出することができる。
【0014】
また、請求項4にかかる発明は、請求項3にかかる発明の構成において、前記取得手段によって取得された時系列の荷重値および変位を補正する手段であって、前記取得手段により取得された荷重の出現時から最大値となる時までの最大荷重到達時間と、前記取得ステップで取得された変位の出現時から最大値となる時までの最大変位到達時間とを一致させるとともに、荷重および変位の出現時を一致させる補正手段をさらに具備し、前記変位荷重関係導出手段は、前記補正手段によって補正された荷重値および変位の中から、予め決められた変位とそれに対応する荷重値との関係を求めることを特徴とする。
【0015】
請求項4にかかる発明によれば、地盤に設置した載荷面に重錘を落下させた際に生じる時系列の荷重値および変位を取得し、取得した時系列の荷重値および変位が、荷重値が出現時から最大値に達するまでの最大荷重到達時間と、変位が出現時から最大値に到達するまでの最大変位到達時間とが一致するように補正されるとともに、荷重値と変位の出現時とが一致するように補正される。したがって、地盤に加える種々の荷重値とそれによって生じる変位との対応関係を求めることができ、つまり実際には非線形の関係となる荷重値と変位との関係を求めることができる。このような関係を地盤係数導出に用いることができるので、より正確な導出が可能となる。
【0016】
また、請求項5にかかる発明は、地盤を建設する建設ステップと、前記建設ステップで建設された地盤に設置した載荷面に重錘を落下させた際に発生する時系列の荷重値および前記地盤の変位を取得する工程を、前記地盤の複数の異なる測定地点で行い、各々の測定地点における時系列の荷重値および変位を取得する取得ステップと、前記複数の測定地点の中に含まれる地点であって、当該測定地点の数より少ない数の測定地点において平板載荷試験を行い、その測定地点の地盤係数を求める平板載荷試験ステップと、前記取得ステップで得られた荷重値および変位の中から、予め決められた値の変位とそれに対応する荷重値との関係を求める変位荷重値関係導出ステップと、前記平板載荷試験ステップで得られた地盤係数と、前記平板載荷試験が行われた測定地点の測定結果から前記変位荷重関係導出ステップで得られた変位と荷重値との関係とに基づいて、両者の相関関係を求める相関関係導出ステップと、前記変位荷重関係導出ステップで得られた前記複数の測定地点の各々における前記変位と荷重値の関係と、前記相関関係導出ステップで求められた相関関係とに基づいて、前記複数の測定地点における地盤係数を求める地盤係数導出ステップとを具備することを特徴とする地盤建設方法である。
【0017】
請求項5にかかる発明によれば、上記請求項1にかかる発明と同様に建設した地盤の必要な複数地点のすべてに平板載荷試験を行うことなく、地盤の複数地点の地盤係数を求めることができ、必要な剛性を有する地盤建設がなされたか否かを判別することができる。
【0018】
また、請求項6にかかる発明は、コンピュータを、測定対象である地盤に設置した載荷面に重錘を落下させた際に発生する時系列の荷重値および前記地盤の変位を取得する工程を、前記地盤の複数の異なる測定地点で行うことで得られる各々の測定地点における時系列の荷重値および変位を取得する取得手段、前記複数の測定地点の中に含まれる地点であって、当該測定地点の数より少ない数の測定地点において平板載荷試験を行うことで得られた測定地点の地盤係数を取得する平板載荷試験結果取得手段、前記取得手段により得られた荷重値および変位の中から、予め決められた値の変位とそれに対応する荷重値との関係を求める変位荷重値関係導出手段、前記平板載荷試験結果取得手段によって得られた地盤係数と、前記平板載荷試験が行われた測定地点の測定結果から前記変位荷重関係導出ステップで得られた変位と荷重値との関係とに基づいて、両者の相関関係を求める相関関係導出手段、前記変位荷重関係導出手段により得られた前記複数の測定地点の各々における前記変位と荷重値の関係と、前記相関関係導出ステップで求められた相関関係とに基づいて、前記複数の測定地点における地盤係数を求める地盤係数導出手段として機能させることを特徴とするプログラムである。
【0019】
請求項6にかかるプログラムをコンピュータに読み取らせて実行させることで、上記請求項3にかかる発明と同様、地盤の必要な複数地点のすべてに平板載荷試験を行うことなく、地盤の複数地点の地盤係数を求めることができる。
【0020】
【発明の実施の形態】
以下に添付図面を参照して、この発明にかかる地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラムの好適な実施の形態を詳細に説明する。
【0021】
図1は、本発明の一実施形態にかかる地盤係数測定方法を実施するための地盤測定システムの構成を示す。同図に示すように、地盤計測装置100と、PC200とを備えており、かかる地盤測定システムでは、地盤計測装置100が地盤に加えた荷重値と地盤の変位とを計測してPC200に供給し、かかる計測結果と別途行われる平板載荷試験によって得られた地盤係数k30に基づいてPC200が地盤に関する物理量を測定するようになっている。
【0022】
地盤計測装置100は、載荷部1と、支持体2と、荷重計測手段3と、主軸4と、重錘5と、不動部6と、変位計測手段7とを備えている。
【0023】
載荷部1は、金属などの剛体で構成され、測定対象となる地盤Gの上面に接触するよう設置される。支持体2は、載荷部1の上側に設けてあり、金属などの剛体からなる。支持体2は、上支持板2aと下支持板2bとの間を複数の支柱2cで連結した構造体であり、その上支持板2aの上面には、落下した重錘5を受けるダンパー2dが設けてある。
【0024】
荷重計測手段3は、荷重を電圧の変化として検出するロードセルなどからなる。荷重計測手段3は、支持体2の下支持板2bと載荷部1との間に介在してある。この荷重計測手段3は、支持体2に重錘5を落下したときに、載荷部1に生じた地盤Gに加わる衝撃荷重を計測する。主軸4は、載荷部1に対して鉛直となる軸線に沿う態様で支持体2を介して載荷部1に連結してある。
【0025】
重錘5は、複数の錘板を組み合わせてなるものであり、その総質量を可変できる。係合部5cは、主軸4の軸線に沿って移動可能になされており、その移動可能な位置で固定できるようになっている。重錘5は、固定された当該係合部5cに係合されることでその位置が保持されており、計測時にはかかる係合状態を解除することで重錘5が保持位置から落下し、支持体2の上側に設けられたダンパー2dに衝突する。なお、係合部5cの固定位置を変動させることで、重錘5の落下高さを調整することができる。
【0026】
不動部6は、金属などの剛体からなり、重錘5の落下とは独立しており、重錘5の落下時においてその位置が変動しないようになっている。変位計測手段7は、不動部6側に設けてあり、主軸4の位置変位を計測する。変位計測手段7は、例えば主軸4に基準位置を設け、この基準位置の移動を計測する。この変位計測手段7は、重錘5を落下させたときの主軸4の位置変位から地盤Gのたわみ(変位)量を計測する。
【0027】
以上が地盤計測装置100の構成であり、荷重および変位の計測を行う場合には、係合部5cと重錘5の係合状態を解除する。これにより図2に示すように重錘5が落下してダンパー2dに衝突する。かかる重錘5の落下に伴って支持体2および載荷部1を介して地盤Gに衝撃荷重が加わり、その荷重が荷重計測手段3によって計測される。また、この荷重によって地盤Gがδだけ沈下すると、その沈下に伴って載荷部1とこれに連結される支持体2および主軸4が下方側に移動する。つまり、主軸4が地盤Gの沈下量δと同じだけ下方側に移動し、この移動量を変位計測手段7が計測することで地盤Gの変位δを計測することができるのである。すなわち、この地盤計測装置100は、地盤Gに対してFWD(Falling Weight Deflectometer)計測を行うことができる。
【0028】
図1に示すPC200には、以上のような構成の地盤計測装置100によって地盤Gの多数の地点で計測された時系列の荷重と時系列の変位とが供給され、PC200においてこれらのFWD計測結果に基づいて地盤Gに関する物理量を導出するための処理が行われる。また、後述する地盤係数の測定方法の説明で詳しく述べることとするが、当該PC200には上記の時系列の荷重と変位に加えて、複数の地点で平板載荷試験により測定された地盤係数データが供給される。
【0029】
なお、地盤計測装置100とPC200を信号ケーブル等によって接続し、計測時に計測結果をリアルタイムで地盤計測装置100からPC200に送信することで計測結果を供給するようにしてもよいし、一旦地盤計測装置100において可搬型記録媒体に計測結果を記録させ、かかる可搬型記録媒体からPC200にセットしてこれに記録された計測結果を読み出すことによりPC200が計測結果を取り込むようにしてもよいし、地盤計測装置100の計測結果のPC200への供給方法は任意である。
【0030】
PC200は、地盤計測装置100から供給される多数の地点のFWD計測結果および平板載荷試験により得られた複数地点の地盤係数に基づいて、測定対象である地盤Gの多数の地点の地盤係数を導出する処理を行うためのプログラムを内蔵するハードディスクドライブ等の外部記憶装置に記憶している。かかる外部記憶装置に記憶されているプログラムを実行することでPC200は地盤係数を導出する処理を行うが、かかる処理の詳細は後述する。
【0031】
次に、上記構成の地盤測定システムを用いた地盤Gの多数地点における地盤係数を導出する地盤係数測定方法について図3を参照しながら説明する。
【0032】
図3に示すように、まず必要とされる多数の地点において上記地盤計測装置100を利用してFWD試験を行い、各々の地点における時系列の荷重値と変位を示すデータであるFWD計測結果を得る(ステップS1)。例えば、図4に示すように地盤Gにおける所定ピッチpの格子状の各地点(図中黒丸で示す)においてFWD測定を行い、各々の測定地点におけるFWD計測結果を得る。
【0033】
なお、多数地点でのFWD計測を容易とするために上記構成の地盤計測装置100を搭載した自動車を利用し、当該自動車を各々の地点に移動させて各地点で計測を行うようにすればよい。この場合、当該自動車にGPS(Global Positioning System)機能を持たせるようにし、GPS機能によって測定位置に関する情報を取得し、取得した測定位置データとその測定位置で取得された計測結果データとを対応つけて管理するようにすれば、測定結果の管理が容易となる。
【0034】
上記のように多数の地点においてFWD試験を行い、各地点におけるFWD計測結果を取得すると、これらの多数のFWD計測地点の中から、所定数の地点を選択し、選択した地点において平板載荷試験を行う(ステップS2)。例えば、図4に示す多数のFWD計測地点のうち、白丸で囲んだ地点において平板載荷試験を行って地盤係数k30を求める。すなわち、図4中黒丸で示す地点はFWD試験のみを行う地点であり、白丸および黒丸で示す地点はFWD試験と平板載荷試験の両者を行う地点である。ここで、複数のFWD試験を行う地点の中から、どの地点を平板載荷試験を行う地点として選択するかは任意であるが、平板載荷試験を行う地点として選択する地点数は、FWD試験を行う地点の数よりも少なくしている。なお、平板載荷試験の内容は従来の技術の欄の▲1▼〜▲5▼で説明した通りであり、載荷板に段階的に荷重をかけるといったようにJIS等の規格にしたがった手法で行われる。
【0035】
このように多数の地点においてFWD試験を行うとともに、その地点の中から選択した地点については平板載荷試験を行うと、それぞれの試験により得られた結果をPC200に入力する(ステップS3)。ここでの入力方法は任意であり、上記のように計測装置とPC200を信号ケーブルで接続することでデータ通信を行う方法であってもよいし、可搬型情報記録媒体に記録しておいた測定結果データをPC200に挿入し、PC200が当該可搬型情報記録媒体に記録された測定結果データを読み取ることで入力する方法であってもよい。また、ユーザがPC200のキーボード等を操作して、測定結果を入力する方法であってもよい。
【0036】
PC200では、以上のように入力された多数地点でのFWD計測結果と選択地点の平板載荷試験の結果である地盤係数とに基づいて、多数地点の中で実測しなかった地点の地盤係数を導出する、つまり多数地点すべての地盤係数を導出する処理を行う(ステップS4)。以下、PC200によって行われる地盤係数導出処理について図5〜図14を参照しながら説明する。
【0037】
PC200は内蔵するハードディスクドライブ等の外部記憶装置に記憶しているプログラムを実行することで、図5に示すような機能を備えた地盤係数導出装置として機能する。
【0038】
同図に示すように、PC200は、荷重取得部210と、変位取得部220と、平板載荷試験結果取得部225と、補正部230と、k値導出部と、地盤係数導出部とを備える。
【0039】
荷重取得部210は、上述したように地盤計測装置100によって計測された時系列の荷重値を取得する。また、変位取得部220は、地盤計測装置100によって計測された時系列の変位を取得する。ここで、荷重取得部210および変位取得部220によるこれらのデータの取得方法は、可搬型記録媒体にこれらのデータが記録されている場合にはかかる可搬型記録媒体から当該データを読み出すことにより取得し、地盤計測装置100によって計測される値がリアルタイムでPC200に供給される場合には当該供給される値を取得する。
【0040】
また、荷重取得部210および変位取得部220によって取得される時系列の荷重値および変位は、それぞれ地盤計測装置100の荷重計測手段3および変位計測手段7によって微小時間(例えば、0.2msec)ごとに計測された値、つまり図6に示すように計測開始(t=0)から微小時間単位でステップする時刻ごとに計測された荷重値および変位の値であり、荷重取得部210および変位取得部220は図6に示すようなFWD測定結果テーブルを測定地点ごとに作成する。
【0041】
平板載荷試験結果取得部225は、上記荷重取得部210や変位取得部220と同様、可搬型記録媒体に記録されている各地点ごとの平板載荷試験の結果(地盤係数k30)を読み出す等により取得する。
【0042】
補正部230は、荷重取得部210によって取得された時系列の荷重値と、変位取得部220によって取得された時系列の変位といった測定地点ごとのFWD測定結果データを補正し、補正した時系列の荷重値および変位をk値導出部240に出力する。
【0043】
補正部230による補正処理の内容について、荷重取得部210および変位取得部220によって図7に示すような時系列の荷重値および変位が得られた場合を例に挙げて説明する。
【0044】
図8に示すように、まず補正部230は、荷重値の出現時tp0、変位の出現時td0を特定する。ここで、出現時とは、荷重取得部210によって取得される荷重値が0から変化した時点、および変位取得部220によって取得される変位が0から変化した時点である。
【0045】
このように荷重値の出現時tp0、変位の出現時td0を特定すると、これらの出現時が一致するように荷重値および変位データの時刻を修正する(ステップSa1)。すなわち、荷重値の出現時tp0=0、変位の出現時td0=0とし、出現時以降の荷重値に対応する時刻tnはtn−tp0、変位に対応する時刻tnはtn−td0にするといった補正を行う。
【0046】
このように出現時が一致(0となる)するように、荷重値および変位が対応する時刻を補正すると、補正部230は、荷重値の出現時tp0と荷重値が最大値Ppとなる時tppまでの時間である最大荷重到達時間Tpと、変位の出現時td0と、変位が最大値δpとなる時tdpまでの時間である最大変位到達時間Tdとを求める(ステップSa2)。
【0047】
以上のように最大荷重到達時間Tpと最大変位到達時間Tdを求めると、補正部230は、求めたTpとTdが一致するか否かを判別し(ステップSa3)、一致しないと判別した場合には時系列の変位データを修正する処理を行う(ステップSa4)。なお、実際に得られた計測のほとんどは、最大変位到達時間Tdが最大荷重到達時間Tpと一致しないため、ほとんどのケースでステップSa3の修正処理が行われることになる。
【0048】
時系列の変位データの修正処理では、最大変位到達時間Tdが最大荷重到達時間Tpと一致するようにする。具体的には、図9に示すように、微小時間ごと時刻に対応する変位からなるデータのうち、各時刻に対してTp/Tdを乗算する。例えば、Tp/Tdが9/10であれば各時刻に対して9/10が乗算されることになり、時刻10msecが9msecに修正されることになる。
【0049】
このように時刻の修正が終了すると、補正部230は、修正された時刻ごとの変位のデータから、修正前の時刻に対応する変位を求める。すなわち、修正前の時刻は、0から微小時間(0.2msec)ごとステップする時刻であるが、上記のようにTp/Tdを時刻に乗算することで、修正前の時刻と対応しない時刻(時刻9.18、8.1、8.28)が現れる一方で修正前の時刻(時刻9.2、10.2)に対応するものが消えてしまうことになるので、修正前の時刻ごとの荷重値からなる時系列の荷重値データとの時刻の整合性がとれない。
【0050】
したがって、補正部230は、時刻修正後の時刻と変位との関係から、修正前の時刻(0から0.2msecごとにステップする時刻)に対応する変位を補間演算を行うことにより求め、修正前の時刻とこれに対応する変位からなるデータに修正する。例えば、時刻9.2に対応する変位Xは、修正時刻9.18に対応する変位δ10.2(aとする)と、修正時刻9.36に対応する変位δ10.4(bとする)から、以下の式により求めることができる。
X=a×8/9+b×1/9
【0051】
以上のように補正部230による補正処理では、Tp=Tdの場合には(ステップSa2の判別「Yes」)、図6に示すように出現時tp0とtd0、最大時tppとtdpと一致していないデータにおける変位データの時刻をtp0−td0、つまり出現時のずれている時間分だけシフトさせて、図10に示すように両者の出現時を一致させるといった処理が行われる。
【0052】
一方、TpがTdと一致しない場合には(ステップSa2の判別「No」)、図11に示すように、修正後の変位データの時刻をtp0−td0だけシフトした後(図11左側)、最大変位到達時間Tdが最大荷重到達時間Tpと一致するように変位データを修正するといった処理が行われる(図11右側)。
【0053】
補正部230は、多数の測定地点毎に得られたFWD測定結果、つまり時系列の荷重値および変位データに対して以上のような補正処理を行い、補正後の時系列の荷重値データおよび時系列の変位データをk値導出部240に出力する(ステップSa5)。
【0054】
ここで、図12に補正部230によって補正された後のある測定地点におけるFWD測定結果から得られる荷重値と変位との関係を示す図である。同図に示すように、両者の関係は非線形であるものの、荷重値Pが大きくなるにつれて変位が大きくなる傾向を示しており、上記のような補正によって荷重の最大値Ppの時に変位が最大値δpとなるようになっている。また、変位が最大値δpから減少する傾向を見せている部分は除荷時(荷重が最大値より減少している時(図11のtppの後))の変位の遷移を示しており、荷重が除かれた場合にはその変位がδzまで減少するようになっている。なお、δzは衝撃荷重除去後にある程度の時間が経過してもそれ以上が変位が減少しない変位値、つまり塑性変形による残留変位である。
【0055】
図5に示すk値導出部240は、図12に示すような関係で表される補正部230による補正後の時系列の荷重値データおよび時系列の変位データに基づいて、以下のようにして測定対象である地盤Gに関する物理量である地盤反力係数(k値)を求める。k値導出部240は、これらの荷重値と変位との組み合わせから、k値導出のために予め決められた値(=1.25mm)の変位値とそれに対応する荷重値P1.25を抽出する。
【0056】
このようにk値導出のために用いるデータを決定すると、k値導出部240は、決定した2つの時点における荷重値と変位から以下の式により、荷重値と変位との関係を示すk値を導出する。
k=P1.25/A/1.25
【0057】
なお、Aは載荷部1の面積であり、図12においてP1.25の単位は「KN/m」となっているのに対し、変位1.25の単位は「mm」であるのでこれらのディメンジョンをあわせた上で演算を行うものとする。また、この式は載荷部1の面積Aと、ステップS2の平板載荷試験に用いられる載荷板の面積が同じである場合であり、両者が異なる場合には上記式で導出した値に載荷板の面積比に応じた補正を行う必要がある。
【0058】
k値導出部240は、このような演算を含むk値導出処理を多数の測定地点ごとのFWD測定結果について行い、各々の測定地点の測定結果から求めたk値を図5に示す地盤係数導出部250に出力する。
【0059】
地盤係数導出部250は、上記のように多数の測定地点の補正済みFWD測定結果から得られたk値と、上記ステップS2で得られた選択地点における平板載荷試験の結果である地盤係数とから図13に示す手順にしたがって多数の測定地点の地盤係数を導出する。
【0060】
まず、地盤係数導出部250は、多数地点の測定結果から得られたk値(荷重値と変位の関係)の中から、上記選択地点のFWD測定結果から得られたk値を抽出する(ステップSb1)。すなわち、図4中黒丸で示した測定地点の中から、選択地点である白丸で囲われた地点のFWD測定結果から求めたk値を抽出する。
【0061】
そして、地盤係数導出部250は、各々の選択地点におけるFWD測定結果から得られたk値と、平板載荷試験により得られた地盤係数k30とに基づいて両者の相関関係を求める(ステップSb2)。例えば、同じ地点におけるk値とk30とが図14中白丸で示すような関係であった場合、これらの関係を近似する以下のような関数を両者の相関関係として求める。かかる関数が図示のように直線で表される一次関数で近似されるのであれば、k30=k×α+βといった関数が求められる。
【0062】
このようにFWD測定結果から得られたk値と、平板載荷試験により得られるk30との相関関係を求めると、地盤係数導出部250は、FWD計測が行われた多数の地点の中で平板載荷試験が行われていない地点(図4中の黒丸のみの地点)のk値と上記のように求めた相関関係とに基づいて、これらの地点における地盤係数k30の推定値を導出する(ステップSb3)。すなわち、地盤係数導出部250は、各地点のk値を上記関数の「k」の代入することで、k30を求め、これをその地点における地盤係数k30の推定値とするのである。このような導出処理をFWD計測が行われた多数の地点の中で平板載荷試験が行われていない地点のk値すべてについて行い、これにより上記ステップS2で実測した地盤係数k30を加えてすべての地点(図4中黒丸で示す地点)における地盤係数k30を導出することができる。
【0063】
なお、このように地盤係数導出部250が導出した多数地点の地盤係数や、k値導出部240が導出したk値、補正部230により補正された測定結果などをPC200のLCD(Liquid Crystal Display)などの画像表示手段に表示したり、プリンタなどの画像形成手段によって出力したり、または外部装置にデータを出力する通信手段等によって送信したりするようにしてもよい。
以上が本実施形態にかかる地盤測定システムを利用した地盤係数測定方法であり、かかる方法によれば、多大な時間と労力を要することなく多数地点における平板載荷試験により得られる地盤係数とほぼ同視しうる地盤係数の推定値を得ることができる。すなわち、平板載荷試験は、FWD試験と比較して試験に要する時間が長く(1地点30分程度)、また試験に要する労力も大きい。これに対し、上記のような地盤計測装置100を用いたFWD試験は試験に要する時間も短く(通常数分程度)、また労力も少ない。本実施形態では、このような2つの測定にかかる負担の差に着目し、上述したように多数地点のすべてにおいて負担の大きい平板載荷試験を行うことなく、多数地点における地盤係数k30の推定値を求めることができるようにしている。
【0064】
また、本実施形態では、以上のように簡易な作業で地盤係数を求めることを可能とする一方で、上記のように実測の平板載荷試験により得られた地盤係数を利用して求めた相関関係を用い、地盤係数k30の推定値を導出しているので、導出した地盤係数の推定値の正確性も高いと考えられる。すなわち、本実施形態によれば、簡易な作業で正確性の高い地盤係数を導出することができるのである。
【0065】
また、本実施形態では、上記のように1地点のFWD計測によって最大荷重値および最大変位値のみならず時系列の荷重値および変位を得るようにしており、このような時系列の変位の中から予め決められた変位とそれに対応する荷重値を用いてk値を導出し、そのk値を利用して地盤係数導出のための相関関係を求めている。したがって、上記のような変位が所定値(1.25mm)となるときのデータを得るための複数回の試験を行う必要がなく、1地点においては1度のFWD試験を行うだけで足りる。したがって、1地点で複数回のFWD試験を行う必要がなく、測定に要する時間や労力を低減することができる。
【0066】
また、本実施形態では、FWD測定結果からk値を導出する際に、地盤計測装置100の測定結果(図11の左側)をそのまま利用するのではなく、補正部230によって最大荷重時と最大変位時とが一致し、かつ最大荷重到達時間Tpと最大変位到達時間Tdとが一致するよう補正された後、補正後のデータ(図11の右側)が用いられるようになっている。
【0067】
すなわち、補正を行わないk値導出方法では、計測された荷重値および変位の最大値のみに着目するとともに、荷重値と変位との関係が線形であることを前提としてk値を求めていため、図12おいて一点差線で示すような傾きで表されるk値が得られることになっていた。
【0068】
しかしながら、実際に計測装置による計測結果に基づく荷重値と変位の関係は線形ではない場合がほとんどであり(図12の実線参照)、上記のような線形であることを前提として求めたk値の正確性については問題があると考えられる。これに対し、本実施形態では、上述したように計測されたデータを補正することで、荷重値の最大値と変位の最大値との関係のみならず、測定対象である地盤に加える種々の荷重値(0〜最大値までの多数の値)と、それによって生じる変位との関係を求めることができる。そして、このような補正後のデータから求まる非線形な関係から変位が予め決められた値(=1.25mm)の荷重と変位との関係を示すk値を求めている。つまり、誤った前提ではなくこれらの関係が非線形であることを前提としているので、より正確なk値を導出することができる。
【0069】
以上説明したのが本実施形態にかかる地盤係数測定方法であり、以下、当該地盤係数測定方法を利用した地盤建設方法について図15を参照しながら説明する。
【0070】
まず、図15に示すように、施工者が設計条件にしたがった地盤を建設する(ステップSc1)。そして、上述した地盤係数測定方法により、建設した地盤の多数地点に対してFWD試験を行うとともに、選択地点についてはFWD試験に加えて平板載荷試験を行い、それらの結果から上記PC200等を利用して多数地点の地盤係数k30の推定値を導出する(ステップSc2)。
【0071】
そして、設計者等は上記の地盤係数測定方法により求めた各地点の地盤係数が設計条件を満たすか否かを判別する(ステップSc3)。ここで、すべての地点における地盤係数が設計条件を満たす場合には建設工事を以降の工程に進め、地盤係数が設計条件を満たさない地点がある場合にはその地点近傍に補修等を行った後(ステップSc4)、再度上記の地盤係数測定方法を実施してその地点とその地点近傍の地盤係数を導出する(ステップSc2)。
【0072】
このように建設した地盤から上記構成の地盤係数測定方法を利用して導出されるすべての地点の地盤係数が設計条件を満たすまで補修等を行っては再度地盤係数を導出するといった工程を繰り返す。
【0073】
以上のような地盤係数測定方法を利用した地盤建設では、より正確な地盤係数を多くの地点でより簡易に導出することができるので、設計条件を満たす地盤の建設作業が簡易かつ短時間でできるようになる。
【0074】
なお、本発明は、上述した実施形態に限定されるものではなく、以下に例示するような種々の変形が可能である。
(変形例1)
上述した実施形態においては、補正部230によって補正された後のデータに基づいてk値導出部240が地盤係数導出のために用いられるk値を求めるようにしていたが、補正部230による補正が行われていないデータを用いてk値を求め、当該k値を利用して地盤係数導出部250が地盤係数を求めるようにしてもよい。このように補正を行わない場合であっても、多数地点の地盤係数の推定値を導出することができるが、上記実施形態のように補正を行うことがより正確な地盤係数を導出する上では好ましい。
【0075】
(変形例2)
また、上述した実施形態では、地盤計測装置100が計測した時系列の荷重値および変位に基づいてPC200がk値や地盤係数を導出するようになっていたが、計測装置にPC200が実行していた地盤係数導出機能を持たせるといったように一体の装置として構成してもよい。また、PC200がk値導出に用いる時系列の荷重値および変位は、上記構成の地盤計測装置100によって計測されたものに限らず、他の構成のFWD装置によって計測されたものであってもよい。
【0076】
(変形例3)
また、上述した実施形態では、PC200に内蔵されるCPU等が外部記憶装置等に記憶されたプログラムを読み出して動作することにより、上述した地盤係数導出のための処理を行うようになっていたが、このようなソフトウェアにより実現される機能と同様の機能をハードウェア回路によって実現するようにしてもよいし、コンピュータにこのような処理を実行させるためのプログラムをインターネット等の通信回線を介してユーザに提供するようにしてもよいし、当該プログラムをCD−ROM(Compact Disc−Read Only Memory)などのコンピュータ読み取り可能な記録媒体に記録してユーザに提供するようにしてもよい。
【0077】
(変形例4)
また、上述した実施形態では、地盤を新たに建設した後に、上記地盤係数測定方法を実施し、これが設計条件を満たすか否かを判別するといった建設方法に本発明を適用した場合について説明したが、すでに建設されて使用されている地盤のメンテナンス等をする際に、メンテナンス対象となる地盤について上記地盤係数測定方法を実施し、その測定結果を参照してメンテナンスの要否、必要な場合にはメンテナンスの内容等を決定するようにしてもよい。
【0078】
(変形例5)
また、盛土地盤を建設する場合、必要となる高さの地盤を一時に建設するのではなく、ある地盤層を建設した後、その上層にさらに地盤層を建設するといったように複数の層を順次積層していくことで地盤が建設される。かかる盛土地盤を建設する場合にあっては、ある地盤層を建設した後に、当該地盤層について上記実施形態と同様の地盤係数測定方法を実施して多数地点の地盤係数を導出するようにしてもよい。そして、求められた地盤係数が設計条件に合致しない場合には合致するよう当該地盤層の補修等を行い、合致する場合には当該地盤層の上にさらに地盤層の建設を行う。このような地盤層の建設工程が行われるごとにその地盤層に対する地盤係数測定を行うといった工程を繰り返すことで、上記実施形態における建設方法と同様、設計条件により正確にしたがった地盤建設が可能となる。
【0079】
(変形例6)
また、上述した実施形態では、k値導出部240が取得するk値は、予め決められた値である1.25mmの変位とそれに対応する荷重値とから求められていたが、かかる1.25は地盤係数k30を求めるための現在の規格に合致するようにしたものであり、予め決められた値はこれに限定されるものではなく、必要に応じてユーザ等が設定できるようにしてもよい。
【0080】
【発明の効果】
以上説明したように、請求項1にかかる発明によれば、多数地点で行われたFWD試験の結果と、それよりも少ない地点で行われた平板載荷試験の結果から、多数地点の地盤係数を導出することができ、多数地点で負担の大きい平板載荷試験を行うことなく、簡易な作業で多くの地点の地盤係数を導出することができるという効果を奏する。
【0081】
また、請求項2にかかる発明によれば、FWD試験により得られた結果が補正されるので、より正確なFWD試験結果を用いることができ、これを基に地盤係数を導出しているので、より正確な導出が可能となるという効果を奏する。
【0082】
また、請求項3にかかる発明によれば、多数地点で行われたFWD試験の結果と、それよりも少ない地点で行われた平板載荷試験の結果から、多数地点の地盤係数を導出することができ、多数地点で負担の大きい平板載荷試験を行うことなく、簡易な作業で多くの地点の地盤係数を導出することができるという効果を奏する。
【0083】
また、請求項4にかかる発明によれば、FWD試験により得られた結果が補正されるので、より正確なFWD試験結果を用いることができ、これを基に地盤係数を導出しているので、より正確な導出が可能となるという効果を奏する。
【0084】
また、請求項5にかかる発明によれば、多数地点で負担の大きい平板載荷試験を行うことなく、簡易な作業で多くの地点の地盤係数を導出することができるという効果を奏する。
【0085】
また、請求項6にかかるプログラムをコンピュータに読み取らせて実行させることで、地盤の必要な多数地点のすべてに平板載荷試験を行うことなく、地盤の複数地点の地盤係数を求めることができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる地盤係数測定方法を実施するためのシステムの構成を示す図である。
【図2】前記システムの地盤計測装置による荷重値および変位計測時の様子を説明するための図である。
【図3】本発明の一実施形態にかかる地盤係数測定方法の手順を説明するためのフローチャートである。
【図4】前記地盤係数測定方法を実施する際にFWD試験および平板載荷試験を行う地点の一例を示す図である。
【図5】前記システムの構成要素であり、地盤係数を導出する処理を行うPCの機能構成を示すブロック図である。
【図6】前記PCによって取得されるFWD試験の測定結果の一例を示す図である。
【図7】前記PCによって行われるFWD試験の測定結果の補正内容を説明するための図であり、補正前のデータの一例を示すグラフある。
【図8】前記PCによって行われるFWD試験の測定結果の補正処理の手順を示すフローチャートである。
【図9】前記補正処理によるFWD試験の測定結果の補正内容を説明するための図である。
【図10】前記補正処理が行われた後のFWD試験の測定結果を示すグラフである。
【図11】前記補正処理前のFWD測定結果と前記補正処理後のFWD測定結果とを示すグラフである。
【図12】前記PCによって行われる処理によって、前記補正処理後のFWD試験の結果から得られる荷重値と変位との関係を示すグラフである。
【図13】前記PCによって行われる処理であって、前記FWD試験の結果から得られる荷重値と変位との関係から地盤係数を導出する処理の手順を示すフローチャートである。
【図14】前記地盤係数導出処理において用いられるFWD試験の測定結果から求めた荷重値と変位の関係と、平板載荷試験により得られた地盤係数との相関関係を示すグラフである。
【図15】前記地盤係数測定方法を利用した地盤建設方法の工程を示すフローチャートである。
【符号の説明】
1 載荷部
2 支持体
3 荷重計測手段
4 主軸
5 重錘
6 不動部
7 変位計測手段
100 地盤計測装置
200 PC
210 荷重取得部
220 変位取得部
225 平板載荷試験結果取得部
230 補正部
240 k値導出部
250 地盤係数導出部

Claims (6)

  1. 測定対象である地盤に設置した載荷面に重錘を落下させた際に発生する時系列の荷重値および前記地盤の変位を取得する工程を、前記地盤の複数の異なる測定地点で行い、各々の測定地点における時系列の荷重値および変位を取得する取得ステップと、
    前記複数の測定地点の中に含まれる地点であって、当該測定地点の数より少ない数の測定地点において平板載荷試験を行い、その測定地点の地盤係数を求める平板載荷試験ステップと、
    前記取得ステップで得られた荷重値および変位の中から、予め決められた値の変位とそれに対応する荷重値との関係を求める変位荷重値関係導出ステップと、
    前記平板載荷試験ステップで得られた地盤係数と、前記平板載荷試験が行われた測定地点の測定結果から前記変位荷重関係導出ステップで得られた変位と荷重値との関係とに基づいて、両者の相関関係を求める相関関係導出ステップと、
    前記変位荷重関係導出ステップで得られた前記複数の測定地点の各々における前記変位と荷重値の関係と、前記相関関係導出ステップで求められた相関関係とに基づいて、前記複数の測定地点における地盤係数を求める地盤係数導出ステップと
    を具備することを特徴とする地盤係数測定方法。
  2. 前記取得ステップによって取得された時系列の荷重値および変位を補正するステップであって、前記取得ステップで取得された荷重の出現時から最大値となる時までの最大荷重到達時間と、前記取得ステップで取得された変位の出現時から最大値となる時までの最大変位到達時間とを一致させるとともに、荷重および変位の出現時を一致させる補正ステップをさらに具備し、
    前記変位荷重関係導出ステップでは、前記補正ステップによって補正された荷重値および変位の中から、予め決められた変位とそれに対応する荷重値との関係を求める
    ことを特徴とする請求項1に記載の地盤係数測定方法。
  3. 測定対象である地盤に設置した載荷面に重錘を落下させた際に発生する時系列の荷重値および前記地盤の変位を取得する工程を、前記地盤の複数の異なる測定地点で行うことで得られる各々の測定地点における時系列の荷重値および変位を取得する取得手段と、
    前記複数の測定地点の中に含まれる地点であって、当該測定地点の数より少ない数の測定地点において平板載荷試験を行うことで得られた測定地点の地盤係数を取得する平板載荷試験結果取得手段と、
    前記取得手段により得られた荷重値および変位の中から、予め決められた値の変位とそれに対応する荷重値との関係を求める変位荷重値関係導出手段と、
    前記平板載荷試験結果取得手段によって得られた地盤係数と、前記平板載荷試験が行われた測定地点の測定結果から前記変位荷重関係導出ステップで得られた変位と荷重値との関係とに基づいて、両者の相関関係を求める相関関係導出手段と、
    前記変位荷重関係導出手段により得られた前記複数の測定地点の各々における前記変位と荷重値の関係と、前記相関関係導出ステップで求められた相関関係とに基づいて、前記複数の測定地点における地盤係数を求める地盤係数導出手段と
    を具備することを特徴とする地盤係数導出装置。
  4. 前記取得手段によって取得された時系列の荷重値および変位を補正する手段であって、前記取得手段により取得された荷重の出現時から最大値となる時までの最大荷重到達時間と、前記取得ステップで取得された変位の出現時から最大値となる時までの最大変位到達時間とを一致させるとともに、荷重および変位の出現時を一致させる補正手段をさらに具備し、
    前記変位荷重関係導出手段は、前記補正手段によって補正された荷重値および変位の中から、予め決められた変位とそれに対応する荷重値との関係を求める
    ことを特徴とする請求項3に記載の地盤導出装置。
  5. 地盤を建設する建設ステップと、
    前記建設ステップで建設された地盤に設置した載荷面に重錘を落下させた際に発生する時系列の荷重値および前記地盤の変位を取得する工程を、前記地盤の複数の異なる測定地点で行い、各々の測定地点における時系列の荷重値および変位を取得する取得ステップと、
    前記複数の測定地点の中に含まれる地点であって、当該測定地点の数より少ない数の測定地点において平板載荷試験を行い、その測定地点の地盤係数を求める平板載荷試験ステップと、
    前記取得ステップで得られた荷重値および変位の中から、予め決められた値の変位とそれに対応する荷重値との関係を求める変位荷重値関係導出ステップと、
    前記平板載荷試験ステップで得られた地盤係数と、前記平板載荷試験が行われた測定地点の測定結果から前記変位荷重関係導出ステップで得られた変位と荷重値との関係とに基づいて、両者の相関関係を求める相関関係導出ステップと、
    前記変位荷重関係導出ステップで得られた前記複数の測定地点の各々における前記変位と荷重値の関係と、前記相関関係導出ステップで求められた相関関係とに基づいて、前記複数の測定地点における地盤係数を求める地盤係数導出ステップと
    を具備することを特徴とする地盤建設方法。
  6. コンピュータを、
    測定対象である地盤に設置した載荷面に重錘を落下させた際に発生する時系列の荷重値および前記地盤の変位を取得する工程を、前記地盤の複数の異なる測定地点で行うことで得られる各々の測定地点における時系列の荷重値および変位を取得する取得手段、
    前記複数の測定地点の中に含まれる地点であって、当該測定地点の数より少ない数の測定地点において平板載荷試験を行うことで得られた測定地点の地盤係数を取得する平板載荷試験結果取得手段、
    前記取得手段により得られた荷重値および変位の中から、予め決められた値の変位とそれに対応する荷重値との関係を求める変位荷重値関係導出手段、
    前記平板載荷試験結果取得手段によって得られた地盤係数と、前記平板載荷試験が行われた測定地点の測定結果から前記変位荷重関係導出ステップで得られた変位と荷重値との関係とに基づいて、両者の相関関係を求める相関関係導出手段、
    前記変位荷重関係導出手段により得られた前記複数の測定地点の各々における前記変位と荷重値の関係と、前記相関関係導出ステップで求められた相関関係とに基づいて、前記複数の測定地点における地盤係数を求める地盤係数導出手段と
    して機能させることを特徴とするプログラム。
JP2003130250A 2003-05-08 2003-05-08 地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラム Pending JP2004332400A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130250A JP2004332400A (ja) 2003-05-08 2003-05-08 地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130250A JP2004332400A (ja) 2003-05-08 2003-05-08 地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2004332400A true JP2004332400A (ja) 2004-11-25

Family

ID=33505831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130250A Pending JP2004332400A (ja) 2003-05-08 2003-05-08 地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラム

Country Status (1)

Country Link
JP (1) JP2004332400A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447337C (zh) * 2005-06-13 2008-12-31 郑州大学 落锤式弯沉仪及探地雷达在道路施工过程中的应用
WO2011022932A1 (zh) * 2009-08-26 2011-03-03 中冶集团武汉勘查研究院有限公司 基床系数试验测试方法及装置
CN102776875A (zh) * 2012-08-19 2012-11-14 张望喜 利用刚性板静载试验实地测量双参数地基基床系数的方法
CN102787591A (zh) * 2012-09-11 2012-11-21 张望喜 利用刚性板动力试验测量双参数地基土体参振质量的方法
CN103669317A (zh) * 2012-09-11 2014-03-26 张望喜 利用刚性板动力试验测量双参数地基动基床系数的方法
CN104594323A (zh) * 2015-02-11 2015-05-06 浙江省工程勘察院 水平基准基床系数测试装置及利用该装置的测试方法
CN104631291A (zh) * 2013-11-15 2015-05-20 五冶集团上海有限公司 一种用于制作公路水泥稳定层试块的压实机
CN105803909A (zh) * 2016-03-24 2016-07-27 北京国道通公路设计研究院股份有限公司 沥青路面半刚性基层破损状况的评价方法
JP2016148221A (ja) * 2015-02-13 2016-08-18 公益財団法人鉄道総合技術研究所 多段載荷方式による軌道支持剛性評価装置
CN110205907A (zh) * 2019-06-06 2019-09-06 交通运输部公路科学研究所 一种冲击荷载下的冲击位置的变形峰值的计算方法
JPWO2021140596A1 (ja) * 2020-01-08 2021-07-15
WO2022267281A1 (zh) * 2021-06-21 2022-12-29 中国科学院武汉岩土力学研究所 一种路基服役性能的健康诊断装置与方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161792A (ja) * 1997-08-13 1999-03-05 Misawa Homes Co Ltd 地盤支持力測定方法及び測定器具
JP2001194989A (ja) * 2000-01-07 2001-07-19 Misawa Homes Co Ltd 地盤地図作成システムおよび地盤地図作成方法
JP2002327429A (ja) * 2001-05-02 2002-11-15 Fudo Constr Co Ltd 締固め管理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161792A (ja) * 1997-08-13 1999-03-05 Misawa Homes Co Ltd 地盤支持力測定方法及び測定器具
JP2001194989A (ja) * 2000-01-07 2001-07-19 Misawa Homes Co Ltd 地盤地図作成システムおよび地盤地図作成方法
JP2002327429A (ja) * 2001-05-02 2002-11-15 Fudo Constr Co Ltd 締固め管理方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447337C (zh) * 2005-06-13 2008-12-31 郑州大学 落锤式弯沉仪及探地雷达在道路施工过程中的应用
WO2011022932A1 (zh) * 2009-08-26 2011-03-03 中冶集团武汉勘查研究院有限公司 基床系数试验测试方法及装置
GB2488053A (en) * 2009-08-26 2012-08-15 Wuhan Surveying Geotechnical Res Inst Co Ltd Of Mcc Testing method and device for coefficient of subgrade reaction test
GB2488053B (en) * 2009-08-26 2013-07-31 Wuhan Surveying Geotechnical Res Inst Co Ltd Of Mcc Testing device for coefficient of subgrade reaction test
CN102776875A (zh) * 2012-08-19 2012-11-14 张望喜 利用刚性板静载试验实地测量双参数地基基床系数的方法
CN102787591A (zh) * 2012-09-11 2012-11-21 张望喜 利用刚性板动力试验测量双参数地基土体参振质量的方法
CN103669317A (zh) * 2012-09-11 2014-03-26 张望喜 利用刚性板动力试验测量双参数地基动基床系数的方法
CN102787591B (zh) * 2012-09-11 2014-10-22 张望喜 利用刚性板动力试验测量双参数地基土体参振质量的方法
CN104631291A (zh) * 2013-11-15 2015-05-20 五冶集团上海有限公司 一种用于制作公路水泥稳定层试块的压实机
CN104594323A (zh) * 2015-02-11 2015-05-06 浙江省工程勘察院 水平基准基床系数测试装置及利用该装置的测试方法
JP2016148221A (ja) * 2015-02-13 2016-08-18 公益財団法人鉄道総合技術研究所 多段載荷方式による軌道支持剛性評価装置
CN105803909A (zh) * 2016-03-24 2016-07-27 北京国道通公路设计研究院股份有限公司 沥青路面半刚性基层破损状况的评价方法
CN110205907A (zh) * 2019-06-06 2019-09-06 交通运输部公路科学研究所 一种冲击荷载下的冲击位置的变形峰值的计算方法
CN110205907B (zh) * 2019-06-06 2021-04-02 交通运输部公路科学研究所 一种冲击荷载下的冲击位置的变形峰值的计算方法
JPWO2021140596A1 (ja) * 2020-01-08 2021-07-15
WO2021140596A1 (ja) * 2020-01-08 2021-07-15 日本電信電話株式会社 測定システムおよび測定方法
JP7299534B2 (ja) 2020-01-08 2023-06-28 日本電信電話株式会社 測定システムおよび測定方法
WO2022267281A1 (zh) * 2021-06-21 2022-12-29 中国科学院武汉岩土力学研究所 一种路基服役性能的健康诊断装置与方法

Similar Documents

Publication Publication Date Title
JP2004332400A (ja) 地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラム
JP3644292B2 (ja) 構造物の加振試験装置及び加振試験方法
Lin et al. Interaction between laterally loaded pile and surrounding soil
Lin et al. Nondestructive quality assessment of asphalt pavements based on dynamic modulus
CN110700225B (zh) 路基动态回弹模量现场测试设备及其测量方法
US6349590B1 (en) Method and apparatus for estimating load bearing capacity of piles
JP2006234648A (ja) 杭の急速載荷試験法
Gauron et al. Forced-vibration tests and numerical modeling of the Daniel-Johnson multiple-arch dam
JP5300751B2 (ja) 路盤下の空洞診断方法および路盤の補修方法
JP3941070B2 (ja) 地盤計測方法、地盤計測プログラムおよび地盤計測装置
KR101736052B1 (ko) Tdr 및 강성측정장치를 이용한 흙의 다짐도 평가시스템 및 이를 이용한 흙의 다짐도 평가방법
RU2554978C1 (ru) Способ испытания грунтового основания сваей с ростверком
Nam et al. Improved parameter identification using additional spectral information
JP4173089B2 (ja) 動的載荷試験方法
JP2004333396A (ja) 地盤測定装置、地盤測定方法、地盤建設方法およびプログラム
Sanli et al. Testing bridges by using tiltmeter measurements
JP4803382B2 (ja) 振動特性推定方法及び振動特性推定装置
Abbiss Deformation of landfill from measurements of shear wave velocity and damping
JP2009063450A (ja) 安定状態評価装置、安定状態評価方法及び安定状態評価プログラム
Chang et al. Estimating rotational stiffness of timber joints by using fractional factorial experiments combined with computer simulation
JP2008020424A (ja) 加速度計を用いた小型fwdの計測精度向上方法
US5610336A (en) Method for estimating frequencies of machine foundations
JP3847264B2 (ja) 地震応答解析方法
JP2004150920A (ja) 建築物の損失評価システムおよびプログラム
Datta et al. Estimating Park-Ang damage index using equivalent systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603