WO2011022932A1 - 基床系数试验测试方法及装置 - Google Patents

基床系数试验测试方法及装置 Download PDF

Info

Publication number
WO2011022932A1
WO2011022932A1 PCT/CN2010/001125 CN2010001125W WO2011022932A1 WO 2011022932 A1 WO2011022932 A1 WO 2011022932A1 CN 2010001125 W CN2010001125 W CN 2010001125W WO 2011022932 A1 WO2011022932 A1 WO 2011022932A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
plate
sample
test
load
Prior art date
Application number
PCT/CN2010/001125
Other languages
English (en)
French (fr)
Inventor
陈定安
Original Assignee
中冶集团武汉勘查研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2009202276824U external-priority patent/CN201497679U/zh
Priority claimed from CN200910063740A external-priority patent/CN101650286A/zh
Application filed by 中冶集团武汉勘查研究院有限公司 filed Critical 中冶集团武汉勘查研究院有限公司
Priority to GB1205190.0A priority Critical patent/GB2488053B/en
Publication of WO2011022932A1 publication Critical patent/WO2011022932A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • G01N3/10Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
    • G01N3/12Pressure testing

Definitions

  • the invention relates to the technical field of geotechnical measurement, in particular to a test method and device for testing a bed coefficient.
  • the bed coefficient is a key parameter of the Winkler foundation model.
  • the current standard method for determining bedline coefficients is in situ Ka. Load test, there is no standard test method for determining the bed factor in the room. Only in the "Railway, Rail Traffic Rock Engineering Investigation" specification, it is proposed that the three-axis test and the consolidation test method can be used to determine the bed coefficient, but there is no specific experimental method standard and evaluation method. There are many uncertain factors in the actual operation. Hard to implement. Through the practical application of the Yangtze River Tunnel and the Tianjin Metro, the measured values are 5-10 times different from the standard values. The experimental boundary conditions of the two methods are K3. The load tests differ greatly, and the measured values are ⁇ 3. There is no answer to how the standard values are related.
  • the load test is a standard method for determining the foundation soil bed coefficient and foundation bearing capacity. There is no standard method for determining the bed coefficient in the indoor room, and the foundation bearing capacity is also calculated by measuring the physical and mechanical properties of the foundation soil. Method and apparatus.
  • the object of the invention is to develop a test instrument which is simple in structure and effective in indoors.
  • a test method for the test of the bed coefficient the steps of which are as follows:
  • Each level of load is 1 ' , 2 ' , 5 ' , 10 ' , 30 ' , lh , 2h , 3h ...,
  • the value of the axial deformation under the corresponding load is recorded.
  • the increment of the deformation per hour is less than 0.01 mm, the stability is determined, and the load of the next stage is applied; or the deformation is not more than 0. 1 mm as the stability standard.
  • the coefficient of apparent bed and apparent bearing capacity of the foundation are determined.
  • the increment of deformation per hour is less than 0.01 mm
  • the slope of the regression line at each point before the plastic load is taken as the bed coefficient.
  • a bed test test device comprises: a pressure chamber 2, a cylindrical latex film 17 is adhered in the inner cavity of the pressure chamber 2, and a lower water permeable plate 14 is arranged on the base of the inner chamber of the pressure chamber 2 from bottom to top.
  • the sample 9 and the upper permeable plate assembly are connected with an outer pressure plate 16 on the upper permeable ring plate 15 of the upper permeable plate assembly, and an inner pressure plate 21 is connected to the upper permeable inner plate 20, and the outer pressure plate 16 is sleeved outside the inner pressure plate 21, and the outer pressure plate
  • the force transmission sleeve of 16 is sleeved with a flange 22, the flange 22 and the pressure chamber 2 are bolted, and the flange 22 is also provided with a support bolt 23 and an outer pressure plate 16; the pressure chamber 2 has a slot in the base.
  • the outlet is provided with an outlet pipe 10, and the outlet pipe 10 is provided with a three-way valve 24, the 24-way valve 24-end is connected to the pressure sensor 11 through a pipe, and the other end of the three-way valve 24 is connected to a lower drainage branch pipe 19; the pressure sensor 11 is passed through a wire and a crucible
  • the collector 12 is connected, the collector 12 is connected to the computer control system; the hydraulic chamber volume adjusting cylinder 5 of the lateral pressing device, and the automatic hydraulic controller 6 respectively pass the pipeline, the valve and the pressure
  • the chamber 2 is connected to the inner cavity.
  • the upper permeable plate assembly comprises: an upper permeable ring plate 15, and an upper permeable ring plate 15 having an upper permeable inner plate 20 therein.
  • the lateral pressing device comprises: a hydraulic chamber volume adjusting cylinder 5 connected through a pipe, an inlet valve 13 and a cavity of the pressure chamber 2, and the fully automatic hydraulic controller 6 is connected to the other side of the inner chamber of the pressure chamber 2 through a pipe and a valve.
  • the above components can complete the recovery of the self-weight pressure state of the sample soil.
  • the bed coefficient test and test device, and the vertical pressurizing device comprises: an inner pressure plate 21 is provided with a partial section pressure plate force transmission column 18, a partial section pressure plate force transmission column 18 top end and pressurization
  • the bracket 1 is in contact with each other, and the displacement sensor jig 7 is mounted on the partial section pressure plate transmission force column 18.
  • the displacement sensor 8 is provided with displacement sensors 8 on both ends thereof, and the displacement sensor 8 is in contact with the upper surface of the pressure chamber 2; It is connected to the hanging plate 3, and the weight 4 is placed on the hanging plate 3; the displacement sensor 8 is connected to the collector 12 through a wire.
  • the inner chamber of the pressure chamber 2 may be a spherical inner chamber, or an inner chamber having a spherical crown at the top and a cylindrical column at the center.
  • the method and device for testing the bed coefficient of the present invention have the advantages that the device of the invention has simple structure, convenient use, short test period, and the measured result is in situ A.
  • the test results are equivalent, which can more accurately reflect the foundation soil bed coefficient and foundation bearing capacity; the test principle of the method of the invention conforms to the basic theory; from January 2008 to June 2009, three actual verifications, the test results and the standard phase Anastomosis;
  • the method for determining the bed coefficient is fast, simple and accurate.
  • FIG. 1 is a schematic view showing the structure of a bed test test device.
  • the coefficient of the base bed and the apparent bearing capacity of the foundation are determined to be less than 0. 01mm, and the slope of the regression line at each point before the plastic load is determined as the bed coefficient.
  • Ka the specification Ka.
  • a bed test test device comprises: a pressure chamber 2, a cylindrical latex film 17 is adhered in the inner cavity of the pressure chamber 2, and a lower water permeable plate 14 is arranged on the base of the inner chamber of the pressure chamber 2 from bottom to top.
  • the sample 9 and the upper permeable plate assembly are connected with an outer pressure plate 16 on the upper permeable ring plate 15 of the upper permeable plate assembly, and an inner pressure plate 21 is connected to the upper permeable inner plate 20, and the outer pressure plate 16 is sleeved outside the inner pressure plate 21, and the outer pressure plate
  • the force transmission sleeve of 16 is sleeved with a flange 22, the flange 22 and the pressure chamber 2 are bolted, and the flange 22 is also provided with a support bolt 23 and an outer pressure plate 16; the pressure chamber 2 has a slot in the base.
  • the outlet pipe is provided with an outlet pipe 10, and the outlet pipe 10 is provided with a three-way valve 24, the 24-way valve 24-end is connected to the pressure sensor 11 through a pipe, and the other end of the three-way valve 24 is connected to the lower drainage branch pipe 19; the pressure sensor 11 is passed through the wire and the collection
  • the device 12 is connected, the collector 12 is connected to the computer control system; the liquid of the lateral pressing device
  • the pressure chamber volume adjusting cylinder 5 and the automatic hydraulic controller 6 are respectively connected through the pipeline, the wide door and the inner chamber of the pressure chamber 2.
  • the upper permeable plate assembly comprises: an upper permeable ring plate 15, and an upper water ring plate 15 having an upper permeable inner plate 20 therein.
  • the lateral pressing device comprises: a hydraulic chamber volume adjusting cylinder 5 connected through a pipe, an inlet valve 13 and a cavity of the pressure chamber 2, and the fully automatic hydraulic controller 6 is connected to the other side of the inner chamber of the pressure chamber 2 through a pipe and a valve.
  • Embodiment 2 The above components can complete the recovery of the self-weight pressure state of the sample soil.
  • press 1 ', 2 ', 5', 10', 30', lh, 2h, 3h ⁇ record the axial deformation value under the corresponding load, and read the deformation for 2 minutes. More than 0. lmm is applied as a stable standard to the next level of load until the sample is destroyed;
  • a bed test test device comprises: a pressure chamber 2, a cylindrical latex film 17 is adhered in the inner cavity of the pressure chamber 2, and a lower water permeable plate 14 is arranged on the base of the inner chamber of the pressure chamber 2 from bottom to top.
  • the sample 9 and the upper permeable plate assembly are connected with an outer pressure plate 16 on the upper permeable ring plate 15 of the upper permeable plate assembly, and an inner pressure plate 21 is connected to the upper permeable inner plate 20, and the outer pressure plate 16 is sleeved outside the inner pressure plate 21, and the outer pressure plate
  • the force transmission sleeve of 16 is sleeved with a flange 22, the flange 22 and the pressure chamber 2 are bolted, and the flange 22 is also provided with a support bolt 23 and an outer pressure plate 16; the pressure chamber 2 has a slot in the base.
  • the outlet pipe is provided with an outlet pipe 10, and the outlet pipe 10 is provided with a three-way valve 24, the 24-way valve 24-end is connected to the pressure sensor 11 through a pipe, and the other end of the three-way valve 24 is connected to the lower drainage branch pipe 19; the pressure sensor 11 is passed through the wire and the collection
  • the device 12 is connected, the collector 12 is connected to the computer control system; the hydraulic chamber volume adjusting cylinder 5 of the lateral pressing device and the fully automatic hydraulic controller 6 are connected to the inner chamber of the pressure chamber 2 through pipes, valves and valves, respectively.
  • the upper permeable plate assembly comprises: an upper permeable ring plate 15, and an upper permeable ring plate 15 having an upper permeable inner plate 20 therein.
  • the lateral pressing device comprises: a hydraulic chamber volume adjusting cylinder 5 connected through a pipe, a drain valve 13 and a chamber of the pressure chamber 2, and the fully automatic hydraulic controller 6 is connected to the other side of the inner chamber of the pressure chamber 2 through a pipe and a valve.
  • the above components can complete the recovery of the self-weight pressure state of the sample soil.
  • the bed coefficient test and test device, and the vertical pressurizing device comprises: an inner pressure plate 21 is provided with a partial section pressure plate force transmission column 18, a partial section pressure plate force transmission column 18 top end and pressurization
  • the bracket 1 is in contact with each other, and the displacement sensor jig 7 is mounted on the partial section pressure plate transmission force column 18.
  • the displacement sensor 8 is provided with displacement sensors 8 on both ends thereof, and the displacement sensor 8 is in contact with the upper surface of the pressure chamber 2; It is connected to the hanging plate 3, and the weight 4 is placed on the hanging plate 3; the displacement sensor 8 is connected to the collector 12 through a wire.
  • the data is plotted on the P-S curve, and then the shallow plate load test deformation modulus calculation formula is used to determine the foundation soil bed coefficient and foundation bearing capacity.
  • a test method and device for testing a bed coefficient the steps are as follows:
  • press 1 ', 2 ', 5 ', 10', 30', lh, 2h, 3h ⁇ record the axial deformation value under the corresponding load, and read the deformation for 2 minutes. More than 0. lmm is applied as a stable standard to the next level of load until the sample is destroyed;
  • a bed test test device comprises: a pressure chamber 2, a cylindrical latex film 17 is adhered to the inner cavity of the pressure ⁇ 2, and a lower permeable plate 14 is arranged on the base of the inner chamber of the pressure chamber 2 from bottom to top.
  • the sample 9 and the upper permeable plate assembly are connected with an outer pressure plate 16 on the upper permeable ring plate 15 of the upper permeable plate assembly, and an inner pressure plate 21 is connected to the upper permeable inner plate 20, and the outer pressure plate 16 is sleeved outside the inner pressure plate 21, and the outer pressure plate
  • the force transmission sleeve of 16 is sleeved with a flange 22, the flange 22 and the pressure chamber 2 are bolted, and the flange 22 is also provided with a support bolt 23 and an outer pressure plate 16; the pressure chamber 2 has a slot in the base.
  • An outlet pipe 10 is arranged in the tank, and a three-way valve 24 is arranged on the outlet pipe 10, and the 24-way valve is connected to the pressure sensor 11 through a pipe.
  • the other end of the three-way valve 24 is connected to the lower drain branch pipe 19;
  • the pressure sensor 11 is connected to the collector 12 through the wire, the collector 12 is connected to the computer control system;
  • the hydraulic chamber volume adjusting cylinder of the lateral pressurizing device 5 the automatic hydraulic control
  • the device 6 is connected to the inner chamber of the pressure chamber 2 through a pipe, a valve, and a valve.
  • the upper permeable plate assembly comprises: an upper permeable ring plate 15, and an upper permeable ring plate 15 having an upper permeable inner plate 20 therein.
  • the lateral pressing device comprises: a hydraulic chamber volume adjusting cylinder 5 connected through a pipe, an inlet valve 13 and a cavity of the pressure chamber 2, and the fully automatic hydraulic controller 6 is connected to the other side of the inner chamber of the pressure chamber 2 through a pipe and a valve.
  • the second verification test was carried out indoors in January-March, 2009.
  • 10 thin-layer earth borrowers were used to make 10 first-grade sludge samples at the Zhanjiang site, and then simulated load tests were carried out indoors. Degree method), consolidation test.
  • the test results are shown in the following table:
  • the third verification test was carried out in March-July 2009 at the Hualing Tin Steel Group Co., Ltd. North-South Industrial Transfer Relocation Technical Transformation Project, which divided the electric furnace steelmaking, 258 hot rolling zone, bar workshop, and the whole plant. Auxiliary and four divisions of the pipe network.
  • the simulated load test is all controlled by equal consolidation degree. The detailed test results are shown in the following table: 258-plate hot rolling zone load test and simulated load test results table and physical index of test soil
  • the bed coefficient value is the ratio of pressure to deformation when the settlement is 1. 25 faces.
  • the indoor simulated load test uses the equal strain method to control the loading, that is, the deformation per hour does not exceed 0.01, and the next level of load is applied until the test is destroyed. Generally, it takes 7-10 to complete a set of samples. Day, the value of the bed coefficient in the table is the slope of the straight line segment before the plastic load. The comparison test results are equivalent, indicating that the bed coefficient and the in-situ measured by the isostatic strain simulation load test are used indoors. The value is equivalent.
  • the second verification test consisted of 9 samples, and the consolidation test was carried out separately. The control was performed by equal consolidation degree (that is, every 2 minutes, the deformation was not more than 0.1 for 2 consecutive 2 minutes). ) Simulated load test. Because the center of the sample is sandwiched by a thin layer of silt silt, the K value measured by the simulated load of the same soil differs greatly from the value of ⁇ 4. 25 ⁇ ⁇ - ⁇ 2 ), but the mathematical mean values of the two are almost the same. This is mainly due to the difference in the samples.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

说 明 书 基床系数试验测试方法及装置
技术领域
本发明涉及岩土测量技术领域,具体的说是一种基床系数试验测 试方法及装置。
背景技术
基床系数是 Winkler地基模型的关键参数。当前用于测定基床系 数的标准方法是原位 Ka。荷载试验, 没有室内测定基床系数的标准试 验方法。仅在《地下铁道、轨道交通岩石工程勘察》规范中提出了可 用三轴试验和固结试验方法确定基床系数,却没有具体的实验方法标 准与评价方法, 在实际操作中存在诸多不确定因素, 难以执行。经长 江隧道、 天津地铁等工程实际应用, 所测值与标准值相差 5- 10倍, 这两种方法的实验边界条件与 K3。载荷试验相差很大, 其所测值与 Κ3。 标准值之间是如何关联的至今也没有答案。
载荷试验是测定地基土基床系数与地基承载力的标准方法,当前 室内没有测定基床系数的标准方法,而地基承载力也是通过测定地基 土物理力学性质计算求得, 没有直接测定承载的试验方法和装置。
随着科学技术的高速发展, 建筑基坑、地铁、 隧道等工程越来越 多,用载荷试验测定基床系数受到诸多因素的制约,采用室内试验快 速准确测定基床系数有着较大的实用价值和经济价值。
发明内容
本发明的目的是研制一种结构简单、行之有效的测试仪器在室内 快速准确的测定基床系数的基床系数试验测试方法及装置。
一种基床系数试验测试方法, 其步骤如下:
①将容器按要求装配好, 往液压腔容积调节筒中注满脱气蒸馏 水; 打开进水阀, 往压力舱中注满脱气水, 排除全部气泡; 将标准校 正试样(Φ =100腿、 h=150mm)放入容器; 按 100KPa/min逐级施加侧 向压力, 直至 800 KPa, 保持 800KPa压 10分钟不漏水即可; 卸除压 力, 取出校正块;
②制备 Φ 95〜: 100腿、 H=120- 150画试样,两端要平,试样四周贴 b二 5mm的滤纸条 15〜18条; 排除管路中气体, 按要求装入试样;
③升高液压腔容积调节筒,使液面高于试样顶端 30〜50cm,使圆 筒状乳胶薄膜与试样完全接触, 并产生 3〜5 KPa左右的接触压力, 关闭进水阀;
④向上透水板组件分级施加全断面垂直荷载直至土的自重压力 为止, 根据土样所在位置, 土的自重压力大小分 1〜5级;
⑤每级荷载施加一小时后开始测读每小时的侧向压力、下端排水 量; 当排水量两小时差值小于 O. lml, 或采用底部孔压残余值不大于 垂直压力的 5%方法, 判稳施加下一级荷载;
⑥当在自重压力作用下试样固结稳定后,锁定外压板, 开启全自 动液压控制器使试样侧向压力稳定在自重固结时的终点值;
⑦卸除轴向压力, 以局部断面加荷板传力柱分 10〜12级对试样 施加轴向压力, 直至试样破坏;
⑧每级荷载按 1 ' 、 2 ' 、 5 ' 、 10' 、 30 ' 、 lh、 2h、 3h……, 记录相应荷载下的轴向变形值, 当每小时变形的增量小于 0. 01mm时 判稳,施加下一级荷载;或者按 2分钟测读一次变形不超过 0. 1mm作 为稳定标准施加下一级荷载直至试样破坏, 采用此法时不贴滤纸条;
⑨绘制 P— S曲线;
⑩根据 P— S曲线特征点确定地基土视基床系数与视承载力 当按每小时变形的增量小于 0. 01mm时判稳时取临塑荷载前各点 回归直线的斜率为基床系数;
当按每 2分钟测读一次变形不超过 0. lmm作为稳定标准施加下一 级荷载直至试样破坏时将各级压力下的变形放大六倍后直接按规范 中 Ka。的计算式计算即可。 一种基床系数试验测试装置, 包括: 压力舱 2, 压力舱 2的内腔 内粘有圆筒状乳胶薄膜 17, 压力舱 2内腔的底座上从下至上依次装 有下透水板 14、 试样 9和上透水板组件, 上透水板组件的上透水环 板 15上连有外压板 16, 上透水内板 20上连有内压板 21, 外压板 16 套在内压板 21外, 外压板 16的传力套上套有法兰盘 22, 法兰盘 22 和压力舱 2螺栓连接, 法兰盘 22上还有支撑螺栓 23和外压板 16相 接触; 压力舱 2底座内开有槽, 槽内装有出水管 10, 出水管 10上装 有三通阀门 24, 三通阀门 24—端通过管道和压力传感器 11相连, 三通阀门 24另一端连有下排水支管 19; 压力传感器 11通过导线和 釆集器 12相连,采集器 12和电脑控制系统相连;侧向加压装置的液 压腔容积调节筒 5、 全自动液压控制器 6分别通过管道、 阀门和压力 舱 2内腔相连。
上透水板组件, 包括: 上透水环板 15, 上透水环板 15内套有上 透水内板 20。
侧向加压装置,包括:液压腔容积调节筒 5通过管道、进水阀 13 和压力舱 2内腔相连,全自动液压控制器 6通过管道、阀门和压力舱 2内腔另一侧相连。
以上组件能完成恢复试样土的自重压力状态。
基床系数试验测试装置,还有竖向加压装置,竖向加压装置包括: 内压板 21上装有局部断面加压板传力柱 18, 局部断面加压板传力柱 18顶端和加压支架 1相接触, 局部断面加压板传力柱 18上装有位移 传感器夹具 7, 位移传感器夹具 7两端上装有位移传感器 8, 位移传 感器 8和压力舱 2上平面相接触;加压支架 1下部和吊盘 3相连, 吊 盘 3上放置有砝码 4; 位移传感器 8通过导线和采集器 12相连。
压力舱 2的内腔可以为球形内腔, 也可为上下为球冠、 中间为圆 柱的内腔。 本发明基床系数试验测试方法及装置的优点是:本发明装置结构 简单, 使用方便, 试验周期短, 所测结果与原位 A。测试结果等效, 能较为精确地反映出地基土基床系数与地基承载力;本发明方法测试 原理符合基本理论;经 2008年 1月至 2009年 6月先后三次实际验证, 测试结果与 标准相吻合; 本方法测定基床系数快速、 简单、准确。
附图说明 图 1为基床系数试验测试装置的结构示意图。
具体实施方式
实施例一
根据图 1所示, 一种基床系数试验测试方法, 其步骤如下:
①将容器按要求装配好, 往液压腔容积调节筒中注满脱气蒸馏 水; 打开进水阀, 往压力舱中注满脱气水, 排除全部气泡; 将标准校 正试样(Φ=100瞧、 h=150mm)放入容器; 按 100KPa/min逐级施加侧 向压力, 直至 800 KPa, 保持 800KPa压 10分钟不漏水即可; 卸除压 力, 取出校正块;
②制备 ) 95mm、 H=120mm试样, 两端要平, 试样四周贴 b=5隱的 滤纸条 15条; 排除管路中气体, 按要求装入试样;
③升高液压腔容积调节筒,使液面高于试样顶端 30cm,使圆筒状 乳胶薄膜与试样完全接触, 并产生 3 KPa左右的接触压力, 关闭进水 阀;
④向上透水板组件分级施加全断面垂直荷载直至土的自重压力 为止, 根据土样所在位置, 土的自重压力大小分 1〜5级;
⑤每级荷载施加一小时后开始测读每小时的侧向压力、下端排水 量; 当排水量两小时差值小于 0. 1ml, 判稳施加下一级荷载;
⑥当在自重压力作用下试样固结稳定后,锁定外压板, 开启全自 动液压控制器使试样侧向压力稳定在自重固结时的终点值;
⑦卸除轴向压力, 以局部断面加荷板传力柱分 10级对试样施加 轴向压力, 直至试样破坏; ⑧每级荷载按 1 ' 、 2' 、 5' 、 10' 、 30' 、 lh、 2h、 3h ······, 记录相应荷载下的轴向变形值, 当每小时变形的增量小于 0. 01mm时 判稳, 施加下一级荷载直至试样破坏;
⑨绘制 P— S曲线;
⑩根据 P— S曲线特征点确定地基土视基床系数与视承载力 按每小时变形的增量小于 0. 01mm时判稳时取临塑荷载前各点回 归直线的斜率为基床系数, 直接按规范中 Ka。的计算式计算即可。 由浅层平板载荷试验变形模量计算公式 £ = q(1V )i得:
Figure imgf000008_0001
也即是将模拟载荷试验相应压力的变形量放大 6倍即与原位 Kso 曲线等效。 一种基床系数试验测试装置, 包括: 压力舱 2, 压力舱 2的内腔 内粘有圆筒状乳胶薄膜 17, 压力舱 2内腔的底座上从下至上依次装 有下透水板 14、 试样 9和上透水板组件, 上透水板组件的上透水环 板 15上连有外压板 16, 上透水内板 20上连有内压板 21, 外压板 16 套在内压板 21外, 外压板 16的传力套上套有法兰盘 22, 法兰盘 22 和压力舱 2螺栓连接, 法兰盘 22上还有支撑螺栓 23和外压板 16相 接触; 压力舱 2底座内开有槽, 槽内装有出水管 10, 出水管 10上装 有三通阀门 24, 三通阀门 24—端通过管道和压力传感器 11相连, 三通阀门 24另一端连有下排水支管 19; 压力传感器 11通过导线和 采集器 12相连,采集器 12和电脑控制系统相连; 侧向加压装置的液 压腔容积调节筒 5、 全自动液压控制器 6分别通过管道、 阔门和压力 舱 2内腔相连。
上透水板组件, 包括: 上透水环板 15, 上 it水环板 15内套有上 透水内板 20。
侧向加压装置,包括:液压腔容积调节筒 5通过管道、进水阀 13 和压力舱 2内腔相连,全自动液压控制器 6通过管道、阀门和压力舱 2内腔另一侧相连。
以上组件能完成恢复试样土的自重压力状态。 实施例二
根据图 1所示, 一种基床系数试验测试方法, 其步骤如下:
①将容器按要求装配好, 往液压腔容积调节筒中注满脱气蒸馏 水; 打开进水阀, 往压力舱中注满脱气水, 排除全部气泡; 将标准校 正试样( Φ =100讓、 h=150画)放入容器; 按 100KPa/min逐级施加侧 向压力, 直至 800 KPa, 保持 800KPa压 10分钟不漏水即可; 卸除压 力, 取出校正块;
②制备 Φ ΙΟΟπιπκ H=150mm试样, 两端要平, 试样四周贴 b=5腿 的滤纸条 18条; 排除管路中气体, 按要求装入试样;
③升高液压腔容积调节筒,使液面高于试样顶端 50cm,使圆筒状 乳胶薄膜与试样完全接触, 并产生 5 KPa左右的接触压力, 关闭进水 阀;
④向上透水板组件分级施加全断面垂直荷载直至土的自重压力 为止, 根据土样所在位置, 土的自重压力大小分 1〜5级;
⑤每级荷载施加一小时后开始测读每小时的侧向压力、下端排水 量; 当底部孔压残余值不大于垂直压力的 5%时, 判稳施加下一级荷 载;
⑥当在自重压力作用下试样固结稳定后, 锁定外压板, 开启全自 动液压控制器使试样侧向压力稳定在自重固结时的终点值;
⑦卸除轴向压力, 以局部断面加荷板传力柱分 12级对试样施加 轴向压力, 直至试样破坏;
⑧每级荷载按 1 ' 、 2 ' 、 5' 、 10' 、 30' 、 lh、 2h、 3h ······, 记录相应荷载下的轴向变形值, 按 2分钟测读一次变形不超过 0. lmm 作为稳定标准施加下一级荷载直至试样破坏;
⑨绘制 P— S曲线;
⑩根据 P— S曲线特征点确定地基土视基床系数与视承载力 当按每 2分钟测读一次变形不超过 0. lmm作为稳定标准施加下一 级荷载直至试样破坏时将各级压力下的变形放大六倍后直接按规范 中 K3。的计算式计算即可。 由浅层平板载荷试验变形模量计算公式 ° _ ° " ^得:
Figure imgf000010_0001
也即是将模拟载荷试验相应压力的变形量放大 6倍即与原位 K3。 曲线等效。 一种基床系数试验测试装置, 包括: 压力舱 2, 压力舱 2的内腔 内粘有圆筒状乳胶薄膜 17, 压力舱 2内腔的底座上从下至上依次装 有下透水板 14、 试样 9和上透水板组件, 上透水板组件的上透水环 板 15上连有外压板 16, 上透水内板 20上连有内压板 21, 外压板 16 套在内压板 21外, 外压板 16的传力套上套有法兰盘 22, 法兰盘 22 和压力舱 2螺栓连接, 法兰盘 22上还有支撑螺栓 23和外压板 16相 接触; 压力舱 2底座内开有槽, 槽内装有出水管 10, 出水管 10上装 有三通阀门 24, 三通阀门 24—端通过管道和压力传感器 11相连, 三通阀门 24另一端连有下排水支管 19; 压力传感器 11通过导线和 采集器 12相连,采集器 12和电脑控制系统相连;侧向加压装置的液 压腔容积调节筒 5、 全自动液压控制器 6分别通过管道、 阀门和压力 舱 2内腔相连。
上透水板组件, 包括: 上透水环板 15, 上透水环板 15内套有上 透水内板 20。
侧向加压装置,包括: 液压腔容积调节筒 5通过管道、迸水阀 13 和压力舱 2内腔相连,全自动液压控制器 6通过管道、阀门和压力舱 2内腔另一侧相连。
以上组件能完成恢复试样土的自重压力状态。
基床系数试验测试装置,还有竖向加压装置,竖向加压装置包括: 内压板 21上装有局部断面加压板传力柱 18, 局部断面加压板传力柱 18顶端和加压支架 1相接触, 局部断面加压板传力柱 18上装有位移 传感器夹具 7, 位移传感器夹具 7两端上装有位移传感器 8, 位移传 感器 8和压力舱 2上平面相接触;加压支架 1下部和吊盘 3相连, 吊 盘 3上放置有砝码 4; 位移传感器 8通过导线和采集器 12相连。 根据以上全部组件得出数据绘制 P— S曲线, 再由浅层平板载荷 试验变形模量计算公式测定地基土基床系数与地基承载力。 实施例三
根据图 1所示,一种基床系数试验测试方法及装置,其步骤如下:
①将容器按要求装配好, 往液压腔容积调节筒中注满脱气蒸馏 水; 打开进水阀, 往压力舱中注满脱气水, 排除全部气泡; 将标准校 正试样(Φ =100πιπι、 h=150mm)放入容器; 按 100KPa/min逐级施加侧 向压力, 直至 800 KPa, 保持 800KPa压 10分钟不漏水即可; 卸除压 力, 取出校正块;
②制备 Φ 98πππ、 Η=120- 150腿试样,两端要平,试样四周贴 b=5ram 的滤纸条 16条; 排除管路中气体, 按要求装入试样;
③升高液压腔容积调节筒,使液面高于试样顶端 40cm,使圆筒状 乳胶薄膜与试样完全接触, 并产生 4 KPa左右的接触压力, 关闭进水 阀;
④向上透水板组件分级施加全断面垂直荷载直至土的自重压力 为止, 根据土样所在位置, 土的自重压力大小分 1〜5级;
⑤每级荷载施加一小时后开始测读每小时的侧向压力、下端排水 量; 当排水量两小时差值小于 0. 1ml, 判稳施加下一级荷载;
⑥当在自重压力作用下试样固结稳定后,锁定外压板, 开启全自 动液压控制器使试样侧向压力稳定在自重固结时的终点值;
⑦卸除轴向压力, 以局部断面加荷板传力柱分 11级对试样施加 轴向压力, 直至试样破坏;
⑧每级荷载按 1 ' 、 2 ' 、 5 ' 、 10' 、 30' 、 lh、 2h、 3h ······, 记录相应荷载下的轴向变形值, 按 2分钟测读一次变形不超过 0. lmm 作为稳定标准施加下一级荷载直至试样破坏;
⑨绘制 P— S曲线;
⑩根据 P— S曲线特征点确定地基土视基床系数与视承载力 当按每 2分钟测读一次变形不超过 0. lmm作为稳定标准施加下一 级荷载直至试样破坏时将各级压力下的变形放大六倍后直接按规范 中 Ka。的计算式计算即可。 由浅层平板载荷试验变形模量计算公式 V ) 得. - 也即是将模拟载荷试验相应压力的变形量放大 6倍即与原位 Kso 曲线等效。 一种基床系数试验测试装置, 包括: 压力舱 2, 压力炝 2的内腔 内粘有圆筒状乳胶薄膜 17, 压力舱 2内腔的底座上从下至上依次装 有下透水板 14、 试样 9和上透水板组件, 上透水板组件的上透水环 板 15上连有外压板 16, 上透水内板 20上连有内压板 21, 外压板 16 套在内压板 21外, 外压板 16的传力套上套有法兰盘 22, 法兰盘 22 和压力舱 2螺栓连接, 法兰盘 22上还有支撑螺栓 23和外压板 16相 接触; 压力舱 2底座内开有槽, 槽内装有出水管 10, 出水管 10上装 有三通阀门 24, 三通阀门 24—端通过管道和压力传感器 11相连, 三通阀门 24另一端连有下排水支管 19; 压力传感器 11通过导线和 采集器 12相连,采集器 12和电脑控制系统相连;侧向加压装置的液 压腔容积调节筒 5、 全自动液压控制器 6分别通过管道、 阀门和压力 舱 2内腔相连。
上透水板组件, 包括: 上透水环板 15, 上透水环板 15内套有上 透水内板 20。
侧向加压装置,包括:液压腔容积调节筒 5通过管道、进水阀 13 和压力舱 2内腔相连,全自动液压控制器 6通过管道、阀门和压力舱 2内腔另一侧相连。
以上组件能完成恢复试样土的自重压力状态。 试验验证
为了检验试验分析的正确性,于 2008年 9月至 2009年 5月先后 进行三次现场与室内比对试验研究。
第一次 2009年 9月- 10月在湛江工地选取了一块长 80m, 宽 15m 地层稳定的场地, 沿长轴均匀布了 6个测点。 每个测定在 1. lm-L 6m 范围内分别进行一次 Ka。载荷试验, 并在 1#、 3#试坑内采取原样进行 室内三轴试验、 模拟荷载试验 (稳定标准采用等应变控制), 为了分 析饱和软土在单向荷载作用下的变形特征,在试验中记录了变形与时 间的关系, 试验结果见下图:
原位载荷试验成果表 (一) 平 测点号 1 2 3 4 5 6 均 值 测点深
1.1 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.1 1.6 1.1 1.6 度
-1.6 -2.3 -1.6 2.3 -1.6 -2.3 -1.6 2.3 -1.6 -2.3 -1.6 2.3 m-m
基床系
数 K30 9.8 11.7 7.5 11.2 14.3 10.9 11.3 8.5 9.3 14.2 16.1 21.0 12.2 MPa/m
室内试验成果表 (二)
Figure imgf000015_0001
第二次验证试验于 2009年 1-3月在室内进行,首先用 108 讓的 薄壁取土器在湛江工地采取了 10件淤泥一级试样, 然后在室内分别 进行模拟载荷试验(等固结度法)、 固结试验。 试验成果见下表:
Figure imgf000016_0001
第三次验证试验于 2009年 3月至 7月在华菱锡钢集团有限公司 南北产业转移搬迁技术改造工程进行的, 共划分电炉炼钢、 258 热 连轧区域、棒材车间、全厂公辅及管网四个分区。本次模拟载荷试验 全部采用等固结度控制, 详细试验结果见下表: 258皿热连轧区域载荷试验与模拟载荷试验成果表及试验土的物理性指标
试 验 成 果表
Figure imgf000017_0001
全厂公辅及管网载荷试验与模拟载荷试验成果表及试验土的物理性指标
试 验 成 果 表
Figure imgf000018_0001
电炉炼钢载荷试验与模拟载荷试验成果表及试验土的物理性指标
试 验 成 果 表
Figure imgf000019_0001
棒材车间载荷试验与模拟载荷试验成果表及试验土的物理性指标
诚 验 成 果表
Figure imgf000020_0001
第三次验证试验统计表
Figure imgf000021_0001
注: ① ESl-2. 值取勘察报告的统计平均值。
②基床系数值为沉降 1. 25麵时压力与变形的比值。 第一次验证试验时, 室内模拟载荷试验采用等应变法控制加荷, 即每小 时变形不超过 0. 01麵, 施加下一级荷载, 直至试验破坏, 一般做一组样品耗 时 7- 10天, 表中基床系数值是取临塑荷载之前直线段的斜率, 比对试验结果 相当,说明室内采用等应变法模拟载荷试验测定的基床系数与原位 。值相当。
第二次验证试验共 9个样,分别进行了固结试验,采用等固结度控制(即 每 2分钟测读一次, 连续 2个 2分钟变形不大于 0. 1 醒, 施加下一级荷载) 的模拟载荷试验。 由于试样中央夹薄层粉砂粉土, 同一个土的模拟载荷测得 的 K值与 ^4. 25 ί Ι-Κο2 ) 值相差较大, 但二者对应的数学平均值几乎一 样, 这主要是由于样品的差异性造成的。
第三次验证试验时结合生产任务一并进行的,共进行了 25组 A。测试; 29 组模拟载荷试验, 研究对象为地面下 1. 0- 5. 0m范围的粉质粘土层与淤泥质粉 质粘土层。 取场地勘察报告中土工试验成果中的 的平均值按公式 =4. 25 -Ko2 计算基床系数, 三者所得基床系数值基本吻合, 且均在规范推荐 值范围内, 这说明采用等固结度控制法模拟载荷试验与公式)r=4.25 -Ko2 是可行的。
通过分析固结试验与模拟载荷试验每级荷载下变形与时间的特征, 经过 变换坐标发现, 某一时刻的沉降与所经历的时间比值的倒数与历时在直角坐
t/As = at + b=> As =
标系中呈线性关系, 即 : W + 6 当 ί→∞时, 一", 也即是说, 在某一单项均布荷载作用下, 试样有一 个理论最大压缩量。
通过 A。载荷、 模拟载荷与公式 -4'2^12)^1比对分析, 采用模拟载 荷与公式 -4'2^— ^2)^ ^求取基床系数是可行的, 只是采用等应变法耗时太 长, 在实际应用时不便, 宜采用等固结度控制法为宜。
公式 =425(i- 。2) j 在本次验证试验时只进行了正常固结土的比 对, 只适用正常固结土, 不能用于超固结土。

Claims

权 利 要 求 书
1、 一种基床系数试验测试方法, 其特征在于: 其步骤如下:
①将容器按要求装配好, 往液压腔容积调节筒中注满脱气蒸馏水; 打开 进水阀, 往压力舱中注满脱气水, 排除全部气泡; 将标准校正试样放入容器; 按 100KPa/min逐级施加侧向压力, 直至 800 KPa, 保持 800KPa压 10分钟不 漏水即可; 卸除压力, 取出校正块;
②制备试样,两端要平,试样四周贴滤纸条 15〜18条;排除管路中气体, 按要求装入试样;
③升高液压腔容积调节筒, 使液面高于试样顶端 30〜50 η, 使圆筒状乳 胶薄膜与试样完全接触, 并产生 3〜5 KPa左右的接触压力, 关闭进水阀;
④向上透水板组件分级施加全断面垂直荷载直至土的自重压力为止, 根 据土样所在位置, 土的自重压力大小分 1〜5级;
⑤每级荷载施加一小时后开始测读每小时的侧向压力、 下端排水量; 当 排水量两小时差值小于 0. 1ml , 或采用底部孔压残余值不大于垂直压力的 5% 方法, 判稳施加下一级荷载;
⑥当在自重压力作用下试样固结稳定后, 锁定外压板, 开启全自动液压 控制器使试样侧向压力稳定在自重固结时的终点值;
⑦卸除轴向压力, 以局部断面加荷板传力柱分 10〜12级对试样施加轴向 压力, 直至试样破坏;
⑧每级荷载按 1 ' 、 2' 、 5 ' 、 10 ' 、 30' 、 lh、 2h、 3h ······ , 记录相应 荷载下的轴向变形值, 当每小时变形的增量小于 0. 01mm时判稳, 施加下一级 荷载; 或者按 2分钟测读一次变形不超过 0. lmm作为稳定标准施加下一级荷 载直至试样破坏;
⑨绘制 P— s曲线;
⑩根据 P— s曲线特征点确定地基土视基床系数与视承载力
当按每小时变形的增量小于 0. 01mm时判稳时取临塑荷载前各点回归直线 的斜率为基床系数;
当按每 2分钟测读一次变形不超过 0. lmm作为稳定标准施加下一级荷载 直至试样破坏时将各级压力下的变形放大六倍后直接按规范中 Kso的计算式计 算即可。
2、 一种基床系数试验测试装置, 包括: 压力舱 (2), 其特征在于: 压力舱 (2)的内腔内粘有圆筒状乳胶薄膜 (17), 压力舱 (2)内腔的底座上从下至上依次装 有下透水板 04)、 试样 (9)和上透水板组件, 上透水板组件的上透水环板 (15)上连 有外压板 (1 , 上透水内板 GO)上连有内压板 (21), 外压板 (1套在内压板 (21)外, 外压板 (1©的传力套上套有法兰盘 (22), 法兰盘 (22)和压力舱 (2)螺栓连接, 法 兰盘 (22)上还有支撑螺栓 (23)和外压板 (1相接触; 压力舱 (2)底座内开有槽, 槽内装有出水管 (10), 出水管 CIO)上装有三通阀门(24), 三通阀门(24)—端通过 管道和压力传感器 (ID相连, 三通阀门(24)另一端连有下排水支管 压力传 感器 αΐ)通过导线和采集器 α相连, 采集器 0¾和电脑控制系统相连; 侧向加压 装置的液压腔容积调节筒 (5)、 全自动液压控制器 (6)分别通过管道、 阀门和压 力舱 (2)内腔相连。
3、 根据权利要求 2所述的基床系数试验测试装置, 其特征在于: 上透水 板组件, 包括: 上透水环板 (15), 上透水环板 (15)内套有上透水内板 。
4、 根据权利要求 2所述的基床系数试验测试装置, 其特征在于: 侧向加 压装置, 包括: 液压腔容积调节筒 (5)通过管道、 进水阀 α和压力舱 (2)内腔相 连, 全自动液压控制器 (6)通过管道、 阀门和压力舱 (2)内腔另一侧相连。
5、 根据权利要求 2所述的基床系数试验测试装置, 其特征在于: 基床系 数试验测试装置, 还有竖向加压装置, 竖向加压装置包括: 内压板 (21)上装 有局部断面加压板传力柱 (18), 局部断面加压板传力柱 (1®顶端和加压支架 (1)相 接触, 局部断面加压板传力柱 α©上装有位移传感器夹具 (7), 位移传感器夹具 (7)两端上装有位移传感器 (8), 位移传感器 (8)和压力舱 (2)上平面相接触; 加压 支架 (1)下部和吊盘 (3)相连, 吊盘 (3)上放置有砝码 (4); 位移传感器 (8)通过导线 和采集器 (12)相连。
PCT/CN2010/001125 2009-08-26 2010-07-26 基床系数试验测试方法及装置 WO2011022932A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1205190.0A GB2488053B (en) 2009-08-26 2010-07-26 Testing device for coefficient of subgrade reaction test

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2009202276824U CN201497679U (zh) 2009-08-26 2009-08-26 基床系数试验测试装置
CN200910063740A CN101650286A (zh) 2009-08-26 2009-08-26 基床系数试验测试方法
CN200920227682.4 2009-08-26
CN200910063740.9 2009-08-26

Publications (1)

Publication Number Publication Date
WO2011022932A1 true WO2011022932A1 (zh) 2011-03-03

Family

ID=43627180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001125 WO2011022932A1 (zh) 2009-08-26 2010-07-26 基床系数试验测试方法及装置

Country Status (2)

Country Link
GB (1) GB2488053B (zh)
WO (1) WO2011022932A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132125A (zh) * 2017-05-19 2017-09-05 铜陵长江金刚石工具有限责任公司 一种斜坡路面载荷测试仪
CN107884274A (zh) * 2017-12-13 2018-04-06 重庆科技学院 土体三类侧向压力值的测试装置及测试方法
CN108414364A (zh) * 2018-02-11 2018-08-17 河南工业大学 一种粮堆测试装置及采用该装置测量粮堆压缩变形和粮堆界面压力的方法
CN109778599A (zh) * 2019-01-29 2019-05-21 兰州交通大学 一种高铁地基泥岩上覆荷载下渗透系数原位智能测定方法
CN110941869A (zh) * 2019-11-27 2020-03-31 东南大学 一种获取路基土地基系数的数值模拟方法
CN112198080A (zh) * 2020-09-30 2021-01-08 长沙理工大学 考虑动载和侧限的快速测量土水特征曲线的装置及方法
CN114216595A (zh) * 2021-11-05 2022-03-22 中铁四局集团第四工程有限公司 一种测定触变泥浆摩阻力的试验装置及方法
CN114414117A (zh) * 2022-01-26 2022-04-29 合肥市市政设计研究总院有限公司 一种适用管幕箱涵顶进的摩阻力测试装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442152B (zh) * 2016-09-19 2018-10-19 南华大学 一种随裂纹扩展稳定施加渗透压的试验装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2175933Y (zh) * 1993-11-24 1994-08-31 卢丽莎 深基础平板载荷试验仪
JP2004332400A (ja) * 2003-05-08 2004-11-25 Shimizu Corp 地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラム
CN101377079A (zh) * 2008-10-08 2009-03-04 上海市政工程设计研究总院 一种室内测定基床系数的方法
CN101650286A (zh) * 2009-08-26 2010-02-17 中冶集团武汉勘察研究院有限公司 基床系数试验测试方法
CN201497679U (zh) * 2009-08-26 2010-06-02 中冶集团武汉勘察研究院有限公司 基床系数试验测试装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2175933Y (zh) * 1993-11-24 1994-08-31 卢丽莎 深基础平板载荷试验仪
JP2004332400A (ja) * 2003-05-08 2004-11-25 Shimizu Corp 地盤係数測定方法、地盤係数導出装置、地盤建設方法およびプログラム
CN101377079A (zh) * 2008-10-08 2009-03-04 上海市政工程设计研究总院 一种室内测定基床系数的方法
CN101650286A (zh) * 2009-08-26 2010-02-17 中冶集团武汉勘察研究院有限公司 基床系数试验测试方法
CN201497679U (zh) * 2009-08-26 2010-06-02 中冶集团武汉勘察研究院有限公司 基床系数试验测试装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132125A (zh) * 2017-05-19 2017-09-05 铜陵长江金刚石工具有限责任公司 一种斜坡路面载荷测试仪
CN107132125B (zh) * 2017-05-19 2024-04-19 铜陵长江金刚石工具股份有限公司 一种斜坡路面载荷测试仪
CN107884274A (zh) * 2017-12-13 2018-04-06 重庆科技学院 土体三类侧向压力值的测试装置及测试方法
CN108414364B (zh) * 2018-02-11 2023-09-15 河南工业大学 一种粮堆测试装置及采用该装置测量粮堆压缩变形和粮堆界面压力的方法
CN108414364A (zh) * 2018-02-11 2018-08-17 河南工业大学 一种粮堆测试装置及采用该装置测量粮堆压缩变形和粮堆界面压力的方法
CN109778599A (zh) * 2019-01-29 2019-05-21 兰州交通大学 一种高铁地基泥岩上覆荷载下渗透系数原位智能测定方法
CN109778599B (zh) * 2019-01-29 2023-08-22 兰州交通大学 一种高铁地基泥岩上覆荷载下渗透系数原位智能测定方法
CN110941869B (zh) * 2019-11-27 2024-03-22 东南大学 一种获取路基土地基系数的数值模拟方法
CN110941869A (zh) * 2019-11-27 2020-03-31 东南大学 一种获取路基土地基系数的数值模拟方法
CN112198080A (zh) * 2020-09-30 2021-01-08 长沙理工大学 考虑动载和侧限的快速测量土水特征曲线的装置及方法
CN114216595A (zh) * 2021-11-05 2022-03-22 中铁四局集团第四工程有限公司 一种测定触变泥浆摩阻力的试验装置及方法
CN114414117A (zh) * 2022-01-26 2022-04-29 合肥市市政设计研究总院有限公司 一种适用管幕箱涵顶进的摩阻力测试装置
CN114414117B (zh) * 2022-01-26 2024-05-10 合肥市市政设计研究总院有限公司 一种适用管幕箱涵顶进的摩阻力测试装置

Also Published As

Publication number Publication date
GB2488053B (en) 2013-07-31
GB2488053A (en) 2012-08-15
GB201205190D0 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
WO2011022932A1 (zh) 基床系数试验测试方法及装置
Ho et al. A multistage triaxial test for unsaturated soils
CN106644750A (zh) 开放系统冻融土动静三轴测试仪
Gupta et al. Pavement design using unsaturated soil technology
CN111982699B (zh) 非饱和土压缩特性及渗透特性试验装置
CN201348601Y (zh) 有压渗透仪
CN105067435A (zh) 一种土体原位钻孔剪切测试装置
CN102323159A (zh) 高应力高水力梯度大剪切变形下土与结构物接触渗透仪
CN104020092B (zh) 一种固结孔隙水压力联合试验装置和方法
CN107449678A (zh) 大型原位三轴剪切试验装置及其方法
Alowaisy et al. Continuous pressurization method for a rapid determination of the soil water characteristics curve for remolded and undisturbed cohesionless soils
CN104990659A (zh) 一种膨胀土地区泥水平衡盾构隧道掌子面膨胀力试验装置
CN204903300U (zh) 一种土体原位钻孔剪切测试装置
Seah et al. Horizontal coefficient of consolidation of soft Bangkok clay
Nahlawi et al. Characterisation of geotextiles water retention using a modified capillary pressure cell
CN110320113B (zh) 一种土岩界面原状试样扭剪试验装置及方法
Anderson et al. A clay calibration chamber for testing field devices
CN106702999A (zh) 道路复合地基静载荷试验预判工后沉降的方法
Chávez et al. A rockfill triaxial cell with suction control
Sasahara et al. Shear and compression strain development in sandy model slope under repeated rainfall
CN104089817B (zh) 基准基床系数测试仪及其室内通用测试方法
CN102200496A (zh) 重塑土室内中型剪切试验方法及其专用设备
CN113176394A (zh) 降雨-反渗作用下膨胀土边坡包边层检测装置及检测方法
CN207300760U (zh) 一种大型原位三轴剪切试验装置
TWI220681B (en) A simulation system and method of a grouting test body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1205190

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20100726

WWE Wipo information: entry into national phase

Ref document number: 1205190.0

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 10811099

Country of ref document: EP

Kind code of ref document: A1