JP2004328831A - 電圧変動補償装置 - Google Patents

電圧変動補償装置 Download PDF

Info

Publication number
JP2004328831A
JP2004328831A JP2003116737A JP2003116737A JP2004328831A JP 2004328831 A JP2004328831 A JP 2004328831A JP 2003116737 A JP2003116737 A JP 2003116737A JP 2003116737 A JP2003116737 A JP 2003116737A JP 2004328831 A JP2004328831 A JP 2004328831A
Authority
JP
Japan
Prior art keywords
voltage
output
compensation
capacitor
storage means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003116737A
Other languages
English (en)
Other versions
JP3980515B2 (ja
Inventor
Akihiko Iwata
明彦 岩田
Masaki Yamada
正樹 山田
Yasuhiro Ishii
康裕 石井
Joji Okada
丈二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003116737A priority Critical patent/JP3980515B2/ja
Publication of JP2004328831A publication Critical patent/JP2004328831A/ja
Application granted granted Critical
Publication of JP3980515B2 publication Critical patent/JP3980515B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】電力系統に直列に接続され、コンデンサC1〜C3の電圧を正負いずれかの極性で電圧出力する複数の電圧補償ユニット1〜3で構成され、該複数の電圧補償ユニット1〜3内から所望の組み合わせを選択し、その出力電圧の総和で電力系統の電圧低下を補償する電圧変動補償装置において、装置を大型化することなく、高精度で長時間の電圧補償を可能にする。
【解決手段】最大の電圧を出力する電圧補償ユニット1内のコンデンサC1にエネルギ供給する大容量のコンデンサC0とチョッパ回路11とを備え、他の電圧補償ユニット2、3内のコンデンサC2、C3はエネルギ授受がバランスするように、電圧補償ユニット2、3から出力する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、負荷に供給される電力系統の電圧が瞬時的に変動した際に、それを検出して電圧変動を補償する電圧変動補償装置に関するものである。
【0002】
【従来の技術】
雷などにより電力系統の電圧が瞬時的に低下し、工場などの精密機器などが誤作動や一時停止することにより、生産ラインで多大な被害を被ることがある。このような被害を防ぐために、電力系統の瞬時的電圧低下などの電圧変動を監視して、電圧低下を補償する電圧変動補償装置が用いられている。
従来の電圧変動補償装置は、電力系統に直列に接続され、正負いずれかの極性で補償電圧を出力する複数の電圧補償回路で構成される。各電圧補償回路には、ダイオードが逆並列に接続された4個の半導体スイッチング素子から成るフルブリッジインバータ、および充電コンデンサが備えられ、充電コンデンサの直流電圧を交流に変換して出力する。また、各電圧補償回路の出力端には、高速機械式の定常短絡スイッチが並列に設けられる。各電圧補償回路内の充電コンデンサは、充電ダイオードと充電用トランスによってそれぞれ異なる電圧が充電され、電圧の比は概ね2のべき乗比に設定される。
定常時、電流は定常短絡スイッチを流れる。また電力系統の電圧低下時には、誤差電圧に応じて複数の電圧補償回路内から所望の組み合わせを選択し、その出力電圧の総和で電力系統の電圧低下を補償する(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−359929号公報(第1頁、第6−第8頁、第1、第6図)
【0004】
【発明が解決しようとする課題】
従来の電圧変動補償装置は以上のように構成され、補償電圧を階調制御により出力するため電力系統の瞬時的な電圧低下を高精度に補償するものであるが、コンデンサ電圧の低下(エネルギの低下)に伴い、出力すべき最大電圧仕様を満足できなくなった時点で補償限界に至り、それにより電圧変動の補償を継続できる時間が決まることになる。補償の時間を確保するためには、各電圧補償回路内の充電コンデンサの容量を比例的に大きくし、即ち複数箇所に大容量のコンデンサを備える必要がある。一般に電圧変動補償装置においては、エネルギを蓄積するコンデンサの大きさが概ね装置の大きさを決定してしまうため、装置が大型化する問題があった。
また、コンデンサのエネルギは電圧の2乗に比例するため、初期に蓄積しておく電圧が高ければ高いほど多くのエネルギを蓄積できる。従って、装置の小型化を図るためには、各電圧補償回路内の充電コンデンサへの充電電圧を予め高く設定しておくことで、各充電コンデンサを大容量にせずに補償時間をより長くすることが可能であるが、電圧を高くしただけ補償電圧の階調の幅が大きくなり、きめ細かな階調制御ができず補償精度が低下するという問題があった。
【0005】
この発明は、上記のような問題点を解消するために成されたものであって、電力系統に複数の電圧補償回路が直列に接続されて、各電圧補償回路内のエネルギ蓄積手段に蓄積された直流電圧を交流に変換して出力する電圧変動補償装置において、装置を大型化することなく、高精度で長時間の電圧補償を可能にすることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る電圧変動補償装置は、電力系統における電圧低下の監視、およびそれに基づく給電制御を行う制御部と、該電力系統に直列に接続され、それぞれ異なる電圧が蓄積されたエネルギ蓄積手段に蓄積された直流電圧を交流に変換して出力する複数(N個)の電圧補償回路とを備えて、上記電力系統の電圧低下時に、出力電圧が逆極性のものを含むことを可能にして上記複数の電圧補償回路の中から所定の組み合わせを選択し、該出力電圧極性を含む組み合わせ(以下、出力パターンと称す)による各出力電圧の総和で上記電力系統の電圧低下を補償して負荷に発生する電圧変動を抑える。そして、上記複数の電圧補償回路のうちK個(K<N)の電圧補償回路内のエネルギ蓄積手段の前段に、該エネルギ蓄積手段に比して容量の大きな第2のエネルギ蓄積手段とチョッパ回路とを設け、該第2のエネルギ蓄積手段から該チョッパ回路を介して上記エネルギ蓄積手段にエネルギを供給するものである。
【0007】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1について説明する。図1はこの発明の実施の形態1による電圧変動補償装置の構成図である。
図1に示すように、電力系統4に、複数の電圧補償回路としての第1〜第3の電圧補償ユニット1〜3が直列に接続され、それらの出力端には、並列に高速機械式の定常短絡スイッチ5が接続される。なお、電力系統4からの各相の電力線にそれぞれ第1〜第3の電圧補償ユニット1〜3が直列に接続されるものであるが、図1ではU相の電力線7uに接続されたものを示す。7vはV相の電力線である。また、電力系統における電圧低下の監視、およびそれに基づく給電制御を行う制御回路6を備えて、制御回路6からの指令により第1〜第3の電圧補償ユニット1〜3の出力電圧が系統に直列に重畳されて系統電圧の低下を補償する。
【0008】
第1〜第3の電圧補償ユニット1〜3は、第1〜第3の単相インバータ10、20、30と、第1のエネルギ蓄積手段としての充電コンデンサ(第1のコンデンサC1、第2のコンデンサC2、第3のコンデンサC3)とを備え、単相インバータ10、20、30の交流側が電力系統に直列に接続され、各単相インバータ10、20、30は充電コンデンサC1〜C3の直流電圧を交流に変換して出力する。また、各電圧補償ユニット1〜3内の第1〜第3のコンデンサC1〜C3に充電される電圧(V1、V2、V3)の比は概ね2のべき乗比に設定されて、4:2:1となる。
また、第1の電圧補償ユニット1内の第1のコンデンサC1の前段には、第2のエネルギ蓄積手段として大容量のコンデンサC0(以下、容量コンデンサC0と称す)、および、第1のコンデンサC1と容量コンデンサC0とを接続するチョッパ回路としてのDC/DCコンバータ11を備える。
さらに、第1〜第3のコンデンサC1〜C3および容量コンデンサC0は、当該相(U相)の電力線7uから第1〜第3の単相インバータ10、20、30を介して、他相、この場合V相の電力線7vに接続される充電回路により、電力系統の線間電圧を用いて充電される。各電圧補償ユニット1〜3内の充電回路には、充電抵抗R11〜R13、R21,R22、R31,R32、ダイオードD1、D2、D3、およびツェナーダイオードD11、D12、D13を備える。なお、ツェナーダイオードD11、D12、D13は充電が効率的に行えるものであるが、なくても充電は行える。
【0009】
第1〜第3の単相インバータ10、20、30の構成を図2に示す。図に示すように、ダイオードが逆並列に接続された4個のIGBT8から成るフルブリッジインバータで構成される。フルブリッジインバータはIGBT以外の自己消弧型半導体スイッチング素子で構成しても良い。また、フルブリッジに限らず、ハーフブリッジなど電圧を発生するインバータの構成であればよい。
【0010】
次に、動作について説明する。
定常時、定常短絡スイッチ5はオン状態で、電流は電圧変動補償装置をバイパスして定常短絡スイッチ5を流れ、装置ロスは低減される。また電力系統の瞬時的な電圧低下時(瞬低時)には、定常短絡スイッチ5をオフして、瞬低補償動作を開始する。即ち、誤差電圧に応じて選択された各電圧補償ユニット1〜3において、補償電圧が出力される。これらの出力は系統にて組み合わされ、゛000゛〜゛111゛の8階調の電圧出力を発生することができ、最大の補償電圧は、7×V3となる。
なお、各電圧補償ユニット1〜3内の第1〜第3のコンデンサC1〜C3に充電される電圧(V1、V2、V3)の比は概ね2のべき乗比としたが、これに限るものではない。また、各電圧補償ユニット1〜3にて出力される補償電圧は、系統電圧と逆極性のものを含んでも良い。V1、V2、V3の電圧の関係と出力電圧の階調レベルとの関係は図3のようなパターンが考えられる。例えば、パターンGは最も階調数が多く、3つの電圧補償ユニット1〜3で13の階調数が得られる故、きめ細かな出力電圧の階調制御が可能であり、出力フィルタを削除することができる。
【0011】
また、容量コンデンサC0の電圧V0は初期に十分に高く充電しておき、容量コンデンサC0の電圧V0を入力としたDC/DCコンバータ11により、第1のコンデンサC1の電圧V1を所定の値になるよう制御する。なお、容量コンデンサC0および第1〜第3のコンデンサC1〜C3についてはコンデンサではなく、バッテリー等のエネルギ蓄積手段であっても同様の効果が得られる。
また上述したように、第1〜第3のコンデンサC1〜C3および容量コンデンサC0は、当該相(U相)の電力線7uから第1〜第3の単相インバータ10、20、30を介して、他相、この場合V相の電力線7vに接続される充電回路により、電力系統の線間電圧を用いて充電する。この充電動作は装置を立ち上げる時に行うとともに、電力系統の瞬低が発生しない定常時に行う。
【0012】
第1の電圧補償ユニット1内の第1のコンデンサC1については、大容量の容量コンデンサC0からDC/DCコンバータ11を介してエネルギが供給されるが、第2、第3の電圧補償ユニット2、3内の第2、第3のコンデンサC2、C3のエネルギについて以下に示す。
図4に、V1、V2、V3の電圧の関係が、4:2:1と5:2:1と6:2:1との場合について出力電圧の階調レベルとの関係の別例を示す。例えば図4(a)に示すように、出力階調レベルとして同じ1を出力する場合において、3つのパターンを有する。第1の場合は、最小出力の第3の電圧補償ユニット3からV3を出力するのみであり、この場合、第3のコンデンサC3からエネルギが放出されるのみとなる。しかし、第2の場合は、第2の電圧補償ユニット2からV2を正で、第3の電圧補償ユニット3からV3を負で出力するから、第2のコンデンサC2からエネルギが放出され、第3のコンデンサC3にはエネルギが供給される。また、第3の場合は、第1のコンデンサC1からエネルギが放出され、第2、第3のコンデンサC2、C3にエネルギが供給される。
このように、出力階調レベルが同じでも複数のパターンを利用することによって、第2、第3のコンデンサC2、C3に第1のコンデンサC1からエネルギを移行することができる。このような選択パターンは図4に示すように、他の階調出力レベルの場合においても存在する。
【0013】
この実施の形態では、、電力系統の瞬低時に、出力電圧が逆極性のものを含むことを可能にして電圧補償ユニット1〜3の中から所定の組み合わせを選択し、該出力パターンによる各電圧補償ユニット1〜3の出力電圧の総和で上記電力系統の電圧低下を補償する。この補償時に、DC/DCコンバータ11により、容量コンデンサC0の電圧V0を入力として、最大電圧を蓄積する第1のコンデンサC1の電圧V1は所定の値になるよう制御する。そして、第2、第3のコンデンサC2、C3は、エネルギの放出と第1のコンデンサC1からのエネルギの供給とによるエネルギ授受ができるだけバランスするように出力制御する。即ち、出力電圧極性を含んで選択された電圧補償ユニット1〜3の組み合わせで決定される上記出力パターンを、第2、第3のコンデンサC2、C3におけるエネルギ授受ができるだけバランスするように決定して補償電圧を出力する。
【0014】
このため、第1のコンデンサC1だけでなく第2、第3のコンデンサC2、C3についても電圧低下を抑制でき、電圧変動の継続補償時間を長くできる。また容量コンデンサC0のエネルギをほとんど使い果たし出力すべき最大電圧仕様を満足できなくなった時点で、補償限界に至り補償終了となるため、その時の第1〜第3のコンデンサC1〜C3の保有エネルギ分は結果的には使われずに残ってしまう。従って、第1〜第3のコンデンサC1〜C3のコンデンサの容量をできるだけ小さくしておくことが、エネルギの有効利用に重要となる。このように大容量のコンデンサである容量コンデンサC0は1つ設ければよく、装置を大型にすることなく補償時間を確保できる。また、第1のコンデンサC1の電圧V1を所定の値以上に保っている限り電圧変動の継続補償が可能となるため、必要以上に各コンデンサC1〜C3の充電電圧を高くして階調幅を拡げることなく、きめ細かく高精度な出力電圧の階調制御が行える。
【0015】
実施の形態2.
次に、上記実施の形態1に示す電圧変動補償装置において、第2、第3のコンデンサC2、C3におけるエネルギ授受ができるだけバランスするように出力パターンを決定して補償電圧を出力する動作について詳述する。
ここで、少し簡略化するために、第2、第3の電圧補償ユニット2、3の2つを”フィルタユニット”と呼ぶこととする。まず、V1、V2、V3の電圧の関係が、4:2:1の場合について説明する。図5(a)に、各出力階調レベルを得る際の、フィルタユニット2、3および最大出力ユニット(第1の電圧補償ユニット1)の出力パターンを示す。ここで、Vaは階調幅となる電圧で、この場合、V3と等しい。図5(b)には、正弦波を最大5レベルの階調制御で出力した場合の、フィルタユニット2、3および最大出力ユニット1のエネルギ量をそれぞれ示す。
まず、このフィルタユニット2、3のみについて考えるとフィルタユニット2、3のみで出しうる階調レベルは1〜3であり、そのうち最小出力ユニット(第3の電圧補償ユニット3)が受け持つのは1レベルおよび3レベルである。この1レベルおよび3レベルにおいて、最小出力ユニット3は、いずれも正、負双方の極性で電圧出力するパターンが存在する。つまり、フィルタユニット2、3が発生する電圧のうち最小出力ユニット3が受け持つ1レベルおよび3レベルの出力条件においては、第3のコンデンサC3にエネルギを供給する場合と、エネルギを放出する場合との双方が存在する。従って、フィルタユニット2、3が発生する階調レベル1〜3の条件において、仮に第2のコンデンサC2のエネルギが増減しないとすれば、第3のコンデンサC3のエネルギは増減を自由に調整できることになる。
【0016】
次に、第2のコンデンサC2のエネルギを増減させないためには、フィルタユニット2、3全体から放出されるエネルギ分を、第1のコンデンサC1から供給すればよい。
図5(b)に示すように、最大レベルが5までの階調制御で正弦波を出力させた場合、フィルタユニット2、3のエネルギ授受は、ほぼバランスしていることがわかる。この状態であれば、出力パターンの選択によりフィルタユニット2、3のエネルギ授受をほぼ0にしてバランスさせることができる。しかし、図5(a)を見ればわかるように、6および7の階調レベルでは、フィルタユニット2、3は2Vaと3Vaの出力、つまりいずれもエネルギを放出するパターンしかないため、6および7の階調レベルでの電圧出力では、フィルタユニット2、3のエネルギは減少することになる。
【0017】
次に、V1、V2、V3の電圧の関係が、5:2:1の場合について、図6(a)に、各出力階調レベルを得る際の、フィルタユニット2、3および最大出力ユニット(第1の電圧補償ユニット1)の出力パターンを示す。また、図6(b)には、正弦波を最大6レベルの階調制御で出力した場合の、フィルタユニット2、3および最大出力ユニット1のエネルギ量をそれぞれ示す。
図6(b)に示すように、最大レベルが6までの階調制御で正弦波を出力させた場合、フィルタユニット2、3のエネルギ授受は、ほぼバランスしていることがわかる。この状態であれば、出力パターンの選択によりフィルタユニット2、3のエネルギ授受をほぼ0にしてバランスさせることができる。しかし、図6(a)を見ればわかるように、7の階調レベルでは、フィルタユニット2、3は2Vaの出力、つまりエネルギを放出するパターンしかないため、フィルタユニット2、3のエネルギは減少することになる。
次に、V1、V2、V3の電圧の関係が、6:2:1の場合について、図7(a)に、各出力階調レベルを得る際の、フィルタユニット2、3および最大出力ユニット(第1の電圧補償ユニット1)の出力パターンを示す。また、図7(b)には、正弦波を最大7レベルの階調制御で出力した場合の、フィルタユニット2、3および最大出力ユニット1のエネルギ量をそれぞれ示す。
図7(b)に示すように、最大レベルが7までの階調制御で正弦波を出力させた場合、フィルタユニット2、3のエネルギ授受は、ほぼバランスしていることがわかる。この状態であれば、出力パターンの選択によりフィルタユニット2、3のエネルギ授受をほぼ0にしてバランスさせることができる。
【0018】
V1、V2、V3の電圧の関係が、4:2:1、5:2:1、6:2:1の3種の場合について、フィルタユニット2、3のエネルギが以上のように変化するため、最大レベルが5までの階調制御で正弦波を出力させた場合は4:2:1を用い、最大レベルが6まで階調制御が必要になると5:2:1に切り替え、最大レベルが7まで階調制御が必要になると6:2:1に切り替えると、フィルタユニット2、3のエネルギ授受をほぼ0にしてバランスさせることができる。上述したように、第3のコンデンサC3のエネルギはフィルタユニット2、3全体の中でエネルギの増減を調整できるため、第3のコンデンサC3の電圧V3は一定となる。
上記にように、V1、V2、V3の電圧の関係を切り替えるには、第1のコンデンサC1の電圧V1を、1:2:4で決まる4の値から5または6の値に増加すればよいことがわかる。
これにより、第2、第3のコンデンサC2、C3の容量値をできるだけ小さくすることができ、出力すべき最大電圧仕様を満足できなくなった時点で残存するエネルギを小さくすることができる。これは、装置のエネルギ利用率を増加でき、装置の小型化に結びつく。
【0019】
なお、V1、V2、V3の電圧の関係は、5:2:1や6:2:1に固定しない。例えば、出力階調レベルとして1レベルを出力する場合、5:2:1や6:2:1では、図6、図7に示すように、フィルタユニット2、3にエネルギを供給できない。従って、このような場合、フィルタユニット2、3内のエネルギが即座に無くなってしまうこととなる。一方、4:2:1を用いた場合、図5に示すように、出力階調レベルとして1または2レベルを出力する場合においてもフィルタユニット2、3にエネルギを供給できる。
従って、各コンデンサC0〜C3の状況に応じて、または、瞬低の発生状況に応じて、または、フィルタユニット2、3へのエネルギ授受の状況もしくは各コンデンサC2、C3の電圧状況に応じて、第1のコンデンサC1の電圧V1をDC/DCコンバータ11により変化させることにより、よりエネルギの有効な利用が可能となる。
【0020】
また、フィルタユニット2、3のコンデンサC2、C3の容量値を小さくするには限界がある。例えば図5〜図7からわかるようにフィルタユニット2、3のエネルギの増減がゼロになるのは、もちろん正弦波の半周期の積分の結果であるから、半周期の間は電圧を安定に保つだけの容量値は必要となる。
また、瞬低の状況が急変した場合等においては、第1のコンデンサC1の電圧を急に変化させ、所定の電圧に設定する必要があるため、この点においても第1のコンデンサC1の容量値は小さい方が望ましい。例えば、一旦、第1のコンデンサC1の電圧V1を6レベルに設定した後、瞬低が軽くなり、4レベルに低下させなければならない状況が考えられる。
すなわち、(コンデンサC1の容量値)<(コンデンサC2、C3の容量値)としておくのが望ましい。
【0021】
実施の形態3.
次に、上記実施の形態1に示す電圧変動補償装置において、第1のコンデンサC1の電圧V1をDC/DCコンバータ11により変化させて電圧変動を補償する動作について説明する。
図8は、チョッパ回路であるDC/DCコンバータ11の出力電圧の設定および電圧変動の補償動作を示すフローチャートである。
初期の時点ではV1、V2、V3の電圧の関係は4:2:1に設定されているものとし、まず、電力系統の瞬低を検出すると(S1)、DC/DCコンバータ11の出力電圧であるチョッパ電圧V1の目標値レベルを4と設定する(S2)。続いて出力すべき補償電圧の大きさが最大7階調必要か判断し(S3)、不要なら最大6階調必要か判断し(S4)、さらに不要なら、即ち出力すべき補償電圧の大きさが最大5階調以下であるとき、図4(a)に示すV3:V2:V1=1:2:4である論理テーブルの階調発生パターンに決定し(S5)、最小出力電圧であるV3が規定値より低ければ、V3が充電されるモード(出力パターン)を選択し、V3が規定値より高ければ、V3が放電されるモードを選択して(S6)、各電圧補償ユニット1〜3からの出力電圧の総和により電力系統の瞬低を補償する(S7)。この後、S3に戻る。
【0022】
S3にて、出力すべき補償電圧の大きさが最大7階調必要であれば、チョッパ電圧V1の目標値レベルを6と設定し(S12)、図4(c)に示すV3:V2:V1=1:2:6である論理テーブル内の階調発生パターンに決定し(S15)、最小出力電圧であるV3が規定値より低ければ、V3が充電されるモードを選択し、V3が規定値より高ければ、V3が放電されるモードを選択して(S16)、各電圧補償ユニット1〜3からの出力電圧の総和により電力系統の瞬低を補償する(S17)。この後、S15に戻る。
S4にて、出力すべき補償電圧の大きさが最大6階調必要であれば、チョッパ電圧V1の目標値レベルを5と設定し(S22)、図4(b)に示すV3:V2:V1=1:2:5である論理テーブル内の階調発生パターンに決定し(S25)、最小出力電圧であるV3が規定値より低ければ、V3が充電されるモードを選択し、V3が規定値より高ければ、V3が放電されるモードを選択して(S26)、各電圧補償ユニット1〜3からの出力電圧の総和により電力系統の瞬低を補償する(S27)。続いて、出力すべき補償電圧の大きさが最大7階調必要か判断し(S28)、不要ならS22へ、必要ならS12へ移る。
【0023】
次に、図9は、チョッパ回路であるDC/DCコンバータ11の出力電圧の設定および電圧変動の補償動作の第2の例を示すフローチャートである。
この場合、図8で示した場合における電圧変動の補償動作のステップS7、S17、S27の後、必ずS3に戻って、出力すべき補償電圧の大きさが最大7階調必要か判断し、さらに不要ならS4にて最大6階調必要か判断する。
この場合は、瞬低の状況が大きく変化する場合に対して有効であり、時々刻々と変化する瞬低のレベルに対し出力すべき電圧が変わっても、必要な出力パターンを適切に設定できるようにチョッパ電圧V1を繰り返し設定する。これにより、例えば7レベルの出力が必要でその後2レベルの出力が必要な場合には、一旦、V3:V2:V1を1:2:6に変化した後、その後1:2:4に戻すよう動作する。このように種々の瞬低状況に対応できる。
なお、図8、図9に示す例では、必要とされる補償電圧階調に応じて、V3:V2:V1の関係を設定するものであり、第3のコンデンサC3の電圧V3は監視して制御に用いるが、第2のコンデンサC2の電圧V2を監視する必要がないため、回路が簡素化される。
【0024】
次に、図10は、チョッパ回路であるDC/DCコンバータ11の出力電圧の設定および電圧変動の補償動作の第3の例を示すフローチャートである。
初期の時点ではV1、V2、V3の電圧の関係は4:2:1に設定されているものとし、まず、電力系統の瞬低を検出すると(T1)、DC/DCコンバータ11の出力電圧であるチョッパ電圧V1の目標値レベルを4と設定する(T2)。続いて、第2のコンデンサC2の電圧V2と規定値との差がある範囲内かどうか判断し(T3)、ある範囲を外れたとき、電圧V2が上記規定値より高いかどうか判断する(T4)。V2が上記規定値より高い場合は、チョッパ電圧V1の目標値レベルを上げるように切り替え(T5a)、V2が上記規定値以下の場合は、チョッパ電圧V1の目標値レベルを下げるように切り替え(T5b)、チョッパを制御する。その後、チョッパ電圧V1の目標値レベルに応じて階調発生パターン(V3:V2:V1)を1:2:4、1:2:5あるいは1:2:6の中のいずれかに切り替え(T6)、第2のコンデンサC2の電圧V2が規定値より低ければ、V2が充電されるモード(出力パターン)を選択し、V2が規定値より高ければ、V2が放電されるモードを選択する(T7)。また、最小出力電圧であるV3が規定値より低ければ、V3が充電されるモードを選択し、V3が規定値より高ければ、V3が放電されるモードを選択して(T8)、各電圧補償ユニット1〜3からの出力電圧の総和により電力系統の瞬低を補償する(T9)。この後、T3に戻る。
T3にて、電圧V2と規定値との差がある範囲内である時は、チョッパ電圧の目標値レベルを変更せずT6にて階調発生パターン(V3:V2:V1)を設定する。
【0025】
図10に示す例では、第2、第3のコンデンサC2、C3の電圧V2、V3を監視して、電圧V1の制御をチョッパ回路であるDC/DCコンバータ11で行うため、電圧V2、V3をそれぞれ一定に保つことができ、長時間に渡り精度の高い補償が可能となる。
なお、階調発生パターンの切り替えタイミングは、チョッパ電圧V1の目標値を変化させた直後でもよいし、またV1の実電圧が目標値に達した時点でもよい。
【0026】
また、チョッパ電圧V1の目標値の設定に関しては、上記の説明ではいずれも、階調レベルを4〜6の間で1階調ずつ変化させているが、1階調未満の電圧値の増減であっても、出力パターンを決定する論理テーブルさえ書き換えれば問題はない。もちろん、階調幅が常に一定とはならないが、全体としては精度の高い階調制御による電圧補償が行える。
さらにまた、図10に示す例では、第2、第3のコンデンサC2、C3の電圧V2、V3を監視するが、これらの電圧値は演算で求めることもでき、例えば、系統の電流と出力モードとから電圧V2、V3の変化は演算でき、これにより、チョッパ電圧の設定を決定することも可能である。
【0027】
実施の形態4.
上述したように、第2、第3のコンデンサC2、C3におけるエネルギ授受ができるだけバランスするようにチョッパ電圧V1を制御し、出力パターンを決定して補償電圧を出力するが、各出力パターンによる補償時間(パルス幅)を調整し、エネルギ授受を補正して0に近づけることもできる。
例えば、電圧V2の電圧が規定値より低ければ、電圧V2を発生する時間のうち充電が多くなるよう、また、放電が少なくなるよう、その電圧発生の補償時間のパルス幅を少し変える。このとき出力電圧の実効値が低下することになるため、電圧V1を発生する時間をやや延ばしてやればよい。
図11に、最大レベルが7レベルの階調制御で正弦波を出力させた場合の、各出力パターンによる補償時間(パルス幅)の調整について示す。正規の発生電圧に対し、パルス幅を補正した発生電圧では、階調レベルが3〜5レベルのパルス幅が拡がり、また7レベルのパルス幅が狭まっていることがわかる。階調発生パターン(V3:V2:V1)が1:2:6とすると、パルス幅を補正した発生電圧では、正規の発生電圧に対し充電の量が増加し、放電の量が減少することになる。従って、パルス幅を補正することにより、フィルタユニット2、3のエネルギ授受を変化させることができる。即ち、フィルタユニット2、3のエネルギ量が少ない場合には、充電を行う出力パターンのパルス幅を広めに、放電を行う出力パターンのパルス幅を狭めにすることで、エネルギ量を回復させ、フィルタユニット2、3のエネルギ授受をほぼ0にすることが可能となる。
【0028】
実施の形態5.
次に、この発明の実施の形態5について説明する。図1に示す上記実施の形態1では、第1の電圧補償ユニット1内の第1のコンデンサC1の前段に、容量コンデンサC0およびチョッパ回路としてのDC/DCコンバータ11を備えたが、この実施の形態では、図12に示すように、電圧V0の容量コンデンサC0と電圧V1の第1のコンデンサC1との間に降圧チョッパ12、昇圧チョッパ13あるいは昇降圧チョッパ14を備える。その他の構成は上記実施の形態1と同様である。
まず、12(a)に示す降圧チョッパ12を用いる場合を図13を用いて説明する。図13(a)は電圧変動補償装置の構成を示す図である。なお、便宜上、第3の電圧補償ユニット3、定常短絡スイッチ5および制御回路6の図示を省略する。図に示すように、容量コンデンサC0と第1のコンデンサC1との間に、チョッパスイッチ12a、ダイオード12bおよびリアクトル12cから成る降圧チョッパ12が備えられる。また、R0x、R0yは容量コンデンサC0を充電するための充電抵抗、R1x、R1yは第1のコンデンサC1を充電するための充電抵抗、R2x、R2yは第2のコンデンサC2を充電するための充電抵抗である。
【0029】
次に、動作を説明する。
U相の電位がV相の電位より高い場合、最大出力ユニットである第1の電圧補償ユニット1において、U相電力線7uから第1の単相インバータ10の出力端子を介して取り込まれたU相電圧は、第1の単相インバータ10の上アーム(図中右側)のダイオードを通ってC1+端子を通り、第1のコンデンサC1を充電して、さらに充電抵抗R1yを通りダイオードD1を通りV相電力線に戻る。また、C1+端子からC0+端子に進み容量コンデンサC0を充電して、さらに充電抵抗R0yを通りダイオードD1を通りV相電力線に戻る。U相の電位がV相の電位より低い場合、D1がオフ状態となるため、容量コンデンサC0および第1のコンデンサC1に充電された電荷はそのまま維持される。容量コンデンサC0の電圧V0および第1のコンデンサC1の電圧V1の大きさは、最終的には充電抵抗R0x、R0y、R1x、R1yによる各分圧にて決定され、それらの値を選定することにより所定の値にすることが可能である。
【0030】
瞬低補償の動作としては、定常時には定常短絡スイッチ5が導通しており、そのとき、各単相インバータ10、20の出力はゼロ、すなわち上アーム側をいずれもオンにすることができる(なおこのとき下アーム側をオンにしてもよいがその場合にはダイオードD1〜D3の極性を反転させれば同じ動作が得られる)。そのため、定常状態においては第1の単相インバータ10および第2の単相インバータ20のインバータ出力電位同士を接続した点はU電位と同じとなる。したがって、第2の電圧補償ユニット2においても、第2のコンデンサC2は充電抵抗R2x、R2yとダイオードD2とによって充電され、抵抗値を選定することで電圧V2を所定の値に設定することが可能である。なお、図示しない第3の電圧補償ユニット3についても同様に第3のコンデンサC3が充電できる。
例えば、V1、V2、V3をまず4:2:1の関係に充電し、V0>V1の条件に充電する場合を考える。初期充電が完了した状態では、V1に対しV0は高く設定されている。R0x、R0y、R1x、R1yでそれぞれの抵抗値を表し、(Vrms*1.141)を線間電圧の実効値とすると、初期充電が完了した時点では、
V0=R0x/(R0x+R0y)*(Vrms*1.141)
V1=R1x/(R1x+R1y)*(Vrms*1.141) となる。
図13(b)に、時間Tと電圧V1、V0との関係を示す。T=0で電力系統に瞬低が発生し、補償を開始する。このとき、説明の簡単化のため、電圧V1の目標値を変える必要のない瞬低条件とする。T=0から瞬低補償を行いながら、第1のコンデンサC1の電圧V1が低下しないように、降圧チョッパ12を用いて容量コンデンサC0のエネルギを第1のコンデンサC1に移行する。それにより容量コンデンサC0の電圧V0は除々に低下し、やがてV0=V1となり、概ね補償の限界に至る。
【0031】
次に、12(b)に示す昇圧チョッパ13を用いる場合を図14を用いて説明する。図14(a)は電圧変動補償装置の構成を示す図である。なお、便宜上、ここでは第1の電圧補償ユニット1のみを示す。
図に示すように、容量コンデンサC0と第1のコンデンサC1との間に、チョッパスイッチ13a、ダイオード13bおよびリアクトル13cから成る昇圧チョッパ13が備えられる。R0x、R0yは充電抵抗であり、R1x、R1yは存在しない。
次に、動作を説明する。
U相の電位がV相の電位より高い場合、第1の電圧補償ユニット1において、U相電力線7uから第1の単相インバータ10の出力端子を介して取り込まれたU相電圧は、第1の単相インバータ10の上アーム(図中右側)のダイオードを通って、第1のコンデンサC1および容量コンデンサC0を充電して、さらにダイオードD0を通り充電抵抗R0yを通りV相電力線に戻る。このとき、容量コンデンサC0の電圧V0と第1のコンデンサC1の電圧V1とは等しい大きさに設定される。初期充電が完了した時点では、
V0=R0x/(R0x+R0y)*(Vrms*1.141)=V1 となる。
図14(b)に、時間Tと電圧V1、V0との関係を示す。T=0で電力系統の瞬低が発生し、瞬低補償が進むに連れ、電圧V0は低下していくが、昇圧チョッパ13を用いて容量コンデンサC0のエネルギを第1のコンデンサC1に移行するため、電圧V0が低下しても第1のコンデンサC1は常に一定の電圧V1とすることができる。この場合、容量コンデンサC0の電圧V0がゼロになるまで補償継続が可能である。
【0032】
次に、12(c)に示す昇降圧チョッパ14を用いる場合を図15を用いて説明する。図15(a)は電圧変動補償装置の構成を示す図である。なお、便宜上、ここでは第1の電圧補償ユニット1のみを示す。
図に示すように、容量コンデンサC0と第1のコンデンサC1との間に、チョッパスイッチ14a、ダイオード14bおよびリアクトル14cから成る昇降圧チョッパ14が備えられる。R0x、R0yは充電抵抗であり、R1x、R1yは存在しない。
次に、動作を説明する。
定常状態においては、第1の単相インバータ10の全アームをオンとしておく。それにより第1のコンデンサC1には充電されず、容量コンデンサC0のみに、Rox、Royの抵抗の分圧で決まる電圧V0が充電される。
V0=R0x/(R0x+R0y)*(Vrms*1.141) となる。
図15(b)に、時間Tと電圧V1、V0との関係を示す。
T=0で電力系統の瞬低が発生し、その時点で、電圧V1はゼロであるから、第1の単相インバータ10の各アームを全オフにして第1のコンデンサC1の電圧V1が即座に所定の値になるよう昇降圧チョッパ14で制御する。それから瞬低補償を開始する。補償が進むに連れ、電圧V0は低下していくが、昇降圧チョッパ14を用いて容量コンデンサC0のエネルギを第1のコンデンサC1に移行するため、電圧V0が低下しても第1のコンデンサC1は常に一定の電圧V1とすることができる。この場合、チョッパ14の構成は昇降圧型であるため、V0<V1となっても、電圧V1を一定値にすることができ、最終的に容量コンデンサC0の電圧V0がゼロになるまで補償継続が可能である。
【0033】
次に、12(c)に示す昇降圧チョッパを用いる場合の別例を図16を用いて説明する。図16(a)は電圧変動補償装置の構成を示す図である。なお、便宜上、ここでは第1の電圧補償ユニット1のみを示す。
図に示すように、容量コンデンサC0と第1のコンデンサC1との間に、チョッパスイッチ15a、ダイオード15bおよびリアクトル15cから成る昇降圧チョッパ15が備えられる。R0x、R0yは容量コンデンサC0を充電するための充電抵抗、R1x、R1yは第1のコンデンサC1を充電するための充電抵抗である。また、ダイオードD1は正極が充電抵抗R1yに、負極が第1のコンデンサC1に接続される。
次に、動作を説明する。
定常状態においては、第1の単相インバータ10の上アームをオンとしておく。それにより、U相の電位がV相の電位より高い場合、容量コンデンサC0を充電し、U相の電位がV相の電位より低い場合、第1のコンデンサC1を充電することができる。この場合、V0>V1の条件で充電し、初期充電が完了した状態では、V1に対しV0は高く設定されている。初期充電が完了した時点では、
V0=R0x/(R0x+R0y)*(Vrms*1.141)
V1=R1x/(R1x+R1y)*(Vrms*1.141) となる。
図15(b)に、時間Tと電圧V1、V0との関係を示す。
T=0で電力系統の瞬低が発生し、補償を開始する。補償が進むに連れ、電圧V0の電圧は低下していくが、昇降圧チョッパ15を用いて容量コンデンサC0のエネルギを第1のコンデンサC1に移行するため、電圧V0が低下しても第1のコンデンサC1は常に一定の電圧V1とすることができる。この場合、チョッパ15の構成は昇降圧型であるため、V0<V1となっても、電圧V1を一定値にすることができ、最終的に容量コンデンサC0の電圧V0がゼロになるまで補償継続が可能である。
【0034】
なお、上記各実施の形態では、コンデンサC0〜C3は、電力系統の線間電圧を用いて充電するようにしたが、充電用のトランスを備えて充電しても良い。
また、電圧補償ユニットの個数が多くなると、容量コンデンサとチョッパ回路とを最大出力ユニットに限らず、2個あるいはそれ以上の電圧補償ユニットに設けても良い。
【0035】
【発明の効果】
以上のようにこの発明に係る電圧変動補償装置は、電力系統における電圧低下の監視、およびそれに基づく給電制御を行う制御部と、該電力系統に直列に接続され、それぞれ異なる電圧が蓄積されたエネルギ蓄積手段に蓄積された直流電圧を交流に変換して出力する複数(N個)の電圧補償回路とを備えて、上記電力系統の電圧低下時に、出力電圧が逆極性のものを含むことを可能にして上記複数の電圧補償回路の中から所定の組み合わせを選択し、該出力電圧極性を含む組み合わせ(以下、出力パターンと称す)による各出力電圧の総和で上記電力系統の電圧低下を補償して負荷に発生する電圧変動を抑える。そして、上記複数の電圧補償回路のうちK個(K<N)の電圧補償回路内のエネルギ蓄積手段の前段に、該エネルギ蓄積手段に比して容量の大きな第2のエネルギ蓄積手段とチョッパ回路とを設け、該第2のエネルギ蓄積手段から該チョッパ回路を介して上記エネルギ蓄積手段にエネルギを供給するものであるため、装置を大型化することなく、高精度で継続補償時間の長い電圧補償が行える。
【図面の簡単な説明】
【図1】この発明の実施の形態1による電圧変動補償装置の構成図である。
【図2】この発明の実施の形態1による単相インバータの構成図である。
【図3】この発明の実施の形態1による単相インバータの電圧発生パターンである。
【図4】この発明の実施の形態1による単相インバータの電圧発生パターンの別例である。
【図5】この発明の実施の形態2による各電圧補償ユニットの出力パターンとエネルギ量を示す図である。
【図6】この発明の実施の形態2の別例による各電圧補償ユニットの出力パターンとエネルギ量とを示す図である。
【図7】この発明の実施の形態2の別例による各電圧補償ユニットの出力パターンとエネルギ量との別例を示す図である。
【図8】この発明の実施の形態3によるチョッパ回路の出力電圧の設定および電圧変動の補償動作を示すフローチャートである。
【図9】この発明の実施の形態3の別例によるチョッパ回路の出力電圧の設定および電圧変動の補償動作を示すフローチャートである。
【図10】この発明の実施の形態3の別例によるチョッパ回路の出力電圧の設定および電圧変動の補償動作を示すフローチャートである。
【図11】この発明の実施の形態4による各出力パターンの補償時間の調整を示す図である。
【図12】この発明の実施の形態5による電圧変動補償装置の構成図である。
【図13】この発明の実施の形態5による電圧変動補償装置の詳細構成図と動作説明図である。
【図14】この発明の実施の形態5の別例による電圧変動補償装置の詳細構成図と動作説明図である。
【図15】この発明の実施の形態5の別例による電圧変動補償装置の詳細構成図と動作説明図である。
【図16】この発明の実施の形態5の別例による電圧変動補償装置の詳細構成図と動作説明図である。
【符号の説明】
1〜3 電圧補償回路としての第1〜第3の電圧補償ユニット、
4 電力系統、6 制御回路、10 第1の単相インバータ、
11 チョッパ回路としてのDC/DCコンバータ、12 降圧チョッパ、
13 昇圧チョッパ、14,15 昇降圧チョッパ、
20 第2の単相インバータ、30 第3の単相インバータ、
C0 第2のエネルギ蓄積手段としての容量コンデンサ、
C1〜C3 エネルギ蓄積手段としての第1〜第3のコンデンサ。

Claims (5)

  1. 電力系統における電圧低下の監視、およびそれに基づく給電制御を行う制御部と、該電力系統に直列に接続され、それぞれ異なる電圧が蓄積されたエネルギ蓄積手段に蓄積された直流電圧を交流に変換して出力する複数(N個)の電圧補償回路とを備えて、上記電力系統の電圧低下時に、出力電圧が逆極性のものを含むことを可能にして上記複数の電圧補償回路の中から所定の組み合わせを選択し、該出力電圧極性を含む組み合わせ(以下、出力パターンと称す)による各出力電圧の総和で上記電力系統の電圧低下を補償して負荷に発生する電圧変動を抑える電圧変動補償装置において、上記複数の電圧補償回路のうちK個(K<N)の電圧補償回路内のエネルギ蓄積手段の前段に、該エネルギ蓄積手段に比して容量の大きな第2のエネルギ蓄積手段とチョッパ回路とを設け、該第2のエネルギ蓄積手段から該チョッパ回路を介して上記エネルギ蓄積手段にエネルギを供給することを特徴とする電圧変動補償装置。
  2. 上記第2のエネルギ蓄積手段およびチョッパ回路は、それぞれ異なる電圧が蓄積された上記複数のエネルギ蓄積手段の内、最大電圧を蓄積するエネルギ蓄積手段(以下、最大エネルギ蓄積手段と称す)の前段にのみ設けられたことを特徴とする請求項1記載の電圧変動補償装置。
  3. 上記電力系統の電圧低下の補償時に、上記最大エネルギ蓄積手段を有する電圧補償回路(以下、最大出力補償回路と称す)以外の上記電圧補償回路におけるエネルギの授受がバランスするように上記出力パターンを決定することを特徴とする請求項2記載の電圧変動補償装置。
  4. 上記チョッパ回路を制御して上記最大出力補償回路の出力電圧となる上記最大エネルギ蓄積手段の電圧を制御可能とし、上記電力系統の電圧低下時に、必要補償電圧に応じて、上記最大エネルギ蓄積手段の電圧を制御することを特徴とする請求項3記載の電圧変動補償装置。
  5. 決定された上記出力パターンにより上記電力系統の電圧低下を補償する際、上記最大出力補償回路以外の上記電圧補償回路におけるエネルギの授受をよりバランスさせるように上記出力パターンによる補償時間を調整することを特徴とする請求項3または4記載の電圧変動補償装置。
JP2003116737A 2003-04-22 2003-04-22 電圧変動補償装置 Expired - Fee Related JP3980515B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116737A JP3980515B2 (ja) 2003-04-22 2003-04-22 電圧変動補償装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116737A JP3980515B2 (ja) 2003-04-22 2003-04-22 電圧変動補償装置

Publications (2)

Publication Number Publication Date
JP2004328831A true JP2004328831A (ja) 2004-11-18
JP3980515B2 JP3980515B2 (ja) 2007-09-26

Family

ID=33496849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116737A Expired - Fee Related JP3980515B2 (ja) 2003-04-22 2003-04-22 電圧変動補償装置

Country Status (1)

Country Link
JP (1) JP3980515B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109627A (ja) * 2004-10-06 2006-04-20 Mitsubishi Electric Corp 無瞬断電源装置
JP2006238616A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp 電力変換装置
JP2006238615A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp 電力変換装置
JP2006238629A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp 電力変換装置
JP2006238628A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp 電力変換装置
JP2007166783A (ja) * 2005-12-14 2007-06-28 Mitsubishi Electric Corp 電力変換装置
JP2009247186A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 系統連系インバータ装置
JP2010104233A (ja) * 2010-01-29 2010-05-06 Mitsubishi Electric Corp 電力変換装置
US7719865B2 (en) 2005-02-25 2010-05-18 Mitsubishi Electric Corporation Power conversion apparatus
JP2011114920A (ja) * 2009-11-26 2011-06-09 Hitachi Ltd 電力変換装置
JP2011172485A (ja) * 2011-06-06 2011-09-01 Mitsubishi Electric Corp 電力変換装置
WO2012114469A1 (ja) * 2011-02-23 2012-08-30 東芝三菱電機産業システム株式会社 太陽光発電システム
JP2012175848A (ja) * 2011-02-23 2012-09-10 Central Research Institute Of Electric Power Industry 無効電力補償装置
JP2013255308A (ja) * 2012-06-05 2013-12-19 Toshiba Corp 半導体電力変換装置
US8649196B2 (en) 2009-01-29 2014-02-11 Mitsubishi Electric Corporation Power converting apparatus with an output voltage that is the sum of voltages generated by individual inverters
WO2024028982A1 (ja) * 2022-08-02 2024-02-08 三菱電機株式会社 電力変換装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4493460B2 (ja) * 2004-10-06 2010-06-30 三菱電機株式会社 電力変換装置
JP2006109627A (ja) * 2004-10-06 2006-04-20 Mitsubishi Electric Corp 無瞬断電源装置
US8559202B2 (en) 2005-02-25 2013-10-15 Mitsubishi Electric Corporation Power conversion apparatus
JP2006238616A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp 電力変換装置
JP4520325B2 (ja) * 2005-02-25 2010-08-04 三菱電機株式会社 電力変換装置
EP2464000A3 (en) * 2005-02-25 2017-08-30 Mitsubishi Denki Kabushiki Kaisha Power conversion apparatus
JP2006238629A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp 電力変換装置
JP2006238615A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp 電力変換装置
US7719865B2 (en) 2005-02-25 2010-05-18 Mitsubishi Electric Corporation Power conversion apparatus
JP4490308B2 (ja) * 2005-02-25 2010-06-23 三菱電機株式会社 電力変換装置
JP4490309B2 (ja) * 2005-02-25 2010-06-23 三菱電機株式会社 電力変換装置
JP2006238628A (ja) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp 電力変換装置
JP2007166783A (ja) * 2005-12-14 2007-06-28 Mitsubishi Electric Corp 電力変換装置
JP2009247186A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 系統連系インバータ装置
US8649196B2 (en) 2009-01-29 2014-02-11 Mitsubishi Electric Corporation Power converting apparatus with an output voltage that is the sum of voltages generated by individual inverters
JP2011114920A (ja) * 2009-11-26 2011-06-09 Hitachi Ltd 電力変換装置
CN102630369A (zh) * 2009-11-26 2012-08-08 株式会社日立制作所 电力转换装置
JP2010104233A (ja) * 2010-01-29 2010-05-06 Mitsubishi Electric Corp 電力変換装置
JP2012175848A (ja) * 2011-02-23 2012-09-10 Central Research Institute Of Electric Power Industry 無効電力補償装置
JP5659290B2 (ja) * 2011-02-23 2015-01-28 東芝三菱電機産業システム株式会社 太陽光発電システム
US9300226B2 (en) 2011-02-23 2016-03-29 Toshiba Mitsubishi-Electric Industrials Systems Corporation Solar power generation system
WO2012114469A1 (ja) * 2011-02-23 2012-08-30 東芝三菱電機産業システム株式会社 太陽光発電システム
JP2011172485A (ja) * 2011-06-06 2011-09-01 Mitsubishi Electric Corp 電力変換装置
JP2013255308A (ja) * 2012-06-05 2013-12-19 Toshiba Corp 半導体電力変換装置
WO2024028982A1 (ja) * 2022-08-02 2024-02-08 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP3980515B2 (ja) 2007-09-26

Similar Documents

Publication Publication Date Title
JP3980515B2 (ja) 電圧変動補償装置
USRE40528E1 (en) Voltage fluctuation compensating apparatus
CN102511121B (zh) 可交流输出的蓄电器件
JP5706739B2 (ja) 電力変換システム
CN105305598A (zh) 不间断电源和操作方法
US9812961B2 (en) Direct current conversion device and operation method of the same
TWI593213B (zh) 不斷電電源裝置
US20180019684A1 (en) Power converter
US10069438B2 (en) Power converter with capacitor voltage balancing
KR20200025849A (ko) 전력계통의 상태에 따라 운전모드가 제어되는 에너지 저장시스템 및 이의 운전제어방법
JP4490309B2 (ja) 電力変換装置
CN113659860A (zh) 开关功率放大器及其控制方法、控制系统
TW201714393A (zh) 電荷幫浦及包含其之動態電荷幫浦裝置
JP2018093558A (ja) 電力変換装置
JP3911175B2 (ja) 電圧変動補償装置
JP2002359928A (ja) 電圧変動補償装置
WO2021079593A1 (ja) 電源装置
JP6500738B2 (ja) 電力変換装置及びその制御方法
JP3762240B2 (ja) 自励式インバータの制御装置
JP2000032665A (ja) 電力品質補償装置
JP6886072B1 (ja) 電力変換装置
JP5813028B2 (ja) 分散型電源装置
JP3819722B2 (ja) 電圧変動補償装置
JP2012023916A (ja) 電力変換装置
JP3903421B2 (ja) 電圧変動補償装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees