JP2004328555A - 高周波電力増幅用電子部品および無線通信システム - Google Patents

高周波電力増幅用電子部品および無線通信システム Download PDF

Info

Publication number
JP2004328555A
JP2004328555A JP2003123040A JP2003123040A JP2004328555A JP 2004328555 A JP2004328555 A JP 2004328555A JP 2003123040 A JP2003123040 A JP 2003123040A JP 2003123040 A JP2003123040 A JP 2003123040A JP 2004328555 A JP2004328555 A JP 2004328555A
Authority
JP
Japan
Prior art keywords
circuit
signal
electronic component
output
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123040A
Other languages
English (en)
Inventor
Hiroyuki Nagamori
啓之 永森
Yasuhiro Nunokawa
康弘 布川
Takayuki Tsutsui
孝幸 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2003123040A priority Critical patent/JP2004328555A/ja
Priority to US10/820,026 priority patent/US7053708B2/en
Publication of JP2004328555A publication Critical patent/JP2004328555A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

【課題】高感度で使用環境の変化の影響を受けにくく出力ミスマッチを起こさない上、小型で挿入損失が少ない出力電力検出回路を備えた高周波電力増幅用電子部品およびそれを用いた無線通信システムを提供する。
【解決手段】高周波電力増幅回路(210)の最終段の電力増幅用トランジスタ(213)と出力端子との間に設けられているインピーダンス整合回路の中間ノードから容量素子(Ci)を介して取り出された電圧を制御端子に受け出力電力に比例した電流を流す出力検出用トランジスタと、該トランジスタの制御端子に動作点を与えるバイアス生成回路と、上記出力検出用トランジスタに流れる電流を転写するカレントミラー回路(221)と、転写された電流を電圧に変換する電流−電圧変換用トランジスタ(Q4)とを設けるようにした。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話機等の無線通信システムに使用され高周波の送信信号を増幅して出力する高周波電力増幅回路を組み込んだ電子部品に適用して有効な技術に関し、特に出力電力のフィードバック制御に必要な出力電力の検出に利用して有効な技術に関する。
【0002】
【従来の技術】
一般に、携帯電話機等の無線通信装置(移動体通信装置)における送信側出力部には、変調後の送信信号を増幅する高周波電力増幅回路が設けられている。従来の無線通信装置においては、ベースバンド回路もしくはマイクロプロセッサ等の制御回路からの送信要求レベルに応じて高周波電力増幅回路の増幅率を制御するため、高周波電力増幅回路もしくはアンテナの出力電力を検出して帰還をかけることが行なわれている(例えば、特許文献1参照)。そして、出力電力の検出は、従来は一般に、カプラや検波回路などを使用して行なっており、検波回路は高周波電力増幅回路とは別個の半導体集積回路として構成されることが多い。
【0003】
また、カプラは、ディスクリート部品もしくは絶縁基板(モジュール基板)に形成された出力線(マイクロストリップライン)と並行に配設された導電体との間に形成される容量を介して出力電力を検出する素子であり、半導体チップ上に形成される素子に比べてサイズが大きい。なお、方向性結合器(カプラ)については、例えば総合電子出版社、1997年7月10日発行「マイクロ波の基礎とその応用」P191〜P193に記載されている。また、工業調査会発行「電子材料」1999年4月号のP91〜P95には移動体通信用セラミック積層ロウパスフィルタおよび方向性結合器について記載されている。
【0004】
【特許文献1】
特開2000−151310号公報
【0005】
【発明が解決しようとする課題】
カプラを使用した従来の高周波電力増幅回路の出力電力検出方式にあっては、カプラ自身の大きさもさることながら、その検出出力を検波するためダイオードが必要であり、高周波電力増幅回路とは別の半導体集積回路や電子部品を数多く使用しているため、モジュールの小型化を困難にしていた。さらに、カプラを使用する場合には、検出感度を向上させるためカプラの一端に基準電圧を印加することが行なわれることがあり、その場合基準電圧の最適設定および部品のばらつきに応じた電圧等の調整が必要になるため、セットメーカの負担が大きくなるという不具合がある。また、カプラを使用すると、電力損失も生じるという不具合がある。
【0006】
さらに、近年の携帯電話機においては、880〜915MHz帯の周波数を使用するGSM(Global System for Mobile Communication)と呼ばれる方式の他に例えば1710〜1785MHz帯の周波数を使用するDCS(Digital Cellular System)のような方式の信号を扱えるデュアルバンド方式の携帯電話機が提案されている。かかる携帯電話機に使用される高周波電力増幅モジュールでは、出力パワーアンプも各バンドに応じて設けられるため、その出力電力を検出するカプラも各バンドに応じてそれぞれ必要になる。そのため、一層モジュールの小型化が困難になる。
【0007】
そこで、本出願人は、カプラを使用しない高周波電力増幅回路の出力電力の検出方式について検討した。無線通信システムにおける高周波電力増幅回路の出力電力検出回路に要求される特性のうち、特に重要な特性は次の5点である。第1に小型であること、第2に高感度であること、第3に挿入損失が低いこと、第4に電源電圧変動や温度変化など使用環境の変化の影響を受けにくいこと、第5に実際の電力増幅回路の出力状態とフィードバック制御による出力制御とのミスマッチにより電力増幅回路に異常な電流が流れたりそれによって電力増幅回路が破壊されないこと、である。
【0008】
従来のカプラを用いた検出方式は、上記第2と第4および第5の特性については、ほぼ要求を満たすものであったが、第1の小型化と第3の低挿入損失に関しては、充分に要求を満たすものではなかった。
【0009】
本発明の目的は、出力電力を検出してフィードバック制御を行なう無線通信システムにおいて、検出回路の小型化および低挿入損失化を達成することができる出力電力の検出技術を提供することにある。
本発明の他の目的は、高感度で使用環境の変化の影響を受けにくく出力ミスマッチを起こさない上、小型で挿入損失が少ない出力電力検出回路を備えた高周波電力増幅用電子部品およびそれを用いた無線通信システムを提供することにある。
この発明の前記ならびにそのほかの目的と新規な特徴については、本明細書の記述および添付図面から明らかになるであろう。
【0010】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を説明すれば、下記のとおりである。
すなわち、本願の第1の発明は、高周波電力増幅回路の最終段の電力増幅用トランジスタと出力端子との間に設けられているインピーダンス整合回路の中間ノードから、抵抗および容量素子を介して取り出された電圧を制御端子に受け出力電力に比例した電流を流す出力検出用トランジスタと、該トランジスタの制御端子に動作点を与えるバイアス生成回路と、上記出力検出用トランジスタに流れる電流を転写するカレントミラー回路と、転写された電流を電圧に変換する電流−電圧変換回路とを設けるようにしたものである。
【0011】
ここで、望ましくは、上記バイアス生成回路は、上記トランジスタをB級増幅動作させるようなバイアス電圧を与えるように構成する。また、上記電流−電圧変換回路で変換された検出電圧と上記バイアス回路より与えられるバイアス電圧との差分をとる減算回路を設ける。さらに、上記インピーダンス整合回路として、モジュール基板に形成されたマイクロストリップラインと該ラインに接続された2つの容量素子とから構成されるπ型整合回路を使用し、出力電力をモニタする抵抗および容量素子が接続される上記インピーダンス整合回路のノードの位置は、上記マイクロストリップラインの途中であって2つの容量素子の接続点の間の位置とする。
【0012】
上記した手段によれば、カプラを使用せず容量素子で出力電力をモニタすることができるとともに、検出回路を構成するバイアス生成回路とカレントミラー回路と電流−電圧変換回路は半導体集積回路として1つの半導体チップ上に形成することができるため、検出回路の小型化を図ることができる。また、インピーダンス整合回路から高周波電力増幅回路の出力電力をモニタする電圧を取り出す場合、交流成分を抽出すれば良いので容量素子のみでも可能であるが、この容量素子とインピーダンス整合回路の接続ノードとの間に抵抗素子を設けることにより、最終段の電力増幅用トランジスタからは抵抗の先の容量が見えにくくなるので、挿入損失を低減することができる。
【0013】
さらに、検出電流を転写するカレントミラー回路を設けているため、検出用トランジスタの特性(特にしきい値電圧)のばらつきによる影響を相殺した検出出力を得ることができる。また、電流−電圧変換回路で変換された検出電圧と検出用トランジスタのバイアス電圧との差分をとる減算回路とを設けることにより、減算回路によって検出信号から直流成分を差し引いた信号が得られるため、出力電力の検出感度の高い検出回路を実現することができるようになる。
【0014】
本願の第2の発明は、出力電力のフィードバック制御に必要な出力電力の検出を、最終段の電力増幅用トランジスタと同一の入力信号を制御端子に受け縮小比例した電流を流すトランジスタと、該トランジスタに流れる電流を転写するカレントミラー回路と、転写された電流を電圧に変換する電流−電圧変換回路と、上記入力信号の直流成分を抽出するロウパスフィルタと、上記電流−電圧変換回路で変換された電圧と上記ロウパスフィルタにより抽出された入力信号の直流成分と差分をとる減算回路とを設けるようにしたものである。
【0015】
上記した手段によれば、最終段の電力増幅用トランジスタとアンテナ端との間に出力電力検出回路が設けられていないので挿入損失がないとともに、最終段の電力増幅用トランジスタと同一の入力信号に基づいて電流検出方式で検出された交流成分と直流成分を含む検出信号から直流成分を減算した信号が減算回路より得られるため、出力電力の検出感度の高い検出回路を実現することができるようになる。
【0016】
【発明の実施の形態】
以下、本発明の好適な実施例を図面に基づいて説明する。
図1は、本発明の第1の検出方式の出力電力検出回路を適用した高周波電力増幅器(以下、パワーモジュールと称する)の実施例を示したものである。なお、本明細書においては、表面や内部にプリント配線が施されたセラミック基板のような絶縁基板に複数の半導体チップとディスクリート部品が実装されて上記プリント配線やボンディングワイヤで各部品が所定の役割を果たすように結合されることであたかも一つの電子部品として扱えるように構成されたものをモジュールと称する。
【0017】
この実施例のパワーモジュール200は、入力高周波信号Pinを増幅する電力増幅FETを含む高周波電力増幅部210と、該高周波電力増幅回路210の出力電力を検出する出力電力検出回路220と、前記高周波電力増幅部210の各段の電力増幅FETにバイアス電圧を与えて各FETに流すアイドル電流を制御するバイアス回路230とからなる。
【0018】
特に制限されるものでないが、この実施例の高周波電力増幅部210は、3個の電力増幅用FET211、212、213を備え、このうち後段のFET212,213はそれぞれ前段のFET211,212のドレイン端子にゲート端子が接続され、全体で3段の増幅回路として構成されている。また、各段のFET211,212,213のゲート端子には、バイアス回路230から供給されるゲートバイアス電圧Vb1,Vb2,Vb3が印加され、これらの電圧に応じたアイドル電流が各FET211,212,213にそれぞれ流されるようにされている。
【0019】
電力増幅用素子211〜213として、この実施例ではMOSFETが使用されているが、バイポーラ・トランジスタやGaAsMESFET、ヘテロ接合バイポーラ・トランジスタ(HBT)、HEMT(High Electron Mobility Transistor)等他のトランジスタを用いても良い。
【0020】
各段のFET211,212,213のドレイン端子にはそれぞれインダクタンス素子L1,L2,L3を介して電源電圧Vddが印加されている。初段のFET211のゲート端子と入力端子Inとの間には、インピーダンス整合回路241および直流カットの容量素子C1が設けられ、これらの回路及び素子を介して高周波信号PinがFET211のゲート端子に入力される。
【0021】
初段のFET211のドレイン端子と2段目のFET212のゲート端子との間には、インピーダンス整合回路242および直流カットの容量素子C2が接続されている。また、2段目のFET212のドレイン端子と最終段のFET213のゲート端子との間には、インピーダンス整合回路243および直流カットの容量素子C3が接続されている。そして、最終段のFET213のドレイン端子がインピーダンス整合回路244および容量素子C4を介して出力端子OUTに接続されており、高周波入力信号Pinの直流成分をカットし交流成分を増幅した信号Poutを出力する。
【0022】
この実施例の出力電力検出回路220は、最終段の電力増幅EFT213のドレイン端子とモジュールの出力端子OUTとの間に設けられたインピーダンス整合回路244の内部ノードに一方の端子が接続された抵抗Riおよび該抵抗と直列に接続された容量Ciと、該容量Ciの他方の端子がゲートに接続されたNチャネルMOSトランジスタQ1と、該トランジスタQ1と直列に接続されたPチャネルMOSトランジスタQ2と、該トランジスタQ2とカレントミラー接続されたMOSトランジスタQ3と、該トランジスタQ3と直列に接続された電流−電圧変換用MOSトランジスタQ4と、変換された電圧をインピーダンス変換して次段に供給するバッファ回路222と、上記MOSトランジスタQ1にゲートバイアス電圧を与えるバイアス生成回路223と、該バイアス生成回路223で生成されたバイアス電圧をインピーダンス変換して次段に供給するバッファ回路224と、バッファ回路222の出力からバッファ回路224の出力を差し引いた電圧を出力する減算回路225とから構成されている。バッファ回路222と224には、ボルテージフォロワを用いることができる。
上記抵抗Riの抵抗値としては30〜3kΩ程度が、また容量Ciの容量値としては2〜100pF程度が望ましい。
【0023】
バイアス生成回路223は、電源電圧端子Vdd1との接地点との間に直列に接続された抵抗R1およびMOSトランジスタQ5と、該MOSトランジスタQ5のゲート端子と上記出力検出用MOSトランジスタQ1のゲート端子との間に接続された抵抗R2と、前記MOSトランジスタQ5のゲート端子と接地点との間に接続された容量C11とからなる。MOSトランジスタQ5は、そのゲート端子とドレイン端子とが結合されてダイオードとして作用するように構成されており、抵抗R1とトランジスタQ5のオン抵抗の比でVdd1を分割した電圧を出力検出用MOSトランジスタQ1のゲート端子にバイアス電圧として付与する。
【0024】
本実施例では、このバイアス電圧の値として、上記出力検出用MOSトランジスタQ1をB級増幅動作させることができるように、Q1のしきい値電圧に近い電圧値が設定されている。これにより、MOSトランジスタQ1には、容量Ciを介して入力される交流波形に比例しそれを半波整流したような電流が流され、Q1のドレイン電流は入力交流信号の振幅に比例した直流成分を含むようにされる。
【0025】
このトランジスタQ1のドレイン電流IdがQ2とQ3のカレントミラー回路221によりQ3側に転写され、Q4によって電圧に変換される。ここで、MOSトランジスタQ1とQ4およびQ2とQ3は、それぞれ所定のサイズ比になるように設定されている。これにより、例えば製造バラツキでMOSトランジスタQ1とQ2の特性(特にしきい値電圧)がばらつくと、これらと対を成すMOSトランジスタQ4とQ3の特性も同じようにばらつく。
【0026】
その結果、特性ばらつきによる影響が相殺され、MOSトランジスタQ4のドレイン端子にはMOSトランジスタのばらつきの影響を受けない出力検出電圧が現われるようになる。また、温度変化によりMOSトランジスタQ1とQ2の特性が変化すると、これらと対を成すMOSトランジスタQ4とQ3の特性も同じように変化する。その結果、特性変化による影響が相殺され、MOSトランジスタQ4のドレイン端子には温度変動の影響を受けない出力検出電圧が現われるようになる。
【0027】
また、この実施例においては、バッファ回路224の入力端子に、上記バイアス生成回路223のMOSトランジスタQ5のゲート端子と抵抗R2との接続ノードN1の電位Vn11が入力されている。抵抗R2と容量C11は、容量Ciを介して取り込まれた出力電力の交流成分がバッファ回路224の入力に回り込むのを防止する。そして、このバイアス生成回路223で生成され出力検出用MOSトランジスタQ1のゲート端子に印加されるバイアス電圧と同一の電圧がバッファ回路224を介して減算回路225に供給され、出力検出電圧からバイアス電圧を差し引いた電圧が減算回路225から出力される。これにより、減算回路225の出力は、バイアス生成回路223により付与される直流成分を含まない純粋な出力電力の交流成分に比例した検出電圧Vdetとなる。しかも、温度変化によりトランジスタQ1のゲートバイアス電圧が変化しても、減算回路225の出力は温度変動の影響を受けない電圧となる。
上記抵抗R2の抵抗値としては10k〜30kΩ程度が、また容量C11の容量値としては10〜50pF程度が望ましい。
【0028】
なお、この実施例のパワーモジュール200は、破線で囲まれた部分が半導体集積回路化されている。すなわち電力増幅部210の各素子(インダクタンス素子L1〜L3およびインピーダンス整合回路244を除く)およびバイアス回路230の各素子と、出力電力検出回路220の各素子(抵抗Riおよび容量iを除く)が単結晶シリコンのような1個の半導体チップ上に半導体集積回路として構成されている。そして、この半導体チップIC1と、電力増幅部210のインダクタンス素子L1〜L3およびインピーダンス整合回路244と、出力電力検出回路220の抵抗Riおよび容量iとが、1つのセラミック基板上に実装されてパワーモジュールとして構成されている。
【0029】
このように、本実施例の出力電力検出方式を適用したパワーモジュールにおいては、カプラを使用しないためモジュールを小型化できるとともに、出力電力検出回路220を電力増幅部210およびそのバイアス回路230の主要部とともに半導体集積回路化することが容易となるため、部品点数を減らしモジュールを小型化することができるようになる。
【0030】
図2は、図1の実施例の変形例を示す。この変形例は、図1の実施例と半導体集積回路の構成の仕方が異なる。すなわち、電力増幅部210の初段EFT211および2段目FET212と、バイアス回路と230と、出力電力検出回路220とを1つの半導体集積回路IC1’として構成したものである。つまり、電力増幅部210の最終段のFET213とインピーダンス整合回路241〜244とインダクタンス素子L1〜L3はIC外とされる。この変形例は、図1の実施例に比べてモジュールの実装密度は若干劣るものの、インピーダンス整合回路241〜243や最終段のFET213としてオンチップのものに比べて特性がすぐれたものを使用できるため、回路の性能を向上させることができるという利点がある。
【0031】
次に、図1や図2の実施例のパワーモジュールにおける出力電力検出回路220による出力電力の監視点の最適な位置について、図3〜図6を用いて説明する。図1に示されているように本実施例のパワーモジュールにおいては、出力電力検出回路220の抵抗Riおよび容量Ciをインピーダンス整合回路244に接続して、インピーダンス整合回路244から出力電力検出回路220へ出力電力を取り出すようにしている。
【0032】
上記インピーダンス整合回路244は等価回路で表わすと、図3に示されているように、最終段の電力増幅用FET213のドレイン端子とモジュールの出力端子OUTとの間に直流カットの容量C4と直列に接続されたマイクロストリップラインMS1〜MS4と、MS1とMS2の接続ノードと接地点との間に接続された容量C21およびMS3とMS4の接続ノードと接地点との間に接続された容量C22とからなるいわゆるπ型の整合回路である。よって、インピーダンス整合回路244から出力電力を取り出すといっても、図3に符号A,B,C,Dで示されているように、マイクロストリップラインMS1〜MS4のどこから取り出すかによって4つの場合が考えられる。
【0033】
本発明者等は、これら4つのポイントのうちどのポイントから出力電力を取り出すのが望ましいかを検討した。なお、図3においては、整合回路244には4つのマイクロストリップラインMS1〜MS4が含まれるように示されているが、実際のモジュールでは連続した導電体層で形成される場合もある。また、マイクロストリップラインは集中定数素子で表わすと、直列形態のインダクタンス素子と各インダクタンス素子の接続ノードと接地点との間に接続された容量素子との連続体と見ることができる。
【0034】
整合回路244は、始端である最終段の電力増幅用FET213のドレイン端でのインピーダンスが1〜5Ωに対して、終端の出力端子OUTでのインピーダンスが50Ωとなるように設計される。しかるに、インピーダンス整合回路244は、出力端子OUTにロウパスフィルタ等を介して接続されているアンテナの負荷が変動すると、アンテナ端で反射しマイクロストリップラインMS1〜MS4へ戻ってくる反射波の位相が変化してしまう。そして、反射波の位相が変化するとマイクロストリップラインからなるインピーダンス整合回路244の各点の電力が変化することとなる。しかも、反射波の位相の変化により生じる電力の変化はマイクロストリップラインからなるインピーダンス整合回路244の各点で異なるため、出力電力検出回路220による検出電圧Vdetの大きさも各点で異なると考えられる。
【0035】
そこで、本発明者等は、図3のようなインピーダンス整合回路244の各点A〜Dにおいて、反射波の位相を変化させたときに出力電力検出回路220により検出される電圧Vdetの大きさをシミュレーションによって算出してみた。なお、上記シミュレーションでは、負荷変動の影響を調べるため、図4に示すように、アンテナの代わりに3dBのアッテネータATTを接続し出力端でのVSWM(電圧定在波比S)を9:1に設定するとともに、電力増幅回路PAとアッテネータATTとの間に位相シフタPSFを設けて反射波の位相を回して、検出電圧Vdetの大きさをシミュレーションした。ここで、進行波の電圧をVF、反射波の電圧をVR、反射係数Γとおくと、Γ=VR/VF,S=(1+|Γ|)/(1−|Γ|)で表わされる。
【0036】
上記シミュレーションの結果を図5に示す。このうち図5(A)は出力電力Poutの変化、図5(B)は(A)のように出力電力Poutが変化する時にFET213のドレイン端子に近い点Aよりモニタ電圧を取り出すようにした場合に検出される電圧Vdet、図5(C)は点Bまたは点Cよりモニタ電圧を取り出すようにした場合に検出される電圧Vdet、図5(D)は出力端子OUTに近い点Dよりモニタ電圧を取り出すようにした場合に検出される電圧Vdetを、それぞれ示す。
【0037】
図5(B)〜(D)より、FET213のドレイン端子に近い点Aよりモニタ電圧を取り出すようにした場合の検出電圧Vdetの負荷変動に対する大きさの変動の方が、出力端子OUTに近い点Dよりモニタ電圧を取り出すようにした場合の検出電圧Vdetの負荷変動に対する大きさの変動よりも小さいことが分かる。従って、変動の観点からは点Dよりも点Aからモニタ電圧を取り出すようにするのが望ましい。
【0038】
一方、図5(B)から分かるように、点Aよりモニタ電圧を取り出すようにした場合には検出電圧Vdetの位相と出力電力Poutの位相とのずれが大きいが、図5(C),(D)から分かるように、点CやDよりモニタ電圧を取り出すようにした場合の検出電圧Vdetの位相と出力電力Poutの位相とのずれは小さい。さらに、本発明者等は、検出電圧Vdetの大きさが一定になるように入力信号Pinを変化させ反射波の位相を回してパワーアンプに流れる電流Iccをシミュレーションにより求めた。その結果を図6に示す。
【0039】
図6において、曲線aは図4の点Aよりモニタ電圧を取り出すようにした場合の電流Iccの変化を、また曲線cは図4の点Cよりモニタ電圧を取り出すようにした場合の電流Iccの変化を示す。図6より、点Cよりモニタ電圧を取り出す方が、点Aよりモニタ電圧を取り出すよりも電流の変化が小さいことが分かる。かかる電流の変化が小さいということは、負荷変動に対する電流の変化が小さい、つまり出力電力検出回路220がアンテナの負荷変動に過剰に反応してパワーアンプに対して必要以上に大きな電流を流す出力ミスマッチを起こすおそれが少ないことを意味している。
【0040】
なお、FET213のドレイン端での電流変化の方がアンテナ端での電流変化よりも大きくなるのは、アンテナ端でのインピーダンスが50Ωであるのに対し、FET213のドレイン端のインピーダンスはそれりもずっと小さな1〜5Ωであり、アンテナ端では電力の変化は電圧の変化して現われ易く、FET213のドレイン端では電力の変化は電流の変化して現われ易いためである。
【0041】
以上の検証から、本実施例においては、点C(図4の実施例では点Bでも可)からモニタ電圧を取り出すようにした。なお、図4の点Aよりモニタ電圧を取り出す場合よりも、点Dよりモニタ電圧を取り出す場合の方が、検出電圧Vdetの変化が大きくなるのは、以下のような理由によるものと考えられる。
【0042】
図3の回路において、出力端OUTに接続される負荷が50ΩのときD点のインピーダンスは50Ωで、FET213のドレイン端であるA点のインピーダンスは、整合回路244によって図7に示すスミスチャート上で矢印Xのように2Ω程度に変換される。出力端OUTに接続される負荷のインピーダンスが50Ωの点を中心とする図7に符号Z1のような円周に沿って変化した時、D点のインピーダンスも当然同じように円周Z1に沿って変化する。このとき、A点のインピーダンスは、50Ω負荷時のA点インピーダンス(2Ω)を中心とする円周Z2に沿って変化する。D点とA点とを比較すると、A点のほうが低インピーダンス側にあるので半径の小さな円周Z2に沿って変化することとなる。そのため、負荷変動に対する電圧変動は、A点よりもD点の方が大きくなる。
【0043】
図8には、実施例のパワーモジュール200のデバイス構造を示す。なお、図8は実施例のRFパワーモジュールの構造を正確に表わしたものではなく、その概略が分かるように一部の部品や配線などを省略した構造図として表わしたものである。
図8に示されているように、本実施例のモジュールの本体10は、アルミナなどのセラミック板からなる複数の誘電体層11を積層して一体化した構造にされている。各誘電体層11の表面または裏面には、所定のパターンに形成し表面に金メッキを施した銅などの導電体からなる導体層12が設けられている。12a〜12dは導体層12からなる配線パターンである。また、各誘電体層11の表裏の導体層12もしくは配線パターン同士を接続するために、各誘電体層11にはスルーホールと呼ばれる孔13が設けられ、この孔内には導電体が充填されている。
【0044】
図8の実施例のモジュールでは、5枚の誘電体層11が積層されており、上から第1層目と第3層目と第5層目の裏面側にはほぼ全面にわたって導体層12が形成され、それぞれ接地電位GNDを供給するグランド層とされている。そして、残りの各誘電体層11の表裏面の導体層12は、伝送線路等を構成するのに使用されている。この導体層12の幅と誘電体層11の厚みを適宜に設定することにより、伝送線路はインピーダンスが50Ωとなるように形成される。
【0045】
第1層目の誘電体層11上には、前記半導体チップIC1が実装され、半導体チップIC1の上面の電極と誘電体層11表面の所定の導体層(12a,12b)とはボンディングワイヤ31により電気的に接続されている。また、第1層目の誘電体層11の表面には、図4に示されている整合回路を構成するマイクロストリップラインMS1,MS2,MS3等を構成する導電パターン12b,12c,12dが形成されているとともに、整合回路から出力電力検出回路へモニタ電圧を取り出すための抵抗素子Riや容量素子Ciなどとして用いられるディスクリート部品32、インダクタンス素子L3として用いられる部品33などが搭載されている。
【0046】
図8には、図4においてインダクタンス素子L3が接続されているマイクロストリップラインMS3を構成する導電層12dに、半導体チップIC1内の出力電力検出回路へモニタ電圧を取り出すための抵抗素子Riが接続されている様子が示されている。つまり、図4の符号Cの端子からモニタ電圧の取り出すように接続が成されている。なお、上記素子のうち容量素子は、ディスクリート部品を使用せずに誘電体層11の表裏面の導体層を利用して基板内部に形成することも可能である。
【0047】
図9は、本発明を適用した無線通信システムにおける第2の検出方式の出力電力検出回路による高周波電力増幅回路(パワーモジュール)の実施例を示したものである。この実施例のパワーモジュールは、最終段のFET213に流れる電流を検出して出力電力を検出するようにしたものである。最終段のFET213に流れる電流を検出するためこの実施例においては、検出用MOSトランジスタQ1のゲート端子に、最終段のFET213のゲート端子に入力される信号と同一の信号が入力されるようにされた検出用MOSトランジスタQ1が設けられている。
【0048】
検出用MOSトランジスタQ1は、電力増幅用FET213よりも素子サイズの小さなトランジスタにより構成されており、FET213のドレイン電流を比例縮小した電流がQ1に流されるようにされている。また、この実施例の出力電力検出回路220には、第1の実施例と同様なカレントミラー回路221と、バッファ回路222および減算回路225が設けられている。また、カレントミラー回路221を構成するトランジスタQ2とQ3のサイズ比はほぼ1:1である。
【0049】
本実施例の出力電力検出回路220が第1の実施例の出力電力検出回路220と異なる点は、検出用MOSトランジスタQ1のゲート端子に入力される信号が抵抗R2と容量C11とからなるロウパスフィルタを通してバッファ回路225に入力され、バッファ回路222の出力である検出電圧からバッファ回路224の出力である検出入力の直流成分を差し引いた電圧が減算回路225から出力されるように構成されている点にある。
【0050】
無線通信システムにおいて、出力電力を検出してAPC回路と呼ばれる回路(図10参照)で出力要求レベルと比較して出力電力をフィードバック制御する方式として、APC回路により生成された制御電圧を図1のバイアス回路230に供給してFET211〜213のゲートバイアス電圧を制御して出力電力を制御する入力固定バイアス可変方式の他に、APC回路からの制御電圧を高周波電力増幅回路の前段に設けられている利得可変アンプに供給してそのゲインを変化させて、入力高周波信号Pinの振幅を変化させる入力可変バイアス固定方式が考えられる。
【0051】
上記入力可変バイアス固定方式の無線通信システムにあっては、バイアス電圧が固定であるため、出力要求レベルが低い場合に電力増幅部の最終段FET213のゲートバイアス電圧が相対的に大きくなり、検出用MOSトランジスタQ1のゲート端子に入力される信号の直流成分が相対的に大きくなって検出感度が低下するおそれがある。しかるに、本実施例のように、検出電圧から検出入力の直流成分を差し引いた電圧を出力検出電圧Vdetとして減算回路225から出力させるように構成することにより、検出感度を高くすることができる。そのため、本実施例の出力電力検出回路220は、特に入力可変バイアス固定方式の無線通信システムに有効な出力電力検出回路であるといえる。
【0052】
図10は、本発明を適用して有効な無線通信システムの一例として、GSMとDCSの2つの通信方式の無線通信が可能なシステムの概略の構成を示す。
図10において、ANTは信号電波の送受信用アンテナ、100はGSMやDCSのシステムにおけるGMSK変調や復調を行なうことができる変復調回路や送信データ(ベースバンド信号)に基づいてI,Q信号を生成したり受信信号から抽出されたI,Q信号を処理する回路を有する高周波信号処理回路(ベースバンド回路)110や受信信号を増幅するロウノイズアンプLNA1,LNA2が1つの半導体チップ上に形成されてなる高周波信号処理用半導体集積回路(ベースバンドIC)と送信信号から高調波成分を除去するバンドパスフィルタBPF1,BPF2、受信信号から不要波を除去するバンドパスフィルタBPF3,BPF4などが1つのパッケージに実装されてなる電子デバイス(以下、RFデバイスと称する)である。Tx‐MIX1,Tx−MIX2は各々GSMとDCSの送信信号をアップンコンバートするミキサ、Rx‐MIX1,Rx−MIX2は各々GSMとDCSの受信信号をダウンコンバートするミキサである。
【0053】
また、図10において、200はベースバンドIC100から供給される高周波信号を増幅する前記実施例のパワーモジュール、300は送信信号に含まれる高調波などのノイズを除去するフィルタLPF1,LPF2、GSMの信号とDCSの信号を合成したり分離したりする分波器DPX1,DPX2、送受信の切替えスイッチT/R−SWなどを含むフロントエンド・モジュール、400は出力電力検出回路220からの検出電圧VdetとベースバンドIC110からのパワー制御信号PCSとに基づいてベースバンドIC110内の利得制御アンプGCA1,GCA2に対する出力制御信号Vapcを生成する自動パワー制御回路(APC回路)である。
【0054】
APC回路400は、この実施例では半導体集積回路として構成され、ベースバンドIC110などと共にRFデバイス100の基板に実装されているが、パワーアンプ210a,210bや出力電力検出回路220、バイアス回路230などが実装されたパワーモジュール200の基板、またはフロントエンド・モジュール300の基板に実装されても良い。
【0055】
図10に示されているように、この実施例では、パワーモジュール200内のGSM用パワーアンプ210aとDCS用パワーアンプ210bのバイアス電流Icont1H,Icont1LがRFデバイス100のベースバンドIC110から供給される。このうちIcont1HはGSM送信モードの際に供給される電流、Icont1LはDCS送信モードの際に供給される電流である。ベースバンドIC110から供給される電流Icont1H,Icont1Lによって、パワーアンプ210aと210bの利得が決定される。電流Icont1H,Icont1Lはどちらか一方がパワーモジュール200に供給され、同時に供給されることはない。
【0056】
また、ベースバンドIC110からバイアス回路230に対してGSMかDCSかを示すモード選択信号Vmodeが供給され、バイアス回路230はこの制御信号Vmodeに基づいて、モードに応じたバイアス電流を生成しパワーアンプ210aと210bのいずれかに供給する。バイアス回路230は、RFデバイス100から電流Icont1HまたはIcont1Lのいずれが供給されているか判定し、それに応じてバイアス回路230内の切替えを行なうように構成しても良い。
【0057】
図10から分かるように、この実施例では、ベースバンドIC110から供給される電流Icont1H,Icont1Lによってパワーアンプ210aと210bの利得が一定に保持された状態で、APC回路400から出力される出力制御信号VapcがベースバンドIC110内の利得制御アンプGCA1,GCA2に供給され、利得制御アンプGCA1,GCA2のゲインが出力制御信号Vapcによって制御されることにより、パワーアンプ210a,210bの入力電力が変化され、これに応じてパワーアンプ210a,210bの出力電力が変化するように制御される。
【0058】
利得制御アンプGCA1,GCA2を設けてパワーモジュール200に入力される送信信号の振幅を制御する代わりに、ベースバンドICからパワーモジュール200に入力される送信信号の振幅を一定にして、APC回路400から出力される出力制御信号Vapcをパワーモジュール200のバイアス回路230に供給し、バイアス回路230が出力制御信号Vapcに応じてパワーアンプ210a,210bのバイアス電流を可変制御してパワーアンプ210a,210bのゲインを制御するように構成しても良い。
【0059】
なお、この実施例では、バンドパスフィルタBPF1〜BPF4はベースバンドIC(110)に対して外付けされた容量素子や抵抗素子で構成されているが、バンドパスフィルタBPF1〜BPF4を構成する素子をベースバンド回路110と同一の半導体チップ上に形成することも可能である。また、図10には示されていないが、上記デバイスやモジュール以外に、RFデバイス100に対する制御信号やパワー制御信号PCSの基になる出力レベル指示信号を生成してシステム全体を制御するマイクロプロセッサ(CPU)を設けるようにしても良い。
【0060】
以上本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は上記実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば図4においては、インピーダンス整合回路244内のマイクロストリップラインMS1とMS2との間のノードに容量C21が、またMS2とMS3との間のノードにインダクタL3が接続されているが、インダクタL3と容量C21の接続ノードを入れ替える変形例も考えられる。その場合、出力電力検出回路220によるモニタ電圧は端子Bよりも端子C(容量C21とC22との間の位置)から取り出すようにするのが良い。また、前記実施例の高周波電力増幅回路では、電力増幅FETを3段接続しているが、2段構成としたり、4段以上の構成としても良い。
【0061】
以上の説明では主として本発明者によってなされた発明をその背景となった利用分野であるGSMとDCSの2つの通信方式による送受信が可能なデュアルモードの無線通信システムを構成するパワーモジュールに適用した場合を説明したが、本発明はそれに限定されるものでなく、他の通信方式や、GMSとDCSとPCS(Personal Communications System)など3以上の通信方式による送受信が可能なマルチモードの携帯電話機や移動電話機などの無線通信システムを構成するパワーモジュールに利用することができる。
【0062】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
すなわち、本発明に従うと、高感度で使用環境の変化の影響を受けにくく出力ミスマッチを起こさない上、小型で挿入損失が少ない出力電力検出回路を備えた高周波電力増幅用電子部品およびそれを用いた無線通信システムを実現することができる。
【図面の簡単な説明】
【図1】本発明を適用した無線通信システムにおける第1の検出方式の出力電力検出回路による高周波電力増幅器(パワーモジュール)の実施例を示す回路構成図である。
【図2】実施例のパワーモジュールの変形例を示す回路構成図である。
【図3】インピーダンス整合回路から出力電力検出回路への出力電力を取出し方の例を示した整合回路の回路図である。
【図4】実施例における出力電力を取出し方の相違を調べるためのシミュレーション用の回路の例を示す回路図である。
【図5】インピーダンス整合回路における出力電力検出回路へのモニタ電圧の取出し口を変えた時の反射波位相に対する出力電力Poutおよび検出電圧Vdetの変化の様子を示すグラフである。
【図6】負荷変動に対して検出電圧の大きさが一定になるように入力信号を変化させたときの反射波位相に対するパワーアンプの電流の変化を示すグラフである。
【図7】モニタ電圧の取出し口を出力端側にした場合の方が検出電圧の変化が大きくなる理由を説明するインピーダンス整合回路の特性を示すスミスチャートである。
【図8】実施例のパワーモジュールのデバイス構造を示す一部断面斜視図である。
【図9】本発明を適用した無線通信システムにおける第2の検出方式の出力電力検出回路を備えたパワーモジュールの実施例を示す回路構成図である。
【図10】本発明を適用したGSMとDCSの2つの通信方式の無線通信が可能なシステムの概略の構成を示すブロック図である。
【符号の説明】
100 RFデバイス
110 ベースバンド回路
200 パワーモジュール
210,210a,210b 高周波電力増幅回路
211,212,213 電力増幅用FET
241〜244 インピーダンス整合回路
220 出力電力検出回路
221 カレントミラー回路
222,224 バッファ回路
223 ロウパスフィルタ
225 減算回路
230 バイアス回路
300 フロントエンド・モジュール
400 自動パワー制御回路(APC回路)

Claims (13)

  1. 変調された高周波信号を増幅する電力増幅回路と、該電力増幅回路の出力電力の大きさを検出し前記電力増幅回路の出力電力をフィードバック制御するための信号を出力する出力電力検出回路とを備える高周波電力増幅用電子部品であって、前記出力電力検出回路は、前記電力増幅回路の出力側に設けられるインピーダンス整合回路からのモニタ電圧を、容量素子を介して受けて電力増幅回路の出力電力を検出することを特徴とする高周波電力増幅用電子部品。
  2. 前記容量素子とインピーダンス整合回路のモニタ電圧取出し点との間には、前記容量素子と直列形態に抵抗素子が接続されていることを特徴とする請求項1に記載の高周波電力増幅用電子部品。
  3. 前記インピーダンス整合回路は、前記電力増幅回路の最終段の増幅素子の出力端子に一端が接続された導電体層からなるマイクロストリップ配線と各々該マイクロストリップ配線の一部と定電位点との間に接続された第1と第2の容量素子とからなり、前記モニタ電圧の取出し点は、前記マイクロストリップ配線の前記第1の容量素子が接続された部位と前記第2の容量素子が接続された部位との間に設定されていることを特徴とする請求項1または2に記載の高周波電力増幅用電子部品。
  4. 前記出力電力検出回路は、前記容量素子を介して供給されるモニタ電圧が制御端子に印加された第1トランジスタと、該第1トランジスタと直列に接続された第2トランジスタと、該第2トランジスタとカレントミラー接続された第3トランジスタと、該第3トランジスタと直列に接続された電流−電圧変換用トランジスタと、前記第1トランジスタの制御端子に動作点を与えるバイアス生成回路と、前記電流−電圧変換用トランジスタにより変換された電圧と前記バイアス生成回路により前記第1トランジスタに付与される電圧との差に応じた電圧を検出信号として出力する減算回路とを備えていることを特徴とする請求項1〜3のいずれかに記載の高周波電力増幅用電子部品。
  5. 前記電力増幅回路にバイアスを与えるバイアス回路を有することを特徴とする請求項1〜4のいずれかに記載の高周波電力増幅用電子部品。
  6. 前記バイアス回路は、前記第1トランジスタをB級増幅動作させるようなバイアス電圧を与えるように構成されていることを特徴とする請求項5に記載の高周波電力増幅用電子部品。
  7. 前記電力増幅回路と前記出力電力検出回路は1つの半導体チップ上に形成されていることを特徴とする請求項1〜5のいずれかに記載の高周波電力増幅用電子部品。
  8. 変調された高周波信号を増幅する電力増幅回路と、該電力増幅回路の入力信号を受け電力増幅回路の電流を検出する出力検出用トランジスタを有する電流検出回路と、該電流検出回路の検出電流を電圧に変換する電流−電圧変換手段とを備え、前記電力増幅回路の出力電力をフィードバック制御するための信号を出力する高周波電力増幅用電子部品であって、前記電流検出回路は、前記電力増幅回路の入力信号を制御端子に受ける第1トランジスタと、該第1トランジスタと直列に接続された第2トランジスタと、該第2トランジスタとカレントミラー接続された第3トランジスタとを有し、前記電流−電圧変換手段は前記第3トランジスタと直列に接続された第4トランジスタを具備していることを特徴とする高周波電力増幅用電子部品。
  9. 前記電流検出回路は、前記入力信号の直流成分を抽出するロウパスフィルタと、前記第4トランジスタにより変換された電圧と前記ロウパスフィルタにより抽出された前記入力信号の直流成分との差に応じた電圧を検出信号として出力する減算回路とを備えていることを特徴とする請求項8に記載の高周波電力増幅用電子部品。
  10. 前記電力増幅回路にバイアスを与えるバイアス回路を有することを特徴とする請求項8または9に記載の高周波電力増幅用電子部品。
  11. 請求項1〜10のいずれかに記載の高周波電力増幅用電子部品と、送信信号と受信信号の切替えを行なう送受信切替え回路を備えた第2電子部品と、送信する信号を変調して前記高周波電力増幅用電子部品へ入力する第3電子部品と、を備え、
    前記第3電子部品は、前記高周波電力増幅用電子部品へ供給される送信信号の振幅を制御可能な利得制御増幅回路と、前記出力電力検出回路から供給される前記電力増幅回路の出力電力の検出信号と出力レベル指示信号とを比較して前記利得制御増幅回路に制御信号を付与し利得を変化させる出力レベル制御回路とを有することを特徴とする無線通信システム。
  12. 請求項5または10に記載の高周波電力増幅用電子部品と、送信信号と受信信号の切替えを行なう送受信切替え回路を備えた第2電子部品と、送信する信号を変調して前記高周波電力増幅用電子部品へ入力する第3電子部品と、前記出力電力検出回路から供給される前記電力増幅回路の出力電力の検出信号と出力レベル指示信号とを比較して前記バイアス回路に制御信号を付与し前記電力増幅回路に与えるバイアスを変化させる出力レベル制御回路とを有することを特徴とする無線通信システム。
  13. 前記高周波電力増幅用電子部品は第1周波数帯の信号を増幅する第1電力増幅回路と第2周波数帯の信号を増幅する第2電力増幅回路を備え、前記第2電子部品は第1周波数帯の信号と第2周波数帯の信号の切替えを行なう信号切替え手段を備え、前記第3電子部品は第1周波数帯の信号を変調する回路と第2周波数帯の信号を変調する回路を備え、前記出力電力検出回路は前記第1電力増幅回路と第2電力増幅回路に対して共通の回路として設けられていることを特徴とする請求項11または12に記載の無線通信システム。
JP2003123040A 2003-04-28 2003-04-28 高周波電力増幅用電子部品および無線通信システム Pending JP2004328555A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003123040A JP2004328555A (ja) 2003-04-28 2003-04-28 高周波電力増幅用電子部品および無線通信システム
US10/820,026 US7053708B2 (en) 2003-04-28 2004-04-08 Electronic component for high frequency power amplifier and radio communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123040A JP2004328555A (ja) 2003-04-28 2003-04-28 高周波電力増幅用電子部品および無線通信システム

Publications (1)

Publication Number Publication Date
JP2004328555A true JP2004328555A (ja) 2004-11-18

Family

ID=33296658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123040A Pending JP2004328555A (ja) 2003-04-28 2003-04-28 高周波電力増幅用電子部品および無線通信システム

Country Status (2)

Country Link
US (1) US7053708B2 (ja)
JP (1) JP2004328555A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238244A (ja) * 2005-02-28 2006-09-07 Renesas Technology Corp 高周波電力増幅用電子部品
JP2006319508A (ja) * 2005-05-11 2006-11-24 Renesas Technology Corp 高周波電力増幅器およびそれを用いた送信器および移動体通信端末
KR100659718B1 (ko) 2005-04-07 2006-12-21 단암전자통신주식회사 RF전력 증폭기에서의 1xEV-DO 전력 검출 방법 및장치
JP2007019582A (ja) * 2005-07-05 2007-01-25 Renesas Technology Corp 高周波電力増幅器および無線通信装置
JP2011061355A (ja) * 2009-09-08 2011-03-24 Nec Corp 多帯域対応高周波電力モニタ回路
JP2014135682A (ja) * 2013-01-11 2014-07-24 Tdk Corp 高周波増幅器
US9847756B1 (en) 2016-09-15 2017-12-19 Kabushiki Kaisha Toshiba Wireless communication device and wireless communication method
WO2023157073A1 (ja) * 2022-02-15 2023-08-24 日本電信電話株式会社 ミキサ回路

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4287193B2 (ja) * 2003-05-15 2009-07-01 株式会社ルネサステクノロジ 高周波電力増幅用電子部品および無線通信システム
US7288991B2 (en) * 2005-02-17 2007-10-30 Skyworks Solutions, Inc. Power control circuit for accurate control of power amplifier output power
US7279979B2 (en) * 2005-09-12 2007-10-09 Nokia Corporation Method and arrangement for adjusting an output impedance of a power amplifier
TW200727227A (en) * 2006-01-10 2007-07-16 Compal Electronics Inc Gamma curve compensating device and method use the same
US20070252651A1 (en) * 2006-04-28 2007-11-01 Huai Gao Power Amplifier With A Output Matching Network
US7970427B2 (en) * 2007-03-20 2011-06-28 Skyworks Solutions, Inc. System and method for dynamically improving call connection
JP2008271517A (ja) * 2007-03-23 2008-11-06 Matsushita Electric Ind Co Ltd 高周波電力増幅器、半導体装置、および高周波電力増幅方法
KR20110110525A (ko) * 2010-04-01 2011-10-07 삼성전자주식회사 무선 전력 전송 장치 및 방법
US8913970B2 (en) * 2010-09-21 2014-12-16 Apple Inc. Wireless transceiver with amplifier bias adjusted based on modulation scheme
US8738066B2 (en) 2010-10-07 2014-05-27 Apple Inc. Wireless transceiver with amplifier bias adjusted based on modulation scheme and transmit power feedback
CN102545793A (zh) * 2010-12-17 2012-07-04 南京航空航天大学 一种pA-μA量程的微弱电流放大器
US8897727B2 (en) * 2012-06-01 2014-11-25 Qualcomm Incorporated Power detector with temperature compensation
US9297853B2 (en) * 2013-06-18 2016-03-29 Globalfoundries Inc. In-line measurement of transistor device cut-off frequency
CN104571239B (zh) * 2013-10-25 2017-03-15 意法半导体研发(深圳)有限公司 一种生成直流偏置的装置和方法
CN103974148A (zh) * 2014-04-14 2014-08-06 无锡安东科技有限公司 一种用于汽车生产现场的对讲机集中呼叫器
CN105471397A (zh) * 2015-12-11 2016-04-06 锐迪科创微电子(北京)有限公司 一种双频射频功率放大模块
JP2021082960A (ja) * 2019-11-20 2021-05-27 株式会社村田製作所 電力増幅回路
CN111812399B (zh) * 2020-07-01 2022-06-07 合肥芯谷微电子有限公司 一种微波功率放大模块精确测试方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962484A (en) * 1988-01-25 1990-10-09 Hitachi, Ltd. Non-volatile memory device
EP0854569B1 (en) * 1997-01-21 2003-04-09 Matsushita Electric Industrial Co., Ltd. High-frequency power amplifier
JP3766239B2 (ja) 1998-08-31 2006-04-12 株式会社ルネサステクノロジ 半導体増幅回路および無線通信装置
JP2001168647A (ja) * 1999-12-13 2001-06-22 Hitachi Ltd 高周波電力増幅モジュール及び無線通信装置
US6480700B1 (en) * 2000-03-03 2002-11-12 Nokia Corporation Apparatus, and associated method, for operating a communication device at reduced level of current consumption
TW503345B (en) * 2001-03-26 2002-09-21 Mediatec Inc Power controller
JP2004193846A (ja) * 2002-12-10 2004-07-08 Renesas Technology Corp 高周波電力増幅用電子部品および無線通信システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238244A (ja) * 2005-02-28 2006-09-07 Renesas Technology Corp 高周波電力増幅用電子部品
JP4488309B2 (ja) * 2005-02-28 2010-06-23 株式会社ルネサステクノロジ 高周波電力増幅用電子部品
KR100659718B1 (ko) 2005-04-07 2006-12-21 단암전자통신주식회사 RF전력 증폭기에서의 1xEV-DO 전력 검출 방법 및장치
JP2006319508A (ja) * 2005-05-11 2006-11-24 Renesas Technology Corp 高周波電力増幅器およびそれを用いた送信器および移動体通信端末
JP2007019582A (ja) * 2005-07-05 2007-01-25 Renesas Technology Corp 高周波電力増幅器および無線通信装置
JP4632882B2 (ja) * 2005-07-05 2011-02-16 ルネサスエレクトロニクス株式会社 高周波電力増幅器および無線通信装置
JP2011061355A (ja) * 2009-09-08 2011-03-24 Nec Corp 多帯域対応高周波電力モニタ回路
JP2014135682A (ja) * 2013-01-11 2014-07-24 Tdk Corp 高周波増幅器
US9847756B1 (en) 2016-09-15 2017-12-19 Kabushiki Kaisha Toshiba Wireless communication device and wireless communication method
WO2023157073A1 (ja) * 2022-02-15 2023-08-24 日本電信電話株式会社 ミキサ回路

Also Published As

Publication number Publication date
US7053708B2 (en) 2006-05-30
US20040212434A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP2004328555A (ja) 高周波電力増幅用電子部品および無線通信システム
TW595090B (en) High frequency electronic component for power amplification and radio frequency communication system
JP3932259B2 (ja) 高周波電力増幅回路および無線通信用電子部品
JP3977339B2 (ja) 高周波電力増幅回路および通信用電子部品
JP5009500B2 (ja) Rfパワーデバイス及びrfパワートランジスタデバイスにおける直線性を改善する方法
US7508267B1 (en) GaN based digital controlled broadband MMIC power amplifier
JP3663397B2 (ja) 高周波電力増幅器
US20070069820A1 (en) Electronic parts for high frequency power amplifier
US20030032396A1 (en) Electronic apparatus and wireless communication system
US20060139094A1 (en) Semiconductor integrated circuit for high frequency power amplifier, electronic component for high frequency power amplifier, and radio communication system
US7084702B1 (en) Multi-band power amplifier module for wireless communication devices
US20060261460A1 (en) Semiconductor device
JP2004193846A (ja) 高周波電力増幅用電子部品および無線通信システム
JP2005516444A (ja) 補償されたrf増幅器デバイス
JP2005516444A6 (ja) 補償されたrf増幅器デバイス
US6833771B1 (en) High efficiency amplifier with amplifier element, radio transmission device therewith and measuring device therefor
US7064612B2 (en) High frequency power amplification electric part and wireless communication system
US7395036B2 (en) Semiconductor integrated circuit for high frequency power amplifier and electric components with the semiconductor integrated circuit
JP2005184631A (ja) 高周波電力増幅用電子部品
JP2005217557A (ja) 高周波電力増幅回路
JP2005110327A (ja) 高周波電力増幅用電子部品および高周波電力増幅システム
JP2006270287A (ja) 高周波電力増幅回路
JP2005197860A (ja) 高周波電力増幅回路
JP2007043451A (ja) 高周波電力増幅用電子部品
JP2002057599A (ja) 高周波送受信回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202