JP2004278437A - 予混合圧縮着火内燃機関 - Google Patents

予混合圧縮着火内燃機関 Download PDF

Info

Publication number
JP2004278437A
JP2004278437A JP2003072210A JP2003072210A JP2004278437A JP 2004278437 A JP2004278437 A JP 2004278437A JP 2003072210 A JP2003072210 A JP 2003072210A JP 2003072210 A JP2003072210 A JP 2003072210A JP 2004278437 A JP2004278437 A JP 2004278437A
Authority
JP
Japan
Prior art keywords
intake port
internal combustion
intake
ignition internal
compression ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003072210A
Other languages
English (en)
Inventor
Takashi Matsumoto
崇志 松本
Kiyoshi Fujiwara
清 藤原
Akira Hasegawa
亮 長谷川
Takashi Koyama
崇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003072210A priority Critical patent/JP2004278437A/ja
Publication of JP2004278437A publication Critical patent/JP2004278437A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

【課題】圧縮着火内燃機関の機関負荷が、高負荷領域を含む比較的高い負荷領域においてもより均一な予混合気の形成を可能とし、そして予混合燃焼を行うことで、NOxの発生を抑制する圧縮着火内燃機関を提供する。
【解決手段】予混合燃焼を行う圧縮着火内燃機関において、少なくとも、燃焼室内に異なるスワール比の旋回流を形成する第一吸気ポート6aと第二吸気ポート6bと、を備え、前記第一吸気ポート6aは、吸気ポートの一部であって燃焼室に至るまでの所定の部位における横断面積が、前記第二吸気ポート6bより小さく形成されることで、該第一吸気ポート6aを介して形成される旋回流のスワール比を該第二吸気ポート6bより高くし、且つ予混合気を形成する副燃料を噴射する副燃料噴射弁12を、前記第二吸気ポート6b側に設ける。
【選択図】図2

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼室内に予混合気を形成する圧縮着火式内燃機関に関する。
【0002】
【従来の技術】
圧縮着火内燃機関において、排出されるNOxの抑制と排気白煙の発生の抑制を目的として、予混合燃焼が行われる。この予混合燃焼は、一般に燃料を燃焼室内に吸気行程中もしくは圧縮行程中に噴射することで、燃焼室内により均一な予混合気を形成させる。この均一な予混合気が燃焼する場合、火炎温度が低く抑えられるためNOxの生成が抑制される。さらに、この予混合気は燃料と空気が均一に混合しているため、十分な量の酸素の存在下で燃料が燃焼することになり、従って、酸素不足下での燃焼に起因する白煙の発生も抑制される。
【0003】
ところが、予混合燃焼を行う圧縮着火内燃機関において、機関負荷の上昇に伴う予混合気を形成する燃料噴射量の増加によって、噴射された燃料が気筒内壁面へ付着し潤滑オイル流れが発生する。更に、内燃機関の機関回転速度の上昇に伴い、均一な予混合気の形成に要する時間を確保することが困難となり、予混合燃焼によるNOxの抑制効果を十分に発揮できない。従って、内燃機関の機関負荷や機関回転速度等によって決定される運転領域を限って、予混合燃焼を行う技術が公開されている(例えば、特許文献1および特許文献2参照)。
【0004】
【特許文献1】
実開2000−352344号公報
【特許文献2】
特開2001−130200号公報
【特許文献3】
特許2531322号公報
【特許文献4】
特許3218867号公報
【特許文献5】
特開平10−252512号公報
【特許文献6】
特開平11−294242号公報
【特許文献7】
特開平11−315733号公報
【0005】
【発明が解決しようとする課題】
圧縮着火内燃機関においてNOxの発生を抑制するために予混合燃焼を行う場合、圧縮着火内燃機関の機関負荷が高負荷領域に属する場合には、燃料噴射量の増量や機関回転数の増加による予混合気形成のための時間の短縮によって、予混合気が十分に均一に形成されないため、NOxの発生を十分に抑制することができない虞がある。そこで、本発明では、圧縮着火内燃機関の機関負荷が、高負荷領域を含む比較的高い負荷領域においてもより均一な予混合気の形成を可能とし、そして予混合燃焼を行うことで、NOxの発生を抑制することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記した課題を解決するために、予混合気を形成する燃料の噴射場所に着目した。これは、予混合気が噴射される場所によって、噴射された燃料が内燃機関の機関要素の内壁面への付着の具合が変わるとともに、予混合気を形成する時間を十分に確保することができると考えられるからである。
【0007】
そこで、圧縮着火内燃機関において、主たる燃料を燃焼室内に直接噴射する主燃料噴射弁と、前記主たる燃料より早い時期に副燃料を噴射し、該副燃料と空気との予混合気を形成する副燃料噴射弁と、少なくとも、燃焼室内に異なるスワール比の旋回流を形成する第一吸気ポートと第二吸気ポートと、を備え、前記第一吸気ポートは、該第一吸気ポートの一部であって前記燃焼室に至るまでの所定の部位における該第一吸気ポートの横断面積が、前記第二吸気ポートの一部であって前記燃焼室に至るまでの所定の部位における該第二吸気ポートの横断面積より小さく形成されることで、該第一吸気ポートを介して形成される旋回流のスワール比を該第二吸気ポートを介して形成される旋回流のスワール比より高くし、前記副燃料噴射弁は、前記第二吸気ポート側に設けられ、該第二吸気ポート内に副燃料を噴射する。
【0008】
前記圧縮着火内燃機関においては、吸気ポートとして、少なくとも前記第一吸気ポートと前記第二吸気ポートが備えられている。これら2つの吸気ポートは、気筒内の燃焼室へ吸気を導入するものであるが、これらの吸気ポートを介して燃焼室内へ流入する吸気は、それぞれ異なるスワール比の旋回流を燃焼室内に形成する。これは、各吸気ポートの所定の部位の横断面積が異なっていることに起因し、所定の部位における吸気ポートの横断面積が小さくなることで、燃焼室内に形成される旋回流のスワール比が高くなる。
【0009】
ここで、前記所定の部位とは、吸気ポートを介して燃焼室に流入する吸気に対して、旋回成分を付与するようなポート形状となっている吸気ポートの一部をいい、特に吸気ポートが燃焼室と連結する部位近傍(以下、「連結部位近傍」という)をいう。従って、この所定の部位における吸気ポートの横断面積が小さくなることで、燃焼室内に形成される旋回流のスワール比が高くなるということは、吸気に対してより強い旋回成分を付与するために、吸気ポートの形状が概ね気筒の縦の中心軸を中心としてより絞られた状態、例えば螺旋形状であればその螺旋のピッチを強めることで、また螺旋状にまで至らない状態であっても一定の曲線状で例えば気筒の横断面に対して概ね接線となるような形状であれば、より接線に近い状態とすることで、吸気ポートの横断面積を小さくしていることを意味する。その結果、吸気ポートの前記所定の部位における横断面積が異なることで、燃焼室内に形成される旋回流のスワール比が異なることとなる。また、この場合、一方の吸気ポートについては、形成される旋回流のスワール比がほぼ零の状態であっても構わない。
【0010】
このように形成される横断面積の異なる2つの吸気ポートを備える圧縮着火内燃機関において、副燃料噴射弁を、燃焼室内に形成される旋回流のスワール比が低くなる前記第二吸気ポートに設け、該第二吸気ポート内に副燃料の噴射を行う。ここで、吸気ポートに副燃料を噴射して予混合気を燃焼室内に形成するには、副燃料の噴射時期は、主燃料の噴射時期より早い時期であって、更に吸気弁が開弁する以前である必要がある。従って、副燃料が噴射されてから燃料が着火燃焼する主燃料の噴射時期、圧縮着火内燃機関においては概ね圧縮上死点近傍となる時期までに比較的長い期間が確保されるため、副燃料が十分に拡散し、より均一な予混合気の形成が可能となる。
【0011】
また、副燃料噴射弁が設けられる前記第二吸気ポートは、前記第一吸気ポートと比較して前記所定の部位における横断面積が大きいため、機関負荷の増大によって副燃料の噴射量が増加しても、噴射された副燃料が吸気ポートの壁面に比較的付着しにくいと考えられる。更に、燃焼室内に形成される旋回流は前記第一吸気ポートを介して燃焼室内に流入した吸気によっても形成されるため、燃焼室内での燃料の燃焼は良好に行われる。
【0012】
尚、前記圧縮着火内燃機関において、吸気ポートは前記第一吸気ポートと前記第二吸気ポートのみには限られず、その他の吸気ポートが備えられていても構わない。そのような場合であれば、副燃料の噴射を行う副燃料噴射弁は、前記所定の部位における横断面積が最も大きい、即ち燃焼室に形成される旋回流のスワール比が最も小さくなる吸気ポートに設けられることによって、吸気ポートの内壁への燃料の付着をより確実に抑制することが可能となる。
【0013】
従って、スワール比の異なる旋回流を燃焼室内に形成する少なくとも2つの吸気ポートを備える圧縮着火内燃機関において、圧縮着火内燃機関の機関負荷が高負荷領域を含む比較的高い負荷領域に属する場合であっても、予混合気の形成のための十分な期間を確保することが可能となるとともに、吸気ポートの内壁面への燃料の付着を低減させることで、燃焼室内により均一な予混合気を形成し、そして予混合燃焼を行うことで、NOxの発生を抑制することが可能となる。
【0014】
ここで、前記圧縮着火内燃機関の吸気ポートについては、前記第一吸気ポートは、前記所定の部位が螺旋状に形成されるいわゆるヘリカル型の吸気ポートおよび、前記第二吸気ポートは、前記所定の部位が前記燃焼室に対して概ね接線方向に設けられるいわゆる接線型の吸気ポートが考えられる。接線型の吸気ポートを介した場合でも、燃焼室内に旋回流を形成することは可能であるが、ヘリカル型の吸気ポートを介した場合と比べてはその旋回流のスワール比は小さく、その吸気ポートの前記所定の部位における横断面積は大きい。そこで、副燃料噴射弁が設けられる第二吸気ポートとして、接線型の吸気ポートを設定する。
【0015】
また、先述の組み合わせ以外にも、第一吸気ポートおよび第二吸気ポートをともにヘリカル型の吸気ポートとし、その螺旋のピッチについては第二吸気ポート側を長く、即ち前記所定の部位における横断面積を広くしてもよい。また、第二吸気ポートとして、燃焼室に形成される旋回流のスワール比をより小さくすべく、前記所定の部位の形状が、概ね絞られていない形状であるストレート型の吸気ポートを設定してもよい。また、第一吸気ポートと第二吸気ポートの組み合わせは、上述した吸気ポートの組み合わせに限られない。
【0016】
これらのタイプの吸気ポートとすることで、スワール比の異なる旋回流を燃焼室内に形成する少なくとも2つの吸気ポートを備える圧縮着火内燃機関において、圧縮着火内燃機関の機関負荷が高負荷領域を含む比較的高い負荷領域に属する場合であっても、予混合気の形成のための十分な期間を確保することが可能となるとともに、吸気ポートの内壁面への燃料の付着を低減させることで、燃焼室内により均一な予混合気を形成し、そして予混合燃焼を行うことで、NOxの発生を抑制することが可能となる。
【0017】
更に、圧縮着火内燃機関において、NOxの発生を抑制する手段として、排気の少なくとも一部を再度吸気として用いる排気再循環が行われる。ここで、先述した圧縮着火内燃機関に、更に前記燃焼室より排出された排気の少なくとも一部を前記第一吸気ポート側に導くことで、該排気の少なくとも一部を再度前記燃焼室内へ循環させる排気再循環装置を備えることとする。
【0018】
これによって、燃焼室に再循環される排気は、副燃料噴射弁が設けられていない前記第一吸気ポートを介して燃焼室内に導入される。仮に、副燃料噴射弁が設けられている前記第二吸気ポートに排気が再循環される場合、排気中に含まれる煤等によって副燃料噴射弁が目詰まりを起こし、適正な副燃料噴射が行われない虞が生じる。また、排気中の煤が吸気ポートに付着することによって、噴射された副燃料が吸気ポートに付着した煤に吸着等されることで、確実な予混合気の形成が妨げられる虞が生じる。そこで、前記再循環装置は、再循環される排気を副燃料噴射弁が設けられていない前記第一吸気ポートへと導くものである。
【0019】
従って、スワール比の異なる旋回流を燃焼室内に形成する少なくとも2つの吸気ポートを備える圧縮着火内燃機関において、圧縮着火内燃機関の機関負荷が高負荷領域を含む比較的高い負荷領域に属する場合であっても、予混合気の形成のための十分な期間を確保することが可能となるとともに、吸気ポートの内壁面への燃料の付着を低減させることで、燃焼室内により均一な予混合気を形成し、そして予混合燃焼を行うことで、更に排気再循環によって、NOxの発生を抑制することが可能となる。
【0020】
ここで、前記第二吸気ポートにおいて、副燃料噴射弁より噴射された副燃料が前記第二吸気ポートの内壁面に付着するのをより確実に回避するために、前記第二吸気ポート内の吸気の流速に着目する。そこで、先述した圧縮着火内燃機関に加えて、更に、前記第二吸気ポートにおいて前記副燃料噴射弁より上流側に設けられ、且つ該第二吸気ポートにおける前記副燃料噴射弁と対向する側の吸気の流速を該第二吸気ポートにおける該副燃料噴射弁が設けられた側の吸気の流速より高める吸気流速制御手段を備える。
【0021】
副燃料噴射弁は、前記第二吸気ポート内に副燃料を噴射すべく、その噴孔が前記第二吸気ポートの内壁面の何れかの部位に設けられている。そのとき、副燃料噴射弁より噴射された副燃料は、噴射直後は燃料の粒径がある程度大きいため前記第二吸気ポートを流れる吸気の流速の影響を受けにくいが、その噴射距離が延びることによって燃料の粒径が小さくなり前記第二吸気ポートを流れる吸気の流速の影響を受けやすくなる。また、副燃料噴射弁から噴射された副燃料が前記第二吸気ポートにおいて付着し易い部位は、副燃料噴射弁と対向する部位、即ち副燃料の噴射方向に位置する第二吸気ポートの内壁面であり、該部位においては、副燃料は一定の距離を飛来しているため、副燃料の粒径はある程度小さくなっていると考えられる。そこで、前記第二吸気ポートにおいて副燃料噴射弁と対向する部位を流れる吸気の流速を、副燃料噴射弁が設けられている部位を流れる吸気の流速より高めることで、噴射された副燃料が流されて前記第二吸気ポートへの付着をより確実に回避することが可能となる。
【0022】
従って、スワール比の異なる旋回流を燃焼室内に形成する少なくとも2つの吸気ポートを備える圧縮着火内燃機関において、圧縮着火内燃機関の機関負荷が高負荷領域を含む比較的高い負荷領域に属する場合であっても、予混合気の形成のための十分な期間を確保することが可能となるとともに、吸気ポートの内壁面への燃料の付着をより確実に低減させることで、燃焼室内により均一且つNOx抑制に適した予混合気をより確実に形成し、そして予混合燃焼を行うことで、NOxの発生を抑制することが可能となる。
【0023】
ここで、先述したように副燃料噴射弁から噴射された副燃料が前記第二吸気ポートの内壁面に付着するのを回避すべく前記第二吸気ポート内を流れる吸気の流速を制御する手段として、以下に示す制御弁が考えられる。即ち、前記吸気流速制御手段は、前記第二吸気ポートにおける吸気の少なくとも一部の流れを妨げる流速制御弁を有し、前記流速制御弁が、前記第二吸気ポートにおいて前記副燃料噴射弁が設けられた側の吸気の流れを妨げることで、該第二吸気ポートにおける該副燃料噴射弁と対向する側の吸気の流速を該第二吸気ポートにおける該副燃料噴射弁が設けられた側の吸気の流速より高める。
【0024】
即ち、前記第二吸気ポート内において吸気の流速を制御する場合に、前記第二吸気ポート内の吸気の一部の流れを妨げる流速制御弁を用いることで、該流速制御弁によって吸気の流れが妨げられた部位の下流においては吸気の流れが遅くなり、吸気の流れが妨げられていない部位の下流においては、該部位を吸気が通過するために局部的に圧力が上昇することで、吸気の流速が上昇する。従って、流速制御弁によって前記第二吸気ポートにおいて前記副燃料噴射弁が設けられた側の吸気の流れを妨げることで、該第二吸気ポートにおける該副燃料噴射弁と対向する側の吸気の流速が高められる結果となり、副燃料噴射弁によって噴射された副燃料の前記第二吸気ポート内壁面への付着をより確実に回避することが可能となる。
【0025】
ここで、先述した圧縮着火内燃機関において予混合燃焼を行う場合、機関負荷に応じた予混合気の形成を行うのが好ましい。機関負荷によって要求される副燃料の噴射量や吸気量、更には燃焼室内における旋回流のスワール比等が異なるためである。そこで、前記吸気流速制御手段は、前記第二吸気ポートにおける吸気の少なくとも一部の流れを妨げる流速制御弁を有し、前記予混合圧縮着火内燃機関の機関負荷が軽負荷領域に属するときは、前記流速制御弁により前記第二吸気ポートを概ね全閉とし、且つ前記副燃料噴射弁による副燃料の噴射を禁止し、前記予混合圧縮着火内燃機関の機関負荷が中負荷領域に属するときは、前記流速制御弁により前記第二吸気ポートにおいて前記副燃料噴射弁が設けられた側の吸気の流れを妨げることで、該第二吸気ポートにおける該副燃料噴射弁と対向する側の吸気の流速を該第二吸気ポートにおける該副燃料噴射弁が設けられた側の吸気の流速より高め、且つ前記副燃料噴射弁による副燃料の噴射を実行し、前記予混合圧縮着火内燃機関の機関負荷が高負荷領域に属するときは、前記流速制御弁により前記第二吸気ポートを概ね全開とし、且つ前記副燃料噴射弁による副燃料の噴射を実行する。
【0026】
先述した圧縮着火内燃機関の機関負荷が低負荷領域に属する場合は、該圧縮着火内燃機関が発揮すべきトルクが小さいため、当然に燃料の噴射量が少なくなる。このようなときに前記第二吸気ポートにおいて副燃料を噴射し予混合気を形成すると、予混合気の形成には比較的長い期間が確保されているため、形成された予混合気の空燃比が過度にリーンな状態となるため、副燃料の良好な燃焼状態を得ることが困難となる。そこで、主燃料噴射弁のみから主燃料を燃焼室内に噴射することになるが、そのような場合には主燃料が燃焼室内にある程度拡散しなければ主燃料の燃焼が良好に行われないため、燃焼室内にスワール比の高い旋回流を発生させるのが好ましい。従って、圧縮着火内燃機関の機関負荷が低負荷領域に属するときは、前記流速制御弁によって前記第二吸気ポートを概ね全閉として吸気の流れを遮断するとともに、副燃料噴射弁による副燃料の噴射を禁止して、以て副燃料による予混合気の形成を禁止する。燃焼室内の旋回流は、前記第一吸気ポートを介して燃焼室に流入する吸気によって発生する。尚、このような場合、燃料を所定の時期、例えば本来主燃料が噴射される圧縮行程上死点近傍の時期より早い時期であって噴射された主燃料が気筒の内壁面に付着しにくい吸気行程初期等にも主燃料噴射弁によって主燃料を噴射することによって予混合気を形成することは可能である。
【0027】
次に先述した圧縮着火内燃機関の機関負荷が中負荷領域に属する場合は、該圧縮着火内燃機関が発揮すべきトルクが比較的大きくなるため、燃料の噴射量も増加し低負荷領域のように副燃料によって形成される予混合気の空燃比が過度にリーンな状態となる虞はない。従って、副燃料噴射弁によって副燃料を噴射することで予混合気を形成するとともに、NOxの発生をより確実に抑制するために副燃料の前記第二吸気ポートの内壁面への付着を回避するのが好ましい。そこで、先述したように、前記流速制御弁により前記第二吸気ポートにおいて前記副燃料噴射弁が設けられた側の吸気の流れを妨げることで、前記第二吸気ポート内の吸気の流速を制御する。
【0028】
そして先述した圧縮着火内燃機関の機関負荷が高負荷領域に属する場合は、該圧縮着火内燃機関が発揮すべきトルクが大きくなるため、燃料の噴射量も更に増加させるとともに吸気量も増加させることで、良好な燃焼を確保する。従って、副燃料噴射弁によって副燃料を噴射することで予混合気を形成するとともに、前記流速制御弁により前記第二吸気ポートを概ね全開として吸気の流れを最大とする。
【0029】
従って、スワール比の異なる旋回流を燃焼室内に形成する少なくとも2つの吸気ポートを備える圧縮着火内燃機関において、圧縮着火内燃機関の機関負荷が高負荷領域を含む比較的高い負荷領域に属する場合であっても、予混合気の形成のための十分な期間を確保することが可能となるとともに、吸気ポートの内壁面への燃料の付着をより確実に低減させることで、燃焼室内により均一且つNOx抑制に適した予混合気をより確実に形成される。そして予混合燃焼を行うことで、NOxの発生を抑制するとともに、該予混合燃焼を圧縮着火内燃機関の機関負荷に応じて制御することで、圧縮着火内燃機関の運転状態に応じた適正な予混合燃焼が可能となる。
【0030】
ここで、先述した圧縮着火内燃機関の機関負荷に応じて予混合燃焼を制御するための前記流速制御弁のより簡便な構造について、以下に示す。即ち、前記流速制御弁は、一のアクチュエータにより回転されることで前記第二吸気ポートにおける吸気の流れを妨げる第一の制御板と第二の制御板と、を有し、前記第二の制御板は、更に第一の制御板に対して相対的に概90度の回転角度を有する第一の回転位置と、第一の制御板に対して相対的に概180度の回転角度を有する第二の回転位置との間の範囲を、前記第一の制御板の回転位置にかかわらず自在に回転移動し、更に、前記流速制御弁において、前記第一の制御板を前記第二吸気ポートにおける吸気の流れに対して概垂直となる回転位置とするとともに、前記第二の制御板の回転位置を前記第二の回転位置とすることで前記第二吸気ポートを概ね全閉とする第一制御状態と、前記第一の制御板を前記第一制御状態より概90度回転させるとともに、前記第二の制御板の回転位置を前記第二の回転位置に置くことで前記第二吸気ポートを概ね全開とする第二制御状態と、前記第一の制御板を前記第二制御状態より更に概90度回転させることで前記第二吸気ポートにおいて前記副燃料噴射弁が設けられた側の吸気の流れを妨げるとともに、前記第二の制御板の回転位置を前記第一の回転位置と前記第二の回転位置との範囲における何れかの回転位置とすることで該第二吸気ポートにおける該副燃料噴射弁と対向する側の吸気の流速を該第二吸気ポートにおける該副燃料噴射弁が設けられた側の吸気の流速より高める第三制御状態と、のいずれかの制御状態とする制御板制御手段を備え、前記制御板制御手段は、前記予混合圧縮着火内燃機関の機関負荷が軽負荷領域に属するときは、前記第一の制御板と前記第二の制御板を第一制御状態と、前記予混合圧縮着火内燃機関の機関負荷が中負荷領域に属するときは、前記第一の制御板と前記第二の制御板を第三制御状態と、前記予混合圧縮着火内燃機関の機関負荷が高負荷領域に属するときは、前記第一の制御板と前記第二の制御板を第二制御状態とするものである。
【0031】
前記流速制御弁は、第一の制御板と第二の制御板の2枚の制御板を備え、この2枚の位置を制御することで、前記第二吸気ポート内の吸気の流速を制御するものである。両制御板は、一のアクチュエータによって回転駆動され、その姿勢によって前記第二吸気ポート内を流れる吸気に対する妨げとなるものである。また、第二の制御板は、第一の制御板に対して相対的に、前記第一の回転位置と前記第二の回転位置とで決定される一定の範囲を自在に回転移動するように構成され、一のアクチュエータによって両制御板が回転駆動されるとき、該アクチュエータとは別の外力によって前記第二の制御板は所定の範囲を更に回転移動する。ここで、第二の制御板に及ぼされる別の外力としては、重力による外力や、吸気の流れから受ける抵抗力等が挙げられる。また、ここでいう回転位置とは、例えば、アクチュエータによって回転駆動される両制御板の回転の中心軸に対する回転角度で表される。
【0032】
ここで、2枚の制御板は、前記制御板制御手段によって3つの制御状態を形成する。前記第一制御状態は、第一の制御板と第二の制御板によって前記第二吸気ポートを概ね全閉とすることで、先述した圧縮着火内燃機関の機関負荷が低負荷領域に属するときに必要とされる前記第二吸気ポート内の吸気の状態を形成する。次に、前記第二制御状態は、第一の制御板を第一制御状態より概90度回転駆動させることで達成される制御状態で、第一の制御板と第二の制御板によって前記第二吸気ポートを概ね全開とすることで、先述した圧縮着火内燃機関の機関負荷が高負荷領域に属するときに必要とされる前記第二吸気ポート内の吸気の流速を形成する。更に、前記第三制御状態は、第一の制御板を第二制御状態より概90度回転駆動させることで達成される制御状態で、第一の制御板によって副燃料噴射弁が設けられている側の吸気の流れを妨げるとともに、第二の制御板の回転位置を前記第一の回転位置と前記第二の回転位置とで決定される範囲の何れかの回転位置とする制御状態である。これによって、第二吸気ポートにおける該副燃料噴射弁と対向する側の吸気の流速が第二吸気ポートにおける該副燃料噴射弁が設けられた側の吸気の流速より高められ、副燃料噴射弁から噴射された燃料が吸気ポートの内壁面に付着するのをより確実に回避することが可能となる。結果、先述した圧縮着火内燃機関の機関負荷が中負荷領域に属するときに必要とされる前記第二吸気ポート内の吸気の流速を形成する。
【0033】
従って、圧縮着火内燃機関の機関負荷に基づいて、流速制御弁を構成する第一の制御板および第二の制御板の制御状態を制御することで、スワール比の異なる旋回流を燃焼室内に形成する少なくとも2つの吸気ポートを備える圧縮着火内燃機関において、圧縮着火内燃機関の機関負荷が高負荷領域を含む比較的高い負荷領域に属する場合であっても、予混合気の形成のための十分な期間を確保することが可能となるとともに、吸気ポートの内壁面への燃料の付着をより確実に低減させることで、燃焼室内により均一且つNOx抑制に適した予混合気をより確実に形成する。そして予混合燃焼を行うことで、NOxの発生を抑制するとともに、該予混合燃焼を圧縮着火内燃機関の機関負荷に応じて制御することで、圧縮着火内燃機関の運転状態に応じた適正な予混合燃焼が可能となる。
【0034】
また、先述した制御板の制御を行う場合、圧縮着火内燃機関の機関負荷が低負荷領域から中負荷領域へ移行する場合、もしくは低負荷領域から中負荷領域へ移行する場合に、制御板の制御状態の都合上、前記第二吸気ポートが一時的に全開状態とされる。このとき、一時的に燃焼室内に発生する旋回流のスワール比が低下するため、良好な燃焼が行われず、白煙が発生する虞がある。そこで、前記燃焼室より排出された排気の少なくとも一部を前記第一吸気ポート側に導くことで、該排気の少なくとも一部を再度前記燃焼室内へ循環させる排気再循環装置を備える先述した圧縮着火内燃機関においては、前記予混合圧縮着火内燃機関の機関負荷が軽負荷領域から中負荷領域に変動もしくは中負荷領域から軽負荷領域に変動するとき、前記排気再循環装置によって前記燃焼室内へ循環される排気の量を所定量減少させる。
【0035】
これによって、圧縮着火内燃機関の機関負荷が低負荷領域から中負荷領域へ移行する場合、もしくは低負荷領域から中負荷領域へ移行する場合に、燃焼室内に再度循環される排気の量が減少されるため、燃焼室内において燃焼のための酸素量が増加し、白煙の発生を抑制することが可能となる。ここで、前記所定量とは、低負荷領域と中負荷領域の過渡において発生する白煙を抑制するのに必要な再循環排気量の減少量であって、圧縮着火内燃機関の運転状態によって変動させても良い。例えば、低負荷領域と中負荷領域の過渡であって焼室内に発生する旋回流のスワール比が更に低下する期間においては、その期間のみ更に再循環排気量を減少させてもよい。
【0036】
従って、圧縮着火内燃機関の機関負荷に基づいて、流速制御弁を構成する第一の制御板および第二の制御板の制御状態を制御することで、スワール比の異なる旋回流を燃焼室内に形成する少なくとも2つの吸気ポートを備える圧縮着火内燃機関において、圧縮着火内燃機関の機関負荷が高負荷領域を含む比較的高い負荷領域に属する場合であっても、予混合気の形成のための十分な期間を確保することが可能となるとともに、吸気ポートの内壁面への燃料の付着をより確実に低減させることで、燃焼室内により均一且つNOx抑制に適した予混合気をより確実に形成する。そして予混合燃焼を行うことで、NOxの発生を抑制するとともに、更に該予混合燃焼を圧縮着火内燃機関の機関負荷に応じて制御することで、圧縮着火内燃機関の運転状態に応じた適正な予混合燃焼が可能となる。そして、圧縮着火内燃機関の機関負荷の過渡期における白煙の発生を抑制することが可能となる。
【0037】
【発明の実施の形態】
<第1の実施例>
ここで、本発明に係る圧縮着火内燃機関の実施例について図面に基づいて説明する。図1は、本発明が適用される圧縮着火内燃機関1およびその制御系統の概略構成を表すブロック図である。図2は、図1に示す圧縮着火内燃機関の有する2つの吸気ポート近傍を概略的に表す図である。
【0038】
圧縮着火内燃機関1は、少なくとも1つの気筒2を有する圧縮着火内燃機関である。また、気筒2の燃焼室3内に直接に主燃料を噴射する主料噴射弁4を備えている。主燃料噴射弁4によって噴射される燃料は図示されない蓄圧室と連通しており、所定圧に蓄圧された主燃料を噴射する。ここで、主燃料とは、燃焼室3内に形成された混合気の着火時期を主に決定する燃料であって、一般に圧縮着火内燃機関1においては、気筒2の圧縮行程上死点近傍に噴射される。
【0039】
次に、圧縮着火内燃機関1には吸気枝管5が接続されており、吸気枝管5の各枝管は、燃焼室3と吸気ポート6を介して連通している。ここで、燃焼室3と吸気ポート6との連通は、吸気弁7の開閉によって行われる。また、吸気枝管5は吸気管8に接続されている。吸気管8には、該吸気管8内を流通する吸気の質量に対応した電気信号を出力するエアフローメータ9が取り付けられている。前記吸気管8における吸気枝管5の直上流に位置する部位には、該吸気管8内を流通する吸気の流量を調節する吸気絞り弁10が設けられている。この吸気絞り弁10には、ステップモータ等で構成されて該吸気絞り弁10を開閉駆動する吸気絞り用アクチュエータ11が取り付けられている。また、吸気ポート6には、該吸気ポート6内に副燃料を噴射する副燃料噴射弁12が設けられている。副燃料噴射弁12より噴射された副燃料は予混合気を形成する。吸気ポート6近傍の構造については、図2に基づいて、後に詳細に説明する。
【0040】
一方、圧縮着火内燃機関1には排気枝管13が接続され、排気枝管13の各枝管が排気ポート14を介して燃焼室3と連通している。ここで、燃焼室3と排気ポート14との連通は、排気弁15の開閉によって行われる。前記排気枝管13は更に排気管16と接続され、排気管16の途中には、内燃機関から排出される排気を浄化する排気浄化触媒17が設けられている。また、排気枝管13から吸気ポート6に燃焼室3から排出された排気の一部を再循環させる再循環通路18が連通している。再循環通路18の途中には、再循環される排気(以下、「再循環排気」という)の冷却を行う再循環排気冷却装置19と、再循環排気量を調整する再循環排気調整弁20が設けられている。
【0041】
ここで、主燃料噴射弁4および副燃料噴射弁12は、電子制御ユニット(以下、ECU:Electronic Control Unitと称する)30からの制御信号によって開閉動作を行う。即ち、ECU30からの指令によって、主燃料および副燃料の噴射時期および噴射量が制御され、圧縮着火内燃機関1の機関出力が制御される。更に、アクセル開度センサ31がECU30と電気的に接続されており、ECU30はアクセル開度に応じた信号を受け取り、それより圧縮着火内燃機関1の機関負荷等を算出する。また、クランクポジションセンサ32がECU30と電気的に接続されており、ECU30は圧縮着火内燃機関1の出力軸の回転角に応じた信号を受け取り、圧縮着火内燃機関1の機関回転速度等を算出する。
【0042】
ここで、図2に基づいて、圧縮着火内燃機関1の吸気系の詳細な構成について説明する。圧縮着火内燃機関1の吸気ポート6は2つの吸気ポート6aおよび6bによって構成されており、各吸気ポートを流れる吸気はそれぞれ吸気弁7aおよび7bの開閉によって燃焼室3内に流入する。ここで、吸気ポート6aは、吸気ポートを介して燃焼室に流入する吸気に対して、旋回成分を付与するようなポート形状となっている吸気ポートの一部である。特に連結部位近傍6Aの形状が吸気弁7aを中心とした螺旋状の形状である、いわゆるヘリカル型吸気ポートである。従って、該吸気ポート6aを流れる吸気は、そのポート形状によって旋回成分が与えられた状態で燃焼室3内に流入する。一方で、吸気ポート6bは、連結部位近傍6Bの形状が、吸気ポート6aと異なる形状であって、燃焼室3、即ち気筒2の横断面に対する概接線方向に沿って燃焼室3と連結する形状となっている、いわゆる接線型吸気ポートである。従って、該吸気ポート6bを流れる吸気は、そのポート形状によって旋回成分が与えられた状態で燃焼室3内に流入するが、吸気ポート6aとの連結部位近傍6Aの形状の違いにより、吸気ポート6bを流れる吸気に与えられる旋回成分の強さであるスワール比は、吸気ポート6aを流れる吸気に与えられる旋回成分のスワール比より小さくなる。
【0043】
更に、吸気ポート6aおよび6bの連結部位近傍6A、6Bの形状が上述のように異なることで、それぞれの連結部位近傍における吸気ポート横断面積にも差異が生じる。即ち、吸気ポート6aにおける連結部位近傍6Aの形状が、吸気ポート6bにおける連結部位近傍6Bの形状に比べてより絞られた形状であるため、連結部位近傍6Aの横断面積は連結部位近傍6Bの横断面積より小さくなる。つまり、吸気ポートを流れる吸気に旋回成分を付与するために、吸気ポートにおける連結部位近傍の横断面積をより小さくすることで、該部位の形状をより絞られた形状とし、吸気によりスワール比の高い旋回成分を付与するものである。
【0044】
ここで、副燃料噴射弁12が吸気ポート6b側に設けられている。これによって、副燃料噴射弁12によって噴射された副燃料が吸気ポート6b内に拡散した後に、吸気弁7bの開弁によって燃焼室3内に流入し、予混合気を形成する。従って、副燃料による予混合気の形成に一定の時間を確保することが容易となり、更に副燃料が燃焼室3内に直接噴射されないため、副燃料による気筒2の内壁面への付着を防止することが可能となる。また、副燃料噴射弁12が、連結部位近傍の横断面積がより広い吸気ポート6b側に設けられていることにより、噴射された副燃料が吸気ポートに付着するのをより確実に回避することが可能となり、特に副燃料の噴射量が増加する、高負荷領域を含む比較的高い内燃機関の負荷領域においても、より確実に均一な予混合気の形成を可能とし、そして予混合燃焼を行うことで、NOxの発生を抑制する。
【0045】
また、吸気ポート6aには再循環通路18が連結されており、再循環排気は吸気ポート6aを介して燃焼室3内へ流入する。本実施例においては、副燃料噴射弁12が設けられていない吸気ポート6aに再循環排気が導入されている。これにより、再循環排気に含まれる煤等が吸気ポートに付着し、その付着した煤等に予混合気を形成する副燃料が吸着することで正確な量の予混合気の形成が阻害されるのをより確実に防止できる。また、再循環排気に含まれる煤等による副燃料噴射弁12の目詰まりの問題も発生する虞がない。
【0046】
更に、吸気ポート6bにおいて、副燃料噴射弁12の上流側に吸気ポート6bにおける吸気の少なくとも一部の流れを妨げる流速制御弁21が設けられている。流速制御弁21は、アクチュエータ22によって回転駆動され、吸気ポート6bの横断面積に占めるその割合、即ち吸気ポート6bにおける吸気の流れに対する抵抗の程度を変更し、吸気ポート6bにおける吸気の流速が制御される。また、アクチュエータ22による流速制御弁21の回転移動量を回転センサ23によって検出し、センサ23によって検出された回転移動量はECU30に送られる。
【0047】
ここで、流速制御弁21の詳細な構造は後述するが、流速制御弁21による吸気の流速の制御について図3に基づいて説明をする。図3は、吸気ポート6bの縦断面における構造を概略的に示した図である。流速制御弁21の形状は、アクチュエータ22の回転駆動によって、吸気ポート6bにおいて副燃料噴射12が設けられた側25A(以下、「部位25A側」という)の吸気の流れを妨げる形状となっており、一方で副燃料噴射弁と対向する側25B(以下、「部位25B側」という)の吸気の流れは妨げられていない。従って、吸気ポート6bにおいて、流れが妨げられている部位25A側の吸気の流速は下がり、一方で流速制御弁21により部位25B側の吸気の圧力が高められることによって部位25B側の吸気の流速が上昇する。図3中に示されるベクトルは、吸気の流速を表し、ベクトルの大きさは吸気の流速の大きさに依存する。
【0048】
このように構成される吸気ポート6bにおいて、副燃料噴射弁12から噴射された副燃料24は、吸気ポート6b内にて拡散していく。ここで、副燃料24は副燃料噴射弁12から噴射された直後は、燃料粒径も比較的大きいため吸気の流速に大きく影響されないが、飛距離が長くなるに従い燃料粒径が小さくなっていくため吸気の流速に影響を受けやすく、吸気の流れに従い下流へと流される。従って、本実施例においては、流速制御弁21によって部位25B側の吸気の流速が、部位25A側の吸気の流速より高められているため、燃料粒径の小さくなった副燃料24を吸気の流れによって下流側へと流すことが可能となり、以て副燃料噴射弁12によって噴射された副燃料が吸気ポート6bの内壁面に付着し、正確な量の予混合気の形成の阻害を防止することが可能となる。尚、図3に示されているのは、流速制御弁21の一の実施の形態であり、流速制御弁21の形状を変更することで、吸気ポート6b内の吸気の流速を制御することが可能となる。
【0049】
圧縮着火内燃機関1の機関負荷に応じてアクチュエータ22によって流速制御弁21の形状を変更することで、機関負荷に適した吸気の流速の制御が可能である。そこで、図4、図5、図6および図7に基づいて、具体的な流速制御弁21の形状および機関負荷に応じた副燃料噴射制御について以下に説明する。
【0050】
図4は、圧縮着火内燃機関1における機関回転数と機関トルクとの関係を示す図である。横軸は圧縮着火内燃機関1の機関回転数を、縦軸は圧縮着火内燃機関1に要求される機関トルクを示す。ここで、線L1は本実施例の圧縮着火内燃機関1における、各機関回転数に対する最大機関負荷を表している。線1で表される最大機関負荷は、機関回転数がアイドル回転数のときに機関トルクTQ1を、機関回転数がNe1のときに最大機関トルクであるTQ2を発揮し、且つ機関回転数の最高値がNe2である機関負荷を意味する。従って、本実施例の圧縮着火内燃機関1においては、線L1と、縦軸および横軸とで囲まれる領域(図中、R1、R2およびR3)に属する機関負荷が発揮されることになる。
【0051】
ここで、領域R1は、線L2と、縦軸および横軸とで囲まれる領域であって、圧縮着火内燃機関1の機関負荷における低負荷域を意味し、機関回転数がアイドル回転数からNe3且つ機関トルクが0からTQ3で構成される矩形状の領域である。領域R1においては、機関トルクが低いため要求される燃料の量が少ない。また、領域R2は、線L2および線L3と、縦軸および横軸とで囲まれる領域であって、圧縮着火内燃機関1の機関負荷における中負荷域を意味し、機関回転数がアイドル回転数からNe4且つ機関トルクが0からTQ4で構成される矩形状の領域から先述の領域R1を除いた領域である。領域R2においては、機関トルクが比較的高くなるため要求される燃料の量が低負荷域と比べ増加する。また、領域R3は、線L3および線L1と、縦軸および横軸とで囲まれる領域であって、圧縮着火内燃機関1の機関負荷における高負荷域を意味し、先述の最大機関負荷から領域R1およびR2で表される領域を除いた領域である。領域3においては、機関トルクが非常に大きいため、要求される燃料の量が中負荷域と比べ増加するとともに、多量の燃料を良好に燃焼させるべく吸気量も多量に確保する必要がある。
【0052】
そこで、図5(a)および(b)に、圧縮着火内燃機関1の機関負荷に応じた吸気の流れの制御を行う流速制御弁12の概略的構造を示す。流速制御弁12は、主にシャフト40、第一制御板41および第二制御板42から構成される。ここで、シャフト40は、アクチュエータ22の出力軸に連結されており、アクチュエータ22の回転駆動によってシャフト40が回転駆動される。また、第一制御板41は、シャフト40に対してその一端が固定されているため、シャフト40の回転に伴って同期して回転する関係を有する。図5中の記号43は、第一シャフト41とシャフト40との結合関係を示す記号である。従って、アクチュエータ22によってシャフト40が回転駆動されると、第一制御板41はシャフト40の回転とともにシャフト40を中心として、回転駆動される。
【0053】
一方で、第二制御板42は、シャフト40に対してその一端が連結されており、シャフト40の回転とともにシャフト40を中心として回転駆動されるが、第二制御板42は、第一制御板41に対して相対的に90度の回転角度有する回転位置(図5(b)において点線で示される第二制御板の位置)と第一制御板41に対して相対的に180度の回転角度有する回転位置(図5(b)において実線で示される第二制御板の位置)の間の範囲(以下、「第二制御板可動範囲」という)を、第一制御板41の位置にかかわらず自在に回転移動することが可能となっている。例えば、図5(b)においては点線の矢印で表されるシャフト40を中心とした回転範囲が、第一制御板41が図の位置にある場合の第二制御板可動範囲である。従って、アクチュエータ22によってシャフト40が回転駆動されると、第二制御板42は、シャフト40の回転とともにシャフト40を中心として、回転駆動され、更にアクチュエータ以外の外力、例えば重力や吸気の流れによって受ける圧力によって、第二制御板可動範囲での第二制御板42の回転位置が決定される。
【0054】
ここで、図5に示した流速制御板21を用いて圧縮着火内燃機関の機関負荷に応じた吸気の流速の制御を図6に示す。図6は吸気流速制御のフローチャートであり、該吸気流速制御はECU30によって繰り返し実行される。
【0055】
先ず、S100では、圧縮着火内燃機関1の機関負荷が検出される。具体的には、アクセル開度センサ31から得られる信号より圧縮着火内燃機関1に要求される機関トルクと、クランクポジションセンサ32から得られる信号より機関回転数を算出し、現時点での機関負荷が図4に示した機関負荷領域R1、R2およびR3のいずれの領域に属するかを判断する。S100の処理が終了すると、S101へ進む。
【0056】
S101では、S100で検出した機関負荷に基づいて、流速制御弁21の開度を制御する。ここで、流速制御弁21の開度制御について、図7に基づいて説明する。図7には、流速制御弁21の3つの制御状態が、それぞれ図7(a)、(b)、および(c)に表されており、流速制御弁21は圧縮着火内燃機関の機関負荷に基づいて、アクチュエータ22によってこれらの制御状態のうち何れかの制御状態とされる。尚、図7(a)、(b)、および(c)中の点線の矢印は、先述した第二制御板可動範囲を表している。
【0057】
図7(a)は、流速制御弁21の第一制御状態を表している。この制御状態においては、第一制御板41は吸気ポート6bを流れる吸気に対してほぼ垂直に面している回転位置にある。このときの第二制御板42の第二制御板可動範囲は図中の点線の矢印で表される範囲であるが、吸気ポート6bの内壁面にストッパー44が設けられており、そのために第二制御板42の回転位置は、図に示すように第一制御板41と同様に、吸気ポート6bを流れる吸気に対してほぼ垂直に面している回転位置となる。その結果、流速制御弁21によって、吸気ポート6bが全閉とされる状態となる。
【0058】
図7(b)は、流速制御弁21の第二制御状態を表している。この制御状態においては、アクチュエータ22によって、第一制御弁41の回転位置が先述の第一制御状態の回転位置より90度回転した位置となっている。即ち、第一制御弁21の回転位置は、吸気ポート6bを流れる吸気に対する抵抗が最も小さい回転位置である。このときの第二制御板42の第二制御板可動範囲は図中の点線の矢印で表される範囲であるが、第二制御板42は吸気の流れによって圧力を受け、図に示すように第二制御板可動範囲の端部まで回転移動する。従って、第二制御板42の回転位置は、第一制御板の回転位置から180度回転した位置となり、両制御板はほぼ同一直線上に配置される。その結果、流速制御弁21によって、吸気ポート6bが概ね全開とされる状態となる。
【0059】
図7(c)は、流速制御弁21の第三制御状態を表している。この制御状態においては、アクチュエータ22によって、第一制御弁41の回転位置が先述の第二制御状態の回転位置より概90度回転した位置となっている。第一制御板41は吸気ポート6bを流れる吸気に対してほぼ垂直に面している回転位置にある。このときの第二制御板42の第二制御板可動範囲は図中の点線の矢印で表される範囲であるが、第二制御板42は吸気の流れによって圧力を受け、図に示すように第二制御板可動範囲のいずれかの回転位置に移動する。即ち、第二制御板の回転位置は、第二制御板の自重と吸気の流れから受ける圧力との均衡によって決定される。従って、流速制御弁21によって、燃料噴射弁12が設けられている側の吸気の流れは第一制御弁41によって妨げられ、一方で燃料噴射弁12に対向する側の吸気の流れは第二制御弁42の回転位置に従い、一定の流速が確保される。その結果、副燃料噴射弁12と対向する側の吸気の流速が、副燃料噴射弁12が設けられた側の吸気の流速より高くなり、以て副燃料噴射弁12から噴射された副燃料が吸気ポート6bの内壁面への付着が防止される。
【0060】
上述のように、流速制御弁が取りうる3つの制御状態があり、S101においては、S100で検出した機関負荷に基づいて、流速制御弁21の制御状態を決定し、流速制御弁21がその制御状態となるべく、アクチュエータ22が駆動される。ここで、圧縮着火内燃機関1の機関負荷が低負荷領域R1に属する場合は、流速制御弁21の制御状態を図7(a)に示す第一制御状態とする。低負荷領域R1では、圧縮着火内燃機関1に要求される機関トルクが小さいため、燃料噴射量も少量となる。また、圧縮着火内燃機関1の機関回転数が小さい場合には、副燃料が拡散する時間を比較的長く確保することが可能であるが、このような場合に副燃料噴射弁12より副燃料を噴射すると副燃料の拡散が過度に進み、副燃料が燃焼室3内に流入した時点においては過度のリーン状態となるために燃料の燃焼が良好に行われない虞がある。
【0061】
そこで、低負荷領域R1においては、吸気ポート6bを流速制御弁21によって全閉とし、吸気ポート6bを介して燃焼室3内流入する吸気の流れを遮断するとともに、副燃料噴射弁12からの副燃料の噴射を停止する。また、吸気ポート6aを介しては、吸気は燃焼室3に流入するため、燃焼室3内には一定の旋回流が発生する。これにより、燃焼室3内での燃料の燃焼がより良好に行われる。
【0062】
尚、低負荷領域R1において予混合燃焼をする必要がある場合は、主燃料噴射弁4から本来主燃料を噴射すべき時期、例えば圧縮行程上死点近傍となる時期より早い時期に主燃料を予め噴射すればよい。主燃料による予混合気の形成においては、噴射された燃料が拡散する時間が限られているため、燃料の噴射量が少量であっても、予混合気が過度にリーン状態となる虞は低い。
【0063】
次に、圧縮着火内燃機関1の機関負荷が中負荷領域R2に属する場合は、流速制御弁21の制御状態を図7(c)に示す第三制御状態とする。中負荷領域R2では、圧縮着火内燃機関1に要求される機関トルクが比較的大きいため、燃料噴射量も増量される。従って、副燃料噴射弁12より副燃料を噴射しても予混合気が過度にリーン状態となる虞はないため、副燃料噴射弁12より副燃料の噴射を行い、予混合気燃焼を行う。この際、流速制御弁21を図7(c)の制御状態とすることで、予混合燃焼によるNOxの抑制とともに、吸気ポート6bにおける副燃料噴射弁12と対向する側の吸気の流速を、副燃料噴射弁12が設けられた側の吸気の流速より高くすることで、副燃料が吸気ポート6bに付着するのを防止することが可能となる。
【0064】
次に、圧縮着火内燃機関1の機関負荷が高負荷領域R3に属する場合は、流速制御弁21の制御状態を図7(b)に示す第二制御状態とする。高負荷領域R3では、圧縮着火内燃機関1に要求される機関トルクが大きいため、燃料噴射量も多い。従って、吸気ポート6aとともに吸気ポート6bを全開とすることで吸気量を十分に確保する。その結果、予混合燃焼によるNOxの抑制とともに、燃焼室3内において、良好な燃焼を得ることが可能となる。
【0065】
以上が、S101で行われる圧縮着火内燃機関1の機関負荷に応じた吸気の流速の具体的な制御である。S101の処理が終了すると、S102へ進む。
【0066】
S102では、S100およびS101によって圧縮着火内燃機関1の機関負荷が低負荷領域R1から中負荷領域R2へ、もしくは中負荷領域R2から低負荷領域R1へ移行している状態、即ち過渡状態か否かが判断される。例えば、S100において機関負荷が中負荷領域R2と判断された場合であって、続くS101において低負荷領域R1の制御状態(第一制御状態)にある流速制御弁21を、中負荷領域R2の制御状態(第三制御状態)へと移すべく、アクチュエータ22によってシャフト40が回転駆動される。そのときのシャフト40の回転位置φを回転センサ23によって検出し、その検出された回転位置φが第三制御状態にあるべき回転位置に至っていない場合は前記過渡状態であると判断する。
【0067】
前記過渡状態にある場合、流速制御弁21の制御状態が一時的に第二制御状態となるため、一度吸気ポート6bが全開となる。従って、その吸気ポート6bが全開となった場合に、燃焼室3内には吸気ポート6aと6bの両側から吸気が流入するため両ポートから流入した吸気が衝突し、燃焼室3内に形成される旋回流のスワール比が低下する虞が生じる。その結果、燃料と空気の混合が十分に促進されず、白煙の発生が懸念される。そこで、S102において、前記過渡状態にあるか否かを判断し、前記過渡状態にあると判断される場合は、白煙の発生を抑制する制御が以降行われる。S102において前記過渡状態であると判断される場合はS103へ進み、前記過渡状態にはないと判断されると本制御は終了し、再度S100から実行される。
【0068】
S103では、第一制御板41の回転位置が所定の範囲内の回転位置にあるか否かが判断される。前記過渡状態全般において、燃焼室3内に形成される旋回流のスワール比が一律に低下するのではなく、吸気ポート6bがより全開状態となるに従いスワール比の低下が顕著になると考えられる。従って、S103では、前記過渡状態において、燃焼室3内の旋回流のスワール比の低下が顕著である場合と、顕著でない場合とに分ける処理を行う。よって、前記所定の範囲とは、燃焼室3内に形成される旋回流のスワール比の低下が顕著となる第一制御板41の回転位置の範囲であって、シャフト40の回転位置を検出する回転センサ23からの信号に基づいて判断を行う。S103で、第一制御板41の回転位置が所定の範囲内にあると判断された場合は、S104へ進み、第一制御板41の回転位置が所定の範囲内にないと判断された場合は、S105へ進む。
【0069】
S104およびS105では、それぞれ再循環排気量を再循環排気調整弁20によって、20%および10%低下する。再循環排気量を低下することによって、燃焼室3内の酸素量を多く確保し、白煙の発生を抑制するものである。このとき、S104における再循環排気量の低下率が、S105における再循環排気量の低下率より大きいのは、S104の処理が行われる場合、即ち第一制御板41の回転位置が前記所定の範囲内にある場合には、燃焼室3内の旋回流のスワール比が顕著に低下することにより白煙の発生する可能性が高まるため、燃焼室3内の酸素量をより多く確保するためである。S104又はS105の処理が終了すると、S106へ進む。
【0070】
S106では、前記過渡状態が終了したか否かが判断される。前記過渡状態が終了していないと判断される場合は、S103以降の処理が再度行われる。前記過渡状態が終了したと判断される場合は、本制御は終了し、再度S100の処理が行われる。
【0071】
本制御によると、圧縮着火内燃機関の機関負荷に応じたより適正な吸気の流速の制御が行われる。そのため、機関負荷が中負荷領域もしくは高負荷領域においても予混合燃焼が可能となり、以てNOxが発生するのを抑制される。また、燃焼室内に形成される旋回流のスワール比が低下するときには再循環排気量を制御することで、白煙の発生を抑制する。
【0072】
【発明の効果】
本発明に係る予混合燃焼を行う圧縮着火内燃機関は、吸気ポートの所定の部位の横断面積が異なることで燃焼室に形成する旋回流のスワール比が異なる少なくとも2の吸気ポートを備え、予混合気を形成する副燃料を噴射する副燃料噴射弁を生成される旋回流のスワール比が小さくなる吸気ポートに設けることで、圧縮着火内燃機関の機関負荷が、高負荷領域を含む比較的高い負荷領域においてもより均一な予混合気の形成を可能とし、そして予混合燃焼を行うことで、NOxの発生を抑制することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る圧縮着火内燃機関およびその制御系統の概略構成を示す図である。
【図2】本発明の実施の形態に係る圧縮着火内燃機関における吸気ポートの概略構成を示す図である。
【図3】本発明の実施の形態に係る圧縮着火内燃機関の吸気ポートにおいて、吸気の流速と副燃料の分布との関係を示す図である。
【図4】本発明の実施の形態に係る圧縮着火内燃機関の機関回転数と機関トルクとの関係を示す図である。
【図5】本発明の実施の形態に係る圧縮着火内燃機関において、吸気ポートにおける吸気の流速を調整する流速制御弁の概略を示す図である。
【図6】本発明の実施の形態に係る圧縮着火内燃機関において、機関負荷に基づいて吸気ポートにおける吸気の流速の制御を示すフローチャートである。
【図7】本発明の実施の形態に係る圧縮着火内燃機関において、機関負荷に基づいて制御される流速制御弁の制御状態を示す図である。
【符号の説明】
1・・・・圧縮着火内燃機関
2・・・・気筒
3・・・・燃焼室
4・・・・主燃料噴射弁
6・・・・吸気ポート
6a・・・・吸気ポート(ヘリカル型吸気ポート)
6b・・・・吸気ポート(接線型吸気ポート)
12・・・・副燃料噴射弁
18・・・・排気再循環通路
20・・・・再循環排気調整弁
21・・・・流速制御弁
22・・・・アクチュエータ
30・・・・ECU
31・・・・アクセル開度センサ
32・・・・クランクポジションセンサ
41・・・・第一制御板
42・・・・第二制御板

Claims (8)

  1. 主たる燃料を燃焼室内に直接噴射する主燃料噴射弁と、
    前記主たる燃料より早い時期に副燃料を噴射し、該副燃料と空気との予混合気を形成する副燃料噴射弁と、
    少なくとも、燃焼室内に異なるスワール比の旋回流を形成する第一吸気ポートと第二吸気ポートと、を備え、
    前記第一吸気ポートは、該第一吸気ポートの一部であって前記燃焼室に至るまでの所定の部位における該第一吸気ポートの横断面積が、前記第二吸気ポートの一部であって前記燃焼室に至るまでの所定の部位における該第二吸気ポートの横断面積より小さく形成されることで、該第一吸気ポートを介して形成される旋回流のスワール比を該第二吸気ポートを介して形成される旋回流のスワール比より高くし、
    前記副燃料噴射弁は、前記第二吸気ポート側に設けられ、該第二吸気ポート内に副燃料を噴射することを特徴とする予混合圧縮着火内燃機関。
  2. 前記第一吸気ポートは、前記所定の部位が螺旋状に形成されるヘリカル型の吸気ポートであって、
    前記第二吸気ポートは、前記所定の部位が前記燃焼室に対して概ね接線方向に設けられる接線型の吸気ポートであることを特徴とする請求項1に記載の予混合圧縮着火内燃機関。
  3. 更に、前記燃焼室より排出された排気の少なくとも一部を前記第一吸気ポート側に導くことで、該排気の少なくとも一部を再度前記燃焼室内へ循環させる排気再循環装置を備えることを特徴とする請求項1又は請求項2に記載の予混合圧縮着火内燃機関。
  4. 更に、前記第二吸気ポートにおいて前記副燃料噴射弁より上流側に設けられ、且つ該第二吸気ポートにおける前記副燃料噴射弁と対向する側の吸気の流速を該第二吸気ポートにおける該副燃料噴射弁が設けられた側の吸気の流速より高める吸気流速制御手段を備えることを特徴とする請求項1又は請求項2に記載の予混合圧縮着火内燃機関。
  5. 前記吸気流速制御手段は、前記第二吸気ポートにおける吸気の少なくとも一部の流れを妨げる流速制御弁を有し、
    前記流速制御弁が、前記第二吸気ポートにおいて前記副燃料噴射弁が設けられた側の吸気の流れを妨げることで、該第二吸気ポートにおける該副燃料噴射弁と対向する側の吸気の流速を該第二吸気ポートにおける該副燃料噴射弁が設けられた側の吸気の流速より高めることを特徴とする請求項4に記載の予混合圧縮着火内燃機関。
  6. 前記吸気流速制御手段は、前記第二吸気ポートにおける吸気の少なくとも一部の流れを妨げる流速制御弁を有し、
    前記予混合圧縮着火内燃機関の機関負荷が軽負荷領域に属するときは、前記流速制御弁により前記第二吸気ポートを概ね全閉とし、且つ前記副燃料噴射弁による副燃料の噴射を禁止し、
    前記予混合圧縮着火内燃機関の機関負荷が中負荷領域に属するときは、前記流速制御弁により前記第二吸気ポートにおいて前記副燃料噴射弁が設けられた側の吸気の流れを妨げることで、該第二吸気ポートにおける該副燃料噴射弁と対向する側の吸気の流速を該第二吸気ポートにおける該副燃料噴射弁が設けられた側の吸気の流速より高め、且つ前記副燃料噴射弁による副燃料の噴射を実行し、
    前記予混合圧縮着火内燃機関の機関負荷が高負荷領域に属するときは、前記流速制御弁により前記第二吸気ポートを概ね全開とし、且つ前記副燃料噴射弁による副燃料の噴射を実行することを特徴とする請求項4に記載の予混合圧縮着火内燃機関。
  7. 前記流速制御弁は、一のアクチュエータにより回転されることで前記第二吸気ポートにおける吸気の流れを妨げる第一の制御板と第二の制御板と、を有し、
    前記第二の制御板は、更に第一の制御板に対して相対的に概90度の回転角度を有する第一の回転位置と、第一の制御板に対して相対的に概180度の回転角度を有する第二の回転位置との間の範囲を、前記第一の制御板の回転位置にかかわらず自在に回転移動し、
    更に、前記流速制御弁において、前記第一の制御板を前記第二吸気ポートにおける吸気の流れに対して概垂直となる回転位置とするとともに、前記第二の制御板の回転位置を前記第二の回転位置とすることで前記第二吸気ポートを概ね全閉とする第一制御状態と、
    前記第一の制御板を前記第一制御状態より概90度回転させるとともに、前記第二の制御板の回転位置を前記第二の回転位置とすることで前記第二吸気ポートを概ね全開とする第二制御状態と、
    前記第一の制御板を前記第二制御状態より更に概90度回転させることで前記第二吸気ポートにおいて前記副燃料噴射弁が設けられた側の吸気の流れを妨げるとともに、前記第二の制御板の回転位置を前記第一の回転位置と前記第二の回転位置との範囲における何れかの回転位置とすることで該第二吸気ポートにおける該副燃料噴射弁と対向する側の吸気の流速を該第二吸気ポートにおける該副燃料噴射弁が設けられた側の吸気の流速より高める第三制御状態と、のいずれかの制御状態とする制御板制御手段を備え、
    前記制御板制御手段は、前記予混合圧縮着火内燃機関の機関負荷が軽負荷領域に属するときは、前記第一の制御板と前記第二の制御板を第一制御状態と、
    前記予混合圧縮着火内燃機関の機関負荷が中負荷領域に属するときは、前記第一の制御板と前記第二の制御板を第三制御状態と、
    前記予混合圧縮着火内燃機関の機関負荷が高負荷領域に属するときは、前記第一の制御板と前記第二の制御板を第二制御状態とすることを特徴とする請求項6に記載の予混合圧縮着火内燃機関。
  8. 更に、前記燃焼室より排出された排気の少なくとも一部を前記第一吸気ポート側に導くことで、該排気の少なくとも一部を再度前記燃焼室内へ循環させる排気再循環装置を備え、
    前記予混合圧縮着火内燃機関の機関負荷が軽負荷領域から中負荷領域に変動もしくは中負荷領域から軽負荷領域に変動するとき、前記排気再循環装置によって前記燃焼室内へ循環される排気の量を所定量減少させることを特徴とする請求項7に記載の予混合圧縮着火内燃機関。
JP2003072210A 2003-03-17 2003-03-17 予混合圧縮着火内燃機関 Withdrawn JP2004278437A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072210A JP2004278437A (ja) 2003-03-17 2003-03-17 予混合圧縮着火内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072210A JP2004278437A (ja) 2003-03-17 2003-03-17 予混合圧縮着火内燃機関

Publications (1)

Publication Number Publication Date
JP2004278437A true JP2004278437A (ja) 2004-10-07

Family

ID=33288465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072210A Withdrawn JP2004278437A (ja) 2003-03-17 2003-03-17 予混合圧縮着火内燃機関

Country Status (1)

Country Link
JP (1) JP2004278437A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291990A (ja) * 2006-04-26 2007-11-08 Mazda Motor Corp 吸気制御弁開度推定装置
JP2008144636A (ja) * 2006-12-07 2008-06-26 Denso Corp 可変吸入空気制御装置の異常判定方法
JP2009180113A (ja) * 2008-01-30 2009-08-13 Toyota Motor Corp 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291990A (ja) * 2006-04-26 2007-11-08 Mazda Motor Corp 吸気制御弁開度推定装置
JP2008144636A (ja) * 2006-12-07 2008-06-26 Denso Corp 可変吸入空気制御装置の異常判定方法
JP2009180113A (ja) * 2008-01-30 2009-08-13 Toyota Motor Corp 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
WO2011125208A1 (ja) 内燃機関の燃焼制御装置
JP2004360525A (ja) ターボチャージャ付エンジン
JP2007291974A (ja) 内燃機関の排気還流装置
JP2005248748A (ja) ディーゼルエンジン
JP2008175139A (ja) 内燃機関の排気再循環システム
JP2006274857A (ja) ディーゼル式内燃機関の制御装置
US9206724B2 (en) Exhaust gas purification system for internal combustion engine
JP3422024B2 (ja) 内燃機関の制御装置とスワール発生装置
JP4552660B2 (ja) 圧縮着火内燃機関
JP4419860B2 (ja) 圧縮着火内燃機関の燃焼制御システム
JP2011140882A (ja) 圧縮着火式多種燃料エンジン
JP2004278437A (ja) 予混合圧縮着火内燃機関
JP2004197599A (ja) 予混合圧縮着火内燃機関
JP6005543B2 (ja) 過給機付きエンジンの制御装置
JP3911770B2 (ja) 燃料噴射ノズル
JP2007211768A (ja) 圧縮着火式内燃機関の燃焼制御システム
JP5679776B2 (ja) 内燃機関の排気ガス再循環制御方法
JP5447128B2 (ja) 内燃機関の排気還流装置
JP4924280B2 (ja) ディーゼルエンジンの制御装置。
JP4618150B2 (ja) 水素エンジンの制御装置
JP3726901B2 (ja) 内燃機関の制御装置とスワール発生装置
JP2012136948A (ja) 圧縮着火内燃機関の燃焼モード制御システム
JP5333738B2 (ja) ディーゼルエンジンの燃焼制御装置及び燃焼制御方法
JP2005113689A (ja) 予混合圧縮着火内燃機関
JP2014139411A (ja) 過給機付きエンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061219