JP2011140882A - 圧縮着火式多種燃料エンジン - Google Patents

圧縮着火式多種燃料エンジン Download PDF

Info

Publication number
JP2011140882A
JP2011140882A JP2010000508A JP2010000508A JP2011140882A JP 2011140882 A JP2011140882 A JP 2011140882A JP 2010000508 A JP2010000508 A JP 2010000508A JP 2010000508 A JP2010000508 A JP 2010000508A JP 2011140882 A JP2011140882 A JP 2011140882A
Authority
JP
Japan
Prior art keywords
fuel
air
cylinder
compression ignition
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010000508A
Other languages
English (en)
Inventor
Yasushi Kitano
康司 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010000508A priority Critical patent/JP2011140882A/ja
Publication of JP2011140882A publication Critical patent/JP2011140882A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

【課題】圧縮着火式多種燃料エンジンにおいて、軽負荷時に安定した燃焼を維持する。
【解決手段】CNG用吸気ポート内のCNG噴射弁の上流側に吸気制御弁を有する構成において、負荷が所定値Lth以下の場合に、CNGの当量比φがシリンダ5内における軽油の供給点を含む所定領域内において燃焼維持基準値φminよりも大きい値となるように、負荷が小さいほど吸気絞り弁26の開度を小さくする。軽負荷の場合であっても安定した燃焼を維持できる。
【選択図】図2

Description

本発明は、圧縮着火用燃料とガス燃料とを用いる多種燃料エンジンに関する。
軽油などの圧縮着火用燃料と、圧縮天然ガス(CNG)などの気体燃料とを用いる多種燃料エンジンが提案されている。天然ガスはセタン価がきわめて低く、着火性が悪いため、この種のエンジンでは圧縮着火用燃料としての軽油等を最小限だけ筒内にパイロット噴射して、それを火種にガス燃料に着火する(例えば特許文献1)。
特開2003−254106号公報
しかし、この形式のエンジンにおいて、要求負荷に比例した量の気体燃料が供給されるように気体燃料の噴射量が制御されると、軽負荷時にシリンダ内に形成される気体燃料の予混合気の濃度(当量比)が、燃焼を維持できる最低の濃度よりも低くなる場合があり、安定した燃焼を維持できない。
そこで本発明の目的は、圧縮着火式多種燃料エンジンにおいて、軽負荷時に安定した燃焼を維持することにある。
本発明の一態様は、圧縮着火用燃料をシリンダ内に直接噴射する第1の燃料噴射弁と、気体燃料を混合気用吸気ポート内に噴射する第2の燃料噴射弁と、を備えた圧縮着火式多種燃料エンジンにおいて、前記混合気用吸気ポート内であって前記第2の燃料噴射弁の上流側に設けられた吸気絞り弁と、当該吸気絞り弁を制御するコントローラと、を更に備え、前記コントローラは、負荷が所定値以下の場合に、気体燃料の当量比がシリンダ内における圧縮着火用燃料の供給点を含む所定領域内において所定の燃焼維持基準値またはこれより大きい値となるように、負荷が小さいほど前記吸気絞り弁の開度を小さくすることを特徴とする。
この態様では、負荷が所定値以下の場合に、コントローラが、気体燃料の当量比がシリンダ内における圧縮着火用燃料の供給点を含む所定領域内において所定の燃焼維持基準値またはこれより大きい値となるように、負荷が小さいほど前記吸気絞り弁の開度を小さくする。したがって、軽負荷の場合であっても、安定した燃焼を維持することができる。
本発明の別の一態様は、前記シリンダ内に空気を供給する空気用吸気ポートを更に備え、前記混合気用吸気ポートはシリンダ内の圧縮着火用燃料の供給点を含む所定領域に混合気を供給し、供給された混合気と前記空気用吸気ポートから供給される空気とが成層化されることを特徴とする。
この態様では、混合気用吸気ポートから供給された混合気と空気用吸気ポートから供給される空気とが成層化されるので、シリンダ内の圧縮着火用燃料の供給点の近傍の混合気の濃度(当量比)を好適に維持することができる。
本発明における空気用吸気ポートは、シリンダの壁面に沿う方向の気流を生成するのが好適であり、混合気と空気との成層化を促進できる。
本発明の実施形態の圧縮着火式多種燃料エンジンの概略構成を示す図である。 シリンダ近傍の縦断面を示す正面図である。 吸気ポート及びシリンダを概略的に示す平面図である。 吸気ポート及びシリンダの別の構成例を示す平面図である。 負荷‐開度マップの設定例を概略的に示すグラフである。 吸気絞り弁制御ルーチンを示すフローチャートである。 シリンダ内におけるCNG当量比の分布を示すグラフである。
以下に、本発明の実施形態につき添付図面を参照しつつ説明する。
図1に、本発明の実施形態に係る圧縮着火式多種燃料エンジンを概略的に示す。本発明の実施形態に係る自動車用の圧縮着火式多種燃料エンジン1は、吸気ポート2に連通されている吸気マニフォルド3、排気ポートに連通されている排気マニフォルド4、シリンダ5、及び過給機6を有する。吸気マニフォルド3の上流側は、スロットルバルブ7及びインタークーラ8を介して過給機6のコンプレッサ9に接続され、更にエアクリーナ10を介して外気に開放されている。排気マニフォルド4の下流側は、過給機6のタービン11、触媒装置12、及び不図示の消音器を介して外気に開放されている。触媒装置は、触媒物質を担持したパティキュレートフィルタを主部材として構成されており、捕集した微粒子を酸化、燃焼できるようになっている。なお、他の後処理装置として、排気ガス中の未燃成分(特にHC)を酸化して浄化する酸化触媒と、排気ガス中のNOxを還元除去するNOx触媒が設けられるのが好ましい。
排気マニフォルド4の下流側と吸気マニフォルド3の上流側とを連通して、EGR通路13が設けられ、その中途にEGRバルブ14が設けられている。スロットルバルブ7はEGR制御時にその開度が絞られて、排気圧と吸気圧との差圧を拡大してEGRを促進し、また主としてアイドル時や軽負荷時にその開度が絞られてエミッション及び騒音の改善を促進する。
エンジン1は、気体燃料供給系と液体燃料供給系とを具備しており、気体燃料としてCNGを用い、液体燃料として軽油を用いている。気体燃料供給系は、各吸気ポートに噴射可能に配置されたCNG噴射弁15を具備し、このCNG噴射弁15は、CNG供給ライン16、高圧レギュレータ17及び図示しない燃料遮断弁を介して、CNGボンベ18に接続されている。
CNGボンベ18内に、充填圧力PF(例えば、20MPa)で充填されているCNGは、高圧レギュレータ17により一定の調節圧PH(例えば、0.6MPa)まで減圧され、通常のエンジン制御状態では、この調節圧PHでもってCNG噴射弁15から吸気ポート2内に噴射される。
液体燃料供給系は、各シリンダ5内のピストン27頂部の燃焼室27a(図2参照)に噴射可能に配置された軽油噴射弁21を具備する。軽油噴射弁21の噴孔は、シリンダ5の平面視における中心に配置されている。軽油タンク24から高圧ポンプ23に供給された燃料は、高圧ポンプ23によりコモンレール22に圧送されて高圧状態で蓄圧され、このコモンレール22内の高圧燃料が軽油噴射弁21からシリンダ5内に直接噴射供給される。
図3Aに示されるように、吸気ポート2は、シリンダ5にCNG予混合気を供給するための混合気用吸気ポート2aと、同じシリンダ5に空気を供給するための空気用吸気ポート2bとから構成されている。ポート2a,2bはいずれも周知のヘリカルポートとして構成されている。ポート2aは、CNG予混合気をシリンダ5の中央部分に向けて、図中白抜き矢印a方向に供給する。ポート2bは、空気を吸気行程でシリンダ5内に導くことにより、シリンダ5内に矢印b方向に旋回するスワールを形成する。その結果、シリンダ5内のCNG混合気層と空気層とが成層化され、シリンダ5内の外周部に空気層が、またシリンダ5の中央部の近傍にCNG混合気層が、それぞれ形成されることになる。ポート2a,2bはシリンダ5内に開口する開口部25a,25bを含んでおり、開口部25a,25bは吸気バルブ28(図2参照)によって開閉される。なお吸気ポート2は、図3Bに示されるように、ヘリカルポートである混合気用吸気ポート102aと、ストレートポートである空気用吸気ポート102bの組み合わせであってもよく、このような組み合わせによってもシリンダ5内にスワールを形成できる。
それぞれの混合気用吸気ポート2aには、CNG噴射弁15が設けられ、また同じく各ポート2a内であってCNG噴射弁15の上流側には、吸気絞り弁26が設けられている。吸気絞り弁26は不図示の電磁アクチュエータを含み、ECU30により気筒ごとに互いに独立して制御される。吸気絞り弁26はバタフライ弁であるが、他の形式でもよい。後述するように、吸気絞り弁26の開度θが小さいほど、混合気用吸気ポート2aから燃焼室内に供給されるCNG予混合気の濃度(当量比φ)が高くなる。
ECU30はデジタルコンピュータからなり、周知の如く、双方向性バスを介して相互に接続されたROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、CPU(マイクロプロセッサ)、常時電源に接続されているB−RAM(バックアップRAM)、A/D変換器、D/A変換器、入力ポート及び出力ポートを具備している。
ECU30は、アクセル開度センサ31、及びいずれも不図示の水温センサ、クランク角センサ、タービン回転センサを含む各種センサから送られてくる信号に基づき、噴射弁15,21による燃料噴射制御、或いは噴射時期の制御等の各種制御を実行するようになっている。特にアクセル開度センサ31は、エンジン負荷を検出するための負荷検出手段を形成し、ECU30はこれによるアクセル開度信号に基づきエンジン負荷を算出する。なお要求負荷は、エンジン1の運転状態を示す他のパラメータ(例えばエンジン回転数、EGR量、過給圧、タービン回転数)によって算出または補正してもよい。各種センサ類の出力電圧は、それぞれ、対応するA/D変換器を介してECU30の入力ポートに入力される。また、ECU30は、コモンレール22に接続される高圧ポンプ23にも、出力ポート及びD/A変換器を通じて制御信号を出力し、高圧ポンプ23の流量制御弁を制御している。これによって、コモンレール22内の燃料圧(噴射圧)は最適に制御される。
このエンジン1では、圧縮着火用燃料として軽油Lを最小限だけ(図2参照)筒内にパイロット噴射して、それを火種にCNG予混合気Gに着火させる。CNGの噴射量は、ECU30で別途に実行される燃料噴射制御により、概ね要求負荷に比例した量に決定される。
エンジン負荷と吸気絞り弁26の開度θとを関連付けて記憶させてなる負荷‐開度マップ(図4参照)が予め作成され、ECU30のROMに格納されている。この負荷‐開度マップは、CNGの平均当量比φ(すなわち、混合気用吸気ポート2aからシリンダに供給される予混合気におけるCNG濃度)が、軽負荷の場合であっても機関性能を維持する最低値である燃焼維持基準値φminとなるように、吸気絞り弁26の開度θの目標値を定めたものである。
本発明による改良前すなわち吸気絞り弁26の制御を行わない場合には、通常の燃料噴射制御により、負荷(要求負荷)の減少に従ってCNG当量比φも減少するが(一点鎖線c)、CNG当量比φが燃焼維持基準値φminを下回ると、安定した燃焼を維持できず、機関効率やNV(振動騒音)が悪化してしまう。このため、負荷‐開度マップでは、本発明による改良前において当量比φが燃焼維持基準値φminになるような負荷値Lthよりも要求負荷が低い領域で、負荷が小さいほど吸気絞り弁26の開度θが小さくなるように、負荷と開度θとの関係が設定されている。吸気絞り弁26の開度θが小さい程、混合気用吸気ポート2aを通る空気の量が減少するので、燃焼室27a内に供給されるCNG予混合気の当量比φは大きくなる。その結果、負荷がLthよりも低い領域では、図4中に実線で示されるように、シリンダ5内における軽油の供給点(軽油噴射弁21)を含む所定領域内において、CNGの平均当量比φは、燃焼維持基準値φminに維持されることになる。
以上のとおり構成された本実施形態の動作について説明する。図5は、本実施形態のECU30において実行される吸気絞り弁制御ルーチンを示す。この制御ルーチンは、イグニッションスイッチがONされ、且つスタータの作動によりクランキングが開始されたことを条件に、予め定められた設定クランク角毎の割込みによって実行される。まずECU30は、アクセル開度センサ31の検出値に基づいて算出される要求負荷を読み込む(S1)。次に、読み込まれた負荷により、図4の負荷‐開度マップを参照し、これによって吸気絞り弁26の目標開度θを算出する(S2)。そしてECU30は、算出された目標開度θと一致するように、吸気絞り弁26に対し制御出力を行う(S3)。
以上の処理によって吸気絞り弁26が制御される結果、CNGの平均当量比φ(すなわち、混合気用吸気ポート2aからシリンダに供給される予混合気におけるCNG濃度)が、アイドリング時など軽負荷の場合であっても、機関性能を維持する最低値である燃焼維持基準値φminとなる。その結果、シリンダ5内における軽油の供給点(軽油噴射弁21)を含む所定領域内においては、CNGの当量比φは、軽負荷時であっても、機関性能を維持する最低値である燃焼維持基準値φminよりも常に大きい値となる。すなわち、図6に示されるように、要求負荷が低くなりCNGの噴射量が減少するに従い、シリンダ5内の当量比φの分布は、要求負荷が高いものから曲線α、β、γの順に変化するが、スワール流の形成に伴う成層化によってCNGが燃焼室27aの中心に集められ、且つシリンダ5内に供給されるCNG予混合気の平均当量比φが燃焼維持基準値φminに維持されるため、軽油の供給点である燃焼室27aの中心を含む所定範囲内では、当量比φは燃焼維持基準値φminを常に上回ることになる。
以上のとおり、本実施形態では、負荷が所定値Lth以下の場合に、ECU30が、CNGの当量比φがシリンダ5内における軽油の供給点を含む所定領域内において燃焼維持基準値φminよりも大きい値となるように、負荷が小さいほど吸気絞り弁26の開度θを小さくする。したがって、軽負荷の場合であっても、安定した燃焼を維持でき、また機関効率やNV(振動騒音)の悪化を抑制することができる。
また、本実施形態では、混合気用吸気ポート2aから供給された混合気と空気用吸気ポート2bから供給される空気とが成層化されるので、シリンダ5内の軽油の供給点の近傍の混合気の濃度(当量比φ)を好適に維持することができる。
また本実施形態では、空気用吸気ポート2bが、シリンダ5の壁面に沿う方向の気流を生成するので、混合気と空気との成層化を促進できる。
以上、本発明の実施形態について説明したが、本発明は他の実施形態を採ることも可能である。例えば、上記実施形態では、吸気ポート2が、混合気用吸気ポート2a,102aと空気用吸気ポート2b,102bとを有するが、本発明は混合気用吸気ポートのみを有する圧縮着火式多種燃料エンジンにも適用することができる。この場合には、燃焼室内におけるCNG予混合気と空気との成層化が行われないため、上記実施形態と同様の負荷‐開度マップを用いて、CNGの平均当量比φが燃焼維持基準値φminとなるように吸気絞り弁26を制御することにより、シリンダ5内における軽油の供給点の当量比φは燃焼維持基準値φminに等しい値となる。また、圧縮着火用燃料と気体燃料の種類は、上記実施形態における組み合わせに限られない。
本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。
1 圧縮着火式多種燃料エンジン
2 吸気ポート
2a,102a 混合気用吸気ポート
2b,102b 空気用吸気ポート
5 シリンダ
6 過給機
7 スロットルバルブ
13 EGR通路
15 CNG噴射弁
18 CNGボンベ
21 軽油噴射弁
24 軽油タンク
25a,25b 開口部
26 吸気絞り弁
27a 燃焼室
G CNG予混合気
L 軽油

Claims (3)

  1. 圧縮着火用燃料をシリンダ内に直接噴射する第1の燃料噴射弁と、気体燃料を混合気用吸気ポート内に噴射する第2の燃料噴射弁と、を備えた圧縮着火式多種燃料エンジンにおいて、
    前記混合気用吸気ポート内であって前記第2の燃料噴射弁の上流側に設けられた吸気絞り弁と、
    当該吸気絞り弁を制御するコントローラと、を更に備え、
    前記コントローラは、負荷が所定値以下の場合に、気体燃料の当量比がシリンダ内における圧縮着火用燃料の供給点を含む所定領域内において所定の燃焼維持基準値またはこれより大きい値となるように、負荷が小さいほど前記吸気絞り弁の開度を小さくすることを特徴とする圧縮着火式多種燃料エンジン。
  2. 請求項1に記載の圧縮着火式多種燃料エンジンであって、
    前記シリンダ内に空気を供給する空気用吸気ポートを更に備え、
    前記混合気用吸気ポートはシリンダ内の圧縮着火用燃料の供給点を含む所定領域に混合気を供給し、供給された混合気と前記空気用吸気ポートから供給される空気とが成層化されることを特徴とする圧縮着火式多種燃料エンジン。
  3. 請求項2に記載の圧縮着火式多種燃料エンジンであって、
    前記空気用吸気ポートは、シリンダの壁面に沿う方向の気流を生成できることを特徴とする圧縮着火式多種燃料エンジン。
JP2010000508A 2010-01-05 2010-01-05 圧縮着火式多種燃料エンジン Pending JP2011140882A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000508A JP2011140882A (ja) 2010-01-05 2010-01-05 圧縮着火式多種燃料エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010000508A JP2011140882A (ja) 2010-01-05 2010-01-05 圧縮着火式多種燃料エンジン

Publications (1)

Publication Number Publication Date
JP2011140882A true JP2011140882A (ja) 2011-07-21

Family

ID=44456908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000508A Pending JP2011140882A (ja) 2010-01-05 2010-01-05 圧縮着火式多種燃料エンジン

Country Status (1)

Country Link
JP (1) JP2011140882A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231357A (ja) * 2012-04-27 2013-11-14 Denso Corp 複合燃料内燃機関
JP2014152664A (ja) * 2013-02-06 2014-08-25 Denso Corp 燃料改質システム
CN105484884A (zh) * 2014-10-06 2016-04-13 Ge延巴赫两合无限公司 用于运行内燃机的方法和内燃机
CN105545500A (zh) * 2014-10-28 2016-05-04 Ge延巴赫两合无限公司 用于调节双燃料发动机的方法以及双燃料发动机
JP2016075278A (ja) * 2014-10-06 2016-05-12 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー 圧縮着火エンジンを動作させるための方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231357A (ja) * 2012-04-27 2013-11-14 Denso Corp 複合燃料内燃機関
JP2014152664A (ja) * 2013-02-06 2014-08-25 Denso Corp 燃料改質システム
CN105484884A (zh) * 2014-10-06 2016-04-13 Ge延巴赫两合无限公司 用于运行内燃机的方法和内燃机
JP2016075278A (ja) * 2014-10-06 2016-05-12 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー 圧縮着火エンジンを動作させるための方法
JP2016075275A (ja) * 2014-10-06 2016-05-12 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー 内燃機関の運転方法
US9810139B2 (en) 2014-10-06 2017-11-07 Ge Jenbacher Gmbh & Co Og Method for operating a compression ignition engine
CN105545500A (zh) * 2014-10-28 2016-05-04 Ge延巴赫两合无限公司 用于调节双燃料发动机的方法以及双燃料发动机
JP2016084812A (ja) * 2014-10-28 2016-05-19 ゲーエー ジェンバッハー ゲーエムベーハー アンド コー オーゲー 二元燃料エンジンの制御方法
KR101818687B1 (ko) * 2014-10-28 2018-01-16 게 옌바허 게엠베하 운트 콤파니 오게 이중 연료 엔진을 제어하는 방법
US10018129B2 (en) 2014-10-28 2018-07-10 Ge Jenbacher Gmbh & Co Og Method of controlling a dual fuel engine

Similar Documents

Publication Publication Date Title
JP5338997B2 (ja) 多種燃料内燃機関及びその制御方法
JP5569644B2 (ja) 多種燃料内燃機関の燃料供給制御システム
JP2004211610A (ja) バイフューエル型内燃機関の燃料噴射制御方法及び装置
JP2014109199A (ja) 天然ガスエンジン及び天然ガスエンジンの運転方法
US9453481B2 (en) System and method for operating an engine
JP2005351215A (ja) 内燃機関の制御装置
JP5590226B2 (ja) 多種燃料内燃機関の制御システム
JP5846207B2 (ja) 多種燃料内燃機関の制御システム
JP2011140882A (ja) 圧縮着火式多種燃料エンジン
WO2014156209A1 (ja) 内燃機関の制御装置
JP4419860B2 (ja) 圧縮着火内燃機関の燃焼制御システム
JP6005543B2 (ja) 過給機付きエンジンの制御装置
WO2014115503A1 (ja) 内燃機関の制御装置
JP4803056B2 (ja) 予混合圧縮着火内燃機関
JP2008019831A (ja) 内燃機関の制御装置
JP6264302B2 (ja) 内燃機関の制御装置
WO2012114482A1 (ja) 内燃機関の制御システム
JP2006336620A (ja) 内燃機関の燃料噴射制御装置
US20160369729A1 (en) Control apparatus and control method for internal combustion engine
JP6005534B2 (ja) 過給機付きエンジンの制御装置
JP4461905B2 (ja) 予混合圧縮自着火内燃機関の制御システム
JP4735382B2 (ja) 内燃機関の燃料供給制御装置
JP2009156153A (ja) 内燃機関の燃料噴射制御システム
JP5637098B2 (ja) 内燃機関の制御装置
JP4978322B2 (ja) 燃料供給装置