JP2004260138A - Semiconductor device and manufacturing method therefor - Google Patents

Semiconductor device and manufacturing method therefor Download PDF

Info

Publication number
JP2004260138A
JP2004260138A JP2003411921A JP2003411921A JP2004260138A JP 2004260138 A JP2004260138 A JP 2004260138A JP 2003411921 A JP2003411921 A JP 2003411921A JP 2003411921 A JP2003411921 A JP 2003411921A JP 2004260138 A JP2004260138 A JP 2004260138A
Authority
JP
Japan
Prior art keywords
resin
mounting substrate
semiconductor device
adhesive
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003411921A
Other languages
Japanese (ja)
Other versions
JP4390541B2 (en
JP2004260138A5 (en
Inventor
Koichi Honda
広一 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2003411921A priority Critical patent/JP4390541B2/en
Priority to US10/763,554 priority patent/US7728440B2/en
Priority to TW093102258A priority patent/TWI243457B/en
Priority to KR1020040006563A priority patent/KR100549313B1/en
Publication of JP2004260138A publication Critical patent/JP2004260138A/en
Publication of JP2004260138A5 publication Critical patent/JP2004260138A5/ja
Application granted granted Critical
Publication of JP4390541B2 publication Critical patent/JP4390541B2/en
Priority to US12/785,292 priority patent/US8324718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83102Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus using surface energy, e.g. capillary forces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • H01L2924/1816Exposing the passive side of the semiconductor or solid-state body
    • H01L2924/18161Exposing the passive side of the semiconductor or solid-state body of a flip chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device, in which a semiconductor chip is flip-chip connected to a mounting substrate, the amount of warpage of the mounting substrate is reduced, and there is no break of a solder bump, etc. connecting the semiconductor chip with the mounting substrate or cracks, etc. of the mounting substrate at a temperature cycle test. <P>SOLUTION: This device comprises a semiconductor chip 20, a mounting substrate 10 to which the chip is flip-chip-connected, a first filling part 40, containing an under fill part 40a and a fillet part 40b formed of a first resin, a reinforcement material 30, a first binding material 42, a lid part 31, and a second filling part 41 formed of a second resin whose coefficient of thermal expansion is smaller than that of the first resin. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

この発明は、有機系プリント配線基板と同様の製造方法で作られた搭載用基板に半導体チップをフリップチップ接続した例えばBGA(Ball Grid Array )型のような半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device such as a BGA (Ball Grid Array) type in which a semiconductor chip is flip-chip connected to a mounting substrate manufactured by the same manufacturing method as an organic printed wiring board, and a method of manufacturing the same.

一般的に半導体チップをフリップチップ接続する搭載用基板は、有機系プリント配線基板と同様の製造方法で製作されたものである。搭載用基板は、配線層数が目的応じて二層から十数層で形成されている。しかし、十数層の配線層があるにも係わらず搭載用基板の厚さは0.5〜2.0mm程度であり、外力や異種材料間の熱膨張率の差による生じる応力に非常に弱く変形しやすい。搭載用基板の外形寸法は、この搭載用基板に搭載する半導体チップの大きさ、外部端子数、前記外部端子の配列、例えばフルグリッドか周辺グリッドかによって大きく異なる。一例をあげれば軽量薄型化の要求で半導体チップが約17〜20mm□、このチップのパッド電極数2000〜3000個、搭載用基板に設けなければならない外部端子数(バンプ)1800〜2000個の配列をフルグリッドにした場合、搭載用基板の外形は45乃至50mm□、厚さは1.0〜2.5mm程度である。   Generally, a mounting substrate for flip-chip connection of a semiconductor chip is manufactured by the same manufacturing method as an organic printed wiring board. The mounting substrate is formed with two to more than ten wiring layers depending on the purpose. However, despite the presence of more than a dozen wiring layers, the thickness of the mounting substrate is about 0.5 to 2.0 mm, and is extremely weak to stresses caused by external forces and differences in the coefficient of thermal expansion between different materials. Easy to deform. The external dimensions of the mounting board differ greatly depending on the size of the semiconductor chip mounted on the mounting board, the number of external terminals, and the arrangement of the external terminals, for example, a full grid or a peripheral grid. As an example, an array of semiconductor chips of about 17 to 20 mm square in order to reduce weight and thickness, the number of pad electrodes of this chip is 2000 to 3000, and the number of external terminals (bumps) 1800 to 2000 must be provided on a mounting substrate. Is a full grid, the outer shape of the mounting substrate is 45 to 50 mm square, and the thickness is about 1.0 to 2.5 mm.

最初に、従来の半導体装置について特許文献1と図19を参照して説明する。図19(a)は、例えば特許文献1に記載された従来の半導体装置200で蓋部(「リッド」とも称される)231を取り外した状態の平面図であり、図19(b)は図19(a)のE−E’線に沿った位置で蓋部231を取り付けた状態の断面図である。この半導体装置200は、1mm程度の厚さの搭載用基板210に半導体チップ220がフリップチップ接続され、その隙間にアンダーフィル樹脂240を充填して硬化させてある。又、半導体チップ220の周辺を囲むように補強材(「スティフナ」とも称される)230が搭載用基板210に接着され、半導体チップ220の裏面と補強材230の端面に導電性接着材243によって蓋部231が固着されている。また、補強材230と半導体チップ220の側面の間は、空間247が形成されている。   First, a conventional semiconductor device will be described with reference to Patent Document 1 and FIG. FIG. 19A is a plan view of a conventional semiconductor device 200 described in Patent Literature 1, for example, with a lid (also referred to as a “lid”) 231 removed. FIG. It is sectional drawing of the state which attached the cover part 231 in the position along the EE 'line of 19 (a). In this semiconductor device 200, a semiconductor chip 220 is flip-chip connected to a mounting substrate 210 having a thickness of about 1 mm, and an underfill resin 240 is filled in the gap and cured. A reinforcing material (also referred to as a “stiffener”) 230 is adhered to the mounting substrate 210 so as to surround the periphery of the semiconductor chip 220, and a conductive adhesive 243 is attached to the back surface of the semiconductor chip 220 and the end surface of the reinforcing material 230. The lid 231 is fixed. A space 247 is formed between the reinforcing member 230 and the side surface of the semiconductor chip 220.

次に図20(a)〜(d)及び図21(a)〜(c)を参照して、従来の半導体装置200の製造方法の概要を説明する。まず、上述した搭載用基板210と半導体チップ220と補強材230とアンダーフィル樹脂240とエポキシ樹脂接着材242と導電性接着材243と蓋部231を準備し、図20(a)の配線基板図をスクリーン印刷機またはディスペンサのステージ(図示せず)にセットする。次いで搭載用基板210の周囲に熱膨張率が16〜22ppmのエポキシ樹脂接着材242をスクリーン印刷機又はディスペンサで塗布する。その後、補強材230を載置して所定の温度(100℃〜160℃程度)でキュアする(図20(b))。次に、半導体チップ220のパッド221上に形成されたバンプ電極222と搭載用基板210のランド211をフリップチップマウンター(図示せず)により位置合わせした後、低融点合金、例えばPbフリー半田の場合は250℃前後の温度で溶融接続する(図20(c))。   Next, with reference to FIGS. 20A to 20D and FIGS. 21A to 21C, an outline of a conventional method of manufacturing the semiconductor device 200 will be described. First, the mounting substrate 210, the semiconductor chip 220, the reinforcing material 230, the underfill resin 240, the epoxy resin adhesive 242, the conductive adhesive 243, and the lid 231 described above are prepared, and the wiring board diagram of FIG. Is set on the stage (not shown) of the screen printer or dispenser. Next, an epoxy resin adhesive 242 having a coefficient of thermal expansion of 16 to 22 ppm is applied around the mounting substrate 210 using a screen printer or a dispenser. Thereafter, the reinforcing member 230 is placed and cured at a predetermined temperature (about 100 ° C. to 160 ° C.) (FIG. 20B). Next, after the bump electrodes 222 formed on the pads 221 of the semiconductor chip 220 and the lands 211 of the mounting substrate 210 are aligned by a flip chip mounter (not shown), a low melting point alloy, for example, a Pb-free solder is used. Is melt-connected at a temperature of about 250 ° C. (FIG. 20C).

また、別の方法では、半導体チップ220のパッド221と搭載用基板210のランド211の接続方法として接合面の材料がAuとAl、AuとAuから構成され加熱しながら超音波をかけて接続する方法がある。この場合は、 補強材230と搭載用基板210を接着するエポキシ樹脂接着材242の本キュアは別工程で本キュアする。次に、搭載用基板210と半導体チップ220の接着強度を確保するために熱膨張率が32ppm程度で流動性のあるアンダーフィル樹脂240をディスペンサ等で両者間の数100μm程度の隙間に毛細管現象を利用して充填する。次にアンダーフィル樹脂240を100℃程度の温度でキュアする(図20(d))。   In another method, as a method of connecting the pad 221 of the semiconductor chip 220 and the land 211 of the mounting substrate 210, the material of the bonding surface is made of Au and Al, or Au and Au, and the connection is made by applying ultrasonic waves while heating. There is a way. In this case, the main cure of the epoxy resin adhesive 242 for bonding the reinforcing member 230 and the mounting substrate 210 is performed in another step. Next, in order to secure the bonding strength between the mounting substrate 210 and the semiconductor chip 220, the underfill resin 240 which has a thermal expansion coefficient of about 32 ppm and has fluidity is drawn by a dispenser or the like into a gap of about several hundreds μm between them. Use and fill. Next, the underfill resin 240 is cured at a temperature of about 100 ° C. (FIG. 20D).

次いで、熱膨張率が16〜22ppmの導電性接着材243を補強材230の端面と半導体チップ220の裏面上に塗布または印刷方法で付着させる(図21(a))。次に、蓋部231を補強材230に位置合わせして蓋部231を載置して荷重を掛け、更にこの状態で150〜170℃程度の温度でキュアして導電性接着材243を硬化させる(図21(b))。キュア方法は、オーブンでバッチ処理する方法、ベルト炉内に連続的に投入してキュアする一般的な方法がある。   Next, a conductive adhesive 243 having a coefficient of thermal expansion of 16 to 22 ppm is applied to the end surface of the reinforcing member 230 and the back surface of the semiconductor chip 220 by coating or printing (FIG. 21A). Next, the lid 231 is positioned with respect to the reinforcing material 230, the lid 231 is placed thereon, and a load is applied. In this state, the conductive adhesive 243 is cured by curing at a temperature of about 150 to 170 ° C. (FIG. 21 (b)). The curing method includes a batch method in an oven and a general method in which the mixture is continuously charged into a belt furnace and cured.

最後に、搭載用基板210のランド212に外部端子である半田バンプ213を一般的な方法で接着する(図21(c))。従来の半導体装置200では、搭載用基板210のランド212に半田バンプ213が接着された直後の室温状態で既に、例えば図22(a)に示すように、搭載用基板210の半導体チップ220との対向部が100μm程度半導体チップ220側に引っ張られ、チップ搭載面側に凸の形状になっている。   Finally, solder bumps 213 as external terminals are bonded to the lands 212 of the mounting substrate 210 by a general method (FIG. 21C). In the conventional semiconductor device 200, at a room temperature immediately after the solder bumps 213 are bonded to the lands 212 of the mounting substrate 210, for example, as shown in FIG. The facing portion is pulled toward the semiconductor chip 220 by about 100 μm, and has a convex shape on the chip mounting surface side.

図22(a)はこの半導体装置200が20℃の常温のときの搭載用基板210の基板反りの状態を模式的に示した図であり、図22(b)及び図22(c)はそれぞれ半導体装置200が−45℃の低温度のとき及び150℃の高温度のときの搭載用基板210の基板反りの状態を模式的に示した図である。従来の半導体装置200では、図22(a)のように、20℃の常温状態で100μm程度チップ側に凸の状態である。この状態から−45℃に冷却すると、図22(b)のように反り量は180μmまで増大する。常温に戻して次に150℃に加熱すると、図22(c)のように反り量は約50μm迄減少する。従って、従来の半導体装置200に対して、−45℃の低温度状態と150℃の高温度状態との間の温度サイクルが数百回から千回程度繰り返されると、半導体チップ220のパッド221と搭載用基板210のランド211を接合するバンプ電極222にクラックが生じたり、各接合界面で剥離が生じる。   FIG. 22A is a diagram schematically showing the state of warpage of the mounting substrate 210 when the semiconductor device 200 is at a normal temperature of 20 ° C. FIGS. 22B and 22C respectively. FIG. 5 is a diagram schematically illustrating a state of the substrate warpage of the mounting substrate 210 when the semiconductor device 200 is at a low temperature of −45 ° C. and at a high temperature of 150 ° C. In the conventional semiconductor device 200, as shown in FIG. 22A, the semiconductor device 200 is in a state of projecting toward the chip side by about 100 μm at a normal temperature of 20 ° C. When cooling to −45 ° C. from this state, the warpage increases to 180 μm as shown in FIG. When the temperature is returned to normal temperature and then heated to 150 ° C., the warpage decreases to about 50 μm as shown in FIG. Therefore, when the temperature cycle between the low temperature state of −45 ° C. and the high temperature state of 150 ° C. is repeated about several hundreds to 1,000 times with respect to the conventional semiconductor device 200, the pad 221 of the semiconductor chip 220 becomes Cracks occur in the bump electrodes 222 that join the lands 211 of the mounting substrate 210, and peeling occurs at each joining interface.

温度サイクルで半田バンプにクラックが生じたり、パッドやランドとの接合界面で剥離が生じる理由は次のように推定される。図23は、この理由を説明するためのバンプ電極222近傍の模式的な拡大図である。以下、図22,23を参照しながら説明する。アンダーフィル樹脂240を充填することで平面方向の応力を吸収しているが、アンダーフィル樹脂240の収縮によりバンプ電極222が半導体チップ220側に引っ張られると共に垂直方向の力が掛かる状態となる。この状態で温度サイクルを繰り返すと半導体チップ220を含めて搭載用基板210が、図22(a)乃至図22(c)に示されるような凸形状と平坦形状を繰り返すことによってバンプ電極222のパッド221との接続部又は搭載用基板210のランド211との接続部に引っ張りと圧縮の応力が繰り返され、バンプ電極222にクラック217が生じたり、各接合界面で剥離218が生じ、破壊に至るものと推定される。   The reason why cracks occur in the solder bumps or peeling occurs at the bonding interface with the pads or lands in the temperature cycle is presumed as follows. FIG. 23 is a schematic enlarged view near the bump electrode 222 for explaining the reason. This will be described below with reference to FIGS. The filling of the underfill resin 240 absorbs the stress in the planar direction, but the shrinkage of the underfill resin 240 pulls the bump electrode 222 toward the semiconductor chip 220 and applies a vertical force. When the temperature cycle is repeated in this state, the mounting substrate 210 including the semiconductor chip 220 repeats a convex shape and a flat shape as shown in FIGS. In the connection portion with the 221 or the connection portion with the land 211 of the mounting substrate 210, the tensile and compressive stresses are repeated, cracks 217 occur on the bump electrodes 222, and peeling 218 occurs on each joint interface, leading to destruction. It is estimated to be.

上述した製造方法で製造された半導体装置200は、0.5〜2.0mm厚の樹脂搭載用基板210の配線電極211に0.7mm厚の半導体チップ220のパッド221がバンプ電極222により接続され、接続部を補強するアンダーフィル樹脂240で固着されている。また、半導体チップ220を囲むように0.5〜1.0mm程度厚の補強材230を接着して樹脂搭載用基板210の平坦性と強度を確保した上で半導体チップ220を保護する0.5〜1.0mm厚の蓋部243が接着されて半導体装置200が構成されている。   In the semiconductor device 200 manufactured by the above-described manufacturing method, a pad 221 of a 0.7 mm thick semiconductor chip 220 is connected to a wiring electrode 211 of a resin mounting substrate 210 having a thickness of 0.5 to 2.0 mm by a bump electrode 222. Are fixed with an underfill resin 240 that reinforces the connection portion. Further, a reinforcing material 230 having a thickness of about 0.5 to 1.0 mm is adhered so as to surround the semiconductor chip 220 to secure the flatness and strength of the resin mounting substrate 210 and to protect the semiconductor chip 220. A semiconductor device 200 is formed by bonding a lid portion 243 having a thickness of about 1.0 mm.

上記構成材料で製造された常温での半導体装置200の搭載用基板210には図22(a)のような基板の反りが生じている。この断面図は、図19(a)のD−D‘線に沿った断面図である。半導体チップ220直下はアンダーフィル樹脂240の収縮により半導体チップ220側に引っ張られてチップ搭載面側に凸になった状態である。また補強材230の直下も、チップ搭載面側に少し凸の形状に変形している。すなわち2段形状に変形している。   The mounting substrate 210 of the semiconductor device 200 at room temperature manufactured from the above-described constituent materials is warped as shown in FIG. This cross-sectional view is a cross-sectional view along the line DD ′ in FIG. Immediately below the semiconductor chip 220 is a state where the underfill resin 240 is pulled toward the semiconductor chip 220 due to contraction of the underfill resin 240 and becomes convex toward the chip mounting surface. The portion directly below the reinforcing member 230 is also deformed into a slightly convex shape on the chip mounting surface side. That is, it is deformed into a two-stage shape.

アンダーフィル樹脂240の熱膨張率を16〜22ppm程度に低くすれば、半導体チップ220直下の凸形状に引っ張られる現象はある程度抑制されるが、搭載用基板の反り量を大幅に低減させるのは難しい。また、アンダーフィル樹脂240の熱膨張率を低くするためには、通常シリカフィラー等を多量に配合するが、そうすると樹脂の粘度が上昇してしまう。この結果、搭載用基板210と半導体チップ220との対向領域のアンダーフィル樹脂240内にボイドを取り込み、剥離現象を発生させ易くなるため、熱膨張率を32ppm以下に下げることが困難であった。すなわち、アンダーフィル樹脂240の熱膨張率と粘度の関係は、熱膨張率を下げるためにはシリカ、アルミナのようなフィラーを多く混入すればよいが、これらのフィラーの混入量が多くなると粘度が上昇するというトレードオフの関係にある。   If the coefficient of thermal expansion of the underfill resin 240 is reduced to about 16 to 22 ppm, the phenomenon that the underfill resin 240 is pulled into a convex shape directly below the semiconductor chip 220 is suppressed to some extent, but it is difficult to greatly reduce the amount of warpage of the mounting substrate. . Further, in order to lower the coefficient of thermal expansion of the underfill resin 240, a large amount of a silica filler or the like is usually added, but this increases the viscosity of the resin. As a result, voids are taken into the underfill resin 240 in a region where the mounting substrate 210 and the semiconductor chip 220 are opposed to each other, and a peeling phenomenon is easily caused. Therefore, it has been difficult to reduce the coefficient of thermal expansion to 32 ppm or less. That is, the relationship between the coefficient of thermal expansion and the viscosity of the underfill resin 240 may be reduced by mixing a large amount of filler such as silica or alumina in order to reduce the coefficient of thermal expansion. There is a trade-off relationship of rising.

次に、特許文献2には、配線パターン面に半導体チップを接続しその隙間に第1の封止材(アンダーフィル樹脂)を60〜120℃で進入させて、更に140〜170℃で硬化させた後に半導体チップの側面を第2の封止材(公知のフィレット材)により封止した構成の半導体装置が開示されている。この半導体装置では、半導体チップの直下に第1の封止材が存在し、半導体チップの側面に第2の封止材がフィレット状に形成されている。   Next, in Patent Document 2, a semiconductor chip is connected to a wiring pattern surface, a first sealing material (underfill resin) is introduced into the gap at 60 to 120 ° C., and further cured at 140 to 170 ° C. After that, a semiconductor device having a configuration in which the side surface of a semiconductor chip is sealed with a second sealing material (known fillet material) is disclosed. In this semiconductor device, a first encapsulant exists directly below a semiconductor chip, and a second encapsulant is formed in a fillet shape on a side surface of the semiconductor chip.

更に、特許文献3には、インターポーザ基板に半導体チップをフリップチップ接続し、インターポーザ基板と半導体チップ間と補強材に相当する部分をトランスファーモールドで一体的に充填してからヒートスプレッダ(蓋部に相当)を接着した構造の半導体装置が開示されている。   Further, in Patent Document 3, a semiconductor chip is flip-chip connected to an interposer substrate, a portion between the interposer substrate and the semiconductor chip and a portion corresponding to a reinforcing material are integrally filled by transfer molding, and then a heat spreader (corresponding to a lid portion). Has been disclosed.

特開2000−323624号公報JP 2000-323624 A

特開2000−260820号公報JP-A-2000-260820 特開2000−349203号公報JP 2000-349203 A

上述した従来の半導体装置は、半導体チップを構成する例えばシリコンと有機系の樹脂基板からなる搭載用基板のように熱膨張率の異なる材料間を半田接続しているバンプが破壊されるのを防止するために、高熱膨張率,高弾性率のアンダーフィル樹脂を半導体チップと搭載用基板との間に充填することによって、両者の熱膨張率差による応力を緩和させていた。しかし、各材料の熱膨張率と弾性率が大きく異なることから製造工程が終了した時点で、半導体チップとアンダーフィル樹脂を介して対向している搭載用基板の対向領域は半導体チップ側に引っ張られる応力が発生して反った状態になっている。このため、反り量が大きくなると、当該半導体装置が実装される回路基板等に半田付け実装する際に反った部分の半田接続不良が発生し易くなるという問題が生じる。また、半導体装置自体に関しても、5℃〜35℃程度の範囲の温度変動の小さい常温状態であれば問題がないが、温度サイクルのように低温、高温が繰り返されると搭載用基板の反りにより、半導体チップのパッドと搭載用基板のランドを接合する半田バンプにクラックが生じたり、各接合界面で剥離が生じたりするという問題があった。   The above-described conventional semiconductor device prevents the bumps connecting the materials having different coefficients of thermal expansion from being soldered, such as a mounting board made of silicon and an organic resin substrate, which constitutes a semiconductor chip, from being broken. In order to achieve this, an underfill resin having a high coefficient of thermal expansion and a high modulus of elasticity is filled between the semiconductor chip and the mounting substrate so as to reduce the stress caused by the difference in the coefficient of thermal expansion between the two. However, since the thermal expansion coefficient and the elastic modulus of each material are significantly different, when the manufacturing process is completed, the facing region of the mounting substrate facing the semiconductor chip via the underfill resin is pulled toward the semiconductor chip. It is in a warped state due to the occurrence of stress. For this reason, when the amount of warpage is large, there arises a problem that when soldering and mounting on a circuit board or the like on which the semiconductor device is mounted, defective solder connection at the warped portion is likely to occur. In addition, the semiconductor device itself has no problem if it is in a normal temperature state with a small temperature fluctuation in a range of about 5 ° C. to 35 ° C. However, when the low temperature and the high temperature are repeated as in a temperature cycle, the mounting substrate warps. There has been a problem that cracks occur in solder bumps joining the pads of the semiconductor chip and the lands of the mounting substrate, and peeling occurs at each joint interface.

また、例えば、半導体チップの直下に第1の封止材が存在し、側面に第2の封止材がフィレット状に形成された構造でも、半導体チップ直下の配線パターンの収縮を完全に防止することはできない。更に、トランスファーモールドでフィラー含有量の多い封止用樹脂をアンダーフィル樹脂としてインターポーザ基板と半導体チップ間に注入充填した構造の場合、樹脂の粘度が高いのでインターポーザ基板と半導体チップとの隙間にボイドを取り込み易くなり、剥がれやクラックの発生等の信頼性を損なう問題点を生じる。   Further, for example, even in a structure in which the first sealing material is present directly below the semiconductor chip and the second sealing material is formed in a side surface in a fillet shape, contraction of the wiring pattern immediately below the semiconductor chip is completely prevented. It is not possible. Furthermore, in the case of a structure in which a sealing resin having a high filler content is injected and filled between the interposer substrate and the semiconductor chip as an underfill resin by transfer molding, voids are formed in the gap between the interposer substrate and the semiconductor chip because the viscosity of the resin is high. It becomes easy to take in and there is a problem that reliability is impaired, such as peeling and cracking.

本発明の目的は、半導体チップと、この半導体チップが第1の面にフリップチップ接続された搭載用基板を備えた半導体装置であって、封止した後の状態で、搭載用基板の反り量が当該半導体装置を実装する回路基板等の実装用基板への半田付け実装において支障のない範囲内であり、且つ温度サイクル試験において半導体チップと搭載用基板との接続部である半田バンプ等におけるクラックや剥離等の発生による破壊がなく、搭載用基板にもクラック等の発生がない半導体装置を提供することにある。   An object of the present invention is a semiconductor device including a semiconductor chip and a mounting substrate in which the semiconductor chip is flip-chip connected to a first surface, and the amount of warpage of the mounting substrate in a state after sealing. Is within a range that does not hinder soldering to a mounting board such as a circuit board on which the semiconductor device is mounted, and cracks in solder bumps and the like that are connection portions between the semiconductor chip and the mounting board in a temperature cycle test. It is an object of the present invention to provide a semiconductor device which is free from destruction due to occurrence of peeling or peeling, and free from cracks or the like on a mounting substrate.

上記目的を達成するために、本発明の半導体装置は、半導体チップと、この半導体チップが第1の面にフリップチップ接続された搭載用基板と、前記半導体チップと前記搭載用基板との間に第1の樹脂が充填されたアンダーフィル部とこのアンダーフィル部から前記第1の樹脂が延在したフィレット部とを有する第1充填部と、前記半導体チップを囲む枠状の補強材と、この補強材の第1の端面を前記搭載用基板に接着する第1の接着材と、前記補強材で囲まれた領域を覆う蓋部と、この蓋部を前記半導体チップの裏面及び前記補強材の第1の端面と反対側の第2の端面に接着する第2の接着材と、前記半導体チップの側面,前記搭載用基板及び前記フィレット部で囲まれる空間に前記第1の樹脂と異なる第2の樹脂を充填して形成された第2充填部を備える。より具体的には、上記半導体装置は、一主面に複数の外部接続用電極(以下、チップ電極とする)を備えた半導体チップと、各チップ電極と対応する電極(以下、内部ランド電極とする)を第1の面に備えた搭載用基板を有し、互いに対応するチップ電極と内ランド電極を半田バンプ等の導電性電極(以下、接続部材とする)を介して対向させながら接続することで半導体チップが搭載用基板に搭載されている。また、半導体チップと搭載用基板との間に第1の樹脂が充填されたアンダーフィル部と半導体チップ領域からこの第1の樹脂が延在したフィレット部とを有する第1充填部と、半導体チップを囲む枠状の補強材と、この補強材の第1の端面を搭載用基板に接着する第1の接着材と、補強材で囲まれた領域を覆う蓋部と、この蓋部を半導体チップの裏面及び補強材の第1の端面と反対側の第2の端面に接着する第2の接着材と、半導体チップの側面,搭載用基板及びフィレット部で囲まれる空間に第2の樹脂を充填して形成された第2充填部も備えている。   In order to achieve the above object, a semiconductor device according to the present invention includes a semiconductor chip, a mounting substrate in which the semiconductor chip is flip-chip connected to a first surface, and a semiconductor chip mounted between the semiconductor chip and the mounting substrate. A first filling portion having an underfill portion filled with a first resin, a fillet portion extending from the underfill portion with the first resin, a frame-shaped reinforcing material surrounding the semiconductor chip, A first adhesive for bonding a first end surface of the reinforcing material to the mounting substrate; a lid covering an area surrounded by the reinforcing material; and a lid for covering the back surface of the semiconductor chip and the reinforcing material. A second adhesive that adheres to a second end surface opposite to the first end surface, and a second material different from the first resin in a space surrounded by the side surface of the semiconductor chip, the mounting substrate, and the fillet portion. No. formed by filling the resin Comprising a filling unit. More specifically, the semiconductor device includes a semiconductor chip having a plurality of external connection electrodes (hereinafter, referred to as chip electrodes) on one main surface, and an electrode corresponding to each chip electrode (hereinafter, an internal land electrode). Is mounted on the first surface, and the chip electrodes and the inner land electrodes corresponding to each other are connected while facing each other via conductive electrodes such as solder bumps (hereinafter referred to as connection members). Thus, the semiconductor chip is mounted on the mounting substrate. A first filling portion having an underfill portion filled with a first resin between the semiconductor chip and the mounting substrate, and a fillet portion extending from the semiconductor chip region with the first resin; , A first adhesive for bonding the first end surface of the reinforcing material to the mounting substrate, a lid covering an area surrounded by the reinforcing material, and a semiconductor chip A second adhesive is bonded to the back surface of the semiconductor chip and a second end face of the reinforcing member opposite to the first end face, and a space surrounded by the side surface of the semiconductor chip, the mounting substrate, and the fillet portion is filled with a second resin. Also provided is a second filling portion formed as described above.

また、本発明の半導体装置の製造方法は、搭載用基板に補強材を接着する工程と、搭載用基板に半導体チップを接続する工程と、第1の樹脂を充填・硬化する工程と、第2の樹脂を充填・硬化する工程と、蓋部を取り付ける工程と、半田バンプを接続する工程とを備え、少なくとも前記搭載用基板に補強材を接着する工程を第1番目の工程とし、前記搭載用基板に半導体チップを接続する工程を2番目の工程としたことを特徴とする。このとき、前記搭載用基板に補強材を接着する工程と、前記搭載用基板に半導体チップを接続する工程と、前記第1の樹脂を充填・硬化する工程と、前記第2の樹脂を充填・硬化する工程の各工程における樹脂の硬化は各樹脂を半硬化する処理であり、蓋部を取り付ける工程の硬化処理において全ての樹脂を本硬化するのが好ましい。   The method of manufacturing a semiconductor device according to the present invention includes a step of bonding a reinforcing material to the mounting substrate, a step of connecting a semiconductor chip to the mounting substrate, a step of filling and curing the first resin, and a step of: A step of filling and curing the resin, a step of attaching a lid part, and a step of connecting solder bumps, wherein at least a step of bonding a reinforcing material to the mounting substrate is a first step, The step of connecting the semiconductor chip to the substrate is a second step. At this time, a step of bonding a reinforcing material to the mounting substrate, a step of connecting a semiconductor chip to the mounting substrate, a step of filling and curing the first resin, and a step of filling and curing the second resin The curing of the resin in each step of the curing step is a process of semi-curing each resin, and it is preferable that all the resins are fully cured in the curing process of the step of attaching the lid.

また、本発明の半導体装置の他の製造方法は、搭載用基板に補強材を接着する工程と、搭載用基板に半導体チップを接続する工程と、第1の樹脂を充填・硬化する工程と、第2の樹脂を充填・硬化する工程と、蓋部を取り付ける工程と、半田バンプを接続する工程とを備え、前記第2の樹脂の充填・硬化する工程は蓋部を取り付ける工程の後に実施することを特徴とする。   Another method for manufacturing a semiconductor device of the present invention includes a step of bonding a reinforcing material to a mounting substrate, a step of connecting a semiconductor chip to the mounting substrate, and a step of filling and curing a first resin. The method includes a step of filling and curing the second resin, a step of attaching a lid, and a step of connecting a solder bump. The step of filling and curing the second resin is performed after the step of attaching the lid. It is characterized by the following.

上記構成の半導体装置において、第1の樹脂及び第2の樹脂は、第2の樹脂の熱膨張率が、第1の樹脂の熱膨張率よりも小さくなるように選択することで、熱硬化時や熱硬化後の温度変化による第1の樹脂の収縮・膨張応力を緩和することができる。従って、第1充填部のアンダーフィル部におけるボイドの発生を防止し接続部材の剥離,破壊を抑制するために、第1の樹脂として粘度は低いが熱膨張率がやや高い材料を用いても、搭載用基板の反りを抑制することができる。また、低温と高温を繰り返す温度サイクル試験においても第1の樹脂の収縮・膨張による応力が最小限に抑えられ、半田バンプ等の接続部材のクラック発生や剥離,破壊及びチップ電極や内部ランド電極の剥離を防止することができる。尚、第2の樹脂の熱膨張率は、搭載用基板の熱膨張率よりも小さくなっていればより好ましい。   In the semiconductor device having the above configuration, the first resin and the second resin are selected so that the coefficient of thermal expansion of the second resin is smaller than the coefficient of thermal expansion of the first resin. Or the shrinkage / expansion stress of the first resin due to a temperature change after heat curing. Therefore, in order to prevent the occurrence of voids in the underfill portion of the first filling portion and to prevent peeling and destruction of the connection member, even if a material having a low viscosity but a relatively high coefficient of thermal expansion is used as the first resin, Warpage of the mounting substrate can be suppressed. Also, in a temperature cycle test in which low and high temperatures are repeated, stress due to contraction and expansion of the first resin is minimized, and cracking, peeling, and destruction of connection members such as solder bumps and chip electrodes and internal land electrodes are prevented. Peeling can be prevented. It is more preferable that the coefficient of thermal expansion of the second resin is smaller than the coefficient of thermal expansion of the mounting substrate.

また、本発明の半導体装置の製造方法によれば、搭載用基板の強度を補強できるために製造工程中のハンドリング性を改善すると共に反りを抑えることができる。また、各接着材及び樹脂を各工程で仮キュアして半硬化状態にしておき最後に本キュアして完全硬化するために製造後の反りを最小に抑えることができる。   Further, according to the method of manufacturing a semiconductor device of the present invention, since the strength of the mounting substrate can be reinforced, the handling property during the manufacturing process can be improved and the warpage can be suppressed. In addition, since each adhesive and resin are temporarily cured in each step to be in a semi-cured state, and finally cured and completely cured, warpage after production can be minimized.

また、本発明の半導体装置の他の製造方法によれば、蓋部を取り付けてから第2の樹脂を注入・硬化させているので、第2の樹脂を完全に充填でき、蓋部近傍に空隙ができず搭載用基板の変形を抑制することができる。   According to another manufacturing method of the semiconductor device of the present invention, since the second resin is injected and cured after the lid is attached, the second resin can be completely filled, and the gap is formed near the lid. And deformation of the mounting substrate can be suppressed.

次に、本発明の実施形態について図面を参照して説明する。
図1は本発明の半導体装置の第1の実施形態を示す図で、(a)及び(b)は、それぞれ蓋部を外した状態の平面図、及び(a)のA1−A1’線に沿った位置で蓋部が取り付けられた状態の断面図である。図1(a),(b)を参照すると、本実施形態の半導体装置1は、半導体チップ20と、半導体チップ20が第1の面にフリップチップ接続された搭載用基板10と、半導体チップ20と搭載用基板10との対向領域の隙間に第1の樹脂が充填されたアンダーフィル部40aと半導体チップ20と搭載用基板10との対向領域から第1の樹脂が延在したフィレット部40bとを有する第1充填部40と、半導体チップ20を囲む枠状の補強材30と、この補強材30の第1の端面を搭載用基板10に接着する第1の接着材42と、補強材30及び補強材30で囲まれた領域を覆う蓋部31と、蓋部31を半導体チップ20の裏面及び補強材31の第1の端面と反対側の第2の端面に接着する第2の接着材43と、補強材30,半導体チップ20の側面,搭載用基板10及び第1の樹脂からなるフィレット部40bで囲まれる空間に第2の樹脂を充填して形成された第2充填部41を備える。以下、具体的に説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIGS. 1A and 1B are views showing a first embodiment of a semiconductor device according to the present invention. FIGS. 1A and 1B are plan views of the semiconductor device with a lid removed, and FIG. It is sectional drawing of the state where the cover part was attached in the position along. Referring to FIGS. 1A and 1B, a semiconductor device 1 of the present embodiment includes a semiconductor chip 20, a mounting substrate 10 having the semiconductor chip 20 flip-chip connected to a first surface, and a semiconductor chip 20. An underfill portion 40a in which a gap between an opposing region of the semiconductor chip 20 and the mounting substrate 10 is filled with a first resin, and a fillet portion 40b in which the first resin extends from an opposing region of the semiconductor chip 20 and the mounting substrate 10. A first filling portion 40 having the following structure; a frame-shaped reinforcing member 30 surrounding the semiconductor chip 20; a first adhesive 42 for bonding the first end surface of the reinforcing member 30 to the mounting substrate 10; And a second adhesive that adheres the lid to the back surface of the semiconductor chip and to a second end surface of the reinforcement member opposite to the first end surface. 43, the reinforcing member 30, and the semiconductor chip 2 Comprising side, a second filling portion 41 formed by filling the second resin into a space surrounded by a fillet portion 40b made of the packaging board 10 and the first resin. This will be specifically described below.

半導体チップ20は、主表面に外部接続用の複数のチップ電極21を備えている。搭載用基板10は、第1の面上にチップ電極21と対応する位置に形成された内部ランド電極11と、第1の面と反対側の第2の面上に形成された外部ランド電極12と、互いに対応する内部ランド電極11と外部ランド電極12とを接続する基板内配線15と、外部ランド電極12に接着された例えば半田バンプ13を備え、この半田バンプ13は半導体装置1の外部端子となっている。   The semiconductor chip 20 has a plurality of chip electrodes 21 for external connection on the main surface. The mounting substrate 10 includes an internal land electrode 11 formed on the first surface at a position corresponding to the chip electrode 21 and an external land electrode 12 formed on the second surface opposite to the first surface. A wiring 15 for connecting the corresponding internal land electrode 11 and external land electrode 12 to each other; and, for example, a solder bump 13 bonded to the external land electrode 12. The solder bump 13 is connected to an external terminal of the semiconductor device 1. It has become.

搭載用基板10と半導体チップ20とは、互いに対応する内部ランド電極11とチップ電極21とが導電性材料で形成されたバンプ電極22を介して接続されている。第1充填部40を形成する第1の樹脂は、この接続部の応力を緩和させている。   The mounting substrate 10 and the semiconductor chip 20 are connected to each other via bump electrodes 22 made of a conductive material, and the corresponding internal land electrodes 11 and chip electrodes 21 are connected to each other. The first resin forming the first filling portion 40 relieves the stress at the connecting portion.

半導体チップ20は、搭載用基板10の中央部に搭載されており、補強材30が半導体チップ20の周囲を囲んで搭載用基板10の第1の面の周縁部に第1の接着材42により接着されている。この半導体装置1は、補強材30により、製造工程中の熱的、機械的応力による搭載用基板10の反りを低減させると共に強度を補強している。   The semiconductor chip 20 is mounted at the center of the mounting substrate 10, and the reinforcing member 30 surrounds the periphery of the semiconductor chip 20 and is attached to the periphery of the first surface of the mounting substrate 10 by the first adhesive 42. Glued. In the semiconductor device 1, the reinforcing member 30 reduces the warpage of the mounting substrate 10 due to thermal and mechanical stress during the manufacturing process and reinforces the strength.

また、搭載用基板10,補強材30の内壁,半導体チップ20の側壁,蓋部31及びフィレット部40bで囲まれる空間に第2の樹脂を充填し、硬化させて第2充填部41が形成され、ほぼ空間をなくすようにしている。この第2充填部41を形成する第2の樹脂の熱膨張率、より具体的には線膨張率は、少なくとも第1の樹脂の熱膨張率よりも低くなっている。このように半導体装置1は、半導体チップ20と補強材30との間の空間に少なくとも第1の樹脂よりも低熱膨張率の第2の樹脂を充填・硬化した第2充填部41が形成されているので、高温・低温時の第1の樹脂40の膨張・収縮による搭載用基板10の反りを抑制できる。尚、第2の樹脂の熱膨張率を、第1の接着材42、第2の接着材43、搭載用基板10等の熱膨張率よりも低くすることにより、搭載用基板10の反りを一層低減できる。   Further, the space surrounded by the mounting substrate 10, the inner wall of the reinforcing member 30, the side wall of the semiconductor chip 20, the lid 31, and the fillet 40b is filled with a second resin and cured to form a second filling portion 41. , Almost eliminating space. The coefficient of thermal expansion of the second resin forming the second filling portion 41, more specifically, the coefficient of linear expansion is lower than at least the coefficient of thermal expansion of the first resin. As described above, in the semiconductor device 1, the space between the semiconductor chip 20 and the reinforcing member 30 is formed with the second filling portion 41 in which at least the second resin having a lower coefficient of thermal expansion than the first resin is filled and cured. Therefore, warpage of the mounting substrate 10 due to expansion and contraction of the first resin 40 at high and low temperatures can be suppressed. The warp of the mounting substrate 10 is further reduced by making the thermal expansion coefficient of the second resin lower than that of the first adhesive 42, the second adhesive 43, the mounting substrate 10, and the like. Can be reduced.

ここで、第1充填部40に用いた第1の樹脂、第2充填部41に用いた第2の樹脂等の樹脂の特性の例を表−1に示す。

表−1 各樹脂の特性
熱膨張率 (ppm) 弾性率 (GPa)
第1の接着材 16〜22 11〜12
第1の樹脂 30〜32 9〜10
第2の樹脂 8〜16 11〜28
第2の接着材 50〜100 3〜9
Here, Table 1 shows examples of the characteristics of the resin such as the first resin used for the first filling unit 40 and the second resin used for the second filling unit 41.

Table 1 Properties of each resin
Coefficient of thermal expansion (ppm) Modulus of elasticity (GPa)
First adhesive 16-22 11-12
First resin 30-329 9-10
Second resin 8-16 11-28
Second adhesive 50-100 3-9

次に、図8(a)〜(e)及び図9(a)〜(c)を参照して、本実施形態の半導体装置10の製造方法を工程順に沿って説明する。先ず、搭載用基板10を準備する。搭載用基板10の第1の面上には、搭載される半導体チップ20のチップ電極21と対応する位置に形成された内部ランド電極11と、第1の面と反対側の第2の面上に形成された外部ランド電極12とを備え、互いに対応する内部ランド電極11と外部ランド電極12が基板内配線15により接続されている(図8(a))。   Next, with reference to FIGS. 8A to 8E and FIGS. 9A to 9C, a method of manufacturing the semiconductor device 10 of the present embodiment will be described in the order of steps. First, the mounting substrate 10 is prepared. On the first surface of the mounting substrate 10, an internal land electrode 11 formed at a position corresponding to the chip electrode 21 of the semiconductor chip 20 to be mounted, and on a second surface opposite to the first surface. The external land electrode 12 is formed on the internal land electrode 11 and the external land electrode 12 corresponding to each other are connected by the wiring 15 in the substrate (FIG. 8A).

次に、搭載用基板10の周縁部に熱膨張率が16〜22ppm程度、弾性率が11〜12GPaの第1の接着材42を、やはり予め準備してある枠状の補強材30の形状と一致するように口字状に塗布した後、補強材30を第1の接着材42が塗布された部分に位置合わせして第1の端面が第1の接着材42と接するように載置し、125℃程度で約15分間仮キュアする(図8(b))。この状態では、補強材30は搭載用基板10に接着されているが、第1の接着材42は熱硬化反応して、ゲル化が進行し一部固体化しているが未だ完全には固化していない。尚、第1の接着材42は、例えばエポキシ系樹脂、ポリオレフィン系樹脂、シリコン系樹脂、シアネートエステル系樹脂、ポリイミド系樹脂、ポリノルボルネン系樹脂を含む樹脂群の中から選択された樹脂材料を主成分として、熱膨張率と弾性率が所望の値になるように無機質フィラーを適量混入させて調整してある。また、補強材30の材料は、Cu、SUS(フェライト系ステンレス鋼)、アルミナ、シリコン、窒化アルミニウム、エポキシ樹脂等を含むグループの中から選択できる。   Next, a first adhesive 42 having a coefficient of thermal expansion of about 16 to 22 ppm and an elasticity of 11 to 12 GPa is provided on the peripheral portion of the mounting substrate 10 with the shape of the frame-shaped reinforcing material 30 which is also prepared in advance. After being applied in a bracket shape so as to coincide with each other, the reinforcing member 30 is aligned with the portion where the first adhesive 42 is applied, and placed so that the first end surface is in contact with the first adhesive 42. Temporarily cure at about 125 ° C. for about 15 minutes (FIG. 8B). In this state, the reinforcing material 30 is adhered to the mounting substrate 10, but the first adhesive material 42 undergoes a thermosetting reaction, and gelation proceeds to partially solidify, but is still completely solidified. Not. The first adhesive 42 mainly includes a resin material selected from a resin group including, for example, an epoxy resin, a polyolefin resin, a silicon resin, a cyanate ester resin, a polyimide resin, and a polynorbornene resin. As a component, an appropriate amount of an inorganic filler is mixed and adjusted so that the coefficient of thermal expansion and the modulus of elasticity become desired values. The material of the reinforcing member 30 can be selected from a group including Cu, SUS (ferritic stainless steel), alumina, silicon, aluminum nitride, epoxy resin, and the like.

次に、チップ電極21上にバンプ電極22が接着された半導体チップ20を、各バンプ電極22が対応する内部ランド電極11と接するように位置決め載置して、例えば窒素雰囲気中で250℃に加熱して搭載用基板10の内部ランド電極11にフリップチップ接続する(図8(c))。   Next, the semiconductor chip 20 having the bump electrodes 22 bonded to the chip electrodes 21 is positioned and mounted such that each bump electrode 22 is in contact with the corresponding internal land electrode 11, and heated to 250 ° C. in a nitrogen atmosphere, for example. Then, the chip is flip-chip connected to the internal land electrode 11 of the mounting substrate 10 (FIG. 8C).

次に、半導体チップ20と搭載用基板10との隙間にディイスペンサ等で第1の樹脂を滴下方法で注入・充填した後、100℃程度で約10分仮キュアし第1充填部40を形成する(図8(d))。この状態では第1の樹脂も熱硬化反応して、ゲル化が進行し一部固体化しているが未だ完全には固化していない。尚、第1の樹脂は、例えばエポキシ系樹脂を熱膨張率が32ppm程度、弾性率が9GPa程度になるように調整したものである。第1の樹脂がこの特性であれば、流動性が1000〜40000CPS(centipoises )でありアンダーフィル部40aにボイドを発生させることなく注入・充填できる。このとき、第1の樹脂により、半導体チップ20と搭載用基板10との隙間のアンダーフィル部40aと共にこのアンダーフィル部40aから半導体チップ20の周囲に延びるフィレット部40bも形成される。但し、フィレット部40bは補強材30まで達することはなく、この時点ではフィレット部40bと補強材30との間に搭載用基板10の第1の面が露出している。   Next, the first resin is injected and filled into the gap between the semiconductor chip 20 and the mounting substrate 10 by a dispenser or the like by a dropping method, and then temporarily cured at about 100 ° C. for about 10 minutes to form the first filling section 40. (FIG. 8 (d)). In this state, the first resin also undergoes a thermosetting reaction, progresses gelation, and is partially solidified, but has not been completely solidified yet. The first resin is prepared, for example, by adjusting an epoxy resin to have a thermal expansion coefficient of about 32 ppm and an elastic modulus of about 9 GPa. If the first resin has this characteristic, the fluidity is 1000 to 40000 CPS (centipoises), and the resin can be injected and filled without generating voids in the underfill portion 40a. At this time, the first resin also forms an underfill portion 40a in a gap between the semiconductor chip 20 and the mounting substrate 10, and a fillet portion 40b extending from the underfill portion 40a to the periphery of the semiconductor chip 20. However, the fillet portion 40b does not reach the reinforcing material 30, and at this time, the first surface of the mounting substrate 10 is exposed between the fillet portion 40b and the reinforcing material 30.

次に、補強材30の内壁,半導体チップ20の側壁,搭載用基板10の第1の面及びフィレット部40bで囲まれた空間に第2の樹脂を充填後、約150℃で30分程度仮キュアして第2充填部41を形成する(図8(e))。第2の樹脂についても、やはりこの状態では、熱硬化反応して、ゲル化が進行し一部固体化しているが未だ完全には固化していない。第2充填部41を形成する第2の樹脂としては、第1の樹脂よりも熱膨張率が小さい、例えば熱膨張率が8〜16ppm程度で弾性率が11〜28GPaのエポキシ系樹脂を用いることができる。尚、第2の樹脂の熱膨張率を搭載用基板10の熱膨張率よりも小さくできればより好ましい。また、その充填方法としては、インジェクション注入、トランスファー封止、液状樹脂の滴下等の方法を用いることができる。   Next, after filling the second resin into the space surrounded by the inner wall of the reinforcing member 30, the side wall of the semiconductor chip 20, the first surface of the mounting substrate 10, and the fillet portion 40b, the space is temporarily set at about 150 ° C. for about 30 minutes. The second filling portion 41 is formed by curing (FIG. 8E). Also in this state, the second resin also undergoes a thermosetting reaction, and gelation proceeds to partially solidify, but has not yet completely solidified. As the second resin forming the second filling portion 41, an epoxy resin having a smaller coefficient of thermal expansion than the first resin, for example, having a coefficient of thermal expansion of about 8 to 16 ppm and an elastic modulus of 11 to 28 GPa is used. Can be. It is more preferable that the coefficient of thermal expansion of the second resin can be made smaller than the coefficient of thermal expansion of the mounting substrate 10. In addition, as a filling method, a method such as injection injection, transfer sealing, dropping of liquid resin, or the like can be used.

次に、半導体チップ20の裏面及び補強材30の第2の端面に第2の接着材43を塗布した後(図9(a))、蓋部31を補強材30で囲まれた領域全体を覆うように載置し、更に蓋部31の上に適切な荷重を載せて約175℃まで緩やかに昇温させた後、更に約175℃の状態を60分程度維持して本キュアする(図9(b))。これにより、第1充填部40の第1の樹脂,第2充填部41の第2の樹脂,第1の接着材42及び第2の接着材43が全て完全に硬化され、蓋部31も完全に接着される。尚、第2の接着材43としては、熱膨張率が50〜100ppm程度の例えばエポキシ系樹脂を用いることができる。また、第2の接着材43の場合は、無機質フィラーとしてAg、Cu粉末等を適量混入しておけば第2の接着材43の熱伝導性が向上し、より好ましい。   Next, after the second adhesive 43 is applied to the back surface of the semiconductor chip 20 and the second end surface of the reinforcing member 30 (FIG. 9A), the entire area surrounded by the reinforcing member 30 is covered with the lid 31. After placing it so as to cover it and further gently raising the temperature to about 175 ° C. by placing an appropriate load on the lid portion 31, the state is further maintained at about 175 ° C. for about 60 minutes to perform the main cure (FIG. 9 (b)). Thereby, the first resin of the first filling unit 40, the second resin of the second filling unit 41, the first adhesive 42 and the second adhesive 43 are all completely cured, and the lid 31 is also completely cured. Adhered to. As the second adhesive 43, for example, an epoxy resin having a coefficient of thermal expansion of about 50 to 100 ppm can be used. Further, in the case of the second adhesive 43, it is more preferable to mix an appropriate amount of Ag, Cu powder, or the like as an inorganic filler, because the thermal conductivity of the second adhesive 43 is improved.

次に、搭載用基板10の外部ランド電極12に外部端子である半田パンプ13を一般的な方法で接着し、半導体装置1が完成する(図9(c))。   Next, a solder pump 13 as an external terminal is bonded to the external land electrode 12 of the mounting substrate 10 by a general method, and the semiconductor device 1 is completed (FIG. 9C).

尚、上述した第1の樹脂,第2の樹脂,第1の接着材42及び第2の接着材43の主成分樹脂材料は、全て同じ例えばエポキシ系樹脂を用いることができ、それぞれに求められる熱膨張率等の特性に応じて、無機質フィラーの含有量を変えて最適な特性に調整して使用すればよい。   As the main resin materials of the first resin, the second resin, the first adhesive 42 and the second adhesive 43 described above, the same resin material, for example, epoxy resin can be used, and each is required. The content of the inorganic filler may be changed according to the properties such as the coefficient of thermal expansion to adjust the properties so as to be optimal.

また、蓋部31の内壁と第2充填部41との間にできる空隙47は出来るだけ小さい方が望ましいが、第2充填部41が半導体チップ20の裏面の高さまで充填されていれば、その大きさは特に問題とならない。逆に、第2充填部41の一部が蓋部31の内壁と接していたり、空隙47が消滅していても良い。   Further, it is desirable that the gap 47 formed between the inner wall of the lid portion 31 and the second filling portion 41 is as small as possible. However, if the second filling portion 41 is filled up to the height of the back surface of the semiconductor chip 20, the gap 47 is The size does not matter in particular. Conversely, a part of the second filling part 41 may be in contact with the inner wall of the lid part 31, or the void 47 may be eliminated.

次に、本発明の半導体装置の第2の実施形態について説明する。
図2は、本発明の半導体装置の第2の実施形態の断面図で、図1(b)に相当する図である。図2を参照すると、本実施形態の半導体装置1aの構成は半導体装置1の構成とほとんど同じであるが、唯一異なる点は搭載用基板10へ補強材30を接着する第1の接着材42aとして第2の樹脂を用いたことである。この半導体装置1aにおいては、補強材30を接着する第1の接着材42aに熱膨張率が8〜16ppm程度で弾性率が11〜28GPaの第2の樹脂を用いることによって、半導体チップ20直下の搭載用基板10の収縮の程度をより緩和することができ、搭載用基板10の反りを抑制できる。尚、本実施形態の半導体装置1aの製造方法は、第1の接着材40の代わりに第2の樹脂からなる第1の接着材40aを用いるだけで、他の工程は第1の実施形態の半導体装置1の製造方法と同じである。
Next, a second embodiment of the semiconductor device of the present invention will be described.
FIG. 2 is a sectional view of a second embodiment of the semiconductor device of the present invention, and is a view corresponding to FIG. Referring to FIG. 2, the configuration of the semiconductor device 1 a of the present embodiment is almost the same as the configuration of the semiconductor device 1, except that the configuration is different from that of the semiconductor device 1 a in that the reinforcing member 30 is bonded to the mounting substrate 10. That is, the second resin is used. In this semiconductor device 1a, the first resin 42a having a thermal expansion coefficient of about 8 to 16 ppm and an elastic modulus of 11 to 28 GPa is used for the first adhesive 42a for bonding the reinforcing member 30, so that the first resin 42a directly under the semiconductor chip 20 is used. The degree of shrinkage of the mounting substrate 10 can be further reduced, and the warpage of the mounting substrate 10 can be suppressed. The method of manufacturing the semiconductor device 1a according to the present embodiment uses only the first adhesive 40a made of a second resin instead of the first adhesive 40, and other steps are the same as those of the first embodiment. This is the same as the method of manufacturing the semiconductor device 1.

次に、本発明の半導体装置の第3の実施形態について説明する。
図3は、本発明の半導体装置の第3の実施形態を示す図で、(a)乃至(c)はそれぞれ蓋部を外した状態の平面図、(a)のA2−A2’線に沿った位置で蓋部が取り付けられた状態の断面図及び(b)の補強材と搭載用基板との接着部の部分拡大断面図である。図3(a)乃至(c)を参照すると、本実施形態の半導体装置1bは、半導体チップ20と、半導体チップ20が第1の面にフリップチップ接続された搭載用基板10と、半導体チップ20と搭載用基板10との対向領域の隙間に第1の樹脂が充填されたアンダーフィル部40aと半導体チップ20と搭載用基板10との対向領域から第1の樹脂が延在したフィレット部40bとを有する第1充填部40と、半導体チップ20を囲む枠状の補強材32と、この補強材32の第1の端面を搭載用基板10に接着する第1の接着材42と、補強材32及び補強材32で囲まれた領域を覆う蓋部31と、蓋部31を半導体チップ20の裏面及び補強材31の第1の端面と反対側の第2の端面に接着する第2の接着材43と、補強材32,半導体チップ20の側面,搭載用基板10及び第1充填部40のフィレット部40bで囲まれる空間に第2の樹脂を充填して形成した第2充填部41を備える。第3の実施形態の半導体装置1bの構成は半導体装置1の構成とほとんど同じであるが、唯一異なる点は、補強材32の第1の端面と搭載用基板10との間の隙間が凹凸形状となっている点である。半導体装置1の補強材30の第1の端面は、全面が平面となっているが、半導体装置1bの補強材32の第1の端面の形状は、例えば渦巻状あるいは格子状の溝等により凸部50と凹部が交互に形成された形状となっている。このとき、その溝または凹部の深さは、適宜設定できるが半導体チップ20と搭載用基板10との隙間であるが50〜200μm程度が好ましい。補強材32の材料は、Cu、SUS(フェライト系ステンレス鋼)、アルミナ、シリコン、窒化アルミニウム、エポキシ樹脂等を含むグループの中から選択できる。この補強材32と搭載用基板10の接着は第1の端面の凹部に第1の接着材42を充填して接着している。尚、この場合も第1の接着材42の代わりに第2の樹脂を第1の端面の凹部に充填して接着してもよい。
Next, a third embodiment of the semiconductor device of the present invention will be described.
FIGS. 3A to 3C are views showing a third embodiment of the semiconductor device of the present invention. FIGS. 3A to 3C are plan views of the semiconductor device with a lid removed, and are taken along line A2-A2 'in FIG. FIG. 4 is a cross-sectional view showing a state where a lid is attached at a position where the lid is attached, and a partially enlarged cross-sectional view of a bonding portion between a reinforcing material and a mounting substrate in FIG. Referring to FIGS. 3A to 3C, a semiconductor device 1b according to the present embodiment includes a semiconductor chip 20, a mounting substrate 10 in which the semiconductor chip 20 is flip-chip connected to a first surface, and a semiconductor chip 20. An underfill portion 40a in which a gap between an opposing region of the semiconductor chip 20 and the mounting substrate 10 is filled with a first resin, and a fillet portion 40b in which the first resin extends from an opposing region of the semiconductor chip 20 and the mounting substrate 10. , A frame-shaped reinforcing member 32 surrounding the semiconductor chip 20, a first adhesive 42 for bonding the first end face of the reinforcing member 32 to the mounting substrate 10, and a reinforcing member 32. And a second adhesive that adheres the lid to the back surface of the semiconductor chip and to a second end surface of the reinforcement member opposite to the first end surface. 43, reinforcing material 32, semiconductor chip 20 aspect, a second filling portion 41 formed by filling the second resin into a space surrounded by a fillet portion 40b of the mounting board 10 and the first filling portion 40. The configuration of the semiconductor device 1b according to the third embodiment is almost the same as the configuration of the semiconductor device 1, except that the gap between the first end surface of the reinforcing member 32 and the mounting substrate 10 has an uneven shape. It is a point that has become. The first end surface of the reinforcing member 30 of the semiconductor device 1 is entirely flat, but the shape of the first end surface of the reinforcing member 32 of the semiconductor device 1b is convex, for example, by a spiral or lattice-like groove. The shape is such that the portions 50 and the concave portions are alternately formed. At this time, the depth of the groove or the concave portion can be set as appropriate, and is a gap between the semiconductor chip 20 and the mounting substrate 10, but is preferably about 50 to 200 μm. The material of the reinforcing member 32 can be selected from a group including Cu, SUS (ferritic stainless steel), alumina, silicon, aluminum nitride, epoxy resin, and the like. The bonding between the reinforcing member 32 and the mounting substrate 10 is performed by filling a concave portion of the first end surface with a first adhesive 42. Note that, in this case as well, instead of the first adhesive 42, a second resin may be filled in the concave portion on the first end surface and bonded.

この半導体装置1bの構造による常温及び温度サイクルによる作用的特徴は、搭載用基板10と補強材32の接着状態を半導体チップ20と搭載用基板10との状態に近づけることによってまず補強材32による搭載用基板10の反りを抑制する。更に、半導体チップ20が接続されている搭載用基板10との間に第1の樹脂を充填して第1充填部40が形成されると共に、半導体チップ20の周囲の空間に第2の樹脂を空間全体が埋まるように充填し、硬化させて第2充填部41が形成されている。この第2の樹脂を半導体チップ20の側壁と補強材32の内壁との間の空間に充填して第2充填部41を形成することにより上下方向の動きを抑制する。また、補強材32がシリコン、や銅などの材料からなるときは、第1の端面の凸部50が接触する搭載用基板10の領域に接続用電極を設けておくと共に第1の端面の凸部50をメタライズしてからフラックスで活性化させ前述の接続用電極と半田付け接続する。この場合には、搭載用基板10と補強材32の接着状況が半導体チップ20と搭載用基板10の接着状況と同じ状態にすることができるので収縮による反りを抑えることができる。また、上記説明では補強材32の第1の端面の形状を凹凸形状にした例を示したが、搭載用基板10の補強材32と接する領域に凸部50としてギャップ部材となる例えば半田バンプ等の低融点金属部材を配置して凹凸形状を形成してもよい。   The functional characteristic of the structure of the semiconductor device 1b at room temperature and the temperature cycle is that the mounting state of the mounting substrate 10 and the reinforcing member 32 is made closer to the state of the semiconductor chip 20 and the mounting substrate 10 by mounting the reinforcing member 32 first. Warp of the substrate 10 is suppressed. Further, the first resin is filled between the mounting substrate 10 to which the semiconductor chip 20 is connected to form the first filling portion 40, and the second resin is filled in a space around the semiconductor chip 20. The second space 41 is formed by filling and curing the entire space. The second resin is filled in the space between the side wall of the semiconductor chip 20 and the inner wall of the reinforcing member 32 to form the second filling portion 41, thereby suppressing the vertical movement. When the reinforcing member 32 is made of a material such as silicon or copper, a connection electrode is provided in a region of the mounting substrate 10 in contact with the projection 50 of the first end face, and the projection of the first end face is provided. After the portion 50 is metallized, it is activated with a flux and soldered to the connection electrode. In this case, the state of adhesion between the mounting substrate 10 and the reinforcing material 32 can be made the same as the state of adhesion between the semiconductor chip 20 and the mounting substrate 10, so that warpage due to shrinkage can be suppressed. In the above description, an example in which the shape of the first end face of the reinforcing member 32 is made uneven is shown. However, a convex member 50 is formed as a gap member in a region of the mounting substrate 10 in contact with the reinforcing member 32, such as a solder bump or the like. The low-melting point metal member may be arranged to form an uneven shape.

次に、本発明の第4の実施形態について説明する。
図4は、本発明の半導体装置の第4の実施形態を示す断面図であり、第1の実施形態の図1(b)に相当する図である。図4を参照すると、本実施形態の半導体装置1cは、補強材33の開口部の形状が逆テーパ状に形成されている点が、第1の実施形態乃至第3の実施形態の各半導体装置1,1a,1bと異なるだけで、他の構成は半導体装置1,1a,1bと同じ構成であってよい。半導体装置1cでは、補強材33の庇部分が第2の樹脂の上に覆い被さっているので、フィレット部40bと第2充填部41が蓋部31側に変形するのを防止する効果がある。尚、第4の実施形態の半導体装置1cの製造方法は、第1の実施形態乃至第3の実施形態の各半導体装置の製造方法と同じであり、説明は省略する。
Next, a fourth embodiment of the present invention will be described.
FIG. 4 is a sectional view showing a fourth embodiment of the semiconductor device of the present invention, and is a view corresponding to FIG. 1B of the first embodiment. Referring to FIG. 4, the semiconductor device 1c of the present embodiment is different from the semiconductor devices of the first to third embodiments in that the opening of the reinforcing member 33 is formed in a reverse tapered shape. Other configurations may be the same as those of the semiconductor devices 1, 1a, and 1b, only different from the semiconductor devices 1, 1a, and 1b. In the semiconductor device 1c, since the eaves portion of the reinforcing member 33 covers the second resin, there is an effect of preventing the fillet portion 40b and the second filling portion 41 from being deformed toward the lid portion 31 side. The method for manufacturing the semiconductor device 1c according to the fourth embodiment is the same as the method for manufacturing each semiconductor device according to the first to third embodiments, and a description thereof will not be repeated.

次に、本発明の第5の実施形態について説明する。   Next, a fifth embodiment of the present invention will be described.

図5は、本発明の半導体装置の第5の実施形態を示す図で、(a)は蓋部を外した状態の平面図であり、(b)及び(c)はいずれも蓋部が取り付けられた状態でそれぞれ(a)のB−B’線に沿った位置での部分断面図及び(a)のC−C’線に沿った位置での断面図である。図5(a)乃至(c)を参照すると、本実施形態の半導体装置1dは、半導体チップ20と、半導体チップ20が第1の面にフリップチップ接続された搭載用基板10と、半導体チップ20と搭載用基板10との対向領域の隙間に第1の樹脂が充填されたアンダーフィル部40aと半導体チップ20と搭載用基板10との対向領域から第1の樹脂が延在したフィレット部40bとを有する第1充填部40と、半導体チップ20を囲む枠状の補強材34と、この補強材34の第1の端面を搭載用基板10に接着する第1の接着材42と、補強材34及び補強材34で囲まれた領域を覆う蓋部31と、蓋部31を半導体チップ20の裏面及び補強材31の第1の端面と反対側の第2の端面に接着する第2の接着材43と、補強材34,半導体チップ20の側面,搭載用基板10及び第1充填部40のフィレット部40bで囲まれる空間に第2の樹脂を充填して形成された第2充填部41を備える。第5の実施形態の半導体装置1dの構成は半導体装置1の構成とほとんど同じであるが、唯一異なる点は、補強材34の4つのコーナー部の第1の端面側に溝部34aが形成されており、この溝部34aにも第2の樹脂が充填されている点である。矩形状の半導体装置においては、対角線の長さが最も大きいので膨張・収縮による影響が出やすい。半導体装置1dでは、上記構造により膨張・収縮による影響を抑制する効果が得られている。   FIGS. 5A and 5B are diagrams showing a fifth embodiment of the semiconductor device of the present invention, wherein FIG. 5A is a plan view showing a state in which a lid is removed, and FIGS. FIG. 4A is a partial cross-sectional view taken along a line BB ′ in FIG. 4A and a cross-sectional view taken along a line CC ′ in FIG. Referring to FIGS. 5A to 5C, a semiconductor device 1d according to the present embodiment includes a semiconductor chip 20, a mounting substrate 10 in which the semiconductor chip 20 is flip-chip connected to a first surface, and a semiconductor chip 20. An underfill portion 40a in which a gap between an opposing region of the semiconductor chip 20 and the mounting substrate 10 is filled with a first resin, and a fillet portion 40b in which the first resin extends from an opposing region of the semiconductor chip 20 and the mounting substrate 10. , A frame-shaped reinforcing material 34 surrounding the semiconductor chip 20, a first adhesive 42 for bonding the first end face of the reinforcing material 34 to the mounting substrate 10, and a reinforcing material 34. And a second adhesive for bonding the lid to the back surface of the semiconductor chip and to a second end surface of the reinforcement member opposite to the first end surface. 43, the reinforcing member 34, and the semiconductor chip. 20 aspect, a second filling portion 41 formed by filling the second resin into a space surrounded by a fillet portion 40b of the mounting board 10 and the first filling portion 40. The configuration of the semiconductor device 1d of the fifth embodiment is almost the same as the configuration of the semiconductor device 1, except that the groove 34a is formed on the first end face side of the four corners of the reinforcing member 34. That is, the groove 34a is also filled with the second resin. In a rectangular semiconductor device, since the length of the diagonal line is the longest, it is likely to be affected by expansion and contraction. In the semiconductor device 1d, the effect of suppressing the influence of expansion and contraction is obtained by the above structure.

本実施形態の半導体装置1dでは、補強材34の材料として、熱膨張率がAl、Cu、SUSのように搭載用基板10に近い材料を用いるのが好ましい。搭載用基板10と補強材34の溝部34a以外の部分、すなわち辺央部分との接着には、第1の接着材42を用いてもよいが第2の樹脂41を使用するのがより好ましい。また、コーナー部に設けられた溝部34aには、第2の樹脂が充填される。この第5の実施形態の構造による作用的特徴は、搭載用基板10及び補強材34の熱膨張特性をほぼ一致させると共に溝部34aに第2の樹脂を充填することによって搭載用基板10の反りを抑えつつ半導体チップ20直下の搭載用基板10の反りを上述した第1充填部40と第2充填部41で抑制している。   In the semiconductor device 1d of the present embodiment, as the material of the reinforcing member 34, it is preferable to use a material having a coefficient of thermal expansion close to that of the mounting substrate 10, such as Al, Cu, or SUS. The first adhesive 42 may be used for bonding the mounting substrate 10 to a portion other than the groove 34 a of the reinforcing member 34, that is, the center portion of the periphery, but it is more preferable to use the second resin 41. The groove 34a provided at the corner is filled with a second resin. The functional feature of the structure of the fifth embodiment is that the thermal expansion characteristics of the mounting substrate 10 and the reinforcing member 34 are substantially matched, and the groove 34a is filled with the second resin to reduce the warpage of the mounting substrate 10. The warpage of the mounting substrate 10 immediately below the semiconductor chip 20 is suppressed by the first filling portion 40 and the second filling portion 41 while suppressing the above.

次に、本実施形態の半導体装置1dの製造方法について説明する。半導体装置1dの第1の製造方法は、第1の実施形態の半導体装置1の製造方法とほぼ同様であるので、異なる点のみについて説明する。第1の異なる点は、第1の端面が平坦な補強材30の代わりに第1の端面の各コーナー部に溝部34aが形成された補強材34を用いる点である。第2の異なる点は、補強材34を用いることに伴うものであって、第1の接着材42または第2の樹脂を枠状の補強材34の形状と一致するように口字状に塗布し、更に溝部34aに対応する位置に第2の樹脂を重ねて塗布した後、補強材34を第1の接着材42または第2の樹脂が口字状に塗布された部分に位置合わせして第1の端面が第1の接着材42または第2の樹脂41と接するように載置する点である。他は、半導体装置1の製造方法と同様にして製造できる。   Next, a method for manufacturing the semiconductor device 1d of the present embodiment will be described. Since the first method for manufacturing the semiconductor device 1d is substantially the same as the method for manufacturing the semiconductor device 1 of the first embodiment, only different points will be described. A first different point is that a reinforcing member 34 having a groove 34a at each corner of the first end surface is used instead of the reinforcing member 30 having a flat first end surface. A second different point is that the reinforcing material 34 is used, and the first adhesive 42 or the second resin is applied in a square shape so as to match the shape of the frame-shaped reinforcing material 34. Then, after the second resin is further applied to the position corresponding to the groove 34a, the reinforcing material 34 is aligned with the first adhesive 42 or the portion where the second resin is applied in a bracket shape. The point is that the first end face is placed so as to be in contact with the first adhesive material 42 or the second resin 41. Others can be manufactured in the same manner as the manufacturing method of the semiconductor device 1.

次に、半導体装置1dの第2の製造方法について図10(a)乃至(e)、図11(a)及び(b)並びに図12(a)及び(b)を参照して説明する。先ず、搭載用基板10及び補強材34(但し、図10(a)では図示せず)を準備する。搭載用基板10の第1の面上には、搭載される半導体チップ20のチップ電極21と対応する位置に形成された内部ランド電極11と、第1の面と反対側の第2の面上に形成された外部ランド電極12とを備え、互いに対応する内部ランド電極11と外部ランド電極12が基板内配線15により接続されている(図10(a))。   Next, a second method for manufacturing the semiconductor device 1d will be described with reference to FIGS. 10 (a) to 10 (e), FIGS. 11 (a) and 11 (b), and FIGS. 12 (a) and 12 (b). First, the mounting substrate 10 and the reinforcing material 34 (however, not shown in FIG. 10A) are prepared. On the first surface of the mounting substrate 10, an internal land electrode 11 formed at a position corresponding to the chip electrode 21 of the semiconductor chip 20 to be mounted, and on a second surface opposite to the first surface. And the corresponding external land electrodes 12 are connected to each other by the in-substrate wiring 15 (FIG. 10A).

次に、搭載用基板10の周縁部に熱膨張率が16〜22ppm程度、弾性率が11〜12GPaの第1の接着材42を、予め準備してある枠状の補強材34の形状と一致するように口字状に塗布した後、補強材34を第1の接着材42が塗布された部分に位置合わせして第1の端面が第1の接着材42と接するように載置し、125℃程度で約15分間仮キュアする(図10(b))。この状態では、補強材30は搭載用基板10に接着されているが、第1の接着材42は熱硬化反応して、ゲル化が進行し一部固体化しているが未だ完全には固化していない。尚、第1の接着材42は、例えばエポキシ系、ポリオレフィン系、シリコン系、シアネートエステル系、ポリイミド系、ポリノルボルネン系を含む樹脂群の中から選択された樹脂材料を主成分として、熱膨張率と弾性率が所望の値になるように無機質フィラーを適量混入させて調整してある。また、補強材34の材料は、熱膨張率が搭載用基板10の熱膨張率に近いCu、SUS(フェライト系ステンレス鋼)、Al等を含むグループの中から選択するのが好ましい。   Next, a first adhesive 42 having a coefficient of thermal expansion of about 16 to 22 ppm and an elasticity of 11 to 12 GPa is provided on the periphery of the mounting substrate 10 so as to conform to the shape of the frame-shaped reinforcing material 34 prepared in advance. After the application, the reinforcing member 34 is aligned with the portion where the first adhesive 42 is applied, and is placed so that the first end surface is in contact with the first adhesive 42. Temporarily cure at about 125 ° C. for about 15 minutes (FIG. 10B). In this state, the reinforcing material 30 is adhered to the mounting substrate 10, but the first adhesive material 42 undergoes a thermosetting reaction, and gelation proceeds to partially solidify, but is still completely solidified. Not. The first adhesive 42 has, as a main component, a resin material selected from a resin group including, for example, an epoxy-based, polyolefin-based, silicon-based, cyanate ester-based, polyimide-based, and polynorbornene-based resin, and has a coefficient of thermal expansion. And an appropriate amount of an inorganic filler is adjusted so that the elastic modulus becomes a desired value. The material of the reinforcing member 34 is preferably selected from a group containing Cu, SUS (ferritic stainless steel), Al, or the like, whose coefficient of thermal expansion is close to the coefficient of thermal expansion of the mounting substrate 10.

次に、チップ電極21上にバンプ電極22が接着された半導体チップ20を、各バンプ電極22が対応する内部ランド電極11と接するように位置決め載置して、例えば窒素雰囲気中で250℃に加熱して搭載用基板10の内部ランド電極11にフリップチップ接続する(図10(c))。   Next, the semiconductor chip 20 having the bump electrodes 22 bonded to the chip electrodes 21 is positioned and mounted such that each bump electrode 22 is in contact with the corresponding internal land electrode 11, and heated to 250 ° C. in a nitrogen atmosphere, for example. Then, it is flip-chip connected to the internal land electrode 11 of the mounting substrate 10 (FIG. 10C).

次に、半導体チップ20と搭載用基板10との隙間にディイスペンサ等で第1の樹脂を滴下方法で注入・充填した後、100℃程度で約10分仮キュアして第1充填部40を形成する(図10(d))。この状態では第1の樹脂も熱硬化反応して、ゲル化が進行し一部固体化しているが未だ完全には固化していない。尚、第1の樹脂は、例えばエポキシ系樹脂を熱膨張率が32ppm程度、弾性率が9GPa程度になるように調整したものである。第1の樹脂がこの特性であれば、流動性が1000〜40000CPS(centipoises )でありアンダーフィル部40aにボイドを発生させることなく注入・充填できる。このとき、第1の樹脂により、半導体チップ20と搭載用基板10との隙間のアンダーフィル部40aと共にこのアンダーフィル部40aから半導体チップ20の周囲に延びるフィレット部40bも形成される。但し、フィレット部40bは補強材34まで達することはなく、この時点ではフィレット部40bと補強材30との間に搭載用基板10の第1の面が露出している。   Next, the first resin is injected and filled into the gap between the semiconductor chip 20 and the mounting substrate 10 by a dispenser or the like by a dropping method, and then temporarily cured at about 100 ° C. for about 10 minutes to form the first filling section 40. (FIG. 10D). In this state, the first resin also undergoes a thermosetting reaction, progresses gelation, and is partially solidified, but has not been completely solidified yet. The first resin is prepared, for example, by adjusting an epoxy resin to have a thermal expansion coefficient of about 32 ppm and an elastic modulus of about 9 GPa. If the first resin has this characteristic, the fluidity is 1000 to 40000 CPS (centipoises), and the resin can be injected and filled without generating voids in the underfill portion 40a. At this time, the first resin also forms an underfill portion 40a in a gap between the semiconductor chip 20 and the mounting substrate 10, and a fillet portion 40b extending from the underfill portion 40a to the periphery of the semiconductor chip 20. However, the fillet portion 40b does not reach the reinforcing member 34, and at this time, the first surface of the mounting substrate 10 is exposed between the fillet portion 40b and the reinforcing member 30.

次に、半導体チップ20の裏面及び補強材34の第2の端面に第2の接着材43を塗布した後(図10(e))、蓋部31を補強材34で囲まれた領域全体を覆うように載置し、150℃程度で、30分間程度加熱して第2の接着材43を仮キュアして蓋部31を接着させる(図11(a)及び(b))。尚、第2の接着材43としては、熱膨張率が50〜100ppm程度の例えばエポキシ系樹脂を用いることができる。また、第2の接着材43の場合は、無機質フィラーとしてAg、Cu粉末等を適量混入しておけば第2の接着材43の熱伝導性が向上し、より好ましい。   Next, after the second adhesive 43 is applied to the back surface of the semiconductor chip 20 and the second end face of the reinforcing member 34 (FIG. 10E), the entire region surrounded by the reinforcing member 34 is covered with the lid 31. It is placed so as to cover it, and is heated at about 150 ° C. for about 30 minutes to temporarily cure the second adhesive 43 and adhere the lid 31 (FIGS. 11A and 11B). As the second adhesive 43, for example, an epoxy resin having a coefficient of thermal expansion of about 50 to 100 ppm can be used. Further, in the case of the second adhesive 43, it is more preferable to mix an appropriate amount of Ag, Cu powder, or the like as an inorganic filler, because the thermal conductivity of the second adhesive 43 is improved.

次に、補強材34のコーナー部に形成された溝部34aの2ヶ所に加温圧入ノズル60を接触させて、半導体チップ20の側面,補強材34の内壁,蓋部31,搭載用基板10及びフィレット部40bで囲まれた空間に第2の樹脂を注入・充填して第2充填部41を形成する(図12(a)及び(b))。尚、前述の空間に第2の樹脂を注入・充填する方法としては、トランスファーモールドで圧入する方法を用いることもできる。   Next, the heating and press-fitting nozzles 60 are brought into contact with two portions of the groove portions 34a formed at the corners of the reinforcing member 34, and the side surfaces of the semiconductor chip 20, the inner wall of the reinforcing member 34, the lid 31, the mounting substrate 10 and A second resin is injected and filled into a space surrounded by the fillet portion 40b to form a second filling portion 41 (FIGS. 12A and 12B). In addition, as a method of injecting and filling the second resin into the space described above, a method of press-fitting with a transfer mold can also be used.

次に、全体を約175℃まで緩やかに昇温させた後、更に約175℃の状態を60分程度維持して本キュアすることで、第1充填部40の第1の樹脂,第2充填部41の第2の樹脂,第1の接着材42及び第2の接着材43を全て完全に硬化させる。その後、搭載用基板10の外部ランド電極12に外部端子となる例えば半田パンプ13を一般的な方法で接着して、図5に示すような半導体装置1dが完成する。   Next, after the whole is gradually heated to about 175 ° C., the state is further maintained at about 175 ° C. for about 60 minutes, and the main curing is performed. The second resin, the first adhesive 42 and the second adhesive 43 of the portion 41 are all completely cured. Thereafter, for example, a solder pump 13 serving as an external terminal is bonded to the external land electrode 12 of the mounting substrate 10 by a general method, thereby completing a semiconductor device 1d as shown in FIG.

次に、本発明の半導体装置の第6の実施形態について説明する。
図6は、本発明の半導体装置の第6の実施形態の断面図で、図1(b)に相当する図である。本実施形態の半導体装置1eは、第1の実施形態の半導体装置1の補強材30を、有機材料の樹脂で形成された補強材35に替えただけで、他の構成は全て半導体装置1と同じである。本実施形態の半導体装置1eの製造方法は、樹脂製の補強材35を例えばトランスファー封止により予め製作して準備しておけば、その他の製造手順は図13(a)乃至(e)並びに図14(a)及び(b)に示すように第1の実施形態の半導体装置1の製造方法と同じであり、詳細な説明は省略する。概略を説明すれば、先ず搭載用基板10に第1の接着材42を塗布し、樹脂製補強材35を載置して仮キュアする。次に半導体チップ20を内部ランド電極11にフリップチップ接続して、第1の樹脂を充填し仮キュアして第1充填部40を形成する。次に、半導体チップ20の側面,補強材35の内壁,搭載用基板10及びフィレット部40bで囲まれた空間に第2の樹脂を注入・充填して第2充填部41を形成した後、半導体チップ20の裏面と補強材35の第2の端面に第2の接着材43を塗布して蓋部31を載置し、本キュアして第1の接着材42、第1充填部40の第1の樹脂、第2充填部41の第2の樹脂及び第2の接着材43を完全に硬化させて半導体装置1eが完成する。
Next, a sixth embodiment of the semiconductor device of the present invention will be described.
FIG. 6 is a sectional view of a semiconductor device according to a sixth embodiment of the present invention, and is a view corresponding to FIG. The semiconductor device 1e of the present embodiment differs from the semiconductor device 1 of the first embodiment only in that the reinforcing member 30 of the semiconductor device 1 of the first embodiment is replaced with a reinforcing member 35 formed of an organic resin. Is the same. In the method of manufacturing the semiconductor device 1e according to the present embodiment, if a resin reinforcing material 35 is prepared and prepared in advance by, for example, transfer sealing, the other manufacturing procedures are the same as those shown in FIGS. As shown in FIGS. 14A and 14B, the method is the same as the method of manufacturing the semiconductor device 1 of the first embodiment, and a detailed description is omitted. In brief, first, the first adhesive 42 is applied to the mounting substrate 10, and the resin reinforcing material 35 is placed and temporarily cured. Next, the semiconductor chip 20 is flip-chip connected to the internal land electrode 11, filled with a first resin, and temporarily cured to form a first filling portion 40. Next, a second resin is injected and filled into a space surrounded by the side surface of the semiconductor chip 20, the inner wall of the reinforcing member 35, the mounting substrate 10, and the fillet portion 40b to form a second filling portion 41. A second adhesive 43 is applied to the back surface of the chip 20 and the second end surface of the reinforcing member 35, the lid 31 is placed, and the main adhesive is cured, and the first adhesive 42 and the first filler 40 are filled. The semiconductor device 1e is completed by completely curing the first resin, the second resin of the second filling portion 41, and the second adhesive 43.

尚、本実施形態の半導体装置1eの他の製造方法としては、搭載用基板10をトランスファー封止用金型に載置して搭載用基板10に一体的に樹脂製補強材35を形成する方法も適用できる。この方法により図13(b)の形状が実現でき、その後は第1の実施形態の製造方法と同じ方法で処理できる。この方法によれば、製造工程の省力化ができる。   As another manufacturing method of the semiconductor device 1e of the present embodiment, a method of mounting the mounting substrate 10 on a transfer sealing mold and integrally forming the resin reinforcing material 35 on the mounting substrate 10 is described. Is also applicable. With this method, the shape shown in FIG. 13B can be realized, and thereafter, the processing can be performed by the same method as the manufacturing method of the first embodiment. According to this method, the labor of the manufacturing process can be saved.

次に、本発明の半導体装置の第7の実施形態について説明する。
図7は、本発明の半導体装置の第7の実施形態の断面図で、図1(b)に相当する図である。本実施形態の半導体装置1fは、第1の実施形態の半導体装置1の補強材30を、有機材料の樹脂で形成され且つ開口部が逆テーパ状の補強材36に替えただけで、他の構成は全て半導体装置1と同じである。本実施形態の半導体装置1fでは第2充填部41の上に補強材36が庇状に覆い被さっている。この構造によってフィレット部40bと第2充填部41が蓋部31側に変形するのを抑制できる効果がある。本実施形態の半導体装置1fの製造方法は、第6の実施形態の半導体装置1eの製造方法と同じである。
Next, a seventh embodiment of the semiconductor device of the present invention will be described.
FIG. 7 is a cross-sectional view of a semiconductor device according to a seventh embodiment of the present invention, and is a view corresponding to FIG. The semiconductor device 1f according to the present embodiment is different from the semiconductor device 1 according to the first embodiment only in that the reinforcing member 30 of the semiconductor device 1 according to the first embodiment is replaced with a reinforcing member 36 formed of a resin of an organic material and having an opening having an inverted tapered shape. The configuration is all the same as that of the semiconductor device 1. In the semiconductor device 1f of the present embodiment, the reinforcing material 36 covers the second filling portion 41 like an eave. This structure has an effect of suppressing the deformation of the fillet portion 40b and the second filling portion 41 toward the lid portion 31. The method of manufacturing the semiconductor device 1f of the present embodiment is the same as the method of manufacturing the semiconductor device 1e of the sixth embodiment.

以上説明したように、本発明によれば搭載用基板上に半導体チップをフリップチップ接続し、その搭載用基板と半導体チップの隙間に第1の樹脂を充填して第1充填部を形成し、半導体チップの周囲を囲むように補強材を取り付けて蓋部の支持体とした場合に、搭載用基板,半導体チップの側面,補強材及び蓋部で囲まれる空間に第1の樹脂よりも低熱膨張率の第2の樹脂を充填・硬化して第2充填部が形成してあるために、第1充填部の膨張・収縮による搭載用基板の上下方向の動きを第2充填部が抑制し、温度サイクルによるチップ電極や内部ランド電極の剥離や半田バンプのクラックの発生を防止できる。また、製造の初期に搭載用基板の強度を補強できるために製造工程中のハンドリング性を改善すると共に反りを抑えることができる。更に、各接着材及び各樹脂を各工程で仮キュアしておき、最後に本キュアして完全に硬化することで製造後の反りを最小に抑えることができる。   As described above, according to the present invention, a semiconductor chip is flip-chip connected on a mounting substrate, a gap between the mounting substrate and the semiconductor chip is filled with a first resin to form a first filling portion, When a reinforcing material is attached so as to surround the periphery of the semiconductor chip to serve as a support for the lid, the space surrounded by the mounting substrate, the side of the semiconductor chip, the reinforcing material and the lid has a lower thermal expansion than the first resin. The second filling portion is formed by filling and hardening the second resin at a predetermined rate, so that the second filling portion suppresses vertical movement of the mounting substrate due to expansion and contraction of the first filling portion, It is possible to prevent chip electrodes and internal land electrodes from peeling off due to a temperature cycle and to prevent cracks in solder bumps. Further, since the strength of the mounting substrate can be reinforced in the early stage of the manufacturing, the handleability during the manufacturing process can be improved and the warpage can be suppressed. Further, each adhesive and each resin are temporarily cured in each step, and finally, this is finally cured and completely cured, so that warpage after production can be minimized.

具体的には、例えば図17(a)乃至(e)は、それぞれ本発明の第1の実施形態乃至第5の実施形態の各半導体装置における搭載用基板の反りの状態を模式的に示す図である。尚、比較のために従来の半導体装置の搭載用基板の反りの状態を図17(f)に模式的に示している。図17(a)乃至(f)において、破線が搭載用基板の反りの状態を示している。図17(a)乃至(e)から分かるとおり、本発明の各実施形態の半導体装置の搭載用基板の反り量の最大値Wa, Wb, Wc, Wd及びWeは、いずれも従来の半導体装置の搭載用基板の反り量の最大値Wfよりも十分小さくなっていることが分かる。   Specifically, for example, FIGS. 17A to 17E are diagrams schematically showing warping states of the mounting substrate in each of the semiconductor devices according to the first to fifth embodiments of the present invention. It is. For comparison, FIG. 17F schematically shows a state of warpage of the mounting substrate of the conventional semiconductor device. 17A to 17F, broken lines indicate the warped state of the mounting substrate. As can be seen from FIGS. 17A to 17E, the maximum values Wa, Wb, Wc, Wd, and We of the amounts of warpage of the mounting substrate of the semiconductor device of each embodiment of the present invention are all smaller than those of the conventional semiconductor device. It can be seen that it is sufficiently smaller than the maximum value Wf of the amount of warpage of the mounting substrate.

また、図18は、本発明の第1の実施形態の構造を備えた半導体装置のサンプル(半導体チップのサイズ:17.3mm×17.3mm、搭載用基板の厚さ:約1.0mm、搭載用基板のサイズ:50mm×50mm)について、当該サンプルの温度を変化させたときの半導体装置の反り量、具体的には搭載用基板の反り量、の実測結果を示すグラフである。尚、図18には比較例として、従来構造の半導体装置(但し、半導体チップのサイズ、搭載用基板の厚さ及び搭載用基板のサイズは上記本発明のサンプルと同じ)の反り量も共に示してある。図18から分かるとおり、温度サイクル試験における搭載用基板の反りの程度も、本発明の構造を備えた半導体装置の方が従来構造の半導体装置の場合よりも大幅に抑制されていることが分かる。   FIG. 18 is a sample of a semiconductor device having the structure of the first embodiment of the present invention (semiconductor chip size: 17.3 mm × 17.3 mm, mounting substrate thickness: about 1.0 mm, mounting substrate (Size: 50 mm × 50 mm) is a graph showing actual measurement results of the amount of warpage of the semiconductor device when the temperature of the sample is changed, specifically, the amount of warpage of the mounting substrate. FIG. 18 also shows, as a comparative example, the warpage of a semiconductor device having a conventional structure (however, the size of the semiconductor chip, the thickness of the mounting substrate, and the size of the mounting substrate are the same as those of the sample of the present invention). It is. As can be seen from FIG. 18, the degree of warpage of the mounting substrate in the temperature cycle test is significantly suppressed in the semiconductor device having the structure of the present invention as compared with the semiconductor device having the conventional structure.

また、第2の実施形態のように搭載用基板に補強材を固着する第1の接着材として、第2の樹脂を用いることにより、第1充填部の膨張・収縮による搭載用基板の上下方向の動きを一層抑制することができ、温度サイクルによるチップ電極や内部ランド電極の剥離や半田バンプのクラックの発生をより効果的に防止できる。   Further, by using the second resin as the first adhesive material for fixing the reinforcing material to the mounting substrate as in the second embodiment, the vertical direction of the mounting substrate due to expansion and contraction of the first filling portion. Can be further suppressed, and peeling of chip electrodes and internal land electrodes due to temperature cycles and generation of cracks in solder bumps can be more effectively prevented.

また、第5の実施形態のように補強材の第1の端面の4隅に溝部を形成し、この溝部に低熱膨張率の第2の樹脂を充填して補強材と搭載用基板の接着材の一部として用いることで、矩形形状の半導体装置で最も寸法が大きい対角線方向の膨張収縮の影響を一層抑制することができ、やはり温度サイクルによるチップ電極や内部ランド電極の剥離や半田バンプのクラックの発生をより効果的に防止できる。また、第5の実施形態の第2の製造方法によれば、蓋部31を先に取り付けてから第2の樹脂を注入・硬化させて第2充填部41を形成しているので第2の樹脂が完全に充填でき蓋部31と第2充填部41との間に空隙47ができず搭載用基板10の変形を抑制することができる。   Also, as in the fifth embodiment, grooves are formed at the four corners of the first end face of the reinforcing member, and the grooves are filled with a second resin having a low coefficient of thermal expansion to form an adhesive between the reinforcing member and the mounting substrate. By using it as a part of the semiconductor device, the influence of diagonal expansion and contraction, which is the largest dimension of a rectangular semiconductor device, can be further suppressed, and chip electrodes and internal land electrodes are peeled off due to temperature cycling, and cracks in solder bumps are also caused. Can be more effectively prevented. Further, according to the second manufacturing method of the fifth embodiment, the second filling portion 41 is formed by injecting and curing the second resin after attaching the lid portion 31 first, so that the second filling portion 41 is formed. The resin can be completely filled, and no gap 47 is formed between the lid portion 31 and the second filling portion 41, so that the deformation of the mounting substrate 10 can be suppressed.

本発明の半導体装置の第1の実施形態を示す図で、(a)及び(b)はそれぞれ蓋部を外した状態の平面図及び(a)のA1−A1’線に沿った位置で蓋部が取り付けられた状態の断面図である。1A and 1B are views showing a semiconductor device according to a first embodiment of the present invention, in which FIGS. 1A and 1B are plan views showing a state in which a lid portion is removed, and FIGS. It is sectional drawing of the state in which the part was attached. 本発明の半導体装置の第2の実施形態を示す図で、第1の実施形態の図1(b)に相当する断面図である。FIG. 2 is a view showing a second embodiment of the semiconductor device of the present invention, and is a cross-sectional view corresponding to FIG. 1B of the first embodiment. 本発明の半導体装置の第3の実施形態を示す図で、(a)蓋部を外した状態の平面図であり、(b)及び(c)は(a)のA2−A2’線に沿った位置で蓋部が取り付けられた状態の断面図及び(b)の補強材と搭載用基板との接着部の部分拡大断面図である。It is a figure which shows 3rd Embodiment of the semiconductor device of this invention, Comprising: (a) It is a top view in the state which removed the cover part, (b) and (c) are along A2-A2 'line of (a). FIG. 4 is a cross-sectional view showing a state where a lid is attached at a position where the lid is attached, and a partially enlarged cross-sectional view of a bonding portion between a reinforcing material and a mounting substrate in FIG. 本発明の半導体装置の第4の実施形態を示す図で、第1の実施形態の図1(b)に相当する断面図である。FIG. 6 is a view showing a fourth embodiment of the semiconductor device of the present invention, and is a cross-sectional view corresponding to FIG. 1B of the first embodiment. 本発明の半導体装置の第5の実施形態を示す図で、(a)は蓋部を外した状態の平面図であり、(b)及び(c)はいずれも蓋部が取り付けられた状態でそれぞれ(a)のB−B’線に沿った位置の部分断面図及び(a)のC−C’線に沿った位置の断面図である。5A and 5B are diagrams showing a fifth embodiment of the semiconductor device of the present invention, in which FIG. 5A is a plan view showing a state in which a lid is removed, and FIGS. FIG. 3A is a partial cross-sectional view taken along a line BB ′ in FIG. 3A and a cross-sectional view taken along a line CC ′ in FIG. 本発明の半導体装置の第6の実施形態を示す図で、第1の実施形態の図1(b)に相当する断面図である。FIG. 9 is a view showing a sixth embodiment of the semiconductor device of the present invention, and is a cross-sectional view corresponding to FIG. 1B of the first embodiment. 本発明の半導体装置の第7の実施形態を示す図で、第1の実施形態の図1(b)に相当する断面図である。FIG. 14 is a view showing a seventh embodiment of the semiconductor device of the present invention, and is a cross-sectional view corresponding to FIG. 1B of the first embodiment. (a)乃至(e)は、第1の実施形態の半導体装置の製造方法を説明するための図で、図1(a)のA1−A1’線に沿った位置での工程毎断面図である。FIGS. 3A to 3E are views for explaining a method of manufacturing the semiconductor device according to the first embodiment, and are cross-sectional views for respective steps at positions along the line A1-A1 ′ in FIG. is there. (a)乃至(c)は、第1の実施形態の半導体装置の製造方法を説明するための図で、図1(a)のA1−A1’線に沿った位置での図8に続く工程毎断面図である。8A to 8C are views for explaining the method of manufacturing the semiconductor device according to the first embodiment, and are steps subsequent to FIG. 8 at a position along the line A1-A1 'in FIG. It is each sectional view. (a)乃至(e)は、第5の実施形態の半導体装置の製造方法を説明するための図で、図5(a)のA2−A2’線に沿った位置の工程毎断面図である。5A to 5E are views for explaining a method for manufacturing a semiconductor device according to a fifth embodiment, and are sectional views for respective steps at positions along line A2-A2 'in FIG. . (a)及び(b)は、第5の実施形態の半導体装置の製造方法を説明するための図で、いずれも図10に続く同一工程の図で、それぞれ図5(a)のA2−A2’線に沿った位置の断面図及びC−C’線に沿った位置の断面図である。(A) and (b) are views for explaining the method of manufacturing the semiconductor device according to the fifth embodiment, which are views of the same step following FIG. 10, and are each A2-A2 in FIG. It is sectional drawing of the position along the 'line, and sectional drawing of the position along the CC' line. (a)及び(b)は、第5の実施形態の半導体装置の製造方法を説明するための図で、いずれも図11に続く第2の樹脂を充填する工程の図であり、(a)は加温圧入ノズルが接続された状態の平面図、(b)は(a)のD−D’線に沿った位置の断面図である。11A and 11B are views for explaining a method of manufacturing the semiconductor device according to the fifth embodiment, and are views illustrating steps of filling the second resin subsequent to FIG. FIG. 3 is a plan view showing a state where a heating press-fitting nozzle is connected, and FIG. 3B is a cross-sectional view taken along a line DD ′ in FIG. 第6の実施形態の半導体装置の製造方法を説明するための図で、図1(a)のA1−A1’線に沿った位置での工程毎断面図である。FIG. 13 is a diagram for explaining the method for manufacturing the semiconductor device of the sixth embodiment, and is a sectional view for each step at a position along line A <b> 1-A <b> 1 ′ in FIG. 第6の実施形態の半導体装置の製造方法を説明するための図13に続く図で、図1(a)のA1−A1’線に沿った位置での工程毎断面図である。FIG. 14 is a view for explaining the manufacturing method of the semiconductor device according to the sixth embodiment, which is a cross-sectional view for each step at a position along line A <b> 1-A <b> 1 ′ in FIG. 第7の実施形態の半導体装置の製造方法を説明するための図で、図1(a)のA1−A1’線に沿った位置での工程毎断面図であるFIG. 18 is a diagram for explaining the method for manufacturing the semiconductor device of the seventh embodiment, and is a cross-sectional view for each step at a position along line A1-A1 ′ in FIG. 第7の実施形態の半導体装置の製造方法を説明するための図15に続く図で、図1(a)のA1−A1’線に沿った位置での工程毎断面図であるFIG. 16 is a view illustrating the method for manufacturing the semiconductor device of the seventh embodiment, following FIG. 15, and is a cross-sectional view for each step at a position along line A1-A1 ′ in FIG. (a)乃至(e)はそれぞれ本発明の各実施形態の構造の半導体装置における搭載用基板の反りの状態を模式的に示す図であり、(f)は比較のために従来構造の半導体装置の搭載用基板の反りの状態を模式的に示す図である。(A) to (e) are diagrams schematically showing a warped state of a mounting substrate in a semiconductor device having a structure of each embodiment of the present invention, and (f) is a semiconductor device having a conventional structure for comparison. FIG. 3 is a view schematically showing a warped state of the mounting substrate. 本発明による構造を備えた半導体装置の温度を変化させたときの半導体装置の反り量の実測結果を示すグラフである。6 is a graph showing actual measurement results of the amount of warpage of the semiconductor device when the temperature of the semiconductor device having the structure according to the present invention is changed. (a)は従来構造の半導体装置で、蓋部を外した状態の平面図であり、(b)は、(a)のE−E’線に沿った位置で蓋部が取り付けられた状態の断面図である。(A) is a plan view of a semiconductor device having a conventional structure in which a lid is removed, and (b) is a state in which the lid is attached at a position along the line EE 'of (a). It is sectional drawing. 従来の半導体装置の製造方法を説明するための図で、図19のE−E’線に沿った位置での工程毎断面図である。FIG. 20 is a diagram for explaining the conventional method of manufacturing the semiconductor device, and is a sectional view for each step at a position along line E-E ′ in FIG. 19. 従来の半導体装置の製造方法を説明するための図20に続く図で、図19のE−E’線に沿った位置での工程毎断面図である。FIG. 21 is a view illustrating the method for manufacturing the conventional semiconductor device, following FIG. 20, and is a sectional view illustrating each step at a position along line E-E ′ in FIG. 19; 温度サイクル試験による従来構造の半導体装置の反りの状態を模式的に示す図である。FIG. 4 is a diagram schematically illustrating a warped state of a semiconductor device having a conventional structure by a temperature cycle test. 従来構造の半導体装置のバンプ電極周辺の拡大断面図である。FIG. 4 is an enlarged cross-sectional view around a bump electrode of a semiconductor device having a conventional structure.

符号の説明Explanation of reference numerals

1,1a,1b,1c,1d,1e,1f 半導体装置
10 搭載用基板
11 内部ランド電極
12 外部ランド電極
13 半田バンプ
15 基板内配線
20 半導体チップ
21 チップ電極
22 バンプ電極
30 補強材
31,32,33,34,35,36 蓋部
34a 溝部
40 第1充填部
40a アンダーフィル部
40b フィレット部
41 第2充填部
42,42a 第1の接着材
43 第2の接着材
47 空隙
50 凸部
60 加温圧入ノズル
1, 1a, 1b, 1c, 1d, 1e, 1f Semiconductor device 10 Mounting substrate 11 Internal land electrode 12 External land electrode 13 Solder bump 15 In-board wiring 20 Semiconductor chip 21 Chip electrode 22 Bump electrode 30 Reinforcement 31, 32, 33, 34, 35, 36 Lid 34a Groove 40 First filling 40a Underfill 40b Fillet 41 Second filling 42, 42a First adhesive 43 Second adhesive 47 Void 50 Convex 60 Heating Press-fit nozzle

Claims (22)

半導体チップと、
この半導体チップが第1の面にフリップチップ接続された搭載用基板と、
前記半導体チップと前記搭載用基板との間に第1の樹脂が充填されたアンダーフィル部とこのアンダーフィル部から前記第1の樹脂が延在したフィレット部とを有する第1充填部と、
前記半導体チップを囲む枠状の補強材と、
この補強材の第1の端面を前記搭載用基板に接着する第1の接着材と、
前記補強材で囲まれた領域を覆う蓋部と、
この蓋部を前記半導体チップの裏面及び前記補強材の第1の端面と反対側の第2の端面に接着する第2の接着材と、
前記半導体チップの側面,前記搭載用基板及び前記フィレット部で囲まれる空間に前記第1の樹脂と異なる第2の樹脂を充填した第2充填部と、を備えることを特徴とする半導体装置。
A semiconductor chip,
A mounting substrate in which the semiconductor chip is flip-chip connected to the first surface;
A first filling portion having an underfill portion filled with a first resin between the semiconductor chip and the mounting substrate, and a fillet portion extending the first resin from the underfill portion;
A frame-shaped reinforcing material surrounding the semiconductor chip,
A first adhesive for bonding a first end surface of the reinforcing material to the mounting substrate;
A lid that covers an area surrounded by the reinforcing material,
A second adhesive for bonding the lid to the back surface of the semiconductor chip and to a second end surface of the reinforcing member opposite to the first end surface;
A semiconductor device comprising: a second filling portion in which a space surrounded by the side surface of the semiconductor chip, the mounting substrate, and the fillet portion is filled with a second resin different from the first resin.
前記半導体チップの平面形状が矩形であり、前記第1の端面と前記搭載用基板との間であって前記半導体チップの平面形状の仮想的な対角線の延長部との交差領域を含む所定の対角領域に前記第2の樹脂が充填されている請求項1記載の半導体装置。   The semiconductor chip has a rectangular planar shape, and a predetermined pair including a crossing area between the first end surface and the mounting substrate and extending with a virtual diagonal extension of the planar shape of the semiconductor chip. 2. The semiconductor device according to claim 1, wherein a corner region is filled with the second resin. 前記補強材は、前記第1の端面の前記対角領域が凹部となっている請求項2記載の半導体装置。   The semiconductor device according to claim 2, wherein the diagonal region of the first end surface of the reinforcing member is a recess. 前記第1の接着材の厚さは、厚い部分と薄い部分が混在している請求項1乃至3いずれか1項に記載の半導体装置。   4. The semiconductor device according to claim 1, wherein a thickness of the first adhesive is a mixture of a thick portion and a thin portion. 5. 前記第1の端面は、前記搭載用基板に対向して凹部と凸部とが混在している請求項1乃至4いずれか1項に記載の半導体装置。   5. The semiconductor device according to claim 1, wherein the first end face includes a mixture of concave portions and convex portions facing the mounting substrate. 6. 前記搭載用基板と前記凹部との間に前記第1の接着材が充填されている請求項5記載の半導体装置。   6. The semiconductor device according to claim 5, wherein the first adhesive is filled between the mounting substrate and the recess. 前記搭載用基板と前記凹部との間に前記第2の樹脂が充填されている請求項5記載の半導体装置。   6. The semiconductor device according to claim 5, wherein the second resin is filled between the mounting substrate and the recess. 前記搭載用基板が前記補強材と対向する領域に第1の金属層を備えると共に、前記補強材が前記凸部の表面に第2の金属層を備え、前記搭載用基板と前記凸部とが低融点合金で接続されている請求項5乃至7いずれか1項に記載の半導体装置。   The mounting substrate includes a first metal layer in a region facing the reinforcing member, the reinforcing member includes a second metal layer on a surface of the convex portion, and the mounting substrate and the convex portion The semiconductor device according to claim 5, wherein the semiconductor device is connected by a low melting point alloy. 前記第2充填部は、前記補強材の内壁と、前記フィレット部と、前記搭載用基板と前記半導体チップの側壁に接触している請求項1乃至8いずれか1項に記載の半導体装置。   9. The semiconductor device according to claim 1, wherein the second filling portion is in contact with an inner wall of the reinforcing member, the fillet portion, the mounting substrate, and a side wall of the semiconductor chip. 10. 前記第2充填部が、蓋部の内壁とも接触している請求項9記載の半導体装置。   The semiconductor device according to claim 9, wherein the second filling portion is also in contact with an inner wall of the lid. 前記第2の樹脂の弾性率は、前記第1の樹脂の弾性率よりも大きい請求項1乃至10いずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein an elastic modulus of the second resin is larger than an elastic modulus of the first resin. 前記第2の樹脂の熱膨張率が前記第1の樹脂の熱膨張率よりも小さい請求項1乃至11いずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein a coefficient of thermal expansion of the second resin is smaller than a coefficient of thermal expansion of the first resin. 前記第1の接着材が前記第2の樹脂からなる請求項1乃至12いずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the first adhesive is made of the second resin. 前記第2の樹脂の熱膨張率が前記第1の接着材の熱膨張率よりも小さい請求項1乃至12いずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein a thermal expansion coefficient of the second resin is smaller than a thermal expansion coefficient of the first adhesive. 前記補強材は、Cu、SUS、Al、アルミナ、シリコン、窒化アルミニウム及び樹脂を含むグループの中から選択された材料で形成されている請求項1乃至14いずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the reinforcing material is formed of a material selected from a group including Cu, SUS, Al, alumina, silicon, aluminum nitride, and a resin. 前記第1の樹脂と前記第2の樹脂はいずれも、エポキシ系、ポリオレフィン系、シリコン系、シアネートエステル系、ポリイミド系、ポリノルボルネン系を含む樹脂群の中から選択された樹脂を主成分とする請求項1乃至15いずれか1項に記載の半導体装置。   Each of the first resin and the second resin contains, as a main component, a resin selected from a resin group including epoxy, polyolefin, silicon, cyanate ester, polyimide, and polynorbornene. The semiconductor device according to claim 1. 前記搭載用基板と前記第1の端面の間に、前記第1の接着材と異なるギャップ部材が部分的に配置されている請求項1乃至4いずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein a gap member different from the first adhesive is partially disposed between the mounting substrate and the first end surface. 前記ギャップ部材は、低融点合金からなる請求項17記載の半導体装置。   18. The semiconductor device according to claim 17, wherein the gap member is made of a low melting point alloy. 搭載用基板に補強材を接着する工程と、搭載用基板に半導体チップを接続する工程と、第1の樹脂を充填・硬化する工程と、第2の樹脂を充填・硬化する工程と、蓋部を取り付ける工程と、半田バンプを接続する工程とを備え、少なくとも前記搭載用基板に補強材を接着する工程を第1番目の工程とし、前記搭載用基板に半導体チップを接続する工程を2番目の工程としたことを特徴とする半導体装置の製造方法。   A step of bonding a reinforcing material to the mounting board, a step of connecting a semiconductor chip to the mounting board, a step of filling and curing a first resin, a step of filling and curing a second resin, And a step of attaching a reinforcing material to at least the mounting substrate as a first step, and a step of connecting a semiconductor chip to the mounting substrate as a second step. A method for manufacturing a semiconductor device, comprising the steps of: 前記搭載用基板に補強材を接着する工程は第1の接着材を前記搭載用基板に塗布するステップと、前記補強材を前記第1の接着材の上に載置した後前記第1の接着材を半硬化させるステップを含み、
前記第1の樹脂を充填・硬化する工程は前記第1の樹脂を前記半導体チップと前記搭載用基板との隙間に充填するステップと、前記第1の樹脂を半硬化させるステップを含み、
前記第2の樹脂を充填・硬化する工程は前記第2の樹脂を充填するステップと、前記第2の樹脂を半硬化させるステップを含み、
前記蓋部を取り付ける工程は第2の接着材を塗布するステップと、前記蓋部を前記第2の接着材の上に載置するステップと、前記第2の接着材を硬化させるステップを含み、
前記第2の接着材を硬化させるステップにおいて、前記第1の接着材,前記第2の接着材,前記第1の樹脂及び前記第2の樹脂の全てが本硬化される請求項19記載の半導体装置の製造方法。
The step of bonding a reinforcing material to the mounting substrate includes applying a first adhesive to the mounting substrate, and placing the reinforcing material on the first bonding material and then performing the first bonding. Semi-curing the material,
The step of filling and curing the first resin includes a step of filling the gap between the semiconductor chip and the mounting substrate with the first resin, and a step of semi-curing the first resin.
The step of filling and curing the second resin includes a step of filling the second resin and a step of semi-curing the second resin,
The step of attaching the lid includes applying a second adhesive, placing the lid on the second adhesive, and curing the second adhesive.
20. The semiconductor according to claim 19, wherein in the step of curing the second adhesive, all of the first adhesive, the second adhesive, the first resin, and the second resin are fully cured. Device manufacturing method.
搭載用基板に補強材を接着する工程と、搭載用基板に半導体チップを接続する工程と、第1の樹脂を充填・硬化する工程と、第2の樹脂を充填・硬化する工程と、蓋部を取り付ける工程と、半田バンプを接続する工程とを備え、前記第2の樹脂の充填・硬化する工程は蓋部を取り付ける工程の後に実施することを特徴とする半導体装置の製造方法。   A step of bonding a reinforcing material to the mounting board, a step of connecting a semiconductor chip to the mounting board, a step of filling and curing a first resin, a step of filling and curing a second resin, And a step of connecting solder bumps, and the step of filling and curing the second resin is performed after the step of attaching a lid. 前記搭載用基板に補強材を接着する工程は第1の接着材を前記搭載用基板に塗布するステップと、前記補強材を前記第1の接着材の上に載置した後前記第1の接着材を半硬化させるステップを含み、
前記第1の樹脂を充填・硬化する工程は前記第1の樹脂を前記半導体チップと前記搭載用基板との隙間に充填するステップと、前記第1の樹脂を半硬化させるステップを含み、
前記第2の樹脂を充填・硬化する工程は前記第2の樹脂を充填するステップと、前記第2の樹脂を半硬化させるステップを含み、
前記蓋部を取り付ける工程は第2の接着材を塗布するステップと、前記蓋部を前記第2の接着材の上に載置するステップと、前記第2の接着材を硬化させるステップを含み、
前記第2の樹脂を硬化させるステップにおいて、前記第1の接着材,前記第2の接着材,前記第1の樹脂及び前記第2の樹脂の全てが本硬化される請求項21記載の半導体装置の製造方法。
The step of bonding a reinforcing material to the mounting substrate includes applying a first adhesive to the mounting substrate, and placing the reinforcing material on the first bonding material and then performing the first bonding. Semi-curing the material,
The step of filling and curing the first resin includes a step of filling the gap between the semiconductor chip and the mounting substrate with the first resin, and a step of semi-curing the first resin.
The step of filling and curing the second resin includes a step of filling the second resin and a step of semi-curing the second resin,
The step of attaching the lid includes applying a second adhesive, placing the lid on the second adhesive, and curing the second adhesive.
22. The semiconductor device according to claim 21, wherein in the step of curing the second resin, all of the first adhesive, the second adhesive, the first resin, and the second resin are fully cured. Manufacturing method.
JP2003411921A 2003-02-03 2003-12-10 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4390541B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003411921A JP4390541B2 (en) 2003-02-03 2003-12-10 Semiconductor device and manufacturing method thereof
US10/763,554 US7728440B2 (en) 2003-02-03 2004-01-23 Warp-suppressed semiconductor device
TW093102258A TWI243457B (en) 2003-02-03 2004-02-02 Warp-suppressed semiconductor device
KR1020040006563A KR100549313B1 (en) 2003-02-03 2004-02-02 Warp-suppressed semiconductor device
US12/785,292 US8324718B2 (en) 2003-02-03 2010-05-21 Warp-suppressed semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003026485 2003-02-03
JP2003411921A JP4390541B2 (en) 2003-02-03 2003-12-10 Semiconductor device and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2004260138A true JP2004260138A (en) 2004-09-16
JP2004260138A5 JP2004260138A5 (en) 2005-06-09
JP4390541B2 JP4390541B2 (en) 2009-12-24

Family

ID=32775214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003411921A Expired - Fee Related JP4390541B2 (en) 2003-02-03 2003-12-10 Semiconductor device and manufacturing method thereof

Country Status (4)

Country Link
US (2) US7728440B2 (en)
JP (1) JP4390541B2 (en)
KR (1) KR100549313B1 (en)
TW (1) TWI243457B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278771A (en) * 2005-03-29 2006-10-12 Nec Corp Semiconductor device and manufacturing method thereof
JP2007227550A (en) * 2006-02-22 2007-09-06 Fujitsu Ltd Semiconductor device, and method of manufacturing same
JP2008010690A (en) * 2006-06-30 2008-01-17 Fujitsu Ltd Base board with stiffener, and its manufacturing method
KR100797682B1 (en) * 2007-02-07 2008-01-23 삼성전기주식회사 Method for manufacturing printed circuit board
US7495346B2 (en) 2006-12-13 2009-02-24 International Business Machines Corporation Semiconductor package
JP2009290118A (en) * 2008-05-30 2009-12-10 Toshiba Corp Electronic device
US7663254B2 (en) 2007-08-21 2010-02-16 Nec Electronics Corporation Semiconductor apparatus and method of manufacturing the same
JP2010114187A (en) * 2008-11-05 2010-05-20 Shinko Electric Ind Co Ltd Wiring substrate and method of manufacturing the wiring substrate
US7923850B2 (en) 2008-08-26 2011-04-12 Advanced Micro Devices, Inc. Semiconductor chip with solder joint protection ring
US8008133B2 (en) 2008-02-11 2011-08-30 Globalfoundries Inc. Chip package with channel stiffener frame
US8216887B2 (en) 2009-05-04 2012-07-10 Advanced Micro Devices, Inc. Semiconductor chip package with stiffener frame and configured lid
US8232138B2 (en) 2010-04-14 2012-07-31 Advanced Micro Devices, Inc. Circuit board with notched stiffener frame
US8313984B2 (en) 2008-03-19 2012-11-20 Ati Technologies Ulc Die substrate with reinforcement structure
JP2013239660A (en) * 2012-05-17 2013-11-28 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2015065400A (en) * 2013-09-25 2015-04-09 サムソン エレクトロ−メカニックス カンパニーリミテッド. Element embedded printed circuit board and method of manufacturing the same
US9385092B2 (en) 2012-09-21 2016-07-05 Socionext Inc. Semiconductor device, electronic device and method for fabricating the semiconductor device
US9867282B2 (en) 2013-08-16 2018-01-09 Ati Technologies Ulc Circuit board with corner hollows

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949404B1 (en) * 2002-11-25 2005-09-27 Altera Corporation Flip chip package with warpage control
US7517728B2 (en) * 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
US20060051912A1 (en) * 2004-09-09 2006-03-09 Ati Technologies Inc. Method and apparatus for a stacked die configuration
US20060057763A1 (en) * 2004-09-14 2006-03-16 Agency For Science, Technology And Research Method of forming a surface mountable IC and its assembly
JP2007035688A (en) * 2005-07-22 2007-02-08 Fujitsu Ltd Semiconductor device and method of manufacturing same
US7459782B1 (en) 2005-10-05 2008-12-02 Altera Corporation Stiffener for flip chip BGA package
US7585702B1 (en) 2005-11-08 2009-09-08 Altera Corporation Structure and assembly procedure for low stress thin die flip chip packages designed for low-K Si and thin core substrate
DE102005056569B4 (en) * 2005-11-25 2008-01-10 Qimonda Ag Interconnection for flip-chip in package constructions
JP2007273583A (en) * 2006-03-30 2007-10-18 Toshiba Corp Component built-in printed-wiring board, manufacturing method thereof, and electronic equipment
EP2046105A4 (en) * 2006-07-25 2012-09-26 Panasonic Corp Circuit board and portable electronic apparatus
US20080099910A1 (en) * 2006-08-31 2008-05-01 Ati Technologies Inc. Flip-Chip Semiconductor Package with Encapsulant Retaining Structure and Strip
US20080054490A1 (en) 2006-08-31 2008-03-06 Ati Technologies Inc. Flip-Chip Ball Grid Array Strip and Package
JP2008071953A (en) * 2006-09-14 2008-03-27 Nec Electronics Corp Semiconductor device
EP1914798A3 (en) * 2006-10-18 2009-07-29 Panasonic Corporation Semiconductor Mounting Substrate and Method for Manufacturing the Same
US20080142956A1 (en) * 2006-12-19 2008-06-19 Cambou Bertrand F Stress management in BGA packaging
JP4926692B2 (en) * 2006-12-27 2012-05-09 新光電気工業株式会社 WIRING BOARD, MANUFACTURING METHOD THEREOF, AND SEMICONDUCTOR DEVICE
JP4157589B1 (en) * 2007-01-30 2008-10-01 京セラ株式会社 Probe card assembly substrate, probe card assembly and semiconductor wafer inspection method
JP2008210827A (en) * 2007-02-23 2008-09-11 Nec Electronics Corp Semiconductor device and wiring board, and their manufacturing process
JP2008218643A (en) * 2007-03-02 2008-09-18 Fujitsu Ltd Semiconductor device and its manufacturing method
US8373266B2 (en) * 2007-03-29 2013-02-12 Continental Automotive Systems, Inc. Heat sink mounted on a vehicle-transmission case
US20080284047A1 (en) * 2007-05-15 2008-11-20 Eric Tosaya Chip Package with Stiffener Ring
US8030761B2 (en) * 2007-05-23 2011-10-04 United Test And Assembly Center Ltd. Mold design and semiconductor package
US8018052B2 (en) * 2007-06-29 2011-09-13 Stats Chippac Ltd. Integrated circuit package system with side substrate having a top layer
US7842552B2 (en) * 2007-10-12 2010-11-30 International Business Machines Corporation Semiconductor chip packages having reduced stress
JP5224784B2 (en) * 2007-11-08 2013-07-03 新光電気工業株式会社 Wiring board and manufacturing method thereof
US8779570B2 (en) * 2008-03-19 2014-07-15 Stats Chippac Ltd. Stackable integrated circuit package system
JP5388673B2 (en) * 2008-05-07 2014-01-15 パナソニック株式会社 Electronic components
US7906376B2 (en) * 2008-06-30 2011-03-15 Intel Corporation Magnetic particle-based composite materials for semiconductor packages
US8338936B2 (en) * 2008-07-24 2012-12-25 Infineon Technologies Ag Semiconductor device and manufacturing method
TWI475932B (en) * 2008-09-29 2015-03-01 Ngk Spark Plug Co Wiring substrate with reinforcement
TWI466242B (en) * 2009-01-05 2014-12-21 Nanya Technology Corp Semiconductor package structure with protection bar
JP5213736B2 (en) * 2009-01-29 2013-06-19 パナソニック株式会社 Semiconductor device
US8513792B2 (en) * 2009-04-10 2013-08-20 Intel Corporation Package-on-package interconnect stiffener
US20110100692A1 (en) * 2009-11-02 2011-05-05 Roden Topacio Circuit Board with Variable Topography Solder Interconnects
US8143110B2 (en) * 2009-12-23 2012-03-27 Intel Corporation Methods and apparatuses to stiffen integrated circuit package
US8247900B2 (en) * 2009-12-29 2012-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Flip chip package having enhanced thermal and mechanical performance
FR2957192B1 (en) * 2010-03-03 2013-10-25 Hispano Suiza Sa ELECTRONIC POWER MODULE FOR AN ACTUATOR FOR AN AIRCRAFT
JP2012009713A (en) * 2010-06-25 2012-01-12 Shinko Electric Ind Co Ltd Semiconductor package and method of manufacturing the same
JP5636265B2 (en) * 2010-11-15 2014-12-03 新光電気工業株式会社 Semiconductor package and manufacturing method thereof
TWI490117B (en) * 2010-11-24 2015-07-01 Nat Univ Tsing Hua Heat spreading element with aln film and method for manufacturing the same
US20120188721A1 (en) * 2011-01-21 2012-07-26 Nxp B.V. Non-metal stiffener ring for fcbga
KR101719636B1 (en) * 2011-01-28 2017-04-05 삼성전자 주식회사 Semiconductor device and fabricating method thereof
DE102011086048A1 (en) 2011-04-07 2012-10-11 Continental Teves Ag & Co. Ohg Housing-side separating layer for stress decoupling of encapsulated electronics
US8288208B1 (en) * 2011-07-27 2012-10-16 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus and methods for semiconductor packages with improved warpage
US9343430B2 (en) * 2011-09-02 2016-05-17 Maxim Integrated Products, Inc. Stacked wafer-level package device
US8492888B2 (en) * 2011-09-02 2013-07-23 Stats Chippac Ltd. Integrated circuit packaging system with stiffener and method of manufacture thereof
US8497579B1 (en) * 2012-02-16 2013-07-30 Chipbond Technology Corporation Semiconductor packaging method and structure thereof
US8962392B2 (en) * 2012-03-13 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Underfill curing method using carrier
US11189537B2 (en) * 2012-03-21 2021-11-30 Infineon Technologies Ag Circuit package, an electronic circuit package, and methods for encapsulating an electronic circuit
US9257364B2 (en) 2012-06-27 2016-02-09 Intel Corporation Integrated heat spreader that maximizes heat transfer from a multi-chip package
JP2014013836A (en) * 2012-07-04 2014-01-23 Ps4 Luxco S A R L Semiconductor device
US9040349B2 (en) 2012-11-15 2015-05-26 Amkor Technology, Inc. Method and system for a semiconductor device package with a die to interposer wafer first bond
US9136159B2 (en) 2012-11-15 2015-09-15 Amkor Technology, Inc. Method and system for a semiconductor for device package with a die-to-packaging substrate first bond
US8796072B2 (en) * 2012-11-15 2014-08-05 Amkor Technology, Inc. Method and system for a semiconductor device package with a die-to-die first bond
US10714378B2 (en) 2012-11-15 2020-07-14 Amkor Technology, Inc. Semiconductor device package and manufacturing method thereof
US9385091B2 (en) * 2013-03-08 2016-07-05 Taiwan Semiconductor Manufacturing Company, Ltd. Reinforcement structure and method for controlling warpage of chip mounted on substrate
US8901732B2 (en) * 2013-03-12 2014-12-02 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device package and method
WO2014142075A1 (en) * 2013-03-13 2014-09-18 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device
US8928014B2 (en) * 2013-03-15 2015-01-06 Cooledge Lighting Inc. Stress relief for array-based electronic devices
US8878350B1 (en) * 2013-04-12 2014-11-04 Maxim Integrated Products, Inc. Semiconductor device having a buffer material and stiffener
US9111912B2 (en) * 2013-05-30 2015-08-18 Taiwan Semiconductor Manufacturing Company, Ltd. 3D packages and methods for forming the same
US9089051B2 (en) 2013-06-27 2015-07-21 International Business Machines Corporation Multichip module with stiffening frame and associated covers
US9099454B2 (en) * 2013-08-12 2015-08-04 Infineon Technologies Ag Molded semiconductor package with backside die metallization
JP5997393B2 (en) * 2013-09-27 2016-09-28 京セラ株式会社 Lid, package and electronic device
US9275878B2 (en) 2013-10-01 2016-03-01 Infineon Technologies Ag Metal redistribution layer for molded substrates
US9209046B2 (en) * 2013-10-02 2015-12-08 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof
US9282649B2 (en) * 2013-10-08 2016-03-08 Cisco Technology, Inc. Stand-off block
US10305529B2 (en) 2013-10-10 2019-05-28 Intel Corporation Using materials to increase structural rigidity, decrease size, improve safety, enhance thermal performance and speed charging in small form factor devices
CN104701191A (en) * 2013-12-06 2015-06-10 毅宝力科技有限公司 System and method for manufacturing a carrier
US10163754B2 (en) * 2013-12-26 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lid design for heat dissipation enhancement of die package
TWI518854B (en) * 2013-12-30 2016-01-21 財團法人工業技術研究院 Molding package assembly and molding material
US9831190B2 (en) 2014-01-09 2017-11-28 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device package with warpage control structure
US9805997B2 (en) * 2014-01-27 2017-10-31 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging methods for semiconductor devices with encapsulant ring
US20150262902A1 (en) 2014-03-12 2015-09-17 Invensas Corporation Integrated circuits protected by substrates with cavities, and methods of manufacture
US9355997B2 (en) 2014-03-12 2016-05-31 Invensas Corporation Integrated circuit assemblies with reinforcement frames, and methods of manufacture
US9165793B1 (en) 2014-05-02 2015-10-20 Invensas Corporation Making electrical components in handle wafers of integrated circuit packages
JP2015220241A (en) * 2014-05-14 2015-12-07 株式会社村田製作所 Electronic component module
US9741649B2 (en) 2014-06-04 2017-08-22 Invensas Corporation Integrated interposer solutions for 2D and 3D IC packaging
US9412806B2 (en) 2014-06-13 2016-08-09 Invensas Corporation Making multilayer 3D capacitors using arrays of upstanding rods or ridges
JP2016004888A (en) * 2014-06-17 2016-01-12 イビデン株式会社 Printed wiring board and method for manufacturing printed wiring board
US9252127B1 (en) 2014-07-10 2016-02-02 Invensas Corporation Microelectronic assemblies with integrated circuits and interposers with cavities, and methods of manufacture
US20160172313A1 (en) * 2014-12-16 2016-06-16 Nantong Fujitsu Microelectronics Co., Ltd. Substrate with a supporting plate and fabrication method thereof
JP2018085353A (en) * 2015-03-24 2018-05-31 ソニー株式会社 Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic equipment
US9478504B1 (en) 2015-06-19 2016-10-25 Invensas Corporation Microelectronic assemblies with cavities, and methods of fabrication
TWI628725B (en) * 2015-11-23 2018-07-01 精材科技股份有限公司 Chip package and manufacturing method thereof
US9947603B2 (en) 2015-12-09 2018-04-17 International Business Machines Corporation Lid attach optimization to limit electronic package warpage
US10049896B2 (en) * 2015-12-09 2018-08-14 International Business Machines Corporation Lid attach optimization to limit electronic package warpage
US20170170087A1 (en) 2015-12-14 2017-06-15 Intel Corporation Electronic package that includes multiple supports
US9935082B2 (en) 2015-12-29 2018-04-03 Micron Technology, Inc. Stacked semiconductor dies with selective capillary under fill
CN109727935A (en) * 2016-04-08 2019-05-07 Oppo广东移动通信有限公司 A kind of chip-packaging structure, terminal device and method
US10177060B2 (en) * 2016-10-21 2019-01-08 Powertech Technology Inc. Chip package structure and manufacturing method thereof
US10629557B2 (en) * 2016-12-30 2020-04-21 Intel Corporation Improving mechanical and thermal reliability in varying form factors
US11264337B2 (en) 2017-03-14 2022-03-01 Mediatek Inc. Semiconductor package structure
US11171113B2 (en) 2017-03-14 2021-11-09 Mediatek Inc. Semiconductor package structure having an annular frame with truncated corners
US11362044B2 (en) * 2017-03-14 2022-06-14 Mediatek Inc. Semiconductor package structure
US10784211B2 (en) 2017-03-14 2020-09-22 Mediatek Inc. Semiconductor package structure
US11387176B2 (en) 2017-03-14 2022-07-12 Mediatek Inc. Semiconductor package structure
CN108695265A (en) * 2017-04-11 2018-10-23 财团法人工业技术研究院 Chip packaging structure and manufacturing method thereof
JP2019057546A (en) * 2017-09-19 2019-04-11 東芝メモリ株式会社 Semiconductor memory device
JP6964477B2 (en) * 2017-09-20 2021-11-10 新光電気工業株式会社 Substrate for semiconductor device and its manufacturing method, semiconductor device and its manufacturing method
US10403581B2 (en) * 2017-09-29 2019-09-03 Intel Corporation Electronic device packages with attenuated electromagnetic interference signals
KR102397902B1 (en) * 2018-01-29 2022-05-13 삼성전자주식회사 Semiconductor package
US10468318B2 (en) * 2018-01-29 2019-11-05 Cisco Technology, Inc. Stiffener for providing uniformity in microelectronic packages
US10636746B2 (en) 2018-02-26 2020-04-28 International Business Machines Corporation Method of forming an electronic package
CN110634806A (en) * 2018-06-21 2019-12-31 美光科技公司 Semiconductor device assembly and method of manufacturing the same
US11075133B2 (en) * 2018-06-29 2021-07-27 Taiwan Semiconductor Manufacturing Company, Ltd. Underfill structure for semiconductor packages and methods of forming the same
CN110660752A (en) * 2018-06-29 2020-01-07 台湾积体电路制造股份有限公司 Semiconductor device package and method of manufacturing the same
US10510668B1 (en) * 2018-07-16 2019-12-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method of fabricating semiconductor device
EP3671831A1 (en) * 2018-12-18 2020-06-24 MediaTek Inc Semiconductor package structure
JP2021015922A (en) * 2019-07-16 2021-02-12 キオクシア株式会社 Semiconductor device and method of manufacturing the same
US11139268B2 (en) * 2019-08-06 2021-10-05 Advanced Semiconductor Engineering, Inc. Semiconductor package structure and method of manufacturing the same
US11031353B2 (en) 2019-08-23 2021-06-08 Micron Technology, Inc. Warpage control in microelectronic packages, and related assemblies and methods
US11948855B1 (en) 2019-09-27 2024-04-02 Rockwell Collins, Inc. Integrated circuit (IC) package with cantilever multi-chip module (MCM) heat spreader
JP2021077710A (en) * 2019-11-06 2021-05-20 キヤノン株式会社 Method of manufacturing electronic module, electronic module, and electronic device
KR20210075270A (en) * 2019-12-12 2021-06-23 삼성전자주식회사 Semiconductor module
US11749631B2 (en) 2020-05-20 2023-09-05 Apple Inc. Electronic package including a hybrid thermal interface material and low temperature solder patterns to improve package warpage and reliability
US11699668B2 (en) * 2021-05-12 2023-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device package having warpage control and method of forming the same
US11894320B2 (en) * 2021-08-30 2024-02-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device package with stress reduction design and method of forming the same
US11948809B2 (en) * 2021-09-14 2024-04-02 Delphi Technologies Ip Limited Method for underfilling using spacers
DE102021126041B3 (en) 2021-10-07 2022-12-01 Infineon Technologies Ag FLIP CHIP PACKAGE AND METHOD OF MAKING FLIP CHIP PACKAGE
CN115116860A (en) * 2022-06-17 2022-09-27 北京比特大陆科技有限公司 Chip packaging method and chip

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752762B2 (en) * 1985-01-07 1995-06-05 株式会社日立製作所 Semiconductor resin package
JPH0661383A (en) 1992-08-11 1994-03-04 Fujitsu Ltd Semiconductor device
KR100290993B1 (en) * 1995-06-13 2001-08-07 이사오 우치가사키 Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device
JP3409957B2 (en) * 1996-03-06 2003-05-26 松下電器産業株式会社 Semiconductor unit and method of forming the same
US5866953A (en) * 1996-05-24 1999-02-02 Micron Technology, Inc. Packaged die on PCB with heat sink encapsulant
US6104093A (en) * 1997-04-24 2000-08-15 International Business Machines Corporation Thermally enhanced and mechanically balanced flip chip package and method of forming
US6507116B1 (en) * 1997-04-24 2003-01-14 International Business Machines Corporation Electronic package and method of forming
US6448665B1 (en) * 1997-10-15 2002-09-10 Kabushiki Kaisha Toshiba Semiconductor package and manufacturing method thereof
JP2991172B2 (en) 1997-10-24 1999-12-20 日本電気株式会社 Semiconductor device
JPH11219984A (en) * 1997-11-06 1999-08-10 Sharp Corp Semiconductor device package, its manufacture and circuit board therefor
US6117352A (en) * 1997-11-20 2000-09-12 Lsi Logic Corporation Removal of a heat spreader from an integrated circuit package to permit testing of the integrated circuit and other elements of the package
US6224711B1 (en) * 1998-08-25 2001-05-01 International Business Machines Corporation Assembly process for flip chip package having a low stress chip and resulting structure
JP3519285B2 (en) 1998-09-28 2004-04-12 松下電器産業株式会社 Semiconductor device
JP3941262B2 (en) * 1998-10-06 2007-07-04 株式会社日立製作所 Thermosetting resin material and manufacturing method thereof
US6313521B1 (en) * 1998-11-04 2001-11-06 Nec Corporation Semiconductor device and method of manufacturing the same
JP3395164B2 (en) * 1998-11-05 2003-04-07 インターナショナル・ビジネス・マシーンズ・コーポレーション Semiconductor device
US6225704B1 (en) * 1999-02-12 2001-05-01 Shin-Etsu Chemical Co., Ltd. Flip-chip type semiconductor device
JP2000260819A (en) * 1999-03-10 2000-09-22 Toshiba Corp Manufacture of semiconductor device
JP3633819B2 (en) 1999-03-11 2005-03-30 信越化学工業株式会社 Method for sealing flip-chip type semiconductor device with underfill material
US6784541B2 (en) * 2000-01-27 2004-08-31 Hitachi, Ltd. Semiconductor module and mounting method for same
JP3384359B2 (en) 1999-05-12 2003-03-10 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP3277996B2 (en) 1999-06-07 2002-04-22 日本電気株式会社 Circuit device and method of manufacturing the same
US6437436B2 (en) * 2000-01-20 2002-08-20 Ang Technologies Inc. Integrated circuit chip package with test points
JP3459804B2 (en) 2000-02-28 2003-10-27 Necエレクトロニクス株式会社 Semiconductor device
US6576495B1 (en) * 2000-08-30 2003-06-10 Micron Technology, Inc. Microelectronic assembly with pre-disposed fill material and associated method of manufacture
TW454321B (en) * 2000-09-13 2001-09-11 Siliconware Precision Industries Co Ltd Semiconductor package with heat dissipation structure
JP2002151551A (en) * 2000-11-10 2002-05-24 Hitachi Ltd Flip-chip mounting structure, semiconductor device therewith and mounting method
US6407334B1 (en) * 2000-11-30 2002-06-18 International Business Machines Corporation I/C chip assembly
US6518089B2 (en) * 2001-02-02 2003-02-11 Texas Instruments Incorporated Flip chip semiconductor device in a molded chip scale package (CSP) and method of assembly
US6512295B2 (en) * 2001-03-01 2003-01-28 International Business Machines Corporation Coupled-cap flip chip BGA package with improved cap design for reduced interfacial stresses
US6459144B1 (en) * 2001-03-02 2002-10-01 Siliconware Precision Industries Co., Ltd. Flip chip semiconductor package
US6486554B2 (en) * 2001-03-30 2002-11-26 International Business Machines Corporation Molded body for PBGA and chip-scale packages
US6740959B2 (en) * 2001-08-01 2004-05-25 International Business Machines Corporation EMI shielding for semiconductor chip carriers
JP2003051568A (en) * 2001-08-08 2003-02-21 Nec Corp Semiconductor device
US6552267B2 (en) * 2001-08-13 2003-04-22 Taiwan Semiconductor Manufacturing Co., Ltd. Microelectronic assembly with stiffening member
US6869831B2 (en) * 2001-09-14 2005-03-22 Texas Instruments Incorporated Adhesion by plasma conditioning of semiconductor chip surfaces
US6744132B2 (en) * 2002-01-29 2004-06-01 International Business Machines Corporation Module with adhesively attached heat sink
US6825556B2 (en) * 2002-10-15 2004-11-30 Lsi Logic Corporation Integrated circuit package design with non-orthogonal die cut out
US7105931B2 (en) * 2003-01-07 2006-09-12 Abbas Ismail Attarwala Electronic package and method
US7388294B2 (en) * 2003-01-27 2008-06-17 Micron Technology, Inc. Semiconductor components having stacked dice
US6768209B1 (en) * 2003-02-03 2004-07-27 Micron Technology, Inc. Underfill compounds including electrically charged filler elements, microelectronic devices having underfill compounds including electrically charged filler elements, and methods of underfilling microelectronic devices
JP3934565B2 (en) * 2003-02-21 2007-06-20 富士通株式会社 Semiconductor device
US20050029675A1 (en) * 2003-03-31 2005-02-10 Fay Hua Tin/indium lead-free solders for low stress chip attachment
US20050082650A1 (en) * 2003-10-21 2005-04-21 Kooi Chee C. Integrated circuit packaging system
US7064452B2 (en) * 2003-11-04 2006-06-20 Tai-Saw Technology Co., Ltd. Package structure with a retarding structure and method of making same
US20050121757A1 (en) * 2003-12-04 2005-06-09 Gealer Charles A. Integrated circuit package overlay
US7081669B2 (en) * 2003-12-04 2006-07-25 Intel Corporation Device and system for heat spreader with controlled thermal expansion
US6894400B1 (en) * 2004-05-25 2005-05-17 Agere Systems Inc. Robust electronic device packages

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278771A (en) * 2005-03-29 2006-10-12 Nec Corp Semiconductor device and manufacturing method thereof
JP2007227550A (en) * 2006-02-22 2007-09-06 Fujitsu Ltd Semiconductor device, and method of manufacturing same
US8004096B2 (en) 2006-02-22 2011-08-23 Fujitsu Limited Semiconductor device and a manufacturing method thereof
JP4714598B2 (en) * 2006-02-22 2011-06-29 富士通株式会社 Semiconductor device and manufacturing method thereof
JP2008010690A (en) * 2006-06-30 2008-01-17 Fujitsu Ltd Base board with stiffener, and its manufacturing method
US7531386B2 (en) 2006-12-13 2009-05-12 International Business Machines Corporation Semiconductor package
US7495346B2 (en) 2006-12-13 2009-02-24 International Business Machines Corporation Semiconductor package
US7517731B2 (en) 2006-12-13 2009-04-14 International Business Machines Corporation Semiconductor package
KR100797682B1 (en) * 2007-02-07 2008-01-23 삼성전기주식회사 Method for manufacturing printed circuit board
US7663254B2 (en) 2007-08-21 2010-02-16 Nec Electronics Corporation Semiconductor apparatus and method of manufacturing the same
US8405187B2 (en) 2008-02-11 2013-03-26 Globalfoundries Inc. Chip package with channel stiffener frame
US8008133B2 (en) 2008-02-11 2011-08-30 Globalfoundries Inc. Chip package with channel stiffener frame
US8313984B2 (en) 2008-03-19 2012-11-20 Ati Technologies Ulc Die substrate with reinforcement structure
US8927344B2 (en) 2008-03-19 2015-01-06 Ati Technologies Ulc Die substrate with reinforcement structure
US7782620B2 (en) 2008-05-30 2010-08-24 Kabushiki Kaisha Toshiba Electronic apparatus
JP2009290118A (en) * 2008-05-30 2009-12-10 Toshiba Corp Electronic device
US7923850B2 (en) 2008-08-26 2011-04-12 Advanced Micro Devices, Inc. Semiconductor chip with solder joint protection ring
JP2010114187A (en) * 2008-11-05 2010-05-20 Shinko Electric Ind Co Ltd Wiring substrate and method of manufacturing the wiring substrate
US8216887B2 (en) 2009-05-04 2012-07-10 Advanced Micro Devices, Inc. Semiconductor chip package with stiffener frame and configured lid
US8232138B2 (en) 2010-04-14 2012-07-31 Advanced Micro Devices, Inc. Circuit board with notched stiffener frame
JP2013239660A (en) * 2012-05-17 2013-11-28 Shinko Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
US9385092B2 (en) 2012-09-21 2016-07-05 Socionext Inc. Semiconductor device, electronic device and method for fabricating the semiconductor device
US9867282B2 (en) 2013-08-16 2018-01-09 Ati Technologies Ulc Circuit board with corner hollows
JP2015065400A (en) * 2013-09-25 2015-04-09 サムソン エレクトロ−メカニックス カンパニーリミテッド. Element embedded printed circuit board and method of manufacturing the same

Also Published As

Publication number Publication date
US20100230797A1 (en) 2010-09-16
TWI243457B (en) 2005-11-11
KR20040071067A (en) 2004-08-11
JP4390541B2 (en) 2009-12-24
TW200423338A (en) 2004-11-01
US20040150118A1 (en) 2004-08-05
US7728440B2 (en) 2010-06-01
KR100549313B1 (en) 2006-02-02
US8324718B2 (en) 2012-12-04

Similar Documents

Publication Publication Date Title
JP4390541B2 (en) Semiconductor device and manufacturing method thereof
US6046077A (en) Semiconductor device assembly method and semiconductor device produced by the method
KR20030013737A (en) Semiconductor package and method for manufacturing the same
JP2010251347A (en) Method of manufacturing semiconductor device
JP3277997B2 (en) Ball grid array package and manufacturing method thereof
JP2001244362A (en) Semiconductor device
JP2004356529A (en) Semiconductor device and method for manufacturing the semiconductor device
KR101010556B1 (en) Semiconductor apparatus and method of manufacturing the same
JP4569605B2 (en) Filling method of underfill of semiconductor device
KR20030090481A (en) Method For Bonding IC Chips To Substrates With Non-Conductive Adhesive and Assemblies Formed
JP2907188B2 (en) Semiconductor device, method of mounting semiconductor device, and method of manufacturing semiconductor device
US20110316150A1 (en) Semiconductor package and method for manufacturing semiconductor package
JP2000323624A (en) Semiconductor device and manufacture thereof
KR100748558B1 (en) Chip size package and method of fabricating the same
JP3972209B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
JP2967080B1 (en) Method of manufacturing semiconductor device package
JP2007227608A (en) Semiconductor device and method of manufacturing semiconductor device
KR20080044518A (en) Semiconductor package and stacked semiconductor package having the same
JP2003133656A (en) Mounting structure of semiconductor element
JP2010232671A (en) Method for filling underfill of semiconductor device
JP3951903B2 (en) Semiconductor device and method for manufacturing semiconductor device package
JP3234062B2 (en) Semiconductor package and manufacturing method thereof
JP2001007257A (en) Semiconductor device and manufacture thereof
JP2007096028A (en) Semiconductor device and its manufacturing method
KR20160026168A (en) Flexible solder bump and method of packaging using thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees