JP3934565B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP3934565B2
JP3934565B2 JP2003044335A JP2003044335A JP3934565B2 JP 3934565 B2 JP3934565 B2 JP 3934565B2 JP 2003044335 A JP2003044335 A JP 2003044335A JP 2003044335 A JP2003044335 A JP 2003044335A JP 3934565 B2 JP3934565 B2 JP 3934565B2
Authority
JP
Japan
Prior art keywords
semiconductor device
post
semiconductor chip
semiconductor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003044335A
Other languages
Japanese (ja)
Other versions
JP2004253703A (en
Inventor
英明 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003044335A priority Critical patent/JP3934565B2/en
Priority to EP04250449A priority patent/EP1450402A1/en
Priority to KR1020040006251A priority patent/KR20040075714A/en
Priority to US10/772,252 priority patent/US7199467B2/en
Publication of JP2004253703A publication Critical patent/JP2004253703A/en
Priority to US11/235,269 priority patent/US20060019430A1/en
Priority to US11/235,270 priority patent/US7115444B2/en
Priority to US11/654,555 priority patent/US7381592B2/en
Application granted granted Critical
Publication of JP3934565B2 publication Critical patent/JP3934565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置に係り、特に半導体チップから発生する熱の放熱効率の向上を図った半導体装置に関する。
【0002】
近年、半導体チップが高集積化してきており、また、半導体装置の実装の高密度化が要求されてきている。そこで、QFP(Quad Flat Package) 型半導体装置に比べて、外部接続端子(バンプ,ランド等)の狭ピッチ化を図ることができるBGA型半導体装置及びLGA型半導体装置が注目され、また実用されるようになってきている。
【0003】
また、半導体チップの高集積化に伴い半導体素子の発熱量が増えてきており、よって半導体装置の放熱特性を向上させる必要がある。
【0004】
【従来の技術】
従来から、外部接続端子の狭ピッチ化及び放熱特性の向上を図った半導体装置が各種提案されている(例えば特許文献1〜4)。図1は、従来の放熱特性の向上を図った半導体装置の一例を示している。同図に示す半導体装置1はFC−BGA(Flip Chip Bump Grid Array package)構造とされており、大略すると半導体チップ2,パッケージ基板3,放熱部材4,半田ボール5等により構成されている。
【0005】
半導体チップ2は、パッケージ基板3の上面にフリップチップ実装されている。また、パッケージ基板3の下面には、外部接続端子として機能する半田ボール5が配設されている。パッケージ基板3は多層基板であり、半導体チップ2と半田ボール5は、この内部配線により電気的に接続された構成となっている。
【0006】
また、放熱部材4は半導体チップ2を保護するリッドとして機能すると共に、半導体チップ2で発生した熱を放熱する放熱板としても機能するものである。よって、半導体チップ2と放熱部材4は熱的に接続する必要があるが、従来では熱的接続部材6(以下、単に接続部材という)を用いて半導体チップ2の背面と放熱部材4の内面を熱的に接続することが行なわれていた。
【0007】
この際、半導体チップ2の背面から放熱部材4への熱伝達機構としては、従来では次に述べる二つの方法が一般的であった。
【0008】
(a) 半導体チップ2と放熱部材4の材質差による熱膨張率のミスマッチによる信頼度低下を防止するため、接続部材6として応力緩和性のあるグリス(コンパウンド)、或いは熱伝導性の接着剤などの熱媒体を用い、これを半導体チップ2と放熱部材4との間に配設する方法(図1に図示した方法)
(b) 半導体チップ2の熱膨張率に近い熱膨張率を有した材料(例えば、Cu-W、カーボンとAlの複合材料等)を半導体チップ2と放熱部材4との間で半田接合する方法
【特許文献1】
特開昭57−176750号公報
【0009】
【特許文献2】
特開平01−117049号公報
【0010】
【特許文献3】
特開平10−050770号公報
【0011】
【特許文献4】
特開平11−067998号公報
【0012】
【発明が解決しようとする課題】
しかしながら、上記した(a)の方法では、グリス(コンパウンド)或いは熱伝導性接着剤は熱抵抗が大きいため、半導体チップ2から放熱部材4に効率よく熱伝導が行なわれないという問題点があった。
また、上記した(b)の方法では、半導体チップ2の熱膨張率に近い熱膨張率を有した材料として、例えば、Cu-W、カーボンとAlの複合材料等を用いるが、これらの材料は放熱性の良好なCu等と比較して熱伝導材料の熱伝導率が低くなる。このため上記の(b)の方法は、主に半導体チップ2の発熱量が比較的に低いパッケージにしか適用することができなかった。
【0013】
本発明は上記の点に鑑みてなされたものであり、半導体素子で発生する熱を確実に放熱すると共に装置内部で発生する応力の低減を図り得る半導体装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記の課題を解決するために本発明では、次に述べる各手段を講じたことを特徴とするものである。
【0025】
請求項1記載の発明は、
半導体素子と、
該半導体素子で発生する熱を放熱する放熱部材と、
前記半導体素子と前記放熱部材を熱的に接続する接続部材とを有し、
前記接続部材を金属により形成すると共に、変形することにより前記半導体素子と前記放熱部材との間に発生する応力を吸収する構成とし、
かつ、該接続部材と前記半導体素子とを金属接合した半導体装置であって、
前記接続部材を変形可能な構成とされた複数のポストを有する構成とすると共に、前記複数のポストの長さを、中心部における長さに対し、外周部における長さを長く設定したことを特徴とするものである。
【0026】
また、請求項記載の発明は、
請求項記載の半導体装置において、
前記複数のポストの断面積を、中心部における断面積に対し、外周部における断面積が小さくなるよう設定したことを特徴とするものである。
【0027】
また、請求項記載の発明は、
請求項1または2記載の半導体装置において、
前記複数のポストの配設密度を、中心部における配設密度に対し、外周部における配設密度が低くなるよう設定したことを特徴とするものである。
【0028】
上記の請求項1乃至3記載の発明によれば、応力の発生量が少ない中心部においては接続部材の剛性は高く、応力の発生量が大きい外周部では接続部材の剛性は低く撓み易い。よって、ポストは応力の発生量に対応した可撓を行なうため、半導体素子と放熱部材との間に発生する応力を効率よくかつ確実に吸収することができる。
【0029】
また、請求項記載の発明は、
請求項1乃至のいずれか1項に記載の半導体装置において、
前記接続部材を前記放熱部材と一体化したことを特徴とするものである。
【0030】
上記発明によれば、接続部材と前記放熱部材とが一体化されることにより、半導体装置の構成を簡単化することができる。
【0033】
【発明の実施の形態】
次に本発明の実施の形態について図面と共に説明する。
図2は、本発明の第1実施例である半導体装置10Aを示している。同図に示す半導体装置10AはFC−BGA構造とされており、大略すると半導体チップ12,パッケージ基板13,放熱部材14A,半田ボール15,及び接続部材16A等により構成されている。
【0034】
半導体チップ12は、パッケージ基板13の上面にバンプ17を用いてフリップチップ実装されている。この半導体チップ12とパッケージ基板13との間には、半導体チップ12とパッケージ基板13との熱膨張差に起因した応力がバンプ17に集中するのを防止するため、アンダーフィルレジン18が配設されている。また、半導体チップ12の背面には、図3に拡大して示すように、金属層22が形成されている。この金属層22は、後述するポスト20が接合材23を介して接合される。
【0035】
パッケージ基板13は、その下面に外部接続端子として機能する半田ボール15が配設されている。このパッケージ基板13は多層配線基板であり、半導体チップ2と半田ボール15は、この内部配線により電気的に接続される構成となっている。
【0036】
放熱部材14Aは、熱伝導性のよい銅(Cu),アルミニウム(Al),これらをベースとした複合材料、或いはカーボン複合材料により形成されている。本実施例では、放熱部材14Aの材料としてCuを用いている。この際、表面の酸化を防止するため、放熱部材14Aの表面に酸化防止膜を形成する構成としてもよい。
【0037】
この放熱部材14Aは、半導体チップ12を保護するリッドとして機能すると共に、半導体チップ12で発生した熱を放熱する放熱板としても機能するものである。よって、放熱部材14Aの内部にはキャビティ19が形成されており、半導体チップ12及び後述する接続部材16Aは、このキャビティ19内に位置した構成となっている。
【0038】
また、放熱部材14Aは半導体チップ12で発生した熱を放熱する放熱板としても機能するものであるたため、半導体チップ12と放熱部材14とを熱的に接続する必要がある。本実施例では、半導体チップ12と放熱部材14とを熱的接続部材16A(以下、単に接続部材という)を用いて熱的に接続した構成としている。よって、半導体チップ12で発生した熱は、接続部材16Aを介して放熱部材14Aに熱伝達され、放熱部材14Aにおいて放熱される。
【0039】
本実施例に係る接続部材16Aは、放熱部材14Aに一体的に形成された複数のポスト20と、この複数のポスト20間の隙間に配設された樹脂材21とにより構成されている。ポスト20は、前記した放熱部材14Aと一体的に形成されるため、その材質は熱伝導率の高いCuである。また、Cuは変形し易い材料でもあるため、よってポスト20も変形し易い特性を有している。
【0040】
このCuよりなるポスト20の高さは、ポスト20と半導体チップ12との接合部の応力及び半導体チップ12から放熱部材14Aへの熱伝達により決定されるが、約30〜100μm程度である。また、ポスト20の直径及びピッチは必要な熱抵抗値及び上記接続部の信頼度(寿命)によって決定する。
【0041】
この熱抵抗は、ポスト20の配設密度(単位面積あたりのポスト20の配設本数)、ポスト20の断面積に反比例する。また信頼度は、放熱部材14Aと半導体チップ12の熱膨張差、及び半導体チップ12の発熱量等により決められる。通常、この信頼度の値は、ポスト20の直径のn乗数(およそ2〜3乗)、熱膨張率差のm乗(およそ2乗)、ポスト20の高さのL乗(およそ2乗)に反比例する。
【0042】
一方、樹脂材21は、BTレジン系、エポキシ系、シリコン系等の材料を用いることが可能である。この樹脂材21は、前記のようにポスト20の隙間に充填される。このため、樹脂材21によりポスト20と半導体チップ12との接合位置を補強することができ、接続部材16Aと半導体チップ12との接合信頼性を高めることができる。
【0043】
また、樹脂材21としてBTレジン系、エポキシ系、シリコン系等の樹脂をそのまま用いた場合には、樹脂材21の熱膨張率が半導体チップ12の熱膨張率に対して非常に大きなものとなる。このため、半導体装置10Aの加熱時(例えば、実装時)等において、半導体チップ12と樹脂材21との間で応力が発生するおそれがある。
【0044】
これを防止するため、BTレジン系、エポキシ系、シリコン系等の樹脂材21の原料となる樹脂に、図4に示すように無機材料よりなるフィラー24を混合し、このフィラー24を混入した樹脂材21の熱膨張率が、半導体チップ12の熱膨張率と放熱部材14Aの熱膨張率との間の値となるよう構成してもよい。このフィラー24としては、例えばSiO2、Al2O3等の粉末、或いは粘性を下げる目的から球形としたSiO2、Al2O3等を用いることが考えられる。
【0045】
このように樹脂材21の原料となる樹脂にフィラー24を混入することにより、樹脂材21の熱膨張率を半導体素子12の熱膨張率と放熱部材14Aの熱膨張率との間の値とすることができ、樹脂材21を設けたことに起因して半導体チップ12に応力が印加されることを防止することができる。また、樹脂材21に熱伝導率の高い(熱抵抗の低い)フィラー24を混入することにより、樹脂材21を介して半導体チップ12から発生する熱を放熱部材14Aに放熱することもできる。
【0046】
上記したように本実施例に係る半導体装置10Aによれば、熱膨張率の違いにより半導体チップ12と放熱部材14Aとの間に発生する応力は、接続部材16Aを構成するポスト20が変形することにより確実に吸収される。このため、半導体チップ12に印加される応力は低減され、半導体装置10Aの信頼性を向上させることができる。
【0047】
また、ポスト20と半導体チップ12(金属層22)とが金属接合されることにより、ポスト20と半導体チップ12との間における熱伝導率を高めることができ、半導体チップ12で発生する熱を効率良く放熱することができる。更に、本実施例では接続部材16A(ポスト20)を放熱部材14Aと一体化した構成であるため、半導体装置10Aの構成を簡単化することができる。
【0048】
続いて、上記構成とされた半導体装置10Aの製造方法について説明する。尚、本発明における半導体装置10Aの製造方法は、接続部材16Aの形成方法、及び接続部材16A(ポスト20)を半導体チップ12に熱的に接続させる方法に特徴があり、他の製造工程は周知の方法を用いることができる。このため、以下の製造方法の説明では、接続部材16Aの形成方法、及び接続部材16Aの半導体チップ12への接続方法についてのみ説明するものとする。
【0049】
接続部材16Aを製造するには、先ず図5(A)に示す放熱部材用基材30を用意する。本実施例では、図2に示した半導体装置10Aを製造する方法を例に挙げて説明しているため、この放熱部材用基材30はポスト20が形成されていない状態の放熱部材14Aとなる。
【0050】
この放熱部材用基材30上には、図5(B)に示すようにレジスト31を形成する。続いて、図5(C)に示すように、ポスト20を形成する位置におけるレジスト31を除去する。このレジスト31の除去法は、例えば感光性レジスト材料の露光、レジスト剥離などのウエットプロセス法や、イオンミリングなどドライプロセス法などを用いる。
【0051】
ポスト形成部におけるレジスト31が除去されると、続いてCuを電解メッキすることにより、図5(D)に示すように放熱部材用基材30上にポスト20を形成する。前記したように、放熱部材用基材30は放熱部材14Aであり、Cuにより形成されている。よって、放熱部材用基材30を電極としてポスト20が電解メッキにより形成される。
【0052】
このCuよりなるポスト20の高さは、電解メッキ時間により制御することが可能である。前記のようにポスト20の高さは、ポスト20と半導体チップ12との接合部の応力及び半導体チップ12から放熱部材14Aへの熱伝達により決定されるが、例えば30〜100μm程度に設定される。
【0053】
上記のように放熱部材用基材30上にポスト20が形成されると、続いて図5(E)に示すように、放熱部材用基材30の上面全面(ポスト20及びレジスト31を含む上面全面)に半導体チップ12と金属接合するための接合材23を形成する。この接合材23の材料は、主にSnなどであり、一般的なSn-Pb半田材料等も使用が可能である。また、接合材23の作成方法はメッキ法により、その厚さは例えば3μm〜5μm程度である。尚、接合材23の形成にあっては、ポスト20の上面のみに選択的に接合材23を形成する構成としてもよい。
【0054】
上記のようにポスト20の形成が完了すると、続いてポスト20の形成のために用いたレジスト31(レジスト31上の接合材23も含む)を除去し、これにより図5(F)に示すように接続部材16A(ポスト20)の製造が完了する。この接続部材16Aが完成した状態において、本実施例の構成では、ポスト20は放熱部材14Aと一体化した構成となっている。
【0055】
次に、上記のように製造された接続部材16Aを用いて放熱部材14Aを半導体チップ12に熱的に接続する接続方法について説明する。
【0056】
放熱部材14Aを半導体チップ12に熱的に接続するには、図6(G)に示すように、接続部材16Aを構成するポスト20の上部にシート状の樹脂材21(予め、上記したフィラー24が混入されている)を配設する。続いて、予備加熱を実施することにより、図6(H)に示すように、シート状の樹脂材21を接続部材16Aに仮固定する。この際、気泡の巻き込によるボイド発生を防止するために、真空中で加熱・加圧して固定する。例えば樹脂材21としてBTレジンを用いた場合には、70℃、10torr、10kg/cm2で仮固定を実施する。
【0057】
また、後述するようにポスト20はこの樹脂材21を挿通して半導体チップ12に接合されることとなる。このため、樹脂材21の材質選定においては、ポスト20の先端に樹脂材21やフィラー24が残留してポスト20の熱抵抗が低下しないよう、硬化前の樹脂材21の粘性設計及びフィラー24の含有量の設計が重要となる。具体的には、直径がφ60〜70μmのポスト20を用いた場合の粘性設計値は、硬化前の樹脂材21の最低粘度が5000cps(センチポイズ)以下になるように設計される。また、このときのフィラー(SiO2)の含有量は20%以下で、熱膨張率は60ppm程度である。
【0058】
上記のように樹脂材21が接続部材16Aに仮固定されると、図6(I)に示すように、樹脂材21が下となるよう半導体チップ12の上部に接続部材16Aを位置決めする。この際、予め半導体チップ12の背面には金属層22(メタライズ)を形成しておく。この金属層22としてはCu或いはAu等を用いることができる。具体的な金属層22の形成方法としては、先ず半導体チップ12の背面に密着金属となるチタン(Ti)膜を5000Åの厚さで形成し、その上部にAuを0.3μmの厚さで層形成する。
【0059】
続いて、図6(J)に示すように、接続部材16Aを半導体チップ12に金属接合する処理を行なう。具体的には、ポスト20の先端に形成された接合材23を半導体チップ12の背面に形成された金属層22に金属接合する処理を行なう。
【0060】
このポスト20を金属層22に金属接合する処理は、酸化防止機能および加圧機能を有する装置を用いて実施する。
【0061】
本実施例では、上記の二つの機能を有する装置として、真空プレス装置を用いている。また、接合条件としては、金属層22としてAuを用いた場合には、圧力を〜30kg/cm2程度に設定し、230℃〜240℃の温度下において1秒程度でポスト20を金属層22に接合する。また、金属層22としてCuを用いた場合には、圧力は5〜10kg/cm2程度で、強度的に脆いSn3Cuを安定なSn6Cu5に移行させるため、250℃で30分の加熱を行なう。
【0062】
この際、加圧を行なう目的は、ポスト20と金属層22との接合部分の接触を図るほか、Au-Snの拡散、Cu-Snの拡散時に発生するカーケンドールボイドをつぶして、この発生を防止するためである。また、樹脂材21をポスト20の間の隙間に確実に充填するためである。
【0063】
以上の工程を実施することにより、図6(K)に示されるように、接続部材16Aは半導体チップ12に熱的に接合された状態となる。また、これと同時に、樹脂材21はポスト20の間の隙間に確実に充填される。このように、本実施例に係る製造方法によれば、ポスト20と金属層22との金属接合処理と、ポスト20間の隙間に樹脂材21を充填する処理を同時に行なうことができるため、半導体装置10Aの製造工程を簡単化することができる。
【0064】
尚、上記した製造方法の実施では、樹脂材21を接続部材16Aに仮止めした後に半導体チップ12の背面に形成された金属層22と金属接合する構成とした。しかしながら、図7(A)に示すように、樹脂材21を半導体チップ12に形成された金属層22上に仮止めし、その後に図7(B)に示すように接続部材16Aを半導体チップ12に加熱下で加圧し、これにより図7(C)に示すようにポスト20(接合材23)を金属層22に金属接合する構成としてもよい。
【0065】
また、本実施例に係る製造方法では、樹脂材21としてシート状の樹脂を用いたが、樹脂材21としてゲル状の接着材料を用いることも可能である。樹脂材21としてゲル状の接着材料を用いた場合も、上記したシート状の樹脂材21と同様に、接着材料は再溶融時の粘性低下設計がなされており、仮固定温度以上で粘性が大きく変化し、例えば5000cps程度以下になるように設計されている。また、ゲル状の接着材料を用いた接合工程では、主に半導体チップ12の背面にゲル状の接着材料塗布した後、接続部材16Aと半導体チップ12を位置決めし、シート状の樹脂材21と同様に半導体チップ12と接続部材16Aとを加圧、加熱してポスト20を金属層22に金属接合する。
【0066】
更に、本実施例に係る製造方法では、ポスト20としてCuをメッキにより成長させたが、放熱部材14Aのポスト20の形成位置に予めブロック体を一体的に形成しておき、このブロック体にスリット加工等を施すことにより分割されたポストを形成する方法を用いてもよい。
【0067】
図8乃至図12は、本発明の第2乃至第6実施例である半導体装置10B〜10Fを示している。尚、図8乃至図12において、図2乃至図4に示した構成と同一構成については同一符号を付し、その説明を省略するものとする。
【0068】
図8は、第2実施例である半導体装置10Bを示している。先に図2を用いて説明した第1実施例に係る半導体装置10Aは、接続部材16Aを放熱部材14Aに一体化した構成とした。これに対して本実施例に係る半導体装置10Bは、接続部材16Bを放熱部材14Bとは別個の構成としたものである。
【0069】
このため、ポスト20は基板35に形成されており、また基板35は熱媒体36を介して放熱部材14Bに熱的に接続された構成となっている。この熱媒体36は、高い熱伝導率を有した材料よりなり、その熱膨張係数は放熱部材14Bと接続部材16Bとの間の熱膨張率に設定されている。
【0070】
この構成とすることにより、接続部材16Bを放熱部材14Bに拘わらず形成することが可能となり、放熱部材14Bの形状に変更があったような場合においても、接続部材16Bはそのまま用いることが可能である。
【0071】
図9は、第3実施例である半導体装置10Cを示している。本実施例に係る半導体装置10Cは、接続部材16Cを構成する複数のポスト20の高さを異ならせたことを特徴とするものである。具体的には、放熱部材14Cに段部37を形成することにより、中心部におけるポスト20の長さ(図中、中心位置に配設されたポスト20bの長さを矢印Hbで示す)に対し、外周部におけるポスト20の長さ(図中、最外周部に配設されたポスト20aの長さを矢印Haで示す)を長く設定した構成としている(Ha>Hb)。
【0072】
図10は、第4実施例である半導体装置10Dを示している。本実施例に係る半導体装置10Dも、第3実施例に係る半導体装置10Cと同様に、接続部材16Dを構成する複数のポスト20の高さを異ならせたことを特徴とするものである。
【0073】
具体的には、放熱部材14Dに球面状部38を形成することにより、中心部におけるポスト20の長さ(図中、中心位置に配設されたポスト20bの長さを矢印Hbで示す)に対し、外周部におけるポスト20の長さ(図中、最外周部に配設されたポスト20aの長さを矢印Haで示す)を長く設定した構成としている(Ha>Hb)。このポスト20の長さの変化は、中心部から外周部に向け漸次変化するよう構成しても、段階的に変化するようにしてもよい。
【0074】
図11は、第5実施例である半導体装置10Eを示している。本実施例に係る半導体装置10Eは、接続部材16Cを構成する複数のポスト20の断面積を異ならせたことを特徴とするものである。
【0075】
具体的には、中心部におけるポスト20の断面積(図中、中心位置に配設されたポスト20bの断面積をSbで示す)に対し、外周部におけるポスト20の断面積(図中、最外周部に配設されたポスト20aの断面積をSaで示す)が小さくなるよう設定した構成としている(Sa<Sb)。このポスト20の断面積の変化は、中心部から外周部に向け漸次変化するよう構成しても、段階的に変化するようにしてもよい。
【0076】
図12は、第6実施例である半導体装置10Fを示している。本実施例に係る半導体装置10Fは、接続部材16Cを構成する複数のポスト20の長さ及び断面積は等しいが、ポスト20の配設密度を異ならせたことを特徴とするものである。
【0077】
具体的には、中心部におけるポスト20の配設密度に対し、外周部におけるポスト20の配設密度が低くなるよう設定している。このポスト20の配設密度の変化も、中心部から外周部に向け漸次変化するよう構成しても、段階的に変化するようにしてもよい。
【0078】
上記した第2乃至第6実施例に係る半導体装置10B〜10Fは、応力の発生量が少ない中心部においては剛性が高く、応力の発生量が大きい外周部では剛性は低く撓み易い構成となる。即ち、熱膨張差に起因して半導体チップ12と放熱部材14B〜14Fとの間で相対的な変位が発生した場合、中央部における変位量に対して外周部における変位量は大きくなる。このため、半導体チップ12と放熱部材14B〜14Fとの間で発生する応力も、中央部における応力に対して外周部における応力は大きくなる。
【0079】
これに対し、第2乃至第6実施例に係る半導体装置10B〜10Fは、接続部材16B〜16Fの中心部は剛性が高く、外周部では剛性は低く撓み易い構成であるため、接続部材16B〜16Fにおいて半導体チップ12と放熱部材14B〜14Fとの間で発生する応力を効率よくかつ確実に吸収することができる。
【0080】
以上の説明に関し、更に以下の項を開示する。
【0081】
(付記1) 半導体素子と、
該半導体素子で発生する熱を放熱する放熱部材と、
前記半導体素子と前記放熱部材を熱的に接続する接続部材とを有する半導体装置において、
前記接続部材を金属により形成すると共に、変形することにより前記半導体素子と前記放熱部材との間に発生する応力を吸収する構成とし、
かつ、該接続部材と前記半導体素子とを金属接合したことを特徴とする半導体装置。
【0082】
(付記2) 付記1記載の半導体装置において、
前記半導体素子の前記接続部材が金属接合される位置に、金属接合用の金属層が形成されてなることを特徴とする半導体装置。
【0083】
(付記3) 付記1または2記載の半導体装置において、
前記接続部材は、変形可能な構成とされた複数のポストを有することを特徴とする半導体装置。
【0084】
(付記4) 付記3記載の半導体装置において、
前記ポスト間の隙間に有機材料を充填したことを特徴とする半導体装置。
【0085】
(付記5) 付記4記載の半導体装置において、
前記有機材料に無機材料を混合し、該無機材料を混入した有機材料の熱膨張率が、前記半導体素子の熱膨張率と前記放熱部材の熱膨張率との間の値となるよう構成したことを特徴とする半導体装置。
【0086】
(付記6) 付記3乃至5のいずれか1項に記載の半導体装置において、
前記複数のポストの長さを、中心部における長さに対し、外周部における長さを長く設定したことを特徴とする半導体装置。
【0087】
(付記7) 付記3乃至6のいずれか1項に記載の半導体装置において、
前記複数のポストの断面積を、中心部における断面積に対し、外周部における断面積が小さくなるよう設定したことを特徴とする半導体装置。
【0088】
(付記8) 付記3乃至7のいずれか1項に記載の半導体装置において、
前記複数のポストの配設密度を、中心部における配設密度に対し、外周部における配設密度が低くなるよう設定したことを特徴とする半導体装置。
【0089】
(付記9) 付記1乃至8のいずれか1項に記載の半導体装置において、
前記接続部材を前記放熱部材と一体化したことを特徴とする半導体装置。
【0090】
(付記10) 基材に対してポストを形成することにより接続部材を製造する工程と、
半導体素子の背面に金属層を形成する工程と、
前記前記接続部材と前記半導体素子との間に樹脂材を配設しつつ前記ポストを前記金属層に押圧し、前記ポストと前記金属層を接合する工程と
を有することを特徴とする半導体装置の製造方法。
【0091】
(付記11) 基材上にレジストを形成する工程と、
前記基材上に形成されたレジストの複数箇所のポスト形成部分を除去する工程と、
前記レジストが除去されたポスト形成部分の基板部分にポストを形成する工程と、
前記ポスト上に接合材を形成する工程と、
前記基材上のレジストを除去する工程とにより作成されることを特徴とする半導体素子用の放熱部材。
【0092】
(付記12) 付記11記載の半導体素子用の放熱部材において、
前記接合材の形成工程は、前記レジスト及びポスト上に接合材を形成し、
前記レジストを除去する工程は、前記接合材が形成されたレジストを除去することを特徴とする半導体素子用の放熱部材。
【0093】
【発明の効果】
上述の如く本発明によれば、次に述べる種々の効果を実現することができる。
【0099】
請求項1乃至3記載の発明によれば、ポストは応力の発生量に対応した可撓を行なうため、半導体素子と放熱部材との間に発生する応力を効率よくかつ確実に吸収することができる。
【0100】
また、請求項記載の発明によれば、接続部材と前記放熱部材とが一体化されることにより、半導体装置の構成を簡単化することができる。
【図面の簡単な説明】
【図1】従来の一例である半導体装置を示す図である。
【図2】本発明の第1実施例である半導体装置を示す図である。
【図3】本発明の第1実施例である半導体装置のポスト近傍を拡大して示す図である。
【図4】樹脂材にフィーを混入した状態を示す図である。
【図5】本発明の一実施例である半導体装置の製造方法を説明するための図である(その1)。
【図6】本発明の一実施例である半導体装置の製造方法を説明するための図である(その2)。
【図7】図5及び図6に示す半導体装置の製造方法の変形例を説明するための図である。
【図8】本発明の第2実施例である半導体装置を示す図である。
【図9】本発明の第3実施例である半導体装置を示す図である。
【図10】本発明の第4実施例である半導体装置を示す図である。
【図11】本発明の第5実施例である半導体装置を示す図である。
【図12】本発明の第6実施例である半導体装置を示す図である。
【符号の説明】
10A〜10F 半導体装置
12 半導体チップ
13 パッケージ基板
14A〜14F 放熱部材
16A〜16F 接続部材
18 アンダーフィルレジン
20,20a,20b ポスト
21 樹脂材
22 金属層
23 接合材
24 フィラー
30 放熱部材用基材
31 レジスト
36 熱媒体
37 段部
38 球面状部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor equipment, about the particular semiconductor equipment with improved heat dissipation efficiency of the heat generated by the semiconductor chip.
[0002]
In recent years, semiconductor chips have been highly integrated, and there has been a demand for higher density mounting of semiconductor devices. Therefore, BGA type semiconductor devices and LGA type semiconductor devices capable of narrowing the pitch of external connection terminals (bumps, lands, etc.) are attracting attention and practically used as compared to QFP (Quad Flat Package) type semiconductor devices. It has become like this.
[0003]
In addition, the amount of heat generated by semiconductor elements has increased with the high integration of semiconductor chips, and thus it is necessary to improve the heat dissipation characteristics of semiconductor devices.
[0004]
[Prior art]
Conventionally, various semiconductor devices have been proposed in which the pitch of external connection terminals is reduced and the heat dissipation characteristics are improved (for example, Patent Documents 1 to 4). FIG. 1 shows an example of a conventional semiconductor device with improved heat dissipation characteristics. The semiconductor device 1 shown in FIG. 1 has an FC-BGA (Flip Chip Bump Grid Array package) structure, and is roughly composed of a semiconductor chip 2, a package substrate 3, a heat dissipation member 4, solder balls 5, and the like.
[0005]
The semiconductor chip 2 is flip-chip mounted on the upper surface of the package substrate 3. A solder ball 5 that functions as an external connection terminal is disposed on the lower surface of the package substrate 3. The package substrate 3 is a multilayer substrate, and the semiconductor chip 2 and the solder balls 5 are electrically connected by this internal wiring.
[0006]
The heat radiating member 4 functions as a lid for protecting the semiconductor chip 2 and also functions as a heat radiating plate that radiates heat generated in the semiconductor chip 2. Therefore, the semiconductor chip 2 and the heat dissipation member 4 need to be thermally connected. Conventionally, the back surface of the semiconductor chip 2 and the inner surface of the heat dissipation member 4 are connected using a thermal connection member 6 (hereinafter simply referred to as a connection member). Thermal connection was performed.
[0007]
At this time, as a heat transfer mechanism from the back surface of the semiconductor chip 2 to the heat radiating member 4, the following two methods have been generally used.
[0008]
(a) In order to prevent a decrease in reliability due to a mismatch in thermal expansion coefficient due to a material difference between the semiconductor chip 2 and the heat radiating member 4, a stress-releasing grease (compound) or a heat conductive adhesive is used as the connecting member 6. 1 is used, and this is disposed between the semiconductor chip 2 and the heat dissipation member 4 (the method illustrated in FIG. 1).
(b) Method of soldering a material having a thermal expansion coefficient close to that of the semiconductor chip 2 (for example, Cu-W, a composite material of carbon and Al) between the semiconductor chip 2 and the heat dissipation member 4 [Patent Document 1]
JP-A-57-176750 [0009]
[Patent Document 2]
Japanese Laid-Open Patent Publication No. 01-117049
[Patent Document 3]
Japanese Patent Laid-Open No. 10-050770
[Patent Document 4]
Japanese Patent Laid-Open No. 11-066798
[Problems to be solved by the invention]
However, the method (a) described above has the problem that grease (compound) or a heat conductive adhesive has a large thermal resistance, and therefore heat conduction from the semiconductor chip 2 to the heat radiating member 4 is not performed efficiently. .
In the method (b) described above, for example, Cu-W, a composite material of carbon and Al, or the like is used as a material having a thermal expansion coefficient close to that of the semiconductor chip 2. The heat conductivity of the heat conducting material is lower than that of Cu having good heat dissipation. For this reason, the above method (b) can be mainly applied only to a package in which the heat generation amount of the semiconductor chip 2 is relatively low.
[0013]
The present invention has been made in view of the above, and an object thereof is to provide a semiconductor equipment to obtain achieving reduction of stress generated inside the device while reliably dissipate the heat generated by the semiconductor element.
[0014]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention is characterized by the following measures.
[0025]
The invention described in claim 1
A semiconductor element;
A heat dissipating member that dissipates heat generated in the semiconductor element;
A connection member for thermally connecting the semiconductor element and the heat dissipation member;
The connection member is made of metal and absorbs stress generated between the semiconductor element and the heat dissipation member by deformation,
And a semiconductor device in which the connection member and the semiconductor element are metal-bonded,
The connecting member is configured to have a plurality of posts that can be deformed, and the length of the plurality of posts is set to be longer in the outer peripheral portion than in the center portion. It is what.
[0026]
The invention according to claim 2
The semiconductor device according to claim 1 ,
The cross-sectional area of the plurality of posts is set so that the cross-sectional area at the outer peripheral portion is smaller than the cross-sectional area at the central portion.
[0027]
The invention according to claim 3
The semiconductor device according to claim 1 or 2 ,
The arrangement density of the plurality of posts is set so that the arrangement density in the outer peripheral portion is lower than the arrangement density in the central portion.
[0028]
According to the first to third aspects of the invention, the rigidity of the connecting member is high in the central portion where the amount of stress is small, and the rigidity of the connecting member is low and easily bent in the outer peripheral portion where the amount of stress is large. Therefore, since the post performs flexibility corresponding to the amount of generated stress, the stress generated between the semiconductor element and the heat radiating member can be absorbed efficiently and reliably.
[0029]
The invention according to claim 4
The semiconductor device according to any one of claims 1 to 3 ,
The connection member is integrated with the heat dissipation member.
[0030]
According to the said invention, the structure of a semiconductor device can be simplified by integrating a connection member and the said heat radiating member.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows a semiconductor device 10A according to the first embodiment of the present invention. The semiconductor device 10A shown in the figure has an FC-BGA structure, and is roughly composed of a semiconductor chip 12, a package substrate 13, a heat radiation member 14A, a solder ball 15, a connection member 16A, and the like.
[0034]
The semiconductor chip 12 is flip-chip mounted on the upper surface of the package substrate 13 using bumps 17. An underfill resin 18 is disposed between the semiconductor chip 12 and the package substrate 13 in order to prevent stress due to the difference in thermal expansion between the semiconductor chip 12 and the package substrate 13 from concentrating on the bumps 17. ing. A metal layer 22 is formed on the back surface of the semiconductor chip 12 as shown in an enlarged view in FIG. The metal layer 22 is bonded to a post 20 described later via a bonding material 23.
[0035]
The package substrate 13 is provided with solder balls 15 functioning as external connection terminals on the lower surface thereof. The package substrate 13 is a multilayer wiring substrate, and the semiconductor chip 2 and the solder balls 15 are electrically connected by the internal wiring.
[0036]
The heat radiating member 14A is made of copper (Cu), aluminum (Al), a composite material based on these, or a carbon composite material having good thermal conductivity. In this embodiment, Cu is used as the material of the heat dissipation member 14A. At this time, in order to prevent oxidation of the surface, an anti-oxidation film may be formed on the surface of the heat dissipation member 14A.
[0037]
The heat radiating member 14 </ b> A functions as a lid that protects the semiconductor chip 12 and also functions as a heat radiating plate that radiates heat generated in the semiconductor chip 12. Therefore, the cavity 19 is formed inside the heat radiating member 14 </ b> A, and the semiconductor chip 12 and a connecting member 16 </ b> A described later are located in the cavity 19.
[0038]
Moreover, since the heat radiating member 14 </ b> A functions as a heat radiating plate that radiates heat generated in the semiconductor chip 12, it is necessary to thermally connect the semiconductor chip 12 and the heat radiating member 14. In this embodiment, the semiconductor chip 12 and the heat dissipation member 14 are thermally connected using a thermal connection member 16A (hereinafter simply referred to as a connection member). Therefore, the heat generated in the semiconductor chip 12 is transferred to the heat radiating member 14A via the connection member 16A and is radiated in the heat radiating member 14A.
[0039]
The connecting member 16 </ b> A according to the present embodiment includes a plurality of posts 20 that are integrally formed with the heat radiating member 14 </ b> A, and a resin material 21 that is disposed in a gap between the plurality of posts 20. Since the post 20 is formed integrally with the heat dissipation member 14A described above, the material thereof is Cu having a high thermal conductivity. Further, since Cu is also a material that is easily deformed, the post 20 also has a characteristic that it is easily deformed.
[0040]
The height of the post 20 made of Cu is determined by the stress at the joint between the post 20 and the semiconductor chip 12 and the heat transfer from the semiconductor chip 12 to the heat radiating member 14A, but is about 30 to 100 μm. Further, the diameter and pitch of the posts 20 are determined by the required thermal resistance value and the reliability (lifetime) of the connecting portion.
[0041]
This thermal resistance is inversely proportional to the density of the posts 20 (the number of posts 20 per unit area) and the cross-sectional area of the posts 20. The reliability is determined by the difference in thermal expansion between the heat radiating member 14A and the semiconductor chip 12, the amount of heat generated by the semiconductor chip 12, and the like. Usually, the reliability value is the n-th power (approximately 2 to 3) of the diameter of the post 20, the m power (approximately square) of the difference in thermal expansion coefficient, and the L power of the height of the post 20 (approximately square). Inversely proportional to
[0042]
On the other hand, the resin material 21 can be made of a material such as BT resin, epoxy, or silicon. This resin material 21 is filled in the gaps of the posts 20 as described above. For this reason, the bonding position between the post 20 and the semiconductor chip 12 can be reinforced by the resin material 21, and the bonding reliability between the connecting member 16A and the semiconductor chip 12 can be improved.
[0043]
Further, when a resin such as BT resin, epoxy, or silicon is used as the resin material 21, the thermal expansion coefficient of the resin material 21 is very large relative to the thermal expansion coefficient of the semiconductor chip 12. . For this reason, stress may occur between the semiconductor chip 12 and the resin material 21 when the semiconductor device 10 </ b> A is heated (for example, during mounting).
[0044]
In order to prevent this, a filler 24 made of an inorganic material as shown in FIG. 4 is mixed with a resin that is a raw material for the resin material 21 such as a BT resin, an epoxy, or a silicon, and the filler 24 is mixed. You may comprise so that the thermal expansion coefficient of the material 21 may become a value between the thermal expansion coefficient of the semiconductor chip 12 and the thermal expansion coefficient of 14 A of thermal radiation members. As the filler 24, for example, powder of SiO 2 , Al 2 O 3 or the like, or spherical SiO 2 , Al 2 O 3 or the like for the purpose of reducing the viscosity may be used.
[0045]
Thus, by mixing the filler 24 into the resin that is the raw material of the resin material 21, the coefficient of thermal expansion of the resin material 21 is set to a value between the coefficient of thermal expansion of the semiconductor element 12 and the coefficient of thermal expansion of the heat radiating member 14A. It is possible to prevent stress from being applied to the semiconductor chip 12 due to the provision of the resin material 21. Further, by mixing the resin material 21 with a filler 24 having a high thermal conductivity (low thermal resistance), the heat generated from the semiconductor chip 12 via the resin material 21 can be radiated to the heat radiating member 14A.
[0046]
As described above, according to the semiconductor device 10A according to the present embodiment, the stress generated between the semiconductor chip 12 and the heat dissipation member 14A due to the difference in the coefficient of thermal expansion causes the post 20 constituting the connection member 16A to be deformed. Is reliably absorbed. For this reason, the stress applied to the semiconductor chip 12 is reduced, and the reliability of the semiconductor device 10A can be improved.
[0047]
Further, the post 20 and the semiconductor chip 12 (metal layer 22) are metal-bonded, whereby the thermal conductivity between the post 20 and the semiconductor chip 12 can be increased, and the heat generated in the semiconductor chip 12 can be efficiently used. It can dissipate heat well. Furthermore, since the connection member 16A (post 20) is integrated with the heat dissipation member 14A in this embodiment, the configuration of the semiconductor device 10A can be simplified.
[0048]
Next, a method for manufacturing the semiconductor device 10A having the above configuration will be described. The manufacturing method of the semiconductor device 10A according to the present invention is characterized by a method of forming the connection member 16A and a method of thermally connecting the connection member 16A (post 20) to the semiconductor chip 12, and other manufacturing processes are well known. This method can be used. For this reason, in the following description of the manufacturing method, only the method for forming the connection member 16A and the method for connecting the connection member 16A to the semiconductor chip 12 will be described.
[0049]
In order to manufacture the connecting member 16A, first, the base member 30 for heat radiating member shown in FIG. In the present embodiment, the method for manufacturing the semiconductor device 10A shown in FIG. 2 is described as an example, and thus the base member 30 for the heat radiating member becomes the heat radiating member 14A in a state where the post 20 is not formed. .
[0050]
A resist 31 is formed on the heat radiating member base 30 as shown in FIG. Subsequently, as shown in FIG. 5C, the resist 31 at the position where the post 20 is formed is removed. As a method for removing the resist 31, for example, a wet process method such as exposure of a photosensitive resist material, resist stripping, or a dry process method such as ion milling is used.
[0051]
When the resist 31 in the post forming portion is removed, the post 20 is formed on the heat radiating member base 30 as shown in FIG. As described above, the heat dissipation member base material 30 is the heat dissipation member 14A, and is formed of Cu. Therefore, the post 20 is formed by electrolytic plating using the heat dissipating member substrate 30 as an electrode.
[0052]
The height of the post 20 made of Cu can be controlled by the electrolytic plating time. As described above, the height of the post 20 is determined by the stress at the joint between the post 20 and the semiconductor chip 12 and the heat transfer from the semiconductor chip 12 to the heat dissipation member 14A, and is set to about 30 to 100 μm, for example. .
[0053]
When the post 20 is formed on the heat radiating member base 30 as described above, subsequently, as shown in FIG. 5E, the entire upper surface of the heat radiating member base 30 (the upper surface including the post 20 and the resist 31). A bonding material 23 for metal bonding to the semiconductor chip 12 is formed on the entire surface. The material of the bonding material 23 is mainly Sn or the like, and a general Sn—Pb solder material or the like can also be used. Further, the method for producing the bonding material 23 is a plating method, and the thickness thereof is, for example, about 3 μm to 5 μm. In the formation of the bonding material 23, the bonding material 23 may be selectively formed only on the upper surface of the post 20.
[0054]
When the formation of the post 20 is completed as described above, the resist 31 (including the bonding material 23 on the resist 31) used for the formation of the post 20 is subsequently removed, and as shown in FIG. The manufacture of the connecting member 16A (post 20) is completed. In the state where this connection member 16A is completed, in the configuration of this embodiment, the post 20 is integrated with the heat dissipation member 14A.
[0055]
Next, a connection method for thermally connecting the heat dissipation member 14A to the semiconductor chip 12 using the connection member 16A manufactured as described above will be described.
[0056]
In order to thermally connect the heat radiating member 14A to the semiconductor chip 12, as shown in FIG. 6G, a sheet-like resin material 21 (previously the filler 24 described above) is formed on the post 20 constituting the connecting member 16A. Is mixed). Subsequently, preheating is performed to temporarily fix the sheet-like resin material 21 to the connecting member 16A as shown in FIG. 6 (H). At this time, in order to prevent generation of voids due to entrainment of bubbles, heating and pressurization are performed in a vacuum. For example, when BT resin is used as the resin material 21, temporary fixing is performed at 70 ° C., 10 torr, and 10 kg / cm 2 .
[0057]
Further, as will be described later, the post 20 is inserted into the resin material 21 and joined to the semiconductor chip 12. For this reason, in the selection of the material of the resin material 21, the resin material 21 and the filler 24 remain at the tip of the post 20 and the thermal resistance of the post 20 does not decrease and the viscosity design of the resin material 21 before curing and the filler 24 Content design is important. Specifically, the viscosity design value when the post 20 having a diameter of 60 to 70 μm is used is designed so that the minimum viscosity of the resin material 21 before curing is 5000 cps (centipoise) or less. Further, the content of the filler (SiO 2 ) at this time is 20% or less, and the thermal expansion coefficient is about 60 ppm.
[0058]
When the resin material 21 is temporarily fixed to the connection member 16A as described above, the connection member 16A is positioned above the semiconductor chip 12 so that the resin material 21 faces downward as shown in FIG. At this time, a metal layer 22 (metallized) is previously formed on the back surface of the semiconductor chip 12. As this metal layer 22, Cu, Au, or the like can be used. As a specific method for forming the metal layer 22, first, a titanium (Ti) film as an adhesion metal is formed on the back surface of the semiconductor chip 12 with a thickness of 5000 mm, and Au is formed thereon with a thickness of 0.3 μm. To do.
[0059]
Subsequently, as shown in FIG. 6J, a process of metal-connecting the connection member 16A to the semiconductor chip 12 is performed. Specifically, the bonding material 23 formed at the tip of the post 20 is metal bonded to the metal layer 22 formed on the back surface of the semiconductor chip 12.
[0060]
The process of joining the post 20 to the metal layer 22 is performed using an apparatus having an antioxidant function and a pressurizing function.
[0061]
In this embodiment, a vacuum press apparatus is used as the apparatus having the above two functions. As the bonding condition, when Au is used as the metal layer 22, the pressure is set to about 30 kg / cm 2 , and the post 20 is attached to the metal layer 22 in about 1 second at a temperature of 230 ° C. to 240 ° C. To join. Further, when Cu is used as the metal layer 22, the pressure is about 5 to 10 kg / cm 2 , and strength-fragile Sn 3 Cu is transferred to stable Sn 6 Cu 5 . Heat.
[0062]
At this time, the purpose of pressurization is to contact the joint portion between the post 20 and the metal layer 22, and to crush the Kirkendall void generated during the diffusion of Au-Sn and Cu-Sn. This is to prevent it. Further, the resin material 21 is reliably filled in the gaps between the posts 20.
[0063]
By performing the above steps, the connecting member 16A is thermally bonded to the semiconductor chip 12 as shown in FIG. At the same time, the resin material 21 is reliably filled in the gaps between the posts 20. Thus, according to the manufacturing method according to the present embodiment, the metal bonding process between the post 20 and the metal layer 22 and the process of filling the gap between the posts 20 with the resin material 21 can be performed simultaneously. The manufacturing process of the apparatus 10A can be simplified.
[0064]
In the implementation of the manufacturing method described above, the resin material 21 is temporarily fixed to the connecting member 16A, and then the metal layer 22 formed on the back surface of the semiconductor chip 12 is metal-bonded. However, as shown in FIG. 7A, the resin material 21 is temporarily fixed on the metal layer 22 formed on the semiconductor chip 12, and then the connecting member 16A is connected to the semiconductor chip 12 as shown in FIG. It is good also as a structure which pressurizes under heating and metal-joins the post | mailbox 20 (joining material 23) to the metal layer 22 by this, as shown in FIG.7 (C).
[0065]
In the manufacturing method according to the present embodiment, a sheet-like resin is used as the resin material 21, but a gel-like adhesive material can also be used as the resin material 21. Even when a gel-like adhesive material is used as the resin material 21, the adhesive material is designed to reduce the viscosity at the time of remelting, as in the above-described sheet-like resin material 21, and has a large viscosity at a temperature not lower than the temporary fixing temperature. It is designed to change and become, for example, about 5000 cps or less. Further, in the joining step using the gel adhesive material, after applying the gel adhesive material mainly to the back surface of the semiconductor chip 12, the connecting member 16 </ b> A and the semiconductor chip 12 are positioned, and the same as the sheet-like resin material 21. The post 20 is metal-bonded to the metal layer 22 by pressurizing and heating the semiconductor chip 12 and the connecting member 16A.
[0066]
Furthermore, in the manufacturing method according to the present embodiment, Cu is grown as the post 20 by plating. However, a block body is integrally formed in advance at the position where the post 20 of the heat radiating member 14A is formed, and a slit is formed in the block body. A method of forming divided posts by processing or the like may be used.
[0067]
8 to 12 show semiconductor devices 10B to 10F according to second to sixth embodiments of the present invention. 8 to 12, the same components as those shown in FIGS. 2 to 4 are denoted by the same reference numerals, and the description thereof is omitted.
[0068]
FIG. 8 shows a semiconductor device 10B according to the second embodiment. The semiconductor device 10A according to the first embodiment described above with reference to FIG. 2 has a configuration in which the connection member 16A is integrated with the heat dissipation member 14A. On the other hand, in the semiconductor device 10B according to the present embodiment, the connection member 16B is configured separately from the heat dissipation member 14B.
[0069]
Therefore, the post 20 is formed on the substrate 35, and the substrate 35 is thermally connected to the heat radiating member 14B via the heat medium 36. The heat medium 36 is made of a material having high thermal conductivity, and the coefficient of thermal expansion is set to the coefficient of thermal expansion between the heat radiation member 14B and the connection member 16B.
[0070]
With this configuration, the connection member 16B can be formed regardless of the heat dissipation member 14B, and the connection member 16B can be used as it is even when the shape of the heat dissipation member 14B is changed. is there.
[0071]
FIG. 9 shows a semiconductor device 10C according to the third embodiment. The semiconductor device 10C according to the present embodiment is characterized in that the heights of the plurality of posts 20 constituting the connection member 16C are different. Specifically, by forming the step portion 37 on the heat radiating member 14C, the length of the post 20 at the center portion (in the figure, the length of the post 20b disposed at the center position is indicated by an arrow Hb). The length of the post 20 in the outer peripheral portion (in the figure, the length of the post 20a disposed in the outermost peripheral portion is indicated by an arrow Ha) is set to be long (Ha> Hb).
[0072]
FIG. 10 shows a semiconductor device 10D according to the fourth embodiment. Similarly to the semiconductor device 10C according to the third embodiment, the semiconductor device 10D according to the present embodiment is characterized in that the heights of the plurality of posts 20 constituting the connection member 16D are different.
[0073]
Specifically, by forming the spherical portion 38 in the heat radiating member 14D, the length of the post 20 at the center (in the drawing, the length of the post 20b disposed at the center position is indicated by an arrow Hb). On the other hand, the length of the post 20 at the outer peripheral portion (in the figure, the length of the post 20a disposed at the outermost peripheral portion is indicated by an arrow Ha) is set long (Ha> Hb). The change in the length of the post 20 may be configured to gradually change from the central portion toward the outer peripheral portion, or may be changed in stages.
[0074]
FIG. 11 shows a semiconductor device 10E according to the fifth embodiment. The semiconductor device 10E according to the present embodiment is characterized in that the cross-sectional areas of the plurality of posts 20 constituting the connection member 16C are different.
[0075]
Specifically, the cross-sectional area of the post 20 at the outer peripheral portion (the cross-sectional area of the post 20b disposed at the central position in the drawing is indicated by Sb) in the central portion (the maximum cross-sectional area in the drawing). The cross section of the post 20a disposed on the outer peripheral portion is set to be small (Sa <Sb). The change in the cross-sectional area of the post 20 may be configured to gradually change from the central portion toward the outer peripheral portion, or may be changed in stages.
[0076]
FIG. 12 shows a semiconductor device 10F according to the sixth embodiment. The semiconductor device 10F according to the present embodiment is characterized in that the plurality of posts 20 constituting the connection member 16C have the same length and cross-sectional area, but the arrangement density of the posts 20 is varied.
[0077]
Specifically, the arrangement density of the posts 20 in the outer peripheral part is set lower than the arrangement density of the posts 20 in the central part. The change in the arrangement density of the posts 20 may be configured to gradually change from the central portion toward the outer peripheral portion, or may be changed in stages.
[0078]
The semiconductor devices 10B to 10F according to the second to sixth embodiments described above have a configuration in which the rigidity is high in the central portion where the amount of stress generation is small, and the rigidity is low in the outer peripheral portion where the amount of stress generation is large. That is, when a relative displacement occurs between the semiconductor chip 12 and the heat dissipation members 14B to 14F due to a difference in thermal expansion, the displacement amount at the outer peripheral portion becomes larger than the displacement amount at the central portion. For this reason, the stress which generate | occur | produces between the semiconductor chip 12 and the heat radiating member 14B-14F also becomes large in the outer peripheral part with respect to the stress in a center part.
[0079]
On the other hand, in the semiconductor devices 10B to 10F according to the second to sixth embodiments, the central portions of the connection members 16B to 16F have high rigidity, and the outer peripheral portion has low rigidity and is easily bent. The stress generated between the semiconductor chip 12 and the heat radiation members 14B to 14F in 16F can be absorbed efficiently and reliably.
[0080]
Regarding the above description, the following items are further disclosed.
[0081]
(Supplementary note 1) a semiconductor element;
A heat dissipating member that dissipates heat generated in the semiconductor element;
In the semiconductor device having the semiconductor element and a connection member that thermally connects the heat dissipation member,
The connection member is made of metal and absorbs stress generated between the semiconductor element and the heat dissipation member by deformation,
And the semiconductor device characterized by metal-bonding this connection member and the said semiconductor element.
[0082]
(Appendix 2) In the semiconductor device according to Appendix 1,
A semiconductor device, wherein a metal layer for metal bonding is formed at a position where the connection member of the semiconductor element is metal bonded.
[0083]
(Appendix 3) In the semiconductor device according to Appendix 1 or 2,
The connection member includes a plurality of posts having a deformable configuration.
[0084]
(Appendix 4) In the semiconductor device described in Appendix 3,
A semiconductor device, wherein a gap between the posts is filled with an organic material.
[0085]
(Appendix 5) In the semiconductor device according to Appendix 4,
An inorganic material is mixed with the organic material, and the thermal expansion coefficient of the organic material mixed with the inorganic material is set to a value between the thermal expansion coefficient of the semiconductor element and the thermal expansion coefficient of the heat dissipation member. A semiconductor device characterized by the above.
[0086]
(Appendix 6) In the semiconductor device according to any one of appendices 3 to 5,
A length of the plurality of posts is set so that a length in an outer peripheral portion is set longer than a length in a central portion.
[0087]
(Appendix 7) In the semiconductor device according to any one of appendices 3 to 6,
A semiconductor device characterized in that the cross-sectional area of the plurality of posts is set so that the cross-sectional area at the outer peripheral portion is smaller than the cross-sectional area at the central portion.
[0088]
(Appendix 8) In the semiconductor device according to any one of appendices 3 to 7,
2. A semiconductor device according to claim 1, wherein the arrangement density of the plurality of posts is set so that the arrangement density in the outer peripheral portion is lower than the arrangement density in the central portion.
[0089]
(Appendix 9) In the semiconductor device according to any one of appendices 1 to 8,
A semiconductor device, wherein the connecting member is integrated with the heat radiating member.
[0090]
(Additional remark 10) The process of manufacturing a connection member by forming a post with respect to a substrate,
Forming a metal layer on the back surface of the semiconductor element;
And a step of pressing the post against the metal layer while disposing a resin material between the connection member and the semiconductor element, and joining the post and the metal layer. Production method.
[0091]
(Additional remark 11) The process of forming a resist on a base material,
Removing a plurality of post forming portions of the resist formed on the substrate;
Forming a post on the substrate portion of the post forming portion from which the resist has been removed;
Forming a bonding material on the post;
A heat radiating member for a semiconductor element, which is formed by a step of removing the resist on the base material.
[0092]
(Additional remark 12) In the heat dissipation member for semiconductor elements of Additional remark 11,
The bonding material forming step forms a bonding material on the resist and the post,
The step of removing the resist removes the resist on which the bonding material has been formed.
[0093]
【The invention's effect】
As described above, according to the present invention, various effects described below can be realized.
[0099]
According to the first to third aspects of the present invention, since the post performs flexibility corresponding to the amount of generated stress, the stress generated between the semiconductor element and the heat dissipation member can be absorbed efficiently and reliably. .
[0100]
According to the fourth aspect of the invention, the configuration of the semiconductor device can be simplified by integrating the connection member and the heat dissipation member.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional semiconductor device.
FIG. 2 is a diagram showing a semiconductor device according to a first embodiment of the present invention.
FIG. 3 is an enlarged view showing the vicinity of a post of the semiconductor device according to the first embodiment of the present invention;
FIG. 4 is a diagram showing a state in which a fee is mixed in a resin material.
FIG. 5 is a drawing for explaining the method of manufacturing a semiconductor device according to one embodiment of the present invention (# 1).
FIG. 6 is a drawing for explaining the method for manufacturing a semiconductor device according to one embodiment of the present invention (# 2).
7 is a diagram for explaining a modification of the method for manufacturing the semiconductor device shown in FIGS. 5 and 6. FIG.
FIG. 8 is a diagram showing a semiconductor device according to a second embodiment of the present invention.
FIG. 9 is a diagram showing a semiconductor device according to a third embodiment of the present invention.
FIG. 10 is a diagram showing a semiconductor device according to a fourth embodiment of the present invention.
FIG. 11 is a diagram showing a semiconductor device according to a fifth embodiment of the present invention.
FIG. 12 is a diagram showing a semiconductor device according to a sixth embodiment of the present invention.
[Explanation of symbols]
10A to 10F Semiconductor device 12 Semiconductor chip 13 Package substrate 14A to 14F Heat radiation member 16A to 16F Connection member 18 Underfill resin 20, 20a, 20b Post 21 Resin material 22 Metal layer 23 Bonding material 24 Filler 30 Heat radiation member base material 31 Resist 36 Heat medium 37 Step portion 38 Spherical surface portion

Claims (4)

半導体素子と、
該半導体素子で発生する熱を放熱する放熱部材と、
前記半導体素子と前記放熱部材を熱的に接続する接続部材とを有し、
前記接続部材を金属により形成すると共に、変形することにより前記半導体素子と前記放熱部材との間に発生する応力を吸収する構成とし、
かつ、該接続部材と前記半導体素子とを金属接合した半導体装置であって、
前記接続部材を変形可能な構成とされた複数のポストを有する構成とすると共に、前記複数のポストの長さを、中心部における長さに対し、外周部における長さを長く設定したことを特徴とする半導体装置。
A semiconductor element;
A heat dissipating member that dissipates heat generated in the semiconductor element;
Said heat radiation member and the semiconductor device have a connection member for connecting thermally,
The connection member is made of metal and absorbs stress generated between the semiconductor element and the heat dissipation member by deformation,
And, and said and said connecting member semiconductor device comprising a semi-conductor device in which metal bonding,
The connecting member is configured to have a plurality of posts that can be deformed, and the length of the plurality of posts is set to be longer in the outer peripheral portion than in the center portion. A semiconductor device.
請求項1記載の半導体装置において、
前記複数のポストの断面積を、中心部における断面積に対し、外周部における断面積が小さくなるよう設定したことを特徴とする半導体装置。
The semiconductor device according to claim 1,
A semiconductor device characterized in that the cross-sectional area of the plurality of posts is set so that the cross-sectional area at the outer peripheral portion is smaller than the cross-sectional area at the central portion .
請求項1または2記載の半導体装置において、
前記複数のポストの配設密度を、中心部における配設密度に対し、外周部における配設密度が低くなるよう設定したことを特徴とする半導体装置。
The semiconductor device according to claim 1 or 2,
2. A semiconductor device according to claim 1, wherein the arrangement density of the plurality of posts is set so that the arrangement density in the outer peripheral portion is lower than the arrangement density in the central portion .
請求項1乃至のいずれか1項に記載の半導体装置において、
前記接続部材を前記放熱部材と一体化したことを特徴とする半導体装置。
The semiconductor device according to any one of claims 1 to 3 ,
A semiconductor device, wherein the connecting member is integrated with the heat radiating member .
JP2003044335A 2003-02-21 2003-02-21 Semiconductor device Expired - Fee Related JP3934565B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003044335A JP3934565B2 (en) 2003-02-21 2003-02-21 Semiconductor device
EP04250449A EP1450402A1 (en) 2003-02-21 2004-01-28 Semiconductor device with improved heat dissipation, and a method of making semiconductor device
KR1020040006251A KR20040075714A (en) 2003-02-21 2004-01-30 Semiconductor device and a method of making semiconductor device
US10/772,252 US7199467B2 (en) 2003-02-21 2004-02-06 Semiconductor device with improved heat dissipation, and a method of making semiconductor device
US11/235,269 US20060019430A1 (en) 2003-02-21 2005-09-27 Semiconductor device with improved heat dissipation, and a method of making semiconductor device
US11/235,270 US7115444B2 (en) 2003-02-21 2005-09-27 Semiconductor device with improved heat dissipation, and a method of making semiconductor device
US11/654,555 US7381592B2 (en) 2003-02-21 2007-01-18 Method of making a semiconductor device with improved heat dissipation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044335A JP3934565B2 (en) 2003-02-21 2003-02-21 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007038215A Division JP2007142461A (en) 2007-02-19 2007-02-19 Semiconductor device, method of manufacturing the same, and method of manufacturing heat-dissipating member

Publications (2)

Publication Number Publication Date
JP2004253703A JP2004253703A (en) 2004-09-09
JP3934565B2 true JP3934565B2 (en) 2007-06-20

Family

ID=32732992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044335A Expired - Fee Related JP3934565B2 (en) 2003-02-21 2003-02-21 Semiconductor device

Country Status (4)

Country Link
US (4) US7199467B2 (en)
EP (1) EP1450402A1 (en)
JP (1) JP3934565B2 (en)
KR (1) KR20040075714A (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4390541B2 (en) * 2003-02-03 2009-12-24 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
TWI234860B (en) * 2004-04-02 2005-06-21 Advanced Semiconductor Eng Chip package and process thereof
US6977818B1 (en) * 2004-05-10 2005-12-20 Apple Computer, Inc. Heat dissipating device for an integrated circuit chip
US7271034B2 (en) * 2004-06-15 2007-09-18 International Business Machines Corporation Semiconductor device with a high thermal dissipation efficiency
US7319048B2 (en) * 2004-09-03 2008-01-15 Intel Corporation Electronic assemblies having a low processing temperature
JP3856812B2 (en) * 2004-11-29 2006-12-13 シャープ株式会社 Light source device and projection-type image display device
US7049695B1 (en) * 2005-01-14 2006-05-23 International Business Machines Corporation Method and device for heat dissipation in semiconductor modules
US8030755B2 (en) * 2005-04-22 2011-10-04 Stats Chippac Ltd. Integrated circuit package system with a heat sink
JP4617209B2 (en) * 2005-07-07 2011-01-19 株式会社豊田自動織機 Heat dissipation device
US7327029B2 (en) 2005-09-27 2008-02-05 Agere Systems, Inc. Integrated circuit device incorporating metallurigical bond to enhance thermal conduction to a heat sink
JP4568215B2 (en) * 2005-11-30 2010-10-27 三洋電機株式会社 CIRCUIT DEVICE AND CIRCUIT DEVICE MANUFACTURING METHOD
JP4764159B2 (en) * 2005-12-20 2011-08-31 富士通セミコンダクター株式会社 Semiconductor device
US8890312B2 (en) * 2006-05-26 2014-11-18 The Hong Kong University Of Science And Technology Heat dissipation structure with aligned carbon nanotube arrays and methods for manufacturing and use
CN101449374B (en) * 2006-06-08 2011-11-09 国际商业机器公司 Highly heat conductive, flexible sheet and its manufacture method
WO2008108334A1 (en) * 2007-03-06 2008-09-12 Nikon Corporation Semiconductor device and method for manufacturing the semiconductor device
JP4648351B2 (en) * 2007-03-30 2011-03-09 住友ベークライト株式会社 Heat transfer sheet and heat dissipation structure
US8703271B2 (en) * 2007-04-23 2014-04-22 University College Cork—National University of Ireland Thermal interface material
DE102007019885B4 (en) * 2007-04-27 2010-11-25 Wieland-Werke Ag Heatsink with matrix-structured surface
JP5157266B2 (en) * 2007-06-08 2013-03-06 富士通株式会社 Radiator and method of manufacturing radiator
US20090127701A1 (en) * 2007-11-15 2009-05-21 Nitin Goel Thermal attach for electronic device cooling
US8356657B2 (en) * 2007-12-19 2013-01-22 Teledyne Scientific & Imaging, Llc Heat pipe system
CN101752328A (en) * 2008-12-18 2010-06-23 财团法人工业技术研究院 Semi-chip packaging structure and production method thereof
EP2394174A4 (en) * 2009-02-05 2012-08-01 Gen Hospital Corp Biomarkers of hemorrhagic shock
US7964951B2 (en) * 2009-03-16 2011-06-21 Ati Technologies Ulc Multi-die semiconductor package with heat spreader
JP2011054806A (en) * 2009-09-02 2011-03-17 Renesas Electronics Corp Semiconductor device and method of manufacturing the same
US8362609B1 (en) 2009-10-27 2013-01-29 Xilinx, Inc. Integrated circuit package and method of forming an integrated circuit package
US20110228481A1 (en) * 2010-03-19 2011-09-22 Domintech Co., Ltd. Thermally conductive interface means
JP5437179B2 (en) * 2010-06-29 2014-03-12 新光電気工業株式会社 Semiconductor package and manufacturing method thereof
US8810028B1 (en) 2010-06-30 2014-08-19 Xilinx, Inc. Integrated circuit packaging devices and methods
US8941232B2 (en) 2011-02-24 2015-01-27 Taiwan Semiconductor Manufacturing Company, Ltd. Metal bumps for cooling device connection
DE102011078582A1 (en) * 2011-07-04 2013-01-10 Robert Bosch Gmbh Method for producing structured sintered layers and semiconductor component with structured sintered layer
KR20130105175A (en) * 2012-03-16 2013-09-25 삼성전자주식회사 Semiconductor package having protective layer and method of forming the same
US8872332B2 (en) * 2012-04-30 2014-10-28 Infineon Technologies Ag Power module with directly attached thermally conductive structures
DE102013219642A1 (en) * 2013-09-27 2015-04-02 Siemens Aktiengesellschaft Process for diffusion soldering to form a diffusion zone as a solder joint and electronic assembly with such a solder joint
WO2015045648A1 (en) * 2013-09-30 2015-04-02 富士電機株式会社 Semiconductor device, method for assembling semiconductor device, component for semiconductor devices and unit module
US9330998B2 (en) * 2014-04-18 2016-05-03 Laird Technologies, Inc. Thermal interface material assemblies and related methods
JP6686499B2 (en) * 2016-02-12 2020-04-22 株式会社村田製作所 Heat dissipation structure of semiconductor integrated circuit device, semiconductor integrated circuit device and manufacturing method thereof
US9570372B1 (en) * 2016-03-24 2017-02-14 Bridge Semiconductor Corporation Thermally enhanced semiconductor assembly with heat spreader and integrated dual build-up circuitries and method of making the same
JP6711098B2 (en) * 2016-04-15 2020-06-17 オムロン株式会社 Heat dissipation structure of semiconductor device
US10410958B2 (en) * 2016-08-03 2019-09-10 Soliduv, Inc. Strain-tolerant die attach with improved thermal conductivity, and method of fabrication
US10153224B2 (en) * 2016-09-14 2018-12-11 Globalfoundries Inc. Backside spacer structures for improved thermal performance
JP7006706B2 (en) * 2018-01-05 2022-01-24 三菱電機株式会社 Semiconductor device
US20200373220A1 (en) * 2019-05-22 2020-11-26 Intel Corporation Integrated circuit packages with thermal interface materials with different material compositions
US11264306B2 (en) * 2019-09-27 2022-03-01 International Business Machines Corporation Hybrid TIMs for electronic package cooling
DE102020128453A1 (en) 2020-10-29 2022-05-05 Erwin Quarder Systemtechnik Gmbh compensation component
FR3128820A1 (en) * 2021-10-29 2023-05-05 Stmicroelectronics (Grenoble 2) Sas Cooling an electronic device

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176750A (en) 1981-04-24 1982-10-30 Hitachi Ltd Cooler for electronic device
JPS6094744A (en) * 1983-10-27 1985-05-27 Nippon Denso Co Ltd Hybrid ic device
US4838347A (en) * 1987-07-02 1989-06-13 American Telephone And Telegraph Company At&T Bell Laboratories Thermal conductor assembly
JPH01117049A (en) * 1987-10-30 1989-05-09 Hitachi Ltd Integrated circuit element cooling device
US5637925A (en) * 1988-02-05 1997-06-10 Raychem Ltd Uses of uniaxially electrically conductive articles
JPH02121332A (en) * 1988-10-28 1990-05-09 Shimadzu Corp Manufacture of solder bump
JP3236137B2 (en) * 1993-07-30 2001-12-10 富士通株式会社 Semiconductor element cooling device
JP2756075B2 (en) * 1993-08-06 1998-05-25 三菱電機株式会社 Metal base substrate and electronic device using the same
US5604978A (en) * 1994-12-05 1997-02-25 International Business Machines Corporation Method for cooling of chips using a plurality of materials
US5981085A (en) * 1996-03-21 1999-11-09 The Furukawa Electric Co., Inc. Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
JPH1050770A (en) 1996-08-05 1998-02-20 Hitachi Ltd Semiconductor device and its manufacture
US6323549B1 (en) * 1996-08-29 2001-11-27 L. Pierre deRochemont Ceramic composite wiring structures for semiconductor devices and method of manufacture
US6127724A (en) * 1996-10-31 2000-10-03 Tessera, Inc. Packaged microelectronic elements with enhanced thermal conduction
TW319904B (en) * 1997-01-20 1997-11-11 United Microelectronics Corp Three dimensional read only memory and manufacturing method thereof
US5990552A (en) * 1997-02-07 1999-11-23 Intel Corporation Apparatus for attaching a heat sink to the back side of a flip chip package
JPH10303340A (en) 1997-04-25 1998-11-13 Toshiba Corp Semiconductor device and its manufacturing method
JPH1167998A (en) 1997-08-19 1999-03-09 Matsushita Electric Ind Co Ltd Csp, bga and semiconductor device
JP2000031360A (en) * 1998-07-08 2000-01-28 Hitachi Ltd Multi-chip module
JP2000281802A (en) * 1999-03-30 2000-10-10 Polymatech Co Ltd Thermoconductive formed shape, its production, and semiconductor device
JP3277996B2 (en) * 1999-06-07 2002-04-22 日本電気株式会社 Circuit device and method of manufacturing the same
US6391442B1 (en) * 1999-07-08 2002-05-21 Saint-Gobain Performance Plastics Corporation Phase change thermal interface material
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
JP2001110951A (en) 1999-10-08 2001-04-20 Hitachi Ltd Semiconductor device and manufacturing method thereof
JP3446826B2 (en) * 2000-04-06 2003-09-16 沖電気工業株式会社 Semiconductor device and manufacturing method thereof
US6616999B1 (en) * 2000-05-17 2003-09-09 Raymond G. Freuler Preapplicable phase change thermal interface pad
JP3280954B2 (en) 2000-06-02 2002-05-13 株式会社東芝 Circuit module and electronic equipment mounted with circuit module
FR2813146A1 (en) * 2000-08-21 2002-02-22 Orient Semiconductor Elect Ltd Improvement of the heat-dissipative structure of a flip chip module involves covering the module completely with an epoxy resin to provide direct contact between the module and resin
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
US6667548B2 (en) * 2001-04-06 2003-12-23 Intel Corporation Diamond heat spreading and cooling technique for integrated circuits
US6821625B2 (en) * 2001-09-27 2004-11-23 International Business Machines Corporation Thermal spreader using thermal conduits
US6504723B1 (en) * 2001-11-15 2003-01-07 Intel Corporation Electronic assembly having solder thermal interface between a die substrate and a heat spreader
US6812548B2 (en) * 2001-11-30 2004-11-02 Intel Corporation Backside metallization on sides of microelectronic dice for effective thermal contact with heat dissipation devices
US6841413B2 (en) * 2002-01-07 2005-01-11 Intel Corporation Thinned die integrated circuit package
US20030127727A1 (en) * 2002-01-09 2003-07-10 Nitto Denko Corporation Thermally conductive sheet and semiconductor device using same
JP2003273294A (en) 2002-01-09 2003-09-26 Nitto Denko Corp Thermal conductive sheet and semiconductor device using the same
JP2003282631A (en) 2002-03-26 2003-10-03 Fujikura Ltd Semiconductor device
US7118941B2 (en) * 2003-06-25 2006-10-10 Intel Corporation Method of fabricating a composite carbon nanotube thermal interface device
US7030485B2 (en) * 2003-06-26 2006-04-18 Intel Corporation Thermal interface structure with integrated liquid cooling and methods
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
US6919231B1 (en) * 2004-03-24 2005-07-19 Intel Corporation Methods of forming channels on an integrated circuit die and die cooling systems including such channels

Also Published As

Publication number Publication date
EP1450402A1 (en) 2004-08-25
US7115444B2 (en) 2006-10-03
US20040164402A1 (en) 2004-08-26
JP2004253703A (en) 2004-09-09
US7381592B2 (en) 2008-06-03
US20060019430A1 (en) 2006-01-26
KR20040075714A (en) 2004-08-30
US20060068522A1 (en) 2006-03-30
US20070117272A1 (en) 2007-05-24
US7199467B2 (en) 2007-04-03

Similar Documents

Publication Publication Date Title
JP3934565B2 (en) Semiconductor device
US6756684B2 (en) Flip-chip ball grid array semiconductor package with heat-dissipating device and method for fabricating the same
US7449363B2 (en) Semiconductor package substrate with embedded chip and fabrication method thereof
US7138706B2 (en) Semiconductor device and method for manufacturing the same
JP3549294B2 (en) Semiconductor device and its mounting structure
US20030214049A1 (en) Heat dissipating flip-chip ball grid array
US7605020B2 (en) Semiconductor chip package
CN101425486A (en) Flip chip packages with spacers separating heat sinks and substrates
JP2001291801A (en) Directly attached chip-scale package
US6936501B1 (en) Semiconductor component and method of manufacture
US11222877B2 (en) Thermally coupled package-on-package semiconductor packages
TW200836307A (en) Thermally enhanced quad flat no leads (QFN) IC package and method
JP2012074497A (en) Circuit board
US6828676B2 (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor device unit
JP2007511101A (en) Electronic packaging materials for use with LOW-K dielectric containing semiconductor devices
JP3116926B2 (en) Package structure and semiconductor device, package manufacturing method, and semiconductor device manufacturing method
CN115966564A (en) Chip packaging structure for improving heat dissipation and preparation method thereof
JP3628991B2 (en) Semiconductor device and manufacturing method thereof
JP2001168242A (en) Semiconductor device and manufacturing method thereof
JP2007142461A (en) Semiconductor device, method of manufacturing the same, and method of manufacturing heat-dissipating member
US11948852B2 (en) Semiconductor device package
JP7348485B2 (en) Manufacturing method for package substrates, electronic devices and package substrates
JP3906130B2 (en) Manufacturing method of semiconductor device
JP2004319656A (en) Method of manufacturing wafer level csp
JPH06244244A (en) Substrate for semiconductor device mounting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees