JP2003273294A - Thermal conductive sheet and semiconductor device using the same - Google Patents

Thermal conductive sheet and semiconductor device using the same

Info

Publication number
JP2003273294A
JP2003273294A JP2003001015A JP2003001015A JP2003273294A JP 2003273294 A JP2003273294 A JP 2003273294A JP 2003001015 A JP2003001015 A JP 2003001015A JP 2003001015 A JP2003001015 A JP 2003001015A JP 2003273294 A JP2003273294 A JP 2003273294A
Authority
JP
Japan
Prior art keywords
metal
heat
conductive sheet
semiconductor element
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003001015A
Other languages
Japanese (ja)
Inventor
Ichiro Suehiro
一郎 末▲ひろ▼
Noriaki Harada
憲章 原田
Yuji Hotta
祐治 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003001015A priority Critical patent/JP2003273294A/en
Publication of JP2003273294A publication Critical patent/JP2003273294A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal conductive sheet which, even at low pressure whereby a large-sized semiconductor element is hard to crack, can be adhered properly to the semiconductor element and a radiator plate to obtain excellent thermal conductivity, and to provide a semiconductor device using the sheet. <P>SOLUTION: In a thermal conductive sheet 1, a plurality of metal projections 3 are disposed on at least one surface of metal foil 2, and at least a part of clearances between the plurality of metal projections 3 is filled with a resin 4, and the resin 4 is heated and/or pressurized to be melted and/or to be made to flow, thereby having an adhesion function. In a semiconductor device 7, at least a semiconductor element 5 and a radiator plate 6 are adhered to the thermal conductive sheet 1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子で発生
する熱を放熱板(熱放散板、ヒートスプレッダ等)へ効
率よく伝える熱伝導シート、およびこれを組み込んだ半
導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat conductive sheet that efficiently transfers heat generated in a semiconductor element to a heat dissipation plate (heat dissipation plate, heat spreader, etc.), and a semiconductor device incorporating the same.

【0002】[0002]

【従来の技術】半導体素子の高密度化・高性能化に伴
い、半導体素子から発生する熱の影響が、半導体装置お
よび半導体装置を組み込んだ電子機器の設計の自由度を
狭める一要因になっている。そのような熱の影響を軽減
するための一手段として、作動時に半導体素子から発生
する熱を、熱伝導シートを介して半導体素子の外側の放
熱板に効率よく伝える方法が挙げられる。そのような方
法により、半導体素子の高温化を防ぎ、高温動作不良を
低減させることが期待される。
2. Description of the Related Art With the increase in density and performance of semiconductor elements, the influence of heat generated from the semiconductor elements has become a factor that narrows the degree of freedom in designing semiconductor devices and electronic equipment incorporating the semiconductor devices. There is. As one means for reducing the influence of such heat, there is a method of efficiently transmitting the heat generated from the semiconductor element during operation to the heat dissipation plate outside the semiconductor element via the heat conductive sheet. By such a method, it is expected that the semiconductor element is prevented from being heated to a high temperature and the high temperature operation failure is reduced.

【0003】従来の熱伝導シートとしては、金属箔の片
面または両面に、熱伝導性物質を含むシリコーン樹脂組
成物の硬化物を積層してなる放熱シート(熱伝導シー
ト)が記載されている(特許文献1参照)。該シートは
半導体素子への密着性には優れるが、熱の伝導性が十分
でなく、多量の熱量を発生する高密度化した半導体素子
への使用には不向きである。
As a conventional heat-conducting sheet, there is described a heat-dissipating sheet (heat-conducting sheet) obtained by laminating a cured product of a silicone resin composition containing a heat-conducting substance on one side or both sides of a metal foil ( See Patent Document 1). Although the sheet has excellent adhesion to a semiconductor element, it does not have sufficient heat conductivity and is not suitable for use in a highly densified semiconductor element that generates a large amount of heat.

【0004】別の従来技術として、本発明者らは、異方
導電性フィルムを熱伝導シートとして用いることを提案
した(特許文献2参照)。該熱伝導シートは、上記特開
平6−291226号公報に記載の熱伝導シートに比
べ、熱伝導性の点では優れていた。しかし、当該異方導
電性フィルムは、半導体素子への密着性が十分ではな
い。そのため、半導体素子が大きい場合(例えば、1辺
が10mm以上)には、接着時に加圧する際、該半導体
素子の反りに起因する応力の集中が生じて半導体素子が
割れてしまうという問題点がある。
As another conventional technique, the present inventors have proposed to use an anisotropic conductive film as a heat conductive sheet (see Patent Document 2). The heat conductive sheet was superior in heat conductivity to the heat conductive sheet described in JP-A-6-291226. However, the anisotropic conductive film does not have sufficient adhesion to the semiconductor element. Therefore, when the semiconductor element is large (for example, one side is 10 mm or more), when pressure is applied at the time of bonding, stress concentration due to the warp of the semiconductor element occurs and the semiconductor element is broken. .

【0005】[0005]

【特許文献1】特開平6−291226号公報[Patent Document 1] JP-A-6-291226

【特許文献2】特許第3179503号公報[Patent Document 2] Japanese Patent No. 3179503

【0006】半導体素子の反りの問題は、例えば、1辺
が10mm以上の大型の半導体素子の場合に顕在化す
る。半導体素子の反りの程度は、デバイスの種類、半導
体素子のサイズ、半導体素子の厚みによっても異なる
が、1辺が20mmの半導体素子で150μm程度の反
りになる場合もある。反りを有する半導体素子と放熱板
とを熱伝導シート(放熱シート)を介して加圧により接
着する際には、該加圧の応力が集中して、半導体素子が
割れてしまう可能性がある。このため、加圧力は1MP
a以下、通常は0.5MPa程度が好ましい。したがっ
て、大型の半導体素子にも用い得るために、このような
低圧の加圧力であっても、半導体素子と熱伝導シートと
の間および放熱板と熱伝導シートとの間で、十分な接着
性が得られるような熱伝導シートが求められていた。
The problem of the warp of the semiconductor element becomes apparent in the case of a large semiconductor element having one side of 10 mm or more. The degree of warpage of the semiconductor element varies depending on the type of device, the size of the semiconductor element, and the thickness of the semiconductor element, but a semiconductor element having one side of 20 mm may warp about 150 μm. When a semiconductor element having a warp and a heat dissipation plate are bonded by pressure via a heat conductive sheet (heat dissipation sheet), stress of the pressure is concentrated, and the semiconductor element may be broken. Therefore, the applied pressure is 1MP
It is preferably a or less, usually about 0.5 MPa. Therefore, since it can be used for a large-sized semiconductor element, even with such a low pressure, sufficient adhesiveness can be obtained between the semiconductor element and the heat conductive sheet and between the heat dissipation plate and the heat conductive sheet. There has been a demand for a heat conductive sheet that can obtain

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような実
情に鑑みてなされたものであって、その目的は、大型の
半導体素子が割れ難いような低圧力であっても、半導体
素子および放熱板へ良好に接着し、かつ、良好な熱伝導
性が得られる熱伝導シートを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide a semiconductor element and a heat sink even when the pressure is such that a large semiconductor element is hard to crack. An object is to provide a heat conductive sheet that is well adhered to a plate and that has good heat conductivity.

【0008】[0008]

【課題を解決するための手段】本発明は、以下の特徴を
有する。 (1)金属箔の少なくとも片面に複数の金属凸状物が配
置されており、それら複数の金属凸状物の間隙の少なく
とも一部を樹脂が満たしており、該樹脂は加熱および/
または加圧することにより、溶融および/または流動す
ることで接着機能を有するものである、熱伝導シート。 (2)上記金属箔の表裏両面に複数の金属凸状物が配置
されている、(1)に記載の熱伝導シート。 (3)上記金属凸状物が、150℃〜300℃で軟化し
て他の金属と金属接合する金属からなる、(1)または
(2)に記載の熱伝導シート。 (4)上記金属凸状物の各々の形状が、円柱、四角柱ま
たは球状である、(1)〜(3)のいずれかに記載の熱
伝導シート。 (5)上記金属箔の表裏両面の全表面積の20%〜75
%の面積の領域に上記金属凸状物が配置されている、
(1)〜(4)のいずれかに記載の熱伝導シート。 (6)(1)〜(5)のいずれかに記載の熱伝導シート
を介して、少なくとも半導体素子と放熱板とを接着した
半導体装置。 (7)上記放熱板が金属からなり、上記熱伝導シートを
構成する複数の金属凸状物の少なくとも一部と該放熱板
とが金属接合している、(6)に記載の半導体装置。
The present invention has the following features. (1) A plurality of metal protrusions are arranged on at least one surface of the metal foil, and at least a part of the gaps between the metal protrusions is filled with resin, and the resin is heated and / or heated.
Alternatively, a heat conductive sheet having an adhesive function by being melted and / or fluidized by applying pressure. (2) The heat-conducting sheet according to (1), in which a plurality of metal protrusions are arranged on both front and back surfaces of the metal foil. (3) The heat conductive sheet according to (1) or (2), wherein the metal protrusions are made of a metal that softens at 150 ° C. to 300 ° C. and forms a metal bond with another metal. (4) The heat conductive sheet according to any one of (1) to (3), wherein the shape of each of the metal protrusions is a cylinder, a square pole, or a sphere. (5) 20% to 75% of the total surface area of the front and back surfaces of the metal foil
%, The metal protrusions are arranged in the area of
The heat conductive sheet according to any one of (1) to (4). (6) A semiconductor device in which at least a semiconductor element and a heat dissipation plate are bonded via the heat conductive sheet according to any one of (1) to (5). (7) The semiconductor device according to (6), wherein the heat radiating plate is made of metal, and at least a part of the plurality of metal protrusions forming the heat conductive sheet are metal-bonded to the heat radiating plate.

【0009】[0009]

【発明の実施の形態】以下、図面を適宜参照して、本発
明に係る熱伝導シートおよび半導体素子を説明するが、
本発明は図面に記載された態様に限定されるわけではな
い。図1に示すように、本発明に係る熱伝導シート1
は、少なくとも金属箔2、金属凸状物3、樹脂4を有す
る。これらについて、順次説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The heat conductive sheet and the semiconductor element according to the present invention will be described below with reference to the drawings.
The invention is not limited to the embodiments shown in the drawings. As shown in FIG. 1, the heat conductive sheet 1 according to the present invention.
Has at least a metal foil 2, a metal protrusion 3, and a resin 4. These will be sequentially described.

【0010】1.金属箔 本発明に係る熱伝導シート1には、当該技術分野で公知
の金属箔2を用いることができるが、銅箔が好ましく用
いられる。それは、後述する金属凸状物3の加工が容易
になるためである。すなわち、金属凸状物3は、通常、
メッキ処理もしくはエッチング処理により形成される
が、この際、金属箔2として銅箔を用いることで、従来
のプロセスを容易に利用することができるためである。
1. Metal Foil A metal foil 2 known in the art can be used for the heat conductive sheet 1 according to the present invention, but a copper foil is preferably used. This is because the metal convex 3 to be described later can be easily processed. That is, the metal protrusion 3 is usually
This is because it is formed by plating or etching, but by using a copper foil as the metal foil 2 at this time, the conventional process can be easily utilized.

【0011】金属箔2の厚みは入手し易さやコスト等の
観点から、通常10μm〜100μmの範囲内で選択さ
れるが、金属凸状物3の形成時のハンドリングのしやす
さ、金属箔2自体の(変形に対する)追従性等を考慮し
て20μm〜70μmが好ましく、30μm〜40μm
がより好ましい。
The thickness of the metal foil 2 is usually selected in the range of 10 μm to 100 μm from the viewpoint of availability, cost, etc., but it is easy to handle when forming the metal protrusions 3, and the metal foil 2 20 μm to 70 μm is preferable, and 30 μm to 40 μm in consideration of its own (following deformation) followability.
Is more preferable.

【0012】金属箔2は後述の金属凸状物3と組合せる
ことによって、本発明に係る熱伝導シート1が従来の熱
伝導シートに比べて格段に優れた熱伝導性を有すること
における重要な役割を果たす。当該役割を果たす作用機
構については、後述の金属凸状物3の説明において詳述
する。
By combining the metal foil 2 with the metal convex 3 which will be described later, it is important in that the heat conductive sheet 1 according to the present invention has remarkably excellent heat conductivity as compared with the conventional heat conductive sheet. Play a role. The action mechanism that fulfills this role will be described in detail in the description of the metal protrusion 3 described later.

【0013】2.金属凸状物 金属凸状物3は、金属箔2の少なくとも片面、好ましく
は表裏両面に、複数個配置される。
2. A plurality of metal protrusions 3 are arranged on at least one surface of the metal foil 2, preferably both front and back surfaces.

【0014】本発明に係る熱伝導シート1の使用時に
は、図3に示すように、半導体素子(すなわち発熱体)
5および/または放熱板6の表面に、この金属凸状物3
の頂上部の表面が直接接触して、効率よく熱を伝達し得
る。具体的には、半導体素子5から発生した熱は、該半
導体素子5に接触する金属凸状物3を介して、金属箔2
に伝達されて、金属箔2の全面に広がる。そして、金属
箔2から放熱板6へは全面で伝熱される。これにより、
半導体素子5における局所的な発熱に対して、放熱板6
への放熱は全面で効率よく行われ得る。このように、本
発明に係る熱伝導シート1は、金属箔2と金属凸状物3
とを併せ持つことで従来の熱伝導シートよりも格段に優
れた熱伝導性を示し、かつ、半導体素子5の反りに対す
る追従性(金属箔2に由来する)も向上し得るのであ
る。
When the heat conductive sheet 1 according to the present invention is used, as shown in FIG. 3, a semiconductor element (that is, a heating element) is used.
5 and / or the surface of the heat dissipation plate 6, the metal projection 3
The surface of the apex of is directly contacted, and heat can be efficiently transferred. Specifically, the heat generated from the semiconductor element 5 is transferred to the metal foil 2 via the metal protrusion 3 that is in contact with the semiconductor element 5.
Is spread to the entire surface of the metal foil 2. Then, heat is transferred from the metal foil 2 to the heat dissipation plate 6 over the entire surface. This allows
The heat radiating plate 6 against the local heat generation in the semiconductor element 5.
Heat can be efficiently dissipated to the entire surface. As described above, the heat conductive sheet 1 according to the present invention includes the metal foil 2 and the metal protrusions 3.
By having both of them, it is possible to exhibit significantly higher thermal conductivity than the conventional thermal conductive sheet, and to improve the followability to the warp of the semiconductor element 5 (derived from the metal foil 2).

【0015】上記の作用を鑑みれば、金属凸状物3は、
金属箔2の片面のみではなく、両面に配置されるのが好
ましい。しかし、半導体素子5の発熱の程度、コスト等
を考慮して、金属箔2の片面のみに配置してもよい。
In view of the above operation, the metal convex 3 is
The metal foil 2 is preferably arranged not only on one side but on both sides. However, it may be arranged on only one side of the metal foil 2 in consideration of the heat generation of the semiconductor element 5, the cost, and the like.

【0016】金属凸状物3の形状には特に制限はなく、
例えば、球状、円柱状、円錐状、四角柱状、立方体など
から選択されるが、熱伝導性、加工性、接触安定性の観
点から球状や円柱状が好ましい。ここで、球状とは、完
全な球のみならず、金属凸状物3の一部が球面である場
合(例;金属凸状物3が半球状である場合、金属凸状物
3の先端部のみが曲面となっている場合等)をも含む。
金属凸状物3が円柱状または四角柱状である場合、その
太さ(直径または一辺の長さ)およびピッチ(隣接する
金属凸状物3の中心同士の距離)は、接触面との追従性
を得るため、通常φ(または□)0.05〜0.9であ
り、ピッチが0.07mm〜lmmであるが、接触面と
の追従性をより得やすい点から、φ(または□)0.0
5〜0.5であり、ピッチが0.07mm〜0.6mm
であることが好ましい。本明細書では、JIS Z83
17に従い、「φ」は円の直径を、「□」は正方形の1
辺の長さを、それぞれミリメートル単位で表す記号とし
て用いる。金属凸状物3の高さは、低すぎると、発熱面
(すなわち半導体素子5)、放熱面(すなわち放熱板
6)の反りや粗さ等による高低差に対する追従性が低下
し、また、高すぎると熱抵抗率が高くなることから、通
常10μm〜150μm、好ましくは50μm〜70μ
mの範囲である。
The shape of the metal protrusion 3 is not particularly limited,
For example, it is selected from a spherical shape, a cylindrical shape, a conical shape, a quadrangular prism shape, a cubic shape, and the like, and the spherical shape or the cylindrical shape is preferable from the viewpoint of thermal conductivity, workability, and contact stability. Here, the term "spherical" means not only a perfect sphere but also a part of the metal convex 3 is spherical (eg, the metal convex 3 is hemispherical, the tip of the metal convex 3). If only the curved surface).
When the metal protrusion 3 has a columnar shape or a quadrangular prism shape, its thickness (diameter or length of one side) and pitch (distance between the centers of the adjacent metal protrusions 3) are determined by followability with the contact surface. In order to obtain Φ (or □), the pitch is usually 0.05 to 0.9, and the pitch is 0.07 mm to 1 mm. .0
5 to 0.5 and the pitch is 0.07 mm to 0.6 mm
Is preferred. In the present specification, JIS Z83
17, "φ" is the diameter of the circle, and "□" is the square
The length of each side is used as a symbol representing each millimeter. If the height of the metal convex 3 is too low, the followability to the height difference due to the warp or roughness of the heat generating surface (that is, the semiconductor element 5) and the heat radiating surface (that is, the heat radiating plate 6) decreases, and If it is too much, the thermal resistivity becomes high, so it is usually 10 μm to 150 μm, preferably 50 μm to 70 μm.
The range is m.

【0017】金属凸状物3を形成する方法は特に限定は
なく、従来からプリント基板等に使用されるプロセスを
用いてもよい。具体例として、金属箔2の表面を、例え
ば、エッチングなどによって、選択的に除去すること
で、金属凸状物3を形成するプロセス、もしくは、金属
箔2に、選択的にメッキすることなどによって金属凸状
物3を形成するプロセス、もしくは、はんだなどを含有
したペースト状流動物をスクリーン印刷により配置する
プロセス等が挙げられる。メッキによる金属凸状物3の
形成においては、ニッケルメッキ、錫メッキ、銅メッ
キ、金メッキ、はんだメッキなどが選択される。半導体
素子5の反りに対する追従性を考慮すると、圧力に対し
て、容易に変形し得る、錫メッキ、金メッキ、はんだメ
ッキが好ましい。
The method for forming the metal protrusion 3 is not particularly limited, and a process conventionally used for a printed circuit board or the like may be used. As a specific example, the surface of the metal foil 2 is selectively removed by, for example, etching to form the metal protrusions 3, or the metal foil 2 is selectively plated. Examples thereof include a process of forming the metal protrusions 3, a process of arranging a paste-like fluid containing solder or the like by screen printing, and the like. In forming the metal protrusion 3 by plating, nickel plating, tin plating, copper plating, gold plating, solder plating or the like is selected. Considering the followability to the warp of the semiconductor element 5, tin plating, gold plating, and solder plating, which can be easily deformed against pressure, are preferable.

【0018】金属凸状物3の材質のより好ましい態様と
して、150℃〜300℃で軟化して他の金属と金属接
合し得る金属(はんだ、錫等)を挙げることができる。
ここで、「他の金属」とは、後述する放熱板6に用い得
る金属であれば特に種類は問わず、銅、ニッケル等が例
示される。このような材質の金属凸状物3を有する熱伝
導シート1と金属製の放熱板6とを用いた場合には、両
者を加熱(さらに、必要に応じ加圧)することにより両
者の間に金属接合を形成することができる。ここで、金
属接合とは、溶融接合を意味し、一般的な溶接などで実
現される接合である。金属接合においては、少なくとも
金属凸状物3が溶融すればよく、放熱板6は溶融しても
しなくてもよい。金属接合の典型例として熱軟化したは
んだと金属との接合を挙げることができる。このよう
に、金属接合の形成により、放熱板6と熱伝導シート1
との接触性を良好にすることで、熱伝導効率をさらに向
上させることも可能となる。
As a more preferable embodiment of the material of the metal protrusion 3, a metal (solder, tin, etc.) that can be softened at 150 ° C. to 300 ° C. and can be metal-bonded to another metal can be mentioned.
Here, the “other metal” is not particularly limited as long as it is a metal that can be used for the heat dissipation plate 6 described later, and examples thereof include copper and nickel. When the heat conductive sheet 1 having the metal protrusions 3 made of such a material and the metal heat dissipation plate 6 are used, they are heated (and if necessary, pressed) between them. A metallurgical bond can be formed. Here, the metal joining means fusion joining, and is joining realized by general welding or the like. In metal bonding, it is sufficient that at least the metal protrusion 3 is melted, and the heat dissipation plate 6 may or may not be melted. As a typical example of metal joining, joining of heat-softened solder and metal can be mentioned. Thus, by forming the metal joint, the heat dissipation plate 6 and the heat conductive sheet 1 are formed.
By improving the contact property with, it is possible to further improve the heat conduction efficiency.

【0019】金属凸状物3は、金属箔2の表面積(表裏
両面の合計)の20%〜75%の面積を占めるのが好ま
しく、35%〜50%の面積を占めるのがより好まし
い。これは、金属凸状物3の占める割合が多いほど熱伝
導性が向上する一方、金属凸状物3の占める割合が小さ
いほど半導体素子5の反りといった変形に追従し易いこ
とによる。
The metal protrusions 3 preferably occupy 20% to 75% of the surface area of the metal foil 2 (total of both front and back surfaces), and more preferably 35% to 50%. This is because the thermal conductivity improves as the proportion of the metal protrusions 3 increases, and the deformation such as the warp of the semiconductor element 5 tends to follow as the proportion of the metal protrusions 3 decreases.

【0020】3.樹脂 金属凸状物3の間隙に入れる樹脂4は熱硬化性樹脂また
は熱可塑性樹脂であって、加熱および/または加圧する
ことにより、溶融および/または流動することで接着機
能を有する樹脂である。ここで、加熱および/または加
圧とは、70℃〜250℃に加熱および/または0.5
MPa〜1.0MPaに加圧することを意味し、接着機
能を有するとは、他の固体(即ち、半導体素子5、放熱
板6)と接着し得ることをいう。このような樹脂4を用
いることにより、結果として低圧力で半導体素子5およ
び放熱板6へ接着し得ることになり、半導体素子の損傷
を防ぐことが期待される。樹脂4の接着力が十分であれ
ば圧接は不要であるが、そうでない場合は、半導体素子
と放熱板との間に配置したクランプを使用して圧接を加
えてもよい。
3. The resin 4 put in the gap between the resin-metal convexes 3 is a thermosetting resin or a thermoplastic resin, and has a bonding function by being melted and / or fluidized by heating and / or pressurizing. Here, heating and / or pressurization means heating to 70 ° C. to 250 ° C. and / or 0.5.
It means applying a pressure of MPa to 1.0 MPa, and having an adhesive function means being able to adhere to other solids (that is, the semiconductor element 5 and the heat dissipation plate 6). By using such a resin 4, as a result, the resin 4 can be bonded to the semiconductor element 5 and the heat sink 6 with a low pressure, and it is expected that the semiconductor element is prevented from being damaged. If the adhesive force of the resin 4 is sufficient, the pressure contact is not necessary, but if it is not, the pressure contact may be applied by using a clamp arranged between the semiconductor element and the heat dissipation plate.

【0021】本発明に用いる樹脂4の具体例としては、
熱可塑性ポリイミド樹脂、エポキシ樹脂、ポリエーテル
イミド樹脂、ポリアミド樹脂、シリコーン樹脂、フェノ
キシ樹脂、アクリル樹脂、ポリカルボジイミド樹脂、フ
ッ素樹脂、ポリエステル樹脂、ポリウレタン樹脂等を挙
げることができる。
Specific examples of the resin 4 used in the present invention include:
Examples thereof include thermoplastic polyimide resin, epoxy resin, polyetherimide resin, polyamide resin, silicone resin, phenoxy resin, acrylic resin, polycarbodiimide resin, fluororesin, polyester resin, polyurethane resin and the like.

【0022】金属凸状物3の間隙へ樹脂4を入れる方法
としては、低粘度で流動性を有する液状の樹脂4を塗布
して、スキジーなどを用いて金属凸状物3の頂上の表面
より上部の樹脂4をかき取り、間隙内のみに樹脂4を残
す方法、または、金属凸状物3の間隙に十分に埋まる体
積を有するシート状樹脂を当該間隙に挿入して加熱およ
び/または加圧することで、樹脂4を溶融および/また
は流動させて、金属凸状物3を該樹脂4を貫通して半導
体素子5および/または放熱板6へ接触せしめ、さらに
樹脂4を半導体素子5および/または放熱板6に接着せ
しめる方法等が挙げられるが、これらに限定されない。
As a method of inserting the resin 4 into the gaps between the metal protrusions 3, a liquid resin 4 having a low viscosity and fluidity is applied, and a squeegee or the like is used to remove the resin 4 from the top surface of the metal protrusions 3. A method of scraping off the upper resin 4 and leaving the resin 4 only in the gap, or a sheet-like resin having a volume sufficiently filled in the gap of the metal convex 3 is inserted into the gap and heated and / or pressurized Thus, the resin 4 is melted and / or flowed so that the metal convex 3 penetrates the resin 4 and is brought into contact with the semiconductor element 5 and / or the heat dissipation plate 6, and further the resin 4 is applied to the semiconductor element 5 and / or Although the method of adhering to the heat sink 6 is mentioned, it is not limited to these.

【0023】樹脂4は、図1に示すように、複数の金属
凸状物3の全ての間隙を満たしていてもよいし、図2に
示すように、一部の間隙を満たしていてもよい。但し、
熱伝導シート1のうち、半導体素子5と接着する面の間
隙は全て樹脂で満たされていることが接着性の向上の点
から好ましい。一方、放熱板6と接着する面について
は、例えば、上述のように金属凸状物3と放熱板6とが
金属接合する場合には、十分な接着性(接合性)が得ら
れることが多いので、必ずしも樹脂4で満たさなくても
よい。
The resin 4 may fill all the gaps of the plurality of metal protrusions 3 as shown in FIG. 1, or may fill part of the gaps as shown in FIG. . However,
In the heat conductive sheet 1, it is preferable that all the gaps on the surface to be bonded to the semiconductor element 5 are filled with resin from the viewpoint of improving the adhesiveness. On the other hand, regarding the surface to be bonded to the heat dissipation plate 6, for example, when the metal convex 3 and the heat dissipation plate 6 are metal-bonded as described above, sufficient adhesiveness (bondability) is often obtained. Therefore, the resin 4 does not necessarily have to be filled.

【0024】以上のようにして得られた熱伝導シート1
と、半導体素子5および放熱板6との接着は、例えば、
フリップチッブボンダーのような接着に用いられる公知
の装置を使用すること等で達成される。このようにし
て、図3に示すように、熱伝導シート1を介して半導体
素子5と放熱板6とを接着した半導体装置7を得ること
ができる。該半導体装置7は、熱伝導シート1、半導体
素子5および放熱板6以外の他の要素(ヒートシンク、
放熱ファン等)をさらに有していてもよい。
The heat conductive sheet 1 obtained as described above
And the semiconductor element 5 and the heat sink 6 are bonded to each other, for example,
This is achieved by using a known device used for bonding such as a flip chip bonder. In this way, as shown in FIG. 3, the semiconductor device 7 in which the semiconductor element 5 and the heat dissipation plate 6 are bonded via the heat conductive sheet 1 can be obtained. The semiconductor device 7 includes elements other than the heat conductive sheet 1, the semiconductor element 5 and the heat dissipation plate 6 (heat sink,
The heat radiation fan or the like) may be further included.

【0025】半導体素子5の形状、大きさは特に限定は
ないが、従来の熱伝導シート等を適用するのが困難であ
った大型で加圧により割れ易い半導体素子5に対しても
本発明の熱伝導シート1を容易に適用することができ
る。ここで、半導体素子5が大型であるとは、面積が1
00mm2以上(例えば、1辺が10mm以上の正方
形、好ましくは1辺が15〜25.4mmの正方形)で
あることをいう。
The shape and size of the semiconductor element 5 are not particularly limited, but the present invention can be applied to a large-sized semiconductor element 5 which is difficult to apply a conventional heat conductive sheet or the like and is easily broken by pressure. The heat conductive sheet 1 can be easily applied. Here, the large size of the semiconductor element 5 means that the area is 1
00 mm 2 or more (for example, a square having one side of 10 mm or more, preferably a square having one side of 15 to 25.4 mm).

【0026】[0026]

【実施例】以下、各実施例に基づいて、本発明について
さらに詳細に説明するが、本発明は実施例のみに限定さ
れるものではない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the examples.

【0027】(実施例1)金属箔2としての、縦15m
m、横15mm、厚み70μmの電解銅箔(三井金属工
業製SuperHTE)の表裏両面に直径0.47m
m、ピッチ0.6mm、深さ20μmのエッチング処理
を施して円柱状の金属凸状物3(バンプ)を形成した。
この処理により、金属箔2の全表面積の49%を金属凸
状物3が占めることになった。当該バンプの間隙に熱可
塑性樹脂であるポリカルボジイミド樹脂4(熱軟化温度
120℃、ベース濃度32%、トルエン希釈)を流し、
スキジーで表面をかきとることで、バンプの間隙に埋め
込んでから、120℃、1分間加温し、硬化させた。そ
の後、平面精密研磨でバンプ表面を樹脂4から露出させ
て熱伝導シート1を得た。その後、図3に示すように放
熱板6としてのヒートスプレッダ(銅製、厚み1.5m
m、20mm四方)と半導体素子5(15mm四方)で
上記熱伝導シート1を挟んで、230℃、0.5MP
a、20秒で加熱、加圧を施した。
(Example 1) 15 m long as the metal foil 2
m, width 15 mm, thickness 70 μm electrolytic copper foil (Super HTE manufactured by Mitsui Kinzoku Kogyo) 0.47 m in diameter on both sides
m, a pitch of 0.6 mm, and a depth of 20 μm were subjected to an etching treatment to form a cylindrical metal protrusion 3 (bump).
By this treatment, 49% of the total surface area of the metal foil 2 was occupied by the metal protrusions 3. Polycarbodiimide resin 4 (thermosoftening temperature 120 ° C., base concentration 32%, diluted with toluene), which is a thermoplastic resin, is flowed in the gap between the bumps,
The surface was scraped off with squeegee to fill the gaps between the bumps, and then heated at 120 ° C. for 1 minute to cure. After that, the bump surface was exposed from the resin 4 by precision polishing to obtain a heat conductive sheet 1. Then, as shown in FIG. 3, a heat spreader (made of copper, thickness 1.5 m
m, 20 mm square) and the semiconductor element 5 (15 mm square) sandwiching the heat conductive sheet 1, and 230 ° C., 0.5 MP
a, heating and pressure were applied for 20 seconds.

【0028】初期状態での半導体素子5の発熱温度とヒ
ートスプレッダ面への伝達温度との温度差Δtの計測か
ら熱伝導シート1自体の熱抵抗率を算出したところ、
0.12cm2K/Wであった。その後、冷熱衝撃試験
(125℃/−55℃、30分/30分、1サイクル)
を1000サイクル実施し、再度Δtを計測、熱抵抗率
を算出したところ、0.13cm2K/Wであり、冷熱
衝撃試験前後で変化がなかった。
When the thermal resistivity of the heat conductive sheet 1 itself was calculated from the measurement of the temperature difference Δt between the heat generation temperature of the semiconductor element 5 in the initial state and the transfer temperature to the heat spreader surface,
It was 0.12 cm 2 K / W. After that, thermal shock test (125 ° C / -55 ° C, 30 minutes / 30 minutes, 1 cycle)
Was carried out for 1000 cycles, Δt was measured again, and the thermal resistivity was calculated. As a result, it was 0.13 cm 2 K / W, and there was no change before and after the thermal shock test.

【0029】(実施例2)金属箔2としての、縦20m
m、横20mm、厚み35μmの銅箔(三井金属工業製
SuperHTE)の片面に、0.2mm四方、ピッチ
0.4mm、深さ20μmのハーフエッチング処理を施
して四角柱状の金属凸状物3(バンプ)を形成した。ま
た、この銅箔のもう一方の面にパターンはんだ(Pb/
Sn共晶はんだ)メッキにより0.2mm四方、ピッチ
0.4mm、高さ20μmの四角柱状の金属凸状物3
(凸状バンプ)を形成した。この処理により、金属箔2
の全表面積の25%を金属凸状物3が占めることになっ
た。この銅箔と実施例1と同様の放熱板6(ヒートスプ
レッダ)および半導体素子5とを、ハーフエッチングに
より形成したバンプと半導体素子5とが接するような向
きで、図3のように接着した。接着する際、15mm四
方、厚み10μmのポリカルボジイミド樹脂4(熱軟化
温度150℃)で作られた接着シートを半導体素子5と
銅箔との間、および銅箔とヒートスプレッダとの間に挟
みこんで、200℃、0.5MPa、20秒で加熱、加
圧を施した。
(Example 2) 20 m in length as the metal foil 2
m, width 20 mm, thickness 35 μm copper foil (Super HTE manufactured by Mitsui Kinzoku Kogyo Co., Ltd.) was subjected to half-etching treatment of 0.2 mm square, pitch 0.4 mm, and depth 20 μm on one side to form a rectangular columnar metal convex 3 ( Bumps) were formed. In addition, pattern solder (Pb /
Sn eutectic solder) plating to form a square metal protrusion 3 having a square shape of 0.2 mm square, a pitch of 0.4 mm, and a height of 20 μm.
(Convex bump) was formed. By this treatment, the metal foil 2
25% of the total surface area of the metal convex 3 was to be occupied. The copper foil, the heat dissipation plate 6 (heat spreader) and the semiconductor element 5 similar to those in Example 1 were bonded as shown in FIG. 3 so that the bumps formed by half etching and the semiconductor element 5 were in contact with each other. At the time of bonding, an adhesive sheet made of polycarbodiimide resin 4 (heat softening temperature 150 ° C.) having a side of 15 mm and a thickness of 10 μm is sandwiched between the semiconductor element 5 and the copper foil and between the copper foil and the heat spreader. The sample was heated and pressurized at 200 ° C., 0.5 MPa, 20 seconds.

【0030】その後、実施例1と同様に、半導体素子5
とヒートスプレッダとの間の温度差Δtを計測し、熱抵
抗率を算出したところ0.08cm2K/Wであった。
また、実施例1と同様の冷熱衝撃試験を1000サイク
ル実施し、再度Δtを計測し、熱抵抗率を算出したとこ
ろ、0.09cm2K/Wであり、冷熱衝撃試験前後で
変化がなかった。
Thereafter, as in the first embodiment, the semiconductor element 5
The temperature difference Δt between the heat spreader and the heat spreader was measured, and the thermal resistivity was calculated to be 0.08 cm 2 K / W.
Further, the same thermal shock test as in Example 1 was carried out for 1000 cycles, Δt was measured again, and the thermal resistivity was calculated to be 0.09 cm 2 K / W, which was unchanged before and after the thermal shock test. .

【0031】(実施例3)実施例2においてバンプを形
成した銅箔を、放熱板6としてのヒートスプレッダ(銅
製、表面に金メッキ処理、厚み1.5mm、20mm四
方)と半導体素子5(実施例1と同じ寸法)との間に挿
入し、235℃、0.5MPa、20秒で加熱、加圧し
て、ハーフエッチングにより形成したバンプと半導体素
子とが接するような向きで接着した。このとき、実施例
2と同様の接着シートを、半導体素子5と銅箔との間の
みに挟みこんで接着し、ヒートスプレッダと銅箔との間
は、接着シートなしでバンプとヒートスプレッダとを金
属接合させた。
(Embodiment 3) The copper foil on which bumps are formed in Embodiment 2 is replaced with a heat spreader (made of copper, gold-plated on the surface, thickness 1.5 mm, 20 mm square) as the heat dissipation plate 6 and the semiconductor element 5 (Embodiment 1). (The same dimension as the above), and heated and pressed at 235 ° C., 0.5 MPa and 20 seconds for bonding so that the bump formed by half etching and the semiconductor element are in contact with each other. At this time, the same adhesive sheet as in Example 2 was sandwiched and bonded only between the semiconductor element 5 and the copper foil, and between the heat spreader and the copper foil, the bump and the heat spreader were metal-bonded without the adhesive sheet. Let

【0032】その後、実施例1と同様に、半導体素子5
とヒートスプレッダとの間の温度差Δtを計測し、熱抵
抗率を算出したところ0.05cm2K/Wであった。
また、実施例1と同様の冷熱衝撃試験を1000サイク
ル実施し、再度Δtを計測し、熱抵抗率を算出したとこ
ろ、0.05cm2K/Wであり、冷熱衝撃試験前後で
変化がなかった。
Thereafter, as in the first embodiment, the semiconductor element 5
The temperature difference Δt between the heat spreader and the heat spreader was measured, and the thermal resistivity was calculated to be 0.05 cm 2 K / W.
Further, the same thermal shock test as in Example 1 was carried out for 1000 cycles, Δt was measured again, and the thermal resistivity was calculated to be 0.05 cm 2 K / W, which was unchanged before and after the thermal shock test. .

【0033】(実施例4)金属箔2としての、縦15m
m、横15mm、厚み70μmの圧延銅箔(日本製箔製
TCU−O−70)の片面に、直径0.47mm、ピッ
チ0.6mm、深さ30μmのエッチング処理を施して
円柱状の金属凸状物3(バンプ)を形成した。この銅箔
のもう一方の面のこのバンプと同じ位置(真裏)には、
前記同様の直径、ピッチの高さ100μmのはんだバン
プを形成した。この処理により、金属箔2の全表面積の
49%を金属凸状物3が占めることになった。次いで、
銅箔のうちエッチングによるバンプを形成した面に、熱
可塑性樹脂であるポリカルボジイミド樹脂(熱軟化温度
120℃、ベース濃度32%、トルエン希釈)を流し、
スキジーで表面をかきとることで、バンプの間隙に埋め
込んでから、120℃、1分間加温し、硬化させた。そ
の後、平面精密研磨でバンプ表面を樹脂4から露出させ
て熱伝導シート1を得た。この熱伝導シート1を、放熱
板6としてのヒートスプレッダ(銅製、厚み1.5m
m、20mm四方)と半導体素子5(実施例1と同じ寸
法)との間に挿入し、240℃、0.5MPa、20秒
で加熱圧着した。このとき、エッチングにより形成した
バンプと半導体素子5とが接するような向きで接着し
た。ヒートスプレッダと銅箔(はんだバンプを形成した
面)との間は、バンプとヒートスプレッダとを金属接合
させた。
(Embodiment 4) Metal foil 2 having a length of 15 m
m, width 15 mm, thickness 70 μm rolled copper foil (Japan foil TCU-O-70), one side of which was subjected to etching treatment with a diameter of 0.47 mm, a pitch of 0.6 mm and a depth of 30 μm to form a cylindrical metal projection. Form 3 (bumps) was formed. At the same position as the bump on the other side of this copper foil (just behind),
Solder bumps having the same diameter and pitch height of 100 μm as above were formed. By this treatment, 49% of the total surface area of the metal foil 2 was occupied by the metal protrusions 3. Then
A polycarbodiimide resin (heat softening temperature 120 ° C., base concentration 32%, diluted with toluene), which is a thermoplastic resin, is flowed on the surface of the copper foil on which the bumps are formed by etching.
The surface was scraped off with squeegee to fill the gaps between the bumps, and then heated at 120 ° C. for 1 minute to cure. After that, the bump surface was exposed from the resin 4 by precision polishing to obtain a heat conductive sheet 1. A heat spreader (made of copper, thickness 1.5 m
m, 20 mm square) and the semiconductor element 5 (same dimensions as in Example 1), and thermocompression bonding was performed at 240 ° C., 0.5 MPa, 20 seconds. At this time, the bumps formed by etching and the semiconductor element 5 were bonded so that they were in contact with each other. The bump and the heat spreader were metal-bonded between the heat spreader and the copper foil (the surface on which the solder bump was formed).

【0034】その後、実施例1と同様に、半導体素子5
とヒートスプレッダとの間の温度差Δtを計測し、接触
抵抗を含めた熱抵抗率を算出したところ0.12cm2
K/Wであった。また、実施例1と同様の冷熱衝撃試験
を1000サイクル実施し、再度Δtを計測し、熱抵抗
率を算出したところ、0.13cm2K/Wであり、冷
熱衝撃試験前後で変化がなかった。
Then, as in the first embodiment, the semiconductor element 5
The temperature difference Δt between the heat spreader and the heat spreader was measured, and the thermal resistivity including the contact resistance was calculated to be 0.12 cm 2
It was K / W. Further, the same thermal shock test as in Example 1 was carried out for 1000 cycles, Δt was measured again, and the thermal resistivity was calculated to be 0.13 cm 2 K / W, which was unchanged before and after the thermal shock test. .

【0035】(実施例5)金属箔2としての、縦20m
m、横20mm、厚み35μmの圧延銅箔(日本製箔製
TCU−O−35)の表裏両面に、スクリーン印刷によ
って、0.43mm四方、ピッチ0.6mm、高さ10
0μmの四角柱状の金属凸状物3(Pb/Sn共晶はん
だのバンプ)を形成した。バンプの位置は表裏で同位置
とした。この処理により、金属箔2の全表面積の61%
を金属凸状物3が占めることになった。金属箔2の片面
にはソルダーレジストを積層して、反対側の面にはポリ
カルボジイミド樹脂4(熱軟化温度150℃)で作られ
た厚み10μmの接着シートを貼り合わせた。その後、
平面精密研磨でバンプ表面を樹脂4から露出させること
で熱伝導シート1を得た。この熱伝導シート1を、放熱
板6としてのヒートスプレッダ(銅製、厚み1.5m
m、20mm四方)と半導体素子5(実施例1と同じ寸
法)との間に挿入し、240℃、0.5MPa、20秒
で加熱圧着した。このとき、接着シートを貼り合わせた
面と半導体素子5とが接するような向きで接着した。こ
のような接着により、はんだバンプは半導体素子面への
追従性が向上する。ヒートスプレッダとはんだバンプと
の間は金属接合させた。
(Example 5) 20 m in length as the metal foil 2
m, width 20 mm, thickness 35 μm rolled copper foil (Japan foil TCU-O-35) on both front and back sides by screen printing 0.43 mm square, pitch 0.6 mm, height 10
A metal protrusion 3 (Pb / Sn eutectic solder bump) having a square pillar shape of 0 μm was formed. The positions of the bumps were the same on the front and back. By this treatment, 61% of the total surface area of the metal foil 2
The metal convex 3 is occupied. A solder resist was laminated on one side of the metal foil 2, and an adhesive sheet made of polycarbodiimide resin 4 (heat softening temperature 150 ° C.) and having a thickness of 10 μm was attached to the opposite side. afterwards,
The heat conduction sheet 1 was obtained by exposing the bump surface from the resin 4 by precision polishing with a plane. A heat spreader (made of copper, thickness 1.5 m
m, 20 mm square) and the semiconductor element 5 (same dimensions as in Example 1), and thermocompression bonding was performed at 240 ° C., 0.5 MPa, 20 seconds. At this time, the bonding was performed so that the surface on which the adhesive sheet was bonded and the semiconductor element 5 were in contact with each other. Such adhesion improves the ability of the solder bump to follow the semiconductor element surface. The heat spreader and the solder bump were metal-bonded.

【0036】その後、実施例1と同様に、半導体素子5
とヒートスプレッダとの間の温度差Δtを計測し、接触
抵抗を含めた熱抵抗率を算出したところ0.08cm2
K/Wであった。また、実施例1と同様の冷熱衝撃試験
を1000サイクル実施し、再度Δtを計測し、熱抵抗
率を算出したところ、0.09cm2K/Wであり、冷
熱衝撃試験前後で変化がなかった。
Thereafter, as in the first embodiment, the semiconductor element 5
The temperature difference Δt between the heat spreader and the heat spreader was measured, and the thermal resistivity including the contact resistance was calculated to be 0.08 cm 2
It was K / W. Further, the same thermal shock test as in Example 1 was carried out for 1000 cycles, Δt was measured again, and the thermal resistivity was calculated to be 0.09 cm 2 K / W, which was unchanged before and after the thermal shock test. .

【0037】(比較例1)市販されているシリコーン樹
脂に高熱伝導性フィラー(アルミナ)を体積比で70%
充填した熱伝導シート(厚み0.5mm)を実施例1に
示すように半導体素子とヒートスプレッダとの間に挟み
込んだ。次いで、全体を160℃、0.5MPa、3秒
で加熱、加圧した。初期状態の半導体素子とヒートスプ
レッダとの間の温度差Δtを測定し、熱抵抗率を求める
と、1.5cm2K/W程度であった。当該熱伝導シー
トは、実施例1〜3の熱伝導シートに比べ格段に熱伝導
性が劣っていた。
(Comparative Example 1) Highly thermally conductive filler (alumina) was added to a commercially available silicone resin in a volume ratio of 70%.
The filled heat conductive sheet (thickness 0.5 mm) was sandwiched between the semiconductor element and the heat spreader as shown in Example 1. Then, the whole was heated and pressurized at 160 ° C. and 0.5 MPa for 3 seconds. The temperature difference Δt between the semiconductor element and the heat spreader in the initial state was measured, and the thermal resistivity was determined to be about 1.5 cm 2 K / W. The thermal conductive sheet was significantly inferior in thermal conductivity to the thermal conductive sheets of Examples 1 to 3.

【0038】(比較例2)市場で入手可能なシリコーン
樹脂に窒化珪素の超微粒子フィラーを重量比で80%充
填した熱伝導性ペーストを半導体素子の反りに対応すべ
く、0.1mm程度の厚みで塗布し、該ペーストを半導
体素子とヒートスプレッダとの間に挟み込んだ。初期の
状態のΔtを測定し、熱抵抗率を求めた結果0.15c
2K/W程度であった。その後、実施例1と同様の冷熱
衝撃試験を1000サイクル実施したところ、ペースト
が外部に流出しているのが観察された。また、再度Δt
を計測、熱抵抗率を算出したところ、熱抵抗は0.6c
2K/W程度となっており、熱伝導性の劣化を示す結
果となった。
(Comparative Example 2) A commercially available silicone resin is filled with 80% by weight of ultrafine particle filler of silicon nitride, and a thermally conductive paste having a thickness of about 0.1 mm is used to cope with warpage of a semiconductor element. And the paste was sandwiched between the semiconductor element and the heat spreader. The result of measuring the thermal resistance by measuring Δt in the initial state is 0.15c
It was about m 2 K / W. Thereafter, when the same thermal shock test as in Example 1 was carried out for 1000 cycles, it was observed that the paste had flowed out. In addition, Δt
Was measured and the thermal resistance was calculated, the thermal resistance was 0.6 c
It was about m 2 K / W, which resulted in deterioration of thermal conductivity.

【0039】[0039]

【発明の効果】本発明の熱伝導シート1は、(1)樹脂
4と金属箔2とを有することに起因して半導体素子5の
反り等の変形に追従し易くなり、(2)該樹脂4が加熱
および/または加圧により接着機能を有することに起因
して半導体素子5および放熱板6への接着性が向上し、
(3)金属凸状物3の存在により熱を効率よく伝導し得
て、(4)上記金属箔2の存在により局所的に発生した
熱を全面に広げることができる。したがって、本発明の
熱伝導シート1は、上記(1)、(2)の作用により、
大型の半導体素子5と接着する場合であっても該半導体
素子5が割れ難いような低圧力で接着でき、かつ、
(3)、(4)の作用により、接着後は半導体素子5の
作動時に発生する熱を効率的に放熱板6に伝導し得る。
また、本発明の好ましい態様においては、金属凸状物3
と放熱板6とは金属接合し得るので、さらに接着性(接
合性)および熱伝導性が向上し得る。このような熱伝導
シート1を有する半導体装置7は、半導体素子5から発
生する熱の問題を軽減し得る。従って、本発明に係る半
導体装置7を用いることで、電子機器の回路設計の自由
度が広がることが期待される。
EFFECTS OF THE INVENTION The heat conductive sheet 1 of the present invention (1) easily follows deformation such as warpage of the semiconductor element 5 due to having the resin 4 and the metal foil 2, and (2) the resin. 4 has an adhesive function by heating and / or pressurization, so that the adhesiveness to the semiconductor element 5 and the heat sink 6 is improved,
(3) Heat can be efficiently conducted due to the presence of the metal protrusions 3, and (4) heat locally generated due to the presence of the metal foil 2 can be spread over the entire surface. Therefore, the heat conductive sheet 1 of the present invention has the effects of (1) and (2) above.
Even when bonded to a large-sized semiconductor element 5, the semiconductor element 5 can be bonded at a low pressure such that the semiconductor element 5 is unlikely to break, and
Due to the effects of (3) and (4), the heat generated during the operation of the semiconductor element 5 can be efficiently conducted to the heat dissipation plate 6 after the bonding.
In a preferred embodiment of the present invention, the metal convex 3
Since the heat radiation plate 6 and the heat radiation plate 6 can be metal-bonded to each other, the adhesiveness (bondability) and thermal conductivity can be further improved. The semiconductor device 7 having such a heat conductive sheet 1 can reduce the problem of heat generated from the semiconductor element 5. Therefore, by using the semiconductor device 7 according to the present invention, it is expected that the degree of freedom in circuit design of electronic equipment will be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱伝導シートの一実施態様の概略
を示す図である。(A)は、該シートの厚み方向を示す
断面図であり、(B)、(C)はそれぞれ、(A)のI
およびIIの方向からの該シートの概略図である。
FIG. 1 is a diagram schematically showing an embodiment of a heat conductive sheet according to the present invention. (A) is a cross-sectional view showing the thickness direction of the sheet, and (B) and (C) are respectively I of (A).
And Figure 2 is a schematic view of the sheet from the direction of II.

【図2】本発明に係る熱伝導シートの一実施態様の概略
を示す図である。(A)は、該シートの厚み方向を示す
断面図であり、(B)、(C)はそれぞれ、(A)のI
およびIIの方向からの該シートの概略図である。
FIG. 2 is a diagram schematically showing an embodiment of a heat conductive sheet according to the present invention. (A) is a cross-sectional view showing the thickness direction of the sheet, and (B) and (C) are respectively I of (A).
And Figure 2 is a schematic view of the sheet from the direction of II.

【図3】本発明に係る半導体装置の概略を示す図であ
る。
FIG. 3 is a diagram showing an outline of a semiconductor device according to the present invention.

【符号の説明】[Explanation of symbols]

1 熱伝導シート 2 金属箔 3 金属凸状物 4 樹脂 5 半導体素子 6 放熱板 7 半導体装置 1 Thermal conductive sheet 2 metal foil 3 Metal convex 4 resin 5 Semiconductor element 6 heat sink 7 Semiconductor device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀田 祐治 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 Fターム(参考) 5F036 AA01 BA04 BB21 BD21    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yuji Hotta             1-2 1-2 Shimohozumi, Ibaraki City, Osaka Prefecture Nitto             Electric Works Co., Ltd. F-term (reference) 5F036 AA01 BA04 BB21 BD21

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属箔の少なくとも片面に複数の金属凸
状物が配置されており、それら複数の金属凸状物の間隙
の少なくとも一部を樹脂が満たしており、該樹脂は加熱
および/または加圧することにより、溶融および/また
は流動することで接着機能を有するものである、熱伝導
シート。
1. A plurality of metal projections are arranged on at least one surface of a metal foil, and a resin fills at least a part of a gap between the plurality of metal projections, and the resin is heated and / or heated. A heat conductive sheet having an adhesive function by being melted and / or fluidized by applying pressure.
【請求項2】 上記金属箔の表裏両面に複数の金属凸状
物が配置されている、請求項1に記載の熱伝導シート。
2. The heat conductive sheet according to claim 1, wherein a plurality of metal protrusions are arranged on both front and back surfaces of the metal foil.
【請求項3】 上記金属凸状物が、150℃〜300℃
で軟化して他の金属と金属接合する金属からなる、請求
項1または2に記載の熱伝導シート。
3. The metal convex product is 150 ° C. to 300 ° C.
The heat conductive sheet according to claim 1 or 2, which is made of a metal that is softened by and is metal-bonded to another metal.
【請求項4】 上記金属凸状物の各々の形状が、円柱、
四角柱または球状である、請求項1〜3のいずれかに記
載の熱伝導シート。
4. The shape of each of the metal protrusions is a cylinder,
The heat conductive sheet according to any one of claims 1 to 3, which has a quadrangular prism shape or a spherical shape.
【請求項5】 上記金属箔の表裏両面の全表面積の20
%〜75%の面積の領域に上記金属凸状物が配置されて
いる、請求項1〜4のいずれかに記載の熱伝導シート。
5. The total surface area of both sides of the metal foil is 20
The heat conductive sheet according to any one of claims 1 to 4, wherein the metal protrusions are arranged in a region having an area of% -75%.
【請求項6】 請求項1〜5のいずれかに記載の熱伝導
シートを介して、少なくとも半導体素子と放熱板とを接
着した半導体装置。
6. A semiconductor device in which at least a semiconductor element and a heat dissipation plate are bonded to each other via the heat conductive sheet according to claim 1.
【請求項7】 上記放熱板が金属からなり、上記熱伝導
シートを構成する複数の金属凸状物の少なくとも一部と
該放熱板とが金属接合している、請求項6に記載の半導
体装置。
7. The semiconductor device according to claim 6, wherein the heat dissipation plate is made of metal, and at least a part of the plurality of metal projections forming the heat conductive sheet are metal-bonded to the heat dissipation plate. .
JP2003001015A 2002-01-09 2003-01-07 Thermal conductive sheet and semiconductor device using the same Pending JP2003273294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001015A JP2003273294A (en) 2002-01-09 2003-01-07 Thermal conductive sheet and semiconductor device using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-2379 2002-01-09
JP2002002379 2002-01-09
JP2003001015A JP2003273294A (en) 2002-01-09 2003-01-07 Thermal conductive sheet and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2003273294A true JP2003273294A (en) 2003-09-26

Family

ID=29217812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001015A Pending JP2003273294A (en) 2002-01-09 2003-01-07 Thermal conductive sheet and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2003273294A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199467B2 (en) 2003-02-21 2007-04-03 Fujitsu Limited Semiconductor device with improved heat dissipation, and a method of making semiconductor device
EP2251902A1 (en) * 2008-03-05 2010-11-17 Kabushiki Kaisha Toshiba Structure for attaching component having heating body mounted thereon
JP2013074011A (en) * 2011-09-27 2013-04-22 Shindengen Electric Mfg Co Ltd Semiconductor device, semiconductor system and semiconductor device manufacturing method
JP2013077598A (en) * 2011-09-29 2013-04-25 Shinko Electric Ind Co Ltd Heat conductive member, manufacturing method of heat conductive member, and joining structure using heat conductive member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7199467B2 (en) 2003-02-21 2007-04-03 Fujitsu Limited Semiconductor device with improved heat dissipation, and a method of making semiconductor device
US7381592B2 (en) 2003-02-21 2008-06-03 Fujitsu Limited Method of making a semiconductor device with improved heat dissipation
EP2251902A1 (en) * 2008-03-05 2010-11-17 Kabushiki Kaisha Toshiba Structure for attaching component having heating body mounted thereon
EP2251902A4 (en) * 2008-03-05 2014-10-08 Toshiba Kk Structure for attaching component having heating body mounted thereon
JP2013074011A (en) * 2011-09-27 2013-04-22 Shindengen Electric Mfg Co Ltd Semiconductor device, semiconductor system and semiconductor device manufacturing method
JP2013077598A (en) * 2011-09-29 2013-04-25 Shinko Electric Ind Co Ltd Heat conductive member, manufacturing method of heat conductive member, and joining structure using heat conductive member

Similar Documents

Publication Publication Date Title
JP2013122957A (en) Connection method, connection structure, insulating adhesive member, electronic component with adhesive member, and manufacturing method therefor
JP2009517861A (en) Connection method between electronic components using ultrasonic vibration (METHOD FORBONDINGBETWEEN ELECTRICAL DEVICESINGULTRASONICVIBRATION)
US20090122491A1 (en) Universal patterned metal thermal interface
JPWO2007125789A1 (en) Connection structure and manufacturing method thereof
US20140168920A1 (en) Component-mounting printed board and method of manufacturing the same
JP3835556B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
US20030127727A1 (en) Thermally conductive sheet and semiconductor device using same
JP2006261505A (en) Insulating heat transfer sheet
JP4407509B2 (en) Insulated heat transfer structure and power module substrate
JP2003273294A (en) Thermal conductive sheet and semiconductor device using the same
KR102320177B1 (en) Apparatus and method for creating a thermal interface bond between a semiconductor die and a passive heat exchanger
JP2005093842A (en) Heat dissipation sheet and heat dissipation member
JP2007335477A (en) Method of adhering flexible wiring board and wiring board
JP2004172313A (en) Thermally conductive heat dissipating sheet and semiconductor device using the same
JP3653227B2 (en) Semiconductor device, manufacturing method thereof, and semiconductor chip bonding film used therefor
JP2003209141A (en) Flexible wiring board and packaging method of semiconductor element
JP5608504B2 (en) Connection method and connection structure
JP4876882B2 (en) Flip chip mounting method
KR101616080B1 (en) Method for forming a conductive adhesive at bonding object
JP2004031789A (en) Heat dissipation plate and semiconductor device using the same
JP2005203558A (en) Semiconductor device and its manufacturing method
JPH09283566A (en) Connection of substrate
JP2004127612A (en) Conductive fine particle, interconnecting method of electrode terminals, and conductive connection structure
TW483135B (en) Flip chip underfill method capable of maintaining solder joint reliability
JP4216831B2 (en) Board connection structure