JP2005093842A - Heat dissipation sheet and heat dissipation member - Google Patents

Heat dissipation sheet and heat dissipation member Download PDF

Info

Publication number
JP2005093842A
JP2005093842A JP2003327158A JP2003327158A JP2005093842A JP 2005093842 A JP2005093842 A JP 2005093842A JP 2003327158 A JP2003327158 A JP 2003327158A JP 2003327158 A JP2003327158 A JP 2003327158A JP 2005093842 A JP2005093842 A JP 2005093842A
Authority
JP
Japan
Prior art keywords
heat
resin
height
heat dissipation
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003327158A
Other languages
Japanese (ja)
Inventor
Noriaki Harada
憲章 原田
Ichiro Suehiro
一郎 末▲ひろ▼
Yuji Hotta
祐治 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003327158A priority Critical patent/JP2005093842A/en
Publication of JP2005093842A publication Critical patent/JP2005093842A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide heat dissipation structure capable of suppressing deterioration in a heat dissipation effect even at a change of temperature while improving the efficiency of heat conduction. <P>SOLUTION: A plurality of projections 1 comprising a heat conductive material are formed in an area which is a part of a plate surface of a metallic plate 4 (or a heat receiving surface of a radiator) and the remaining area of the plate surface is filled with filling resin 2 having an adhesive property and ≤100ppm linear expansion coefficient up to substantially the same height as the height of the projections 1. An adhering projection part 3 having substantially the same height as the height of the projections 1 and an upper surface consisting of adhesive resin is formed on a part or all of the periphery of the area. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は半導体素子などの電子部品に生ずる熱を放熱すべく、該電子部品に装着して用いられる放熱シート、放熱部材、およびこれらが半導体素子に取付けられてなる半導体装置に関する。   The present invention relates to a heat-dissipating sheet, a heat-dissipating member, and a semiconductor device in which these are attached to a semiconductor element to dissipate heat generated in the electronic part such as a semiconductor element.

近年、電子機器の高機能化・小型化に伴う高密度実装や、各種半導体素子の集積度の増大によって、電子部品から発生する熱を速やかに取り除くための放熱技術が重要となっている。
発熱する電子部品に対して施される従来の放熱構造としては、該電子部品と放熱器(ヒートシンクや筐体など)とを、熱伝導性シリコーンゲルや熱伝導性シリコーングリスなどの熱伝導性材料を介して接続するという構造が挙げられ、これによって熱は放熱器に伝わり拡散する(例えば、特許文献1参照)。
2. Description of the Related Art In recent years, heat dissipation technology for quickly removing heat generated from electronic components has become important due to high-density mounting accompanying increased functionality and downsizing of electronic devices and increased integration of various semiconductor elements.
As a conventional heat dissipation structure applied to a heat generating electronic component, the electronic component and a radiator (such as a heat sink or a housing) are combined with a heat conductive material such as a heat conductive silicone gel or a heat conductive silicone grease. In this structure, heat is transferred to the radiator and diffused (see, for example, Patent Document 1).

電子部品と放熱器との間に介在させる熱伝導性材料は、電子部品から発せられる熱を放熱器へ確実に伝導させる為に、熱抵抗が小さく、接続性が良好で、且つ耐熱性を有することが必要である。
そのため、熱伝導性材料としては、熱伝導性シリコーンゲルや熱伝導性シリコーングリスなどの母材に、熱伝導率の高い熱伝導性フィラー(金属酸化物や窒化ホウ素など)を多量に混入させて、熱伝導性を向上させたものが主として用いられている。
また、電子部品と放熱器との間に介在させる熱伝導性材料の代わりに、高分子材料からなるシート中に熱伝導性の粒子や金属線を配置し、熱伝導性を向上させた伝熱シートなども開発されている(例えば、特許文献2、3参照)。
特開2001−156227号公報 特開2000−150742号公報 特開2002−246413号公報
The heat conductive material interposed between the electronic component and the heatsink has low thermal resistance, good connectivity, and heat resistance in order to reliably conduct the heat generated from the electronic component to the heatsink. It is necessary.
Therefore, as a heat conductive material, a large amount of heat conductive filler (metal oxide, boron nitride, etc.) with high heat conductivity is mixed in a base material such as heat conductive silicone gel or heat conductive silicone grease. Those with improved thermal conductivity are mainly used.
In addition, instead of the heat conductive material interposed between the electronic component and the heatsink, heat conductive particles and metal wires are placed in a sheet made of polymer material to improve heat conductivity. Sheets have also been developed (see, for example, Patent Documents 2 and 3).
JP 2001-156227 A JP 2000-150742 A JP 2002-246413 A

しかしながら、例えばコンピュータのMPUの処理速度のさらなる高速化や、素子のさらなる高密度実装に伴なって、各電子部品から発生する熱量はより急速に増大しており、従来のような熱伝導性シリコーンゲル、熱伝導性シリコーングリスを介した放熱構造では充分な放熱効果を得ることができなくなってきている。   However, the amount of heat generated from each electronic component is increasing more rapidly, for example, as the processing speed of the MPU of the computer is further increased and the elements are further densely packed. It has become impossible to obtain a sufficient heat dissipation effect with a heat dissipation structure via gel or thermally conductive silicone grease.

また本発明者等が、従来の放熱シートについて詳細に検討したところ、例えば、−55℃と125℃との間での冷熱サイクル試験を行なうと、線膨張の差によって放熱シートが素子からはずれるなど、放熱効果が温度変化によって劣化し、これが放熱構造の信頼性を阻害していることがわかった。   In addition, when the present inventors examined the conventional heat dissipation sheet in detail, for example, when performing a thermal cycle test between −55 ° C. and 125 ° C., the heat dissipation sheet is detached from the element due to a difference in linear expansion, etc. It was found that the heat dissipation effect deteriorated due to temperature change, which hindered the reliability of the heat dissipation structure.

本発明の課題は、熱伝導効率を向上させながら、同時に、温度変化に対しても放熱効果の劣化が抑制された放熱構造を提供することにある。   An object of the present invention is to provide a heat dissipation structure in which the deterioration of the heat dissipation effect is suppressed even with respect to a temperature change while improving the heat conduction efficiency.

本発明は以下の特徴を有するものである。
(1)金属板の少なくとも一方の板面の一部の領域内に、熱伝導性材料からなる突起が複数形成され、
該領域内の残りには、接着性を有しかつ線膨張率100ppm以下である充填用樹脂が前記突起の高さと実質的に同じ高さまで充填され、
前記領域の周囲の一部または全部には、前記突起の高さと実質的に同じ高さを有し少なくとも上面が接着性樹脂からなる接着用凸部が設けられていることを特徴とする、放熱シート。
(2)金属板の厚さが、15μm〜2mmである、上記(1)記載の放熱シート。
(3)突起が、金属板の両方の板面のそれぞれの上記領域内に形成されている、上記(1)記載の放熱シート。
(4)充填用樹脂が、両方の板面のそれぞれの上記領域内に、突起の高さと実質的に同じ高さまで充填されている、上記(3)記載の放熱シート。
(5)接着用凸部が、両方の板面のそれぞれの上記領域の周囲の一部または全部に設けられている、上記(3)または(4)記載の放熱シート。
(6)充填用樹脂中に熱伝導性フィラーが分散している、上記(1)記載の放熱シート。
(7)当該放熱シートの装着対象が半導体素子であって、金属板の外周形状が前記半導体素子の外周形状と略一致する形状である、上記(1)記載の放熱シート。
(8)充填用樹脂と、接着用凸部に用いられる接着性樹脂とが、互いに異なる樹脂である、上記(1)記載の放熱シート。
(9)接着用凸部全体が接着性樹脂からなり、該接着性樹脂の弾性率が2MPa〜2GPaである、上記(1)記載の放熱シート。
(10)放熱器の熱受入れ面の一部の領域内に、熱伝導性材料からなる突起が複数形成され、該領域内の残りには、接着性を有しかつ線膨張率100ppm以下である充填用樹脂が前記突起の高さと実質的に同じ高さまで充填され、
前記領域の周囲の一部または全部には、前記突起の高さと実質的に同じ高さを有し少なくとも上面が接着性樹脂からなる接着用凸部が設けられていることを特徴とする、放熱部材。
(11)上記充填用樹脂中に熱伝導性フィラーが分散している、上記(10)記載の放熱部材。
(12)充填用樹脂と、接着用凸部に用いられる接着性樹脂とが、互いに異なる樹脂である、上記(10)記載の放熱部材。
(13)接着用凸部全体が接着性樹脂からなり、該接着性樹脂の弾性率が2MPa〜2GPaである、上記(10)記載の放熱部材。
(14)上記(1)〜(9)のいずれかに記載の放熱シート、または、上記(10)〜(13)のいずれかに記載の放熱部材が、半導体素子に装着された構成を有する半導体装置。
The present invention has the following features.
(1) A plurality of protrusions made of a heat conductive material are formed in a partial region of at least one plate surface of the metal plate,
In the rest of the region, a filling resin having adhesiveness and a linear expansion coefficient of 100 ppm or less is filled to a height substantially equal to the height of the protrusions,
A part of or all of the periphery of the region is provided with an adhesive convex portion having a height substantially the same as the height of the protrusion and having at least an upper surface made of an adhesive resin. Sheet.
(2) The heat dissipation sheet according to (1), wherein the metal plate has a thickness of 15 μm to 2 mm.
(3) The heat radiation sheet according to (1), wherein the protrusion is formed in each of the regions on both plate surfaces of the metal plate.
(4) The heat-dissipating sheet according to (3), wherein the filling resin is filled in each of the regions of both plate surfaces to substantially the same height as the protrusions.
(5) The heat radiation sheet according to the above (3) or (4), wherein the adhesive convex portion is provided on a part or all of the periphery of each of the regions on both plate surfaces.
(6) The heat dissipating sheet according to (1) above, wherein the heat conductive filler is dispersed in the filling resin.
(7) The heat dissipation sheet according to (1), wherein the mounting target of the heat dissipation sheet is a semiconductor element, and the outer peripheral shape of the metal plate is substantially the same as the outer peripheral shape of the semiconductor element.
(8) The heat radiation sheet according to the above (1), wherein the filling resin and the adhesive resin used for the bonding convex portion are different from each other.
(9) The heat radiation sheet according to (1), wherein the entire bonding convex portion is made of an adhesive resin, and the elastic modulus of the adhesive resin is 2 MPa to 2 GPa.
(10) A plurality of protrusions made of a heat conductive material are formed in a partial region of the heat receiving surface of the radiator, and the remainder in the region has adhesiveness and has a linear expansion coefficient of 100 ppm or less. Filling resin is filled to substantially the same height as the protrusions,
A part of or all of the periphery of the region is provided with an adhesive convex portion having a height substantially the same as the height of the protrusion and having at least an upper surface made of an adhesive resin. Element.
(11) The heat radiating member according to (10), wherein a heat conductive filler is dispersed in the filling resin.
(12) The heat radiating member according to (10), wherein the filling resin and the adhesive resin used for the bonding convex portion are different from each other.
(13) The heat radiating member according to (10), wherein the entire bonding convex portion is made of an adhesive resin, and the elastic modulus of the adhesive resin is 2 MPa to 2 GPa.
(14) A semiconductor having a configuration in which the heat dissipation sheet according to any one of (1) to (9) or the heat dissipation member according to any of (10) to (13) is mounted on a semiconductor element. apparatus.

本発明では、先ず、金属板面、放熱器の熱受入れ面に、熱伝導性の突起を設けた構造を採用することによって、素子などの対象物から良好に熱を伝導させている。
また、突起同士の間に、接着性を有する充填用樹脂を充填し、かつ、突起を設けた領域の周囲に接着用凸部を設け、装着対象物への接着性を高めている。さらには、前記充填用樹脂の線膨張率を100ppm以下に限定し、金属板と、突起と、充填用樹脂と、素子との間の線膨張率差を小さくすることによって、該線膨張率差に起因する歪(応力)発生を抑制し、当該熱伝導シート(部材)が対象物から剥離するというトラブルを抑制している。
In the present invention, first, heat is favorably conducted from an object such as an element by adopting a structure in which a heat conductive projection is provided on the metal plate surface and the heat receiving surface of the radiator.
In addition, an adhesive filling resin having an adhesive property is filled between the projections, and an adhesive convex portion is provided around the region where the projections are provided to enhance the adhesion to the mounting object. Further, the linear expansion coefficient of the filling resin is limited to 100 ppm or less, and the difference in linear expansion coefficient between the metal plate, the protrusion, the filling resin, and the element is reduced, thereby reducing the linear expansion coefficient difference. The generation | occurrence | production of the distortion (stress) resulting from this is suppressed, and the trouble that the said heat conductive sheet (member) peels from the target object is suppressed.

先ず、本発明による放熱シートを詳細に説明する。
図1は、当該放熱シートの一例を示した図である。同図に示すように、当該放熱シートは、金属板4の少なくとも一方の板面中の領域e内に、熱伝導性材料からなる突起1が複数形成された構成を有する。図1(b)の構成例では、金属板4の片方の板面のみに突起1が設けられ、図1(c)、(d)の例では、金属板4の一方の板面のみならず、他方の板面にも突起1bが設けられている。
領域e内の残りには、充填用樹脂2が、前記突起1の高さと実質的に同じ高さまで充填されており、突起の上面が露出している。充填用樹脂には、接着性を有し、かつ線膨張率100ppm以下であるものを用いる。
First, the heat dissipation sheet according to the present invention will be described in detail.
FIG. 1 is a diagram illustrating an example of the heat dissipation sheet. As shown in the figure, the heat dissipation sheet has a configuration in which a plurality of protrusions 1 made of a heat conductive material are formed in a region e in at least one plate surface of the metal plate 4. In the configuration example of FIG. 1B, the protrusion 1 is provided only on one plate surface of the metal plate 4, and in the examples of FIGS. 1C and 1D, not only one plate surface of the metal plate 4 is provided. The other plate surface is also provided with a protrusion 1b.
The rest of the region e is filled with the filling resin 2 up to substantially the same height as the protrusion 1, and the upper surface of the protrusion is exposed. As the filling resin, one having adhesiveness and having a linear expansion coefficient of 100 ppm or less is used.

領域eの周囲の一部または全部には、接着用凸部3が設けられている。図1(a)の例では、接着用凸部3は、領域eの周囲全周に枠のように連なって取り囲んだ凸条の態様として設けられている。
接着用凸部は、突起1の高さと実質的に同じ高さを有し、少なくとも上面が接着性樹脂からなる。これによって、突起と共に対象物に接触し、接着力を示すことができる。
Adhesive convex portions 3 are provided in part or all of the periphery of the region e. In the example of FIG. 1A, the bonding convex portion 3 is provided as a convex strip that is continuously surrounded like a frame around the entire periphery of the region e.
The bonding convex portion has substantially the same height as the protrusion 1 and at least the upper surface is made of an adhesive resin. Thereby, it can contact an object with a protrusion and can show adhesive force.

上記構成とすることによって、突起が素子などの対象物から良好に熱を受け取り、放熱部材へ伝える。また、充填用樹脂と接着用凸部とを設け、さらに、前記充填用樹脂の線膨張率を100ppm以下に限定することによって、室温〜高温のヒートサイクルがかかっても、当該熱伝導シートが対象物から剥離するというトラブルが抑制され、対象物への接着状態は保たれる。   By setting it as the said structure, a protrusion receives heat | fever favorably from target objects, such as an element, and transfers it to a thermal radiation member. In addition, by providing a filling resin and an adhesive convex portion, and further limiting the linear expansion coefficient of the filling resin to 100 ppm or less, the heat conductive sheet can be used even when a heat cycle of room temperature to high temperature is applied. The trouble of peeling from the object is suppressed, and the state of adhesion to the object is maintained.

当該放熱シートの基板として用いられる金属板の材料は、放熱シートとしての用途に合致した熱伝導性の高いものであればよく、例えば、金、銀、銅、アルミニウム等が好ましい材料として挙げられる。金属板にどのような材料を用いるかは、放熱シートの用途によって適宜決定すればよく、任意の材料からなる多層構造であっても良い。低コストの点からは、銅、アルミニウムが好ましい材料である。   The material of the metal plate used as the substrate of the heat radiating sheet is not particularly limited as long as it has a high thermal conductivity suitable for the use as the heat radiating sheet. Examples of preferable materials include gold, silver, copper, and aluminum. What kind of material is used for the metal plate may be appropriately determined depending on the use of the heat dissipation sheet, and may be a multilayer structure made of any material. From the viewpoint of low cost, copper and aluminum are preferable materials.

基板の厚さ、板面の大きさや形状に限定は無く、装着対象の電子部品の面積規模や発熱量などに応じて適宜決定してよい。
厚さは、実使用上、0.3mm〜2mm程度が挙げられ、特に、ベアチップを装着対象とする場合、0.3mm〜0.5mm程度が好ましい厚さである。
基板の板面の外周形状を方形とする場合、大きさは一般的なベアチップの大きさ(5mm×5mm)から、比較的大きい放熱板の大きさ(50mm×50mm)程度までの範囲が例示されるが、これらの範囲には限定されない。
The thickness of the substrate and the size and shape of the plate surface are not limited, and may be appropriately determined according to the area scale of the electronic component to be mounted, the amount of heat generation, and the like.
In actual use, the thickness is about 0.3 mm to 2 mm. In particular, when a bare chip is to be mounted, a thickness of about 0.3 mm to 0.5 mm is preferable.
When the outer peripheral shape of the board surface of the substrate is a square, the size is exemplified by a range from a general bare chip size (5 mm × 5 mm) to a relatively large heat sink size (50 mm × 50 mm). However, it is not limited to these ranges.

当該放熱シートでは、金属板の両主面のうちの少なくとも一方の面に、突起1、充填用樹脂2、接着用凸部3を設けるが、その設けた面を電子部品に接続するか、放熱部材に接続するかは、使用時の条件に応じて適宜選択してよい。当該放熱シートの好ましい熱伝導性と信頼性の高い接着性とを電子部品に生かす点からは、前記の面を電位部品に接続することが好ましい。   In the heat dissipation sheet, the protrusion 1, the filling resin 2, and the adhesive protrusion 3 are provided on at least one of the two main surfaces of the metal plate. The provided surface is connected to an electronic component or heat dissipation. Whether to connect to the member may be appropriately selected according to the conditions during use. It is preferable to connect the surface to the potential component from the viewpoint of utilizing the preferable thermal conductivity and highly reliable adhesion of the heat dissipation sheet for the electronic component.

図1(b)のように、金属板4の一方の面だけに、突起1、充填用樹脂2、接着用凸部3を設け、他方の面が平坦な態様では、金属板の他方の面と相手方との接続には、従来公知の熱伝導性シリコーンゲルや熱伝導性シリコーングリスなどを介在させてよい。   As shown in FIG. 1B, the projection 1, the filling resin 2, and the bonding projection 3 are provided only on one surface of the metal plate 4, and in the case where the other surface is flat, the other surface of the metal plate Conventionally known heat conductive silicone gel, heat conductive silicone grease, or the like may be interposed in the connection between and the other party.

当該放熱シートは、電子部品と放熱部材との間に介在させるので、これら両方との良好な熱伝導上の接続を確保するために、図1(c)のように、他方の面にも突起1bを設ける態様が好ましい。また、これら両方との良好な接着を確保するために、他方の面にも充填用樹脂または接着用凸部を設けて良い。図1(d)では、充填用樹脂と接着用凸部とを同時に付与しているが、いずれか一方だけを付与したものは図示を省略している。このような態様によって、金属接合できない材料からなる接続対象物であっても、充分な接着とそれによる熱伝導の確保が可能となる。   Since the heat-dissipating sheet is interposed between the electronic component and the heat-dissipating member, as shown in FIG. An embodiment in which 1b is provided is preferable. Moreover, in order to ensure favorable adhesion | attachment with both, you may provide the resin for filling or the convex part for adhesion | attachment also on the other surface. In FIG. 1 (d), the filling resin and the bonding convex portion are simultaneously provided, but the illustration of only one of them being omitted. By such an aspect, even if it is a connection object which consists of material which cannot be metal-bonded, sufficient adhesion | attachment and the heat conduction by it are securable.

図1(c)の態様では、金属製の放熱器(ヒートスプレッダやヒートシンクなど)へ接合される側の突起を、はんだ等の低融点金属で形成し、放熱器に対して直接金属接合できる構造としてもよい。
図1(d)のように、金属板の両方の面に、突起1、1b、充填用樹脂2、2b、接着用凸部3、3bを設けた態様によって、電子部品、放熱部材の両方に対して、良好な接着性と熱伝導上の接続を確保できる。
In the embodiment shown in FIG. 1 (c), the protrusion on the side to be joined to a metal radiator (heat spreader, heat sink, etc.) is formed of a low melting point metal such as solder, so that the metal can be directly joined to the radiator. Also good.
As shown in FIG. 1D, both the electronic component and the heat radiating member are provided by providing the protrusions 1 and 1b, the filling resins 2 and 2b, and the bonding protrusions 3 and 3b on both surfaces of the metal plate. On the other hand, good adhesion and heat conduction can be secured.

基板面に形成される突起の高さは、当該放熱シートの規模や対象物にもよるが、ベアチップを対象とするならば、30μm〜100μm、特に30μm〜50μmが好ましい高さの範囲である。
個々の突起の形状は、例えば、柱状(円柱状、角注状など)、円(角)錐台状、半球状、略球状、紡錘形状、断面異形の任意の形状などであってもよい。
突起の外径は、径が高さ方向に変化する場合や、横断面(高さ方向に垂直な断面)の形状が円形でない場合は、最も直径が太い部位で測定するとして、200μm〜1000μm程度、特に300μm〜500μmが好ましい外径の範囲である。
The height of the protrusion formed on the substrate surface depends on the scale of the heat-dissipating sheet and the target object. However, if the target is a bare chip, the height is preferably 30 μm to 100 μm, more preferably 30 μm to 50 μm.
The shape of each protrusion may be, for example, a columnar shape (cylindrical shape, square injection shape, etc.), a circular (cornered) frustum shape, a hemispherical shape, a substantially spherical shape, a spindle shape, or an arbitrary shape having a deformed cross section.
The outer diameter of the protrusion is about 200 μm to 1000 μm when the diameter changes in the height direction or when the shape of the cross section (cross section perpendicular to the height direction) is not circular, it is measured at the thickest part. In particular, a preferred outer diameter range is 300 μm to 500 μm.

領域内への突起の配置パターンは、正方行列状、図1(a)のような細密状、不規則な集合などであってよい。
突起の集合密度は、突起の外径によっても異なるが、例えば、直径470μmの円柱状の突起であれば、単位面積当たりの突起総面積で規定するとして、全体の30%〜60%が、良好な接着性と熱伝導性とが得られる好ましい範囲である。
The arrangement pattern of the protrusions in the region may be a square matrix, a fine shape as shown in FIG. 1A, an irregular set, or the like.
The collective density of the protrusions varies depending on the outer diameter of the protrusions. For example, in the case of a cylindrical protrusion having a diameter of 470 μm, 30% to 60% of the whole is good as defined by the total protrusion area per unit area. This is a preferable range in which good adhesion and thermal conductivity can be obtained.

突起の材料は、熱伝導性の良好な材料であればよく、金属板と同じ材料であっても、異なる材料であってもよい。
突起の形成方法の点からは、金属板に外部より突起を接合することによって形成するアディティブな方法であっても、金属板をエッチングして突起を残すサブトラクティブな方法であってもよい。また、突起とすべき材料からなる層を予め金属板に積層しておき、その層をエッチングして突起を残すことによって、サブトラクティブな方法でありながら金属板とは異なる材料からなる突起を形成することができる。
金属板に必要な基板としての機械的強度と熱伝導性、突起に必要な対象物との接続性と熱伝導性、それぞれの材料コストなどを考慮して、基板・突起の各材料の選択、突起の形成方法の選択を行えばよい。
The material of the protrusions may be a material having good thermal conductivity, and may be the same material as the metal plate or a different material.
From the viewpoint of the method of forming the protrusion, it may be an additive method in which the protrusion is joined to the metal plate from the outside, or a subtractive method in which the protrusion is left by etching the metal plate. In addition, a layer made of a material different from the metal plate is formed in a subtractive manner by previously laminating a layer made of a material to be a projection on the metal plate and etching the layer to leave the projection. can do.
Select each substrate / projection material in consideration of the mechanical strength and thermal conductivity as the substrate required for the metal plate, the connectivity and thermal conductivity with the object necessary for the projection, the material cost of each, What is necessary is just to select the formation method of protrusion.

突起の材料・形態としては、例えば、はんだ等の低融点の金属材料や、熱伝導性ペーストなどによって形成したバンプが好ましいものとして挙げられる。低融点の金属材料からなるバンプは、装着時に溶融させることで、電子部品や放熱器との間の接触抵抗を減少させ放熱効率が向上する。
熱伝導性ペーストによってバンプを形成する場合の手順としては、例えば、先に金属板に充填用樹脂層を形成し、該樹脂層に突起用の孔をパターニングしておき、該孔内に熱伝導性ペーストを充填することによって、ペースト状のバンプが得られる。
突起を外部からバンプとして金属板に付け加える場合、形状は、円柱状、半球状が好ましい形状である。
As a material / form of the protrusion, for example, a low melting point metal material such as solder or a bump formed of a heat conductive paste or the like is preferable. A bump made of a metal material having a low melting point is melted at the time of mounting, thereby reducing the contact resistance between the electronic component and the radiator and improving the heat radiation efficiency.
As a procedure for forming bumps with a heat conductive paste, for example, a filling resin layer is first formed on a metal plate, and projection holes are patterned on the resin layer, and heat conduction is performed in the holes. By filling the conductive paste, a paste-like bump is obtained.
When the protrusion is added to the metal plate as a bump from the outside, the shape is preferably a cylindrical shape or a hemispherical shape.

金属板の両面に突起を形成する場合、両面の突起の形状、材料、位置などの仕様は、接合すべき対象物に従って、それぞれの面毎に独立的に選択してよい。当該熱伝導シートの厚さ方向に、熱を良好に伝導させる点からは、金属板の両面の突起は、同じ外径のものを、互いに表裏で対応する同じ位置に形成し、金属板内を単純に板厚方向に熱伝導させる態様としてもよい。   When the protrusions are formed on both surfaces of the metal plate, specifications such as the shape, material, and position of the protrusions on both surfaces may be independently selected for each surface according to the objects to be joined. From the point of conducting heat well in the thickness direction of the heat conductive sheet, the protrusions on both sides of the metal plate are formed with the same outer diameter at the same position corresponding to each other on the front and back, and the inside of the metal plate It is also possible to simply conduct heat conduction in the plate thickness direction.

充填用樹脂は、接着性を有しかつ線膨張率が100ppm以下のもの用いる。
本発明でいう接着性は、充填用樹脂が自体そのままの状態で相手方に接着可能な性質だけでなく、そのままの状態では接着性を示さないが、加熱および/または加圧により接着可能となる性質であってもよい。例えば、加熱および/または加圧により、融着および/または圧着する熱可塑性樹脂や、加熱により熱硬化する熱硬化性樹脂が挙げられる。
接着性を発現させた場合の、充填用樹脂に必要な接着力(即ち、剥離力)は、5MPa以上であればよく、特に10MPa以上であることが好ましい。該接着力の測定方法としては、半導体チップに充填用樹脂を貼り付け、当該放熱シートの金属板の材料からなる測定用プレートにフリップチップボンディングによって接着し、175℃、5時間でキュア後、push-pullゲージを用いて、半導体チップに対して測定用プレート面に沿った方向に力を作用させ、剥離したときの力(せん断接着力)を測定し、該接着力とする測定方法が挙げられる。
As the filling resin, one having adhesiveness and a linear expansion coefficient of 100 ppm or less is used.
The adhesiveness referred to in the present invention is not only the property that the filling resin itself can be bonded to the other party, but also the property that can be bonded by heating and / or pressurization, although it does not exhibit adhesiveness as it is. It may be. For example, a thermoplastic resin that is fused and / or pressure-bonded by heating and / or pressurization, and a thermosetting resin that is thermoset by heating are exemplified.
The adhesive force (that is, the peeling force) required for the filling resin when the adhesiveness is developed may be 5 MPa or more, and particularly preferably 10 MPa or more. As a method for measuring the adhesive force, a filling resin is attached to a semiconductor chip, and it is bonded to a measurement plate made of a metal plate material of the heat dissipation sheet by flip chip bonding, cured at 175 ° C. for 5 hours, and then pushed. -Pull gauge is used to apply a force to the semiconductor chip in the direction along the plate surface for measurement, measure the force (shearing adhesive force) when it is peeled off, and measure it as the adhesive force .

充填用樹脂の線膨張率は100ppm以下とするが、特に、50ppm〜30ppmが好ましい範囲である。このような接着性を示す充填用樹脂を形成するための材料としては、熱可塑性ポリイミド樹脂、エポキシ樹脂、ポリエーテルイミド樹脂、ポリアミド樹脂、シリコーン樹脂、フェノキシ樹脂、アクリル樹脂、ポリカルボジイミド樹脂、フッ素樹脂、ポリエステル樹脂、ポリウレタン樹脂等が挙げられる。これらの樹脂を用い、また、適宜成分を調整し、重合し、混合して、前記範囲の線膨張率を有する樹脂を形成すればよい。   The linear expansion coefficient of the filling resin is 100 ppm or less, and 50 ppm to 30 ppm is particularly preferable. Materials for forming such a filling resin exhibiting adhesiveness include thermoplastic polyimide resin, epoxy resin, polyetherimide resin, polyamide resin, silicone resin, phenoxy resin, acrylic resin, polycarbodiimide resin, and fluorine resin. , Polyester resin, polyurethane resin and the like. These resins may be used, and the components may be appropriately adjusted, polymerized, and mixed to form a resin having a linear expansion coefficient in the above range.

金属板の線膨張率と、放熱路である突起の線膨張率との間に差があると、温度変化によってこれらの間には大きな応力が生じる。このとき、突起間を充填している充填用樹脂の弾性率が高いと、前記応力は更に高くなるので、これを軽減する点から、充填用樹脂の弾性率をできるだけ低くすることが好ましい。   If there is a difference between the coefficient of linear expansion of the metal plate and the coefficient of linear expansion of the protrusion, which is a heat dissipation path, a large stress is generated between them due to temperature changes. At this time, if the elastic modulus of the filling resin filling between the protrusions is high, the stress is further increased. From the viewpoint of reducing this, it is preferable to make the elastic modulus of the filling resin as low as possible.

充填用樹脂には、熱伝導性フィラーを分散させて、熱伝導性をより高めてもよい。熱伝導性フィラーの材料としては、例えば、銀、銅、アルミニウム、アルミナ、はんだ、酸化亜鉛、錫等が挙げられる。また、熱伝導性フィラーの形状としては、球状、麟片状、針状、繊維状等が挙げられる。
どのような材料、形状の熱伝導性フィラーを用いるかは、放熱シートの用途によって適宜決定すればよい。
A thermal conductive filler may be dispersed in the filling resin to further increase the thermal conductivity. Examples of the material for the thermally conductive filler include silver, copper, aluminum, alumina, solder, zinc oxide, and tin. Examples of the shape of the heat conductive filler include a spherical shape, a scaly shape, a needle shape, and a fiber shape.
What kind of material and shape of the heat conductive filler is used may be appropriately determined depending on the use of the heat dissipation sheet.

充填用樹脂は、突起の高さと実質的に同じ高さまで充填し、突起が対象物に直接的に接触し得る態様とすることが好ましい。充填用樹脂には形状に若干の自由度があるので、突起の方が少し突き出す態様としてもよい。   It is preferable that the filling resin is filled to a height substantially the same as the height of the protrusion, and the protrusion can directly contact the object. Since the filling resin has a slight degree of freedom in shape, the protrusion may protrude slightly.

突起同士の間に充填用樹脂を充填する方法としては、例えば次のものが挙げられる。
(i)金属板上に突起を形成した後、充填用樹脂からなるシートで突起を覆い、その上から加熱・加圧することで樹脂を突起間に浸透させた後、上面から研磨していくことで突起を露出させ、両者の高さを揃える方法。
(ii)金属板上に突起を形成した後、突起の上に平板を配置し、平板と金属板との隙間に樹脂を流し込む方法。
Examples of the method of filling the filling resin between the protrusions include the following.
(I) After forming protrusions on the metal plate, cover the protrusions with a sheet made of a filling resin, heat and press from above to infiltrate the resin between the protrusions, and then polish from the top surface Method to expose the protrusions and align the height of both.
(Ii) A method in which a protrusion is formed on a metal plate, a flat plate is disposed on the protrusion, and a resin is poured into a gap between the flat plate and the metal plate.

接着用凸部は、位置的には、図1(a)のように、上記領域eの周囲を全周取り巻く態様、または、図2のように、上記領域eの周囲の一部に設ける態様とする。図2では、方形の金属板の4つの角部に、板面を見たときに三角形を呈する形態として接着用凸部を設けているが、パターンは限定されず、対象物との接着性を高め、本発明の目的を達成し得るパターンであればよい。
接着用凸部の高さは、前記突起の高さと実質的に同じ高さとし、突起の接触を妨げないように、また、突起が接着用凸部の接着を妨げないようにすることが好ましい。
The bonding convex portion is positioned so as to surround the entire area e as shown in FIG. 1 (a), or as provided in a part of the periphery of the area e as shown in FIG. And In FIG. 2, the convex portions for adhesion are provided at the four corners of the rectangular metal plate as a form that exhibits a triangle when the plate surface is viewed, but the pattern is not limited, and the adhesion to the object is improved. Any pattern can be used as long as it can be enhanced and achieve the object of the present invention.
It is preferable that the height of the protrusions for bonding is substantially the same as the height of the protrusions so as not to interfere with the contact of the protrusions and that the protrusions do not interfere with the adhesion of the protrusions for bonding.

接着用凸部は、全体が接着性樹脂からなるものであっても、上面に露出した部分だけが接着性樹脂からなる多層の構造(例えば、下層が、金属板が突起した層や、別の材料からなる層など)であってもよい。
接着用凸部の高さは、突起に対して、製造誤差の許容範囲内において実質的に同じ高さに揃っていることが好ましいが、1μm程度まで低くてもよい。
接着用凸部を帯状に連なる凸条とする場合の断面形状(連なる方向に垂直に切断した場合の断面の形状)は、方形、矩形、半円形など、任意の形状であってよい。対象物との接着性を確保する点、無駄な熱のたまりが生じる可能性などを考慮すると円柱状、半球状が好ましい断面形状である。
Even if the adhesive convex part is entirely made of an adhesive resin, only the part exposed on the upper surface is a multilayer structure made of an adhesive resin (for example, the lower layer is a layer with a protruding metal plate, It may be a layer made of a material.
The height of the bonding convex portion is preferably substantially the same as that of the protrusion within the allowable range of manufacturing error, but may be as low as about 1 μm.
The cross-sectional shape (the cross-sectional shape when cut perpendicularly to the continuous direction) when the bonding convex portion is formed in a strip shape may be an arbitrary shape such as a square, a rectangle, or a semicircle. Considering the point of securing the adhesion to the object and the possibility of useless accumulation of heat, a cylindrical shape and a hemispherical shape are preferable cross-sectional shapes.

接着用凸部の接着性は、上記充填用樹脂の接着性と同じ意味である。
接着用凸部に必要な接着力(剥離力)は10MPa以上であればよく、特に20MPa以上であることが好ましい。
接着用凸部に用いられる接着性樹脂としては、熱可塑性ポリイミド樹脂、ポリカルボジイミド樹脂、エポキシ樹脂などが挙げられる。
The adhesiveness of the adhesive convex portion has the same meaning as the adhesiveness of the filling resin.
The adhesive force (peeling force) required for the adhesive convex portion may be 10 MPa or more, and particularly preferably 20 MPa or more.
Examples of the adhesive resin used for the adhesive projection include thermoplastic polyimide resin, polycarbodiimide resin, and epoxy resin.

充填用樹脂と、接着用凸部に用いられる接着性樹脂とは、互いに異なる樹脂とすることが好ましい。これは、充填用樹脂が、応力緩和を目的とするために接着力が低く、これを補うために接着性樹脂を設けているからである。   It is preferable that the filling resin and the adhesive resin used for the convex portions for bonding are different from each other. This is because the filling resin has a low adhesive force for the purpose of stress relaxation, and an adhesive resin is provided to compensate for this.

接着性樹脂の弾性率を2MPa〜3Gpa、好ましくは100MPa〜2GPaとすることによって、接着用凸部を、当該放熱シートの機械的強度(例えば、曲げ剛性など)を向上させるための外枠・補強部材として用いることもできる。このような樹脂としては、熱可塑性ポリイミド、ポリカルボジイミド、エポキシなどが挙げられる。   Outer frame and reinforcement for improving the mechanical strength (for example, bending rigidity, etc.) of the heat-dissipating sheet for the adhesive projection by setting the elastic modulus of the adhesive resin to 2 MPa to 3 Gpa, preferably 100 MPa to 2 GPa. It can also be used as a member. Examples of such a resin include thermoplastic polyimide, polycarbodiimide, and epoxy.

接着用凸部の形成方法としては、例えば、金属板に目的のパターンとなるように接着性樹脂を直接塗布する方法や、目的のパターンを有する接着性樹脂製シートを別途作製しておき、これを金属板に加熱・加圧することで貼り付ける方法などが挙げられる。   Examples of the method for forming the bonding convex portion include a method in which an adhesive resin is directly applied to a metal plate so as to obtain a target pattern, or an adhesive resin sheet having a target pattern is prepared separately. The method of sticking by heating and pressurizing to a metal plate is mentioned.

次に、本発明の放熱部材を説明する。
当該放熱部材は、本発明の放熱シートの金属板を、放熱器に置き換えたものである。より具体的には、図3に示すように、放熱器5の熱受入れ面5a(図3(b))の一部の領域内に、上記放熱シートに必須の片面の構成と同様、熱伝導性材料からなる突起1が複数形成され、充填用樹脂が充填され、その周囲に接着用凸部が設けられた構成である。
ただし、当該放熱部材では、放熱器の熱受入れ面に直接的に突起が設けられているので、放熱器の裏面側の態様は、特に限定されるものではない。放熱器がさらにどのような部材に接続されるかによって、適宜、裏面側の態様を決定してよい。
突起、充填用樹脂、接着用凸部の材料、形状、位置関係など、詳細な説明については、全て、上記放熱シートの説明と同様である。
突起および接着機能をヒートスプレッダなどの放熱器に直接的に形成することによって、接触抵抗による熱伝達の損失を低減することができる。
Next, the heat radiating member of this invention is demonstrated.
The said heat radiating member replaces the metal plate of the heat radiating sheet of this invention with the heat radiator. More specifically, as shown in FIG. 3, heat conduction is performed in a part of the heat receiving surface 5a (FIG. 3B) of the radiator 5 in the same manner as the one-side structure essential to the heat dissipation sheet. A plurality of protrusions 1 made of a conductive material are formed, filled with a filling resin, and an adhesive projection is provided around the protrusion.
However, in the said heat radiating member, since the protrusion is directly provided in the heat acceptance surface of a heat radiator, the aspect at the back surface side of a heat radiator is not specifically limited. Depending on what kind of member the radiator is connected to, the mode on the back side may be appropriately determined.
The detailed description of the protrusions, the filling resin, the material of the bonding convexes, the shape, the positional relationship, and the like are all the same as the description of the heat dissipation sheet.
By forming the protrusion and the bonding function directly on a heat radiator such as a heat spreader, it is possible to reduce heat transfer loss due to contact resistance.

放熱器としては、ヒートスプレッダ、ヒートシンク、装置の筐体自体など、熱受入れ面を有する全ての放熱可能な部材であればよい。   Any heat dissipating member having a heat receiving surface, such as a heat spreader, a heat sink, and a housing of the apparatus, may be used as the heat radiator.

本発明の放熱シート・放熱部材の接続対象となる電子部品は、特に限定されず、モーター駆動する装置などが挙げられるが、特に、ベアチップは直接、装置にこもる熱を排出できるため、本発明の有用性が特に顕著となる。   The electronic component to be connected to the heat radiation sheet / heat radiation member of the present invention is not particularly limited, and examples thereof include a motor-driven device, etc.In particular, since the bare chip can directly discharge the heat accumulated in the device, The utility is particularly remarkable.

本発明による半導体装置は、本発明の放熱シート・放熱部材を、電子部品、特に半導体素子に接合したものである。
半導体素子としては、シリコンチップ等、各種の集積回路が挙げられる
図4は、図1(b)に例示した放熱シートAの突起側を半導体素子に接合し、放熱器Hとの間には熱伝導性接着剤層Bを介在させた装置構成例である。
図4(a)は、図1(b)に例示した放熱シートAの突起側を半導体素子Cに接合し、放熱シートAの他方側の面を、熱伝導性接着剤層Bを介在させて放熱器Hに接合した装置構成例である。
図4(c)は、図3(b)に例示した放熱部材を、半導体素子Cに接合した装置構成例である。
The semiconductor device according to the present invention is obtained by joining the heat-dissipating sheet / heat-dissipating member of the present invention to an electronic component, particularly a semiconductor element.
Examples of the semiconductor element include various integrated circuits such as a silicon chip. FIG. 4 is a schematic view of the heat dissipation sheet A illustrated in FIG. It is an example of a device configuration in which a conductive adhesive layer B is interposed.
4A, the protrusion side of the heat dissipation sheet A illustrated in FIG. 1B is joined to the semiconductor element C, and the other surface of the heat dissipation sheet A is interposed with the heat conductive adhesive layer B interposed therebetween. It is a device configuration example joined to a radiator H.
FIG. 4C shows an apparatus configuration example in which the heat dissipating member exemplified in FIG.

本実施例では、図1(b)に示すとおり、金属板の片面だけに突起を備えた放熱シートを実際に製作し、その性能を評価した。
金属板として、250μm厚、25mm×25mmの銅板を用い、その主面上の18mm×18mmの領域内に、はんだバンプ(略球状、外径470μm、板面からの高さ150μm)を図1(a)のような正三角形を最小単位とする細密状の配列パターンにて配置した。隣り合ったバンプ同士の中心間ピッチは600μmである。
In this example, as shown in FIG. 1 (b), a heat radiating sheet having protrusions only on one side of a metal plate was actually manufactured and its performance was evaluated.
A 250 μm thick, 25 mm × 25 mm copper plate is used as the metal plate, and solder bumps (substantially spherical, outer diameter 470 μm, height from the plate surface 150 μm) are shown in FIG. They are arranged in a fine array pattern having an equilateral triangle as a minimum unit as in a). The pitch between the centers of adjacent bumps is 600 μm.

次に、充填用樹脂として、厚さ120μm、形状20mm×20mm、線膨張率80ppmのポリカルボジイミドフィルムを、ホットロールラミネータを用いて、温度100℃、線圧3.5〔kg/cm〕、速度1000rpmの条件で凸部形成面の上を覆うように貼合わせ、150℃、30分プリキュアを行い、バンプ同士の間に浸透させ充填した。
本実施例では、上記18mm×18mmの領域から全周囲にはみ出したポリカルボジイミドフィルムを、接着用凸部とした。
その後、耐水研磨紙(800番)を用いて、突起(はんだバンプ)表面が露出するまで研磨を行い、本発明の放熱シートを得た。このときの研磨後の突起の高さ(=充填用樹脂の厚さは、約100μmである。
当該放熱シートの評価は、他の実施例品、比較例品と共に後述する。
Next, as a filling resin, a polycarbodiimide film having a thickness of 120 μm, a shape of 20 mm × 20 mm, and a linear expansion coefficient of 80 ppm, using a hot roll laminator, a temperature of 100 ° C., a linear pressure of 3.5 [kg / cm 2 ], Bonding was performed so as to cover the convex forming surface under the condition of a speed of 1000 rpm, and precuring was performed at 150 ° C. for 30 minutes, and the bumps were infiltrated and filled.
In this example, a polycarbodiimide film that protruded from the area of 18 mm × 18 mm to the entire periphery was used as a bonding convex portion.
Then, it grind | polished until the protrusion (solder bump) surface was exposed using water-resistant abrasive paper (No. 800), and obtained the thermal radiation sheet | seat of this invention. The height of the projections after polishing at this time (= the thickness of the filling resin is about 100 μm).
The evaluation of the heat dissipation sheet will be described later together with other examples and comparative examples.

本実施例では、実施例1の態様において、接着用凸部を充填用樹脂とは異なる樹脂にて形成した。
実施例1と同様に、金属板として、250μm厚、25mm×25mmの銅板を用い、その主面上の18mm×18mmの領域内に、はんだバンプを細密状の配列パターンにて配置した。
In this example, in the aspect of Example 1, the adhesive convex portion was formed of a resin different from the filling resin.
As in Example 1, a 250 μm thick, 25 mm × 25 mm copper plate was used as the metal plate, and solder bumps were arranged in a fine array pattern in an 18 mm × 18 mm region on the main surface.

次に、充填用樹脂として、厚さ120μm、形状18mm×18mmのポリカルボジイミドフィルムを、ホットロールラミネータを用いて、温度100℃、線圧3.5〔kg/cm〕、速度1000rpmの条件で凸部形成領域と一致するように重ねて貼合わせ、150℃、30分プリキュアを行い、バンプ同士の間に浸透させ充填した。 Next, as a filling resin, a polycarbodiimide film having a thickness of 120 μm and a shape of 18 mm × 18 mm, using a hot roll laminator, at a temperature of 100 ° C., a linear pressure of 3.5 kg / cm 2 , and a speed of 1000 rpm. The layers were overlapped and bonded so as to coincide with the convex portion formation region, precured at 150 ° C. for 30 minutes, and permeated and filled between the bumps.

次に、突起形成領域の周囲全周にわたって、幅1mm、高さ120μmの断面方形のポリカルジイミド樹脂をホットロールラミネータを用いて張り合わせた後、更に150℃15分硬化させ、接着用凸部とした。
その後、耐水研磨紙(800番)を用いて、突起(はんだバンプ)表面が露出するまで研磨を行い、本発明の放熱シートを得た。このときの研磨後の突起の高さ(=充填用樹脂の厚さは、約100μmである。
当該放熱シートの評価は、他の実施例品、比較例品と共に後述する。
比較例1
Next, a polycardiimide resin having a cross section of 1 mm in width and 120 μm in height is bonded to the entire periphery of the protrusion formation region using a hot roll laminator, and then further cured at 150 ° C. for 15 minutes, did.
Then, it grind | polished until the protrusion (solder bump) surface was exposed using water-resistant abrasive paper (No. 800), and obtained the thermal radiation sheet | seat of this invention. The height of the projections after polishing at this time (= the thickness of the filling resin is about 100 μm).
The evaluation of the heat dissipation sheet will be described later together with other examples and comparative examples.
Comparative Example 1

比較例1
本比較例では、外周の接着用凸部をもたないこと以外は、上記実施例1と同様に放熱シートを製作した。即ち、形状18mm×18mmのポリカルボジイミドフィルムを、突起領域と一致させて重ね合わせたものである。
Comparative Example 1
In this comparative example, a heat radiating sheet was produced in the same manner as in Example 1 except that the outer peripheral adhesive projection was not provided. That is, a polycarbodiimide film having a shape of 18 mm × 18 mm is overlaid so as to coincide with the protruding region.

〔評価〕
熱抵抗測定装置を用い、実施例1、2と比較例において得られた各放熱シートの熱抵抗率を測定した。熱抵抗測定装置は、ヒーターとクーラーとによって放熱シートを両面から挟み込み、その時の温度勾配の測定をすることで、各放熱シートの熱抵抗率を測定する方式の装置である。
また、各放熱シートをフリップチップボンダーを用いてシリコンウエハに接合し(接合面の材料はシリコン)、高温側125℃〜低温側−55℃、1周期30分、1000周期分のヒートサイクルを作用させた後、ICベアチップのエッジからの放熱シートの浮きを観察した。放熱シートの浮きの観察には、超音波深傷装置(SAT)を用いてシリコンウェハと放熱シートとの界面を観察した。
実施例、比較例のそれぞれの熱抵抗率〔cmK/W〕、エッジからの浮きを表1に示す。
[Evaluation]
Using a thermal resistance measuring device, the thermal resistivity of each heat radiation sheet obtained in Examples 1 and 2 and the comparative example was measured. The thermal resistance measuring device is a device that measures the thermal resistivity of each heat radiating sheet by sandwiching the heat radiating sheet from both sides with a heater and a cooler and measuring the temperature gradient at that time.
Also, each heat-dissipating sheet is bonded to a silicon wafer using a flip chip bonder (the material of the bonding surface is silicon), and a high temperature side 125 ° C. to a low temperature side −55 ° C., one cycle 30 minutes, 1000 cycles heat cycle Then, the floating of the heat dissipation sheet from the edge of the IC bare chip was observed. For observation of floating of the heat dissipation sheet, an interface between the silicon wafer and the heat dissipation sheet was observed using an ultrasonic deep scratch device (SAT).
Table 1 shows the thermal resistivity [cm 2 K / W] and the lift from the edge of each of the examples and comparative examples.

Figure 2005093842
Figure 2005093842

上記表1から明らかなとおり、実施例の方が比較例よりもシリコンウェハ端面での接着効果が優れていることがわかった。   As is apparent from Table 1 above, it was found that the example had a better adhesion effect on the end face of the silicon wafer than the comparative example.

以上の説明のとおり、本発明の放熱シート・放熱構造は、熱伝導効率を向上させながら、同時に、温度変化に対しても接着状態の劣化が少ない。従って、電子部品に対してより効果的で信頼性の高い放熱構造を提供することができる。   As described above, the heat-dissipating sheet / heat-dissipating structure of the present invention improves the heat conduction efficiency and, at the same time, has little deterioration in the adhesion state with respect to temperature changes. Therefore, it is possible to provide a heat dissipation structure that is more effective and highly reliable for electronic components.

本発明による放熱シートの一構成例を示した断面図である。図1(a)は、当該放熱シートの主面を見た図(上面図)であり、図1(b)は、図1(a)のX−X断面図である。図1(c)、(d)は、図1(b)の代わりの構成として種々のバリエーションを示した断面図である。It is sectional drawing which showed one structural example of the thermal radiation sheet | seat by this invention. Fig.1 (a) is the figure (top view) which looked at the main surface of the said heat-radiation sheet, FIG.1 (b) is XX sectional drawing of Fig.1 (a). FIGS. 1C and 1D are cross-sectional views showing various variations as an alternative configuration to FIG. 本発明による放熱シートの他の構成例を示した図であって、当該放熱シートの主面を見た場合の、接着性凸部の形状を例示している。It is the figure which showed the other structural example of the thermal radiation sheet | seat by this invention, Comprising: The shape of the adhesive convex part at the time of seeing the main surface of the said thermal radiation sheet is illustrated. 本発明による放熱部材の一構成例を示した断面図である。It is sectional drawing which showed one structural example of the heat radiating member by this invention. 本発明による半導体装置の構成例を示す断面図である。It is sectional drawing which shows the structural example of the semiconductor device by this invention.

符号の説明Explanation of symbols

1 突起
2 充填用樹脂
3 接着用凸部
4 金属板
5 放熱器
DESCRIPTION OF SYMBOLS 1 Protrusion 2 Filling resin 3 Adhesive convex part 4 Metal plate 5 Radiator

Claims (14)

金属板の少なくとも一方の板面の一部の領域内に、熱伝導性材料からなる突起が複数形成され、
該領域内の残りには、接着性を有しかつ線膨張率100ppm以下である充填用樹脂が前記突起の高さと実質的に同じ高さまで充填され、
前記領域の周囲の一部または全部には、前記突起の高さと実質的に同じ高さを有し少なくとも上面が接着性樹脂からなる接着用凸部が設けられていることを特徴とする、放熱シート。
A plurality of protrusions made of a heat conductive material are formed in a partial area of at least one plate surface of the metal plate,
In the rest of the region, a filling resin having adhesiveness and a linear expansion coefficient of 100 ppm or less is filled to a height substantially equal to the height of the protrusions,
A part of or all of the periphery of the region is provided with an adhesive convex portion having a height substantially the same as the height of the protrusion and having at least an upper surface made of an adhesive resin. Sheet.
金属板の厚さが、15μm〜2mmである、請求項1記載の放熱シート。   The heat dissipation sheet according to claim 1, wherein the metal plate has a thickness of 15 μm to 2 mm. 突起が、金属板の両方の板面のそれぞれの上記領域内に形成されている、請求項1記載の放熱シート。   The heat-radiation sheet according to claim 1, wherein the protrusion is formed in each of the regions on both plate surfaces of the metal plate. 充填用樹脂が、両方の板面のそれぞれの上記領域内に、突起の高さと実質的に同じ高さまで充填されている、請求項3記載の放熱シート。   The heat-dissipating sheet according to claim 3, wherein the filling resin is filled in each of the regions of both plate surfaces to a height substantially equal to the height of the protrusion. 接着用凸部が、両方の板面のそれぞれの上記領域の周囲の一部または全部に設けられている、請求項3または4記載の放熱シート。   The heat-radiation sheet according to claim 3 or 4, wherein the bonding convex portion is provided on a part or all of the periphery of each of the regions on both plate surfaces. 充填用樹脂中に熱伝導性フィラーが分散している、請求項1記載の放熱シート。   The heat-radiating sheet according to claim 1, wherein the thermally conductive filler is dispersed in the filling resin. 当該放熱シートの装着対象が半導体素子であって、金属板の外周形状が前記半導体素子の外周形状と略一致する形状である、請求項1記載の放熱シート。   The heat dissipation sheet according to claim 1, wherein the mounting target of the heat dissipation sheet is a semiconductor element, and the outer peripheral shape of the metal plate is substantially the same as the outer peripheral shape of the semiconductor element. 充填用樹脂と、接着用凸部に用いられる接着性樹脂とが、互いに異なる樹脂である、請求項1記載の放熱シート。   The heat-radiating sheet according to claim 1, wherein the filling resin and the adhesive resin used for the bonding convex portion are different from each other. 接着用凸部全体が接着性樹脂からなり、該接着性樹脂の弾性率が2MPa〜2GPaである、請求項1記載の放熱シート。   The heat dissipation sheet according to claim 1, wherein the entire bonding convex portion is made of an adhesive resin, and the elastic modulus of the adhesive resin is 2 MPa to 2 GPa. 放熱器の熱受入れ面の一部の領域内に、熱伝導性材料からなる突起が複数形成され、
該領域内の残りには、接着性を有しかつ線膨張率100ppm以下である充填用樹脂が前記突起の高さと実質的に同じ高さまで充填され、
前記領域の周囲の一部または全部には、前記突起の高さと実質的に同じ高さを有し少なくとも上面が接着性樹脂からなる接着用凸部が設けられていることを特徴とする、放熱部材。
A plurality of protrusions made of a heat conductive material are formed in a part of the heat receiving surface of the radiator,
In the rest of the region, a filling resin having adhesiveness and a linear expansion coefficient of 100 ppm or less is filled to a height substantially equal to the height of the protrusions,
A part of or all of the periphery of the region is provided with an adhesive convex portion having a height substantially the same as the height of the protrusion and having at least an upper surface made of an adhesive resin. Element.
上記充填用樹脂中に熱伝導性フィラーが分散している、請求項10記載の放熱部材。   The heat radiating member according to claim 10, wherein a thermally conductive filler is dispersed in the filling resin. 充填用樹脂と、接着用凸部に用いられる接着性樹脂とが、互いに異なる樹脂である、請求項10記載の放熱部材。   The heat radiating member according to claim 10, wherein the filling resin and the adhesive resin used for the bonding convex portion are different from each other. 接着用凸部全体が接着性樹脂からなり、該接着性樹脂の弾性率が2MPa〜2GPaである、請求項10記載の放熱部材。   The heat radiating member according to claim 10, wherein the entire bonding convex portion is made of an adhesive resin, and the elastic modulus of the adhesive resin is 2 MPa to 2 GPa. 上記請求項1〜9のいずれかに記載の放熱シート、または、上記請求項10〜13のいずれかに記載の放熱部材が、半導体素子に装着された構成を有する半導体装置。   The semiconductor device which has the structure by which the thermal radiation sheet in any one of the said Claims 1-9 or the thermal radiation member in any one of the said Claims 10-13 was mounted | worn with the semiconductor element.
JP2003327158A 2003-09-19 2003-09-19 Heat dissipation sheet and heat dissipation member Pending JP2005093842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327158A JP2005093842A (en) 2003-09-19 2003-09-19 Heat dissipation sheet and heat dissipation member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327158A JP2005093842A (en) 2003-09-19 2003-09-19 Heat dissipation sheet and heat dissipation member

Publications (1)

Publication Number Publication Date
JP2005093842A true JP2005093842A (en) 2005-04-07

Family

ID=34457100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327158A Pending JP2005093842A (en) 2003-09-19 2003-09-19 Heat dissipation sheet and heat dissipation member

Country Status (1)

Country Link
JP (1) JP2005093842A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042362A (en) * 2005-08-02 2007-02-15 Nitto Denko Corp Fuel cell module and mobile apparatus
JP2010073843A (en) * 2008-09-18 2010-04-02 Nitto Denko Corp Microprocessor structure
JP2010073842A (en) * 2008-09-18 2010-04-02 Nitto Denko Corp Microprocessor structure
KR100982102B1 (en) * 2008-06-10 2010-09-13 콘티넨탈 오토모티브 시스템 주식회사 Electric device package apparatus
JP2011192695A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Semiconductor apparatus
JP2012138566A (en) * 2010-12-08 2012-07-19 Nippon Dourooingu:Kk Composite heat conduction member
JP2015192003A (en) * 2014-03-28 2015-11-02 昭和電工株式会社 Heat sink and electronic component
US9460983B2 (en) 2011-09-29 2016-10-04 Shinko Electric Industries Co., Ltd. Joining structure using thermal interface material
CN114678335A (en) * 2022-05-27 2022-06-28 合肥矽迈微电子科技有限公司 Chip heat dissipation structure, process and semiconductor device
WO2022181206A1 (en) * 2021-02-24 2022-09-01 デクセリアルズ株式会社 Heat-conducting sheet, heat-conducting sheet production method, and electronic device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042362A (en) * 2005-08-02 2007-02-15 Nitto Denko Corp Fuel cell module and mobile apparatus
KR100982102B1 (en) * 2008-06-10 2010-09-13 콘티넨탈 오토모티브 시스템 주식회사 Electric device package apparatus
JP2010073843A (en) * 2008-09-18 2010-04-02 Nitto Denko Corp Microprocessor structure
JP2010073842A (en) * 2008-09-18 2010-04-02 Nitto Denko Corp Microprocessor structure
JP2011192695A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Semiconductor apparatus
US8933568B2 (en) 2010-03-12 2015-01-13 Mitsubishi Electric Corporation Semiconductor device
JP2012138566A (en) * 2010-12-08 2012-07-19 Nippon Dourooingu:Kk Composite heat conduction member
US9460983B2 (en) 2011-09-29 2016-10-04 Shinko Electric Industries Co., Ltd. Joining structure using thermal interface material
JP2015192003A (en) * 2014-03-28 2015-11-02 昭和電工株式会社 Heat sink and electronic component
WO2022181206A1 (en) * 2021-02-24 2022-09-01 デクセリアルズ株式会社 Heat-conducting sheet, heat-conducting sheet production method, and electronic device
CN114678335A (en) * 2022-05-27 2022-06-28 合肥矽迈微电子科技有限公司 Chip heat dissipation structure, process and semiconductor device
CN114678335B (en) * 2022-05-27 2022-08-16 合肥矽迈微电子科技有限公司 Chip heat dissipation structure, process and semiconductor device

Similar Documents

Publication Publication Date Title
US7843058B2 (en) Flip chip packages with spacers separating heat sinks and substrates
US7561436B2 (en) Circuit assembly with surface-mount IC package and heat sink
TW498519B (en) Semiconductor device having heat spreader attached thereto and method of manufacturing the same
US6720644B2 (en) Semiconductor device using interposer substrate and manufacturing method therefor
TWI709221B (en) Multilayer substrate, manufacturing method thereof, and anisotropic conductive film
JP2007311770A (en) Semiconductor device
JPWO2006100909A1 (en) Semiconductor device and manufacturing method thereof
JP2012104706A (en) Semiconductor device and manufacturing method of the same
TWI433280B (en) Semiconductor device and method for manufacturing the same
TW202020106A (en) Method of producing semiconductor device, thermoconductive sheet, and method of producing thermoconductive sheet
JP2005093842A (en) Heat dissipation sheet and heat dissipation member
US7268427B2 (en) Semiconductor package, printed board mounted with the same, and electronic apparatus having the printed board
JP2012015225A (en) Semiconductor device
JP6672497B2 (en) Semiconductor device
US6967401B2 (en) Semiconductor device, semiconductor module and hard disk
JP2005129847A (en) Semiconductor device, its manufacturing method, and semiconductor device manufacturing device
TWI823986B (en) Method of producing semiconductor device, and thermoconductive sheet
JP2003142809A (en) Metal base circuit board and module using the same
JP2002176135A (en) Laminated semiconductor device and its manufacturing method
JP4667154B2 (en) Wiring board, electrical element device and composite board
JP7067114B2 (en) Insulated circuit board and its manufacturing method
CN110634821A (en) Thermal interface for electronic devices
JP4876612B2 (en) Insulated heat transfer structure and power module substrate
JP5487847B2 (en) Electronic device package, manufacturing method thereof, and electronic apparatus
JP2004172313A (en) Thermally conductive heat dissipating sheet and semiconductor device using the same