WO2022181206A1 - Heat-conducting sheet, heat-conducting sheet production method, and electronic device - Google Patents

Heat-conducting sheet, heat-conducting sheet production method, and electronic device Download PDF

Info

Publication number
WO2022181206A1
WO2022181206A1 PCT/JP2022/003359 JP2022003359W WO2022181206A1 WO 2022181206 A1 WO2022181206 A1 WO 2022181206A1 JP 2022003359 W JP2022003359 W JP 2022003359W WO 2022181206 A1 WO2022181206 A1 WO 2022181206A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
conductive sheet
thermally conductive
volume
heat conductive
Prior art date
Application number
PCT/JP2022/003359
Other languages
French (fr)
Japanese (ja)
Inventor
真理奈 戸端
慶輔 荒巻
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2022181206A1 publication Critical patent/WO2022181206A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • This technology relates to a thermally conductive sheet, a method for manufacturing a thermally conductive sheet, and an electronic device using the same.
  • This application claims priority based on Japanese Patent Application No. 2021-028005 filed on February 24, 2021 in Japan, and this application is hereby incorporated by reference. Incorporated.
  • Cooling methods for devices with semiconductor elements include attaching a fan to the device to cool the air inside the device housing, attaching heat sinks such as heat sinks and heat sinks to the semiconductor device, and immersing the device in a fluorine-based inert liquid.
  • heat sinks such as heat sinks and heat sinks
  • immersing the device in a fluorine-based inert liquid There are known methods for When a heat sink is attached to a semiconductor element for cooling, a liquid or paste thermal conductive material such as thermal grease is provided between the semiconductor element and the heat sink in order to efficiently dissipate the heat of the semiconductor element.
  • a thermally conductive sheet which is formed by molding a thermally conductive resin composition into a sheet.
  • the electronic component must repeat heat generation and cooling in order for the thermal conductive sheet to maintain its heat dissipation characteristics as the electronic device continues to be used. In this way, it is necessary to prevent misalignment and falling from the predetermined sticking position.
  • the thermally conductive sheet is required to have resilience to follow the deformation of the electronic parts due to repeated heat generation and cooling, and to maintain the adhesion between the electronic parts and the heat dissipating member.
  • an object of the present technology is to provide a thermally conductive sheet that is excellent in adhesion to electronic components and capable of suppressing deviation from the sticking position, a method for manufacturing the thermally conductive sheet, and an electronic device using the same.
  • a thermally conductive sheet according to the present technology is a thermally conductive sheet that is a cured product of a composition containing at least a polymer matrix component and a fibrous thermally conductive filler, and is provided under the following conditions: In 1, the displacement in the length direction is 2.5 mm or less with respect to the state sandwiched by the copper plates. Condition 1: A heat conductive sheet piece cut into a strip of 20 mm ⁇ 5 mm is placed vertically on a copper plate with the length direction facing the vertical direction and one side of the length direction aligned with one side of the copper plate. A heat cycle between -40°C and 100°C (test temperature transition time within 3 minutes, heat retention time after reaching the test temperature for 30 minutes) was performed for 672 hours in a state where the thickness was compressed by 10%.
  • a method for producing a thermally conductive sheet according to the present technology includes steps of preparing a thermally conductive composition containing a polymer matrix component and a fibrous thermally conductive filler, and forming a molded block from the thermally conductive composition. and a step of slicing the molded block into sheets to obtain a thermally conductive sheet, thereby obtaining the thermally conductive sheet described above.
  • an electronic device is an electronic device including the thermally conductive sheet described above, the thermally conductive sheet is sandwiched between an electronic component and a heat radiating member, and the thermally conductive sheet has a surface direction of It is used by being fixed in a substantially vertical direction.
  • the displacement in the length direction in a predetermined thermal cycle test is 2.5 mm or less, it is used for electronic components (heat generating components) that generate heat, such as semiconductor elements that are provided in a substantially vertical direction. Even if the heat-generating component repeats heat generation and cooling, the attachment position does not shift significantly, and the heat-generating component is able to adhere to deformations such as warping due to heat generation and cooling, preventing an increase in thermal resistance. , the heat dissipation properties of the heat conductive sheet can be maintained.
  • FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet.
  • FIG. 2 is a diagram showing the configuration of a thermal cycle test according to the present technology, (A) is a cross-sectional view showing a state in which a piece of a thermal conductive sheet is sandwiched between copper plates, and (B) is a copper plate using a fastener.
  • FIG. 3C is a front view showing an example of sandwiching the heat-conducting sheet pieces, and (C) is a front view showing a state in which one side of the heat-conducting sheet piece in the length direction is aligned with one side of the copper plate.
  • FIG. 3 is a diagram showing the amount of deviation after a heat cycle test of a piece of thermally conductive sheet sandwiched between copper plates.
  • FIG. 4 is a cross-sectional view showing an example of a semiconductor device to which a heat conductive sheet is applied.
  • thermally conductive sheet to which the present technology is applied a method for manufacturing the thermally conductive sheet, and an electronic device using the same will be described in detail below with reference to the drawings.
  • present technology is not limited to the following embodiments, and various modifications are possible without departing from the gist of the present technology.
  • drawings are schematic, and the ratio of each dimension may differ from the actual one. Specific dimensions and the like should be determined with reference to the following description.
  • FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet according to the present technology.
  • the heat conductive sheet 1 shown in FIG. 1 is a heat conductive sheet that is a cured product of a composition containing at least a polymer matrix component 2 and a fibrous heat conductive filler 3, and is a copper plate under the following condition 1.
  • the displacement in the length direction is 2.5 mm or less on the basis of the sandwiched state.
  • Condition 1 A heat conductive sheet piece cut into a strip of 20 mm ⁇ 5 mm is placed vertically on a copper plate with the length direction facing the vertical direction and one side of the length direction aligned with one side of the copper plate.
  • a heat cycle between -40°C and 100°C was performed for 672 hours in a state where the thickness was compressed by 10%.
  • the heat conductive sheet 1 to which the present technology is applied has a deviation of 2.5 mm or less in the length direction under condition 1, so even if the electronic component repeats heat generation and cooling, the deviation length will be Even if it protrudes from between the component and the heat radiating member, it has a recovery rate of 85% or more in the part sandwiched between the electronic component and the heat radiating member, and prevents displacement and falling from the predetermined sticking position. be able to.
  • the thermally conductive sheet 1 follows even when the electronic parts are deformed due to repeated heat generation and cooling, and can continue to maintain adhesion to the electronic parts and the heat dissipating member, thereby suppressing an increase in thermal resistance. .
  • the measurement of the amount of displacement by the thermal cycle test is based on the state where the copper plate is sandwiched between the copper plates and protrudes from the side edge of the copper plate, and the amount of displacement in the protruding portion is measured. This is because it is necessary to examine resistance to thermal cycles (presence or absence of misalignment and adhesion) in a state of being sandwiched between an electronic component and a heat radiating member and compressed by 10%.
  • the thickness of the heat conductive sheet piece to be subjected to the thermal cycle test can be suitably used, for example, 1.0 mm or 2.0 mm.
  • FIGS. 2 and 3 are diagrams showing a thermal cycle test according to Condition 1 according to the present technology.
  • FIG. 2(A) under Condition 1, two copper plates 10 (3.0 mm ⁇ 3.0 mm, thickness 2.0 mm) were cut into strips of 20 mm ⁇ 5 mm to form a thermally conductive sheet piece. 11 is sandwiched.
  • a spacer 12 is arranged between the two copper plates 10, 10 to define the distance between the copper plates so that the compression ratio of the heat conductive sheet pieces 11 is 10%. be done.
  • FIG. 2B for example, two copper plates 10, 10 can hold the heat conductive sheet pieces 11 in a sandwiched state using bolts provided at the corners of the two copper plates 10, 10.
  • the side edges of the copper plates 10, 10 may be clamped with clips. From the viewpoint of preventing warping of the copper plate 10 in the thermal cycle test, it is preferable to provide the spacer 12 integrally with or near the outer edge of the copper plate 10 , for example, the fastener 13 .
  • the heat-conducting sheet piece 11 is sandwiched with one side in the longitudinal direction aligned with one side 10a (lower piece) of the copper plate 10 .
  • the heat-conducting sheet piece 11 protrudes slightly from one side of the copper plate 10, as shown in FIG. 2(A).
  • the sandwiched state between the copper plates 10 is used as a reference for measuring the amount of displacement, and the length by which the protruding tip portion is displaced vertically downward is defined as the displacement S (mm).
  • the heat-conducting sheet piece 11 sandwiched between the copper plates 10 is treated with the length direction of the heat-conducting sheet piece 11 in the vertical direction and the side 10a of the copper plate 10 where the heat-conducting sheet piece 11 protrudes vertically downward.
  • a thermal cycle test is performed by placing the piece 11 of the heat conductive sheet so that the lower edge of the piece 11 does not touch the ground.
  • the thermally conductive sheet 1 shown in FIG. 1 is a thermally conductive sheet that is a cured product of a composition containing at least a polymer matrix component 2 (binder resin) and a fibrous thermally conductive filler 3. Moreover, the thermally conductive sheet 1 may further contain thermally conductive fillers 4 other than the fibrous thermally conductive fillers 3 .
  • the heat conductive sheet 1 has a displacement of 2.5 mm or less in the length direction when the thermal cycle test is performed under the condition 1 described above. That is, the thermally conductive sheet 1 is sandwiched between a heat-generating electronic component and a heat radiating member, and even when the electronic component repeats heat generation and cooling, the deviation in the vertical direction remains at 2.5 mm or less. If the deviation in the thermal cycle test under Condition 1 exceeds 2.5 mm, it becomes difficult to maintain a recovery rate of 85% or more, and the electronic component repeats heat generation and cooling, resulting in position deviation from the predetermined attachment position. or fall can occur. In addition, when the electronic component is deformed by repeating heat generation and cooling, it cannot be followed, and there is a risk of an increase in thermal resistance due to reduced adhesion between the electronic component and the heat radiating member.
  • the recovery rate means that a disk-shaped heat conductive sheet with a thickness of 1 mm and a diameter of 29 mm is compressed to 0.7 mm (70% of the initial thickness) at room temperature, held for 24 hours, and after releasing the pressure, the recovery rate is 30%. It refers to the value obtained by dividing the thickness after minutes by the original thickness (1 mm) x 100 (%).
  • the thermally conductive sheet according to the present technology is a thermally conductive sheet that is a cured product of a composition containing at least a polymer matrix component and a fibrous thermally conductive filler, and is sandwiched between copper plates under condition 2 below.
  • a thermally conductive sheet having a lengthwise deviation of 2.5 mm or less based on the state where the sheets are placed may be used.
  • Condition 2 A heat conductive sheet piece cut into a strip of 20 mm ⁇ 5 mm is placed vertically on a copper plate with the length direction facing the vertical direction and one side of the length direction aligned with one side of the copper plate.
  • a heat cycle between -55°C and 125°C (test temperature transition time within 3 minutes, heat retention time after reaching the test temperature for 30 minutes) was performed for 672 hours in a state where the thickness was compressed by 10%.
  • the temperature range of the thermal cycle is wider than under condition 1 described above. Since the displacement in the length direction under condition 2 is 2.5 mm or less, even when placed in a harsher environment than condition 1, it has a recovery rate of 85% or more, and can be removed from the predetermined attachment position. It is possible to prevent misalignment and falling, and even if electronic parts are deformed due to repeated heat generation and cooling, it will continue to maintain adhesion to electronic parts and heat dissipation materials, preventing increases in thermal resistance. can be suppressed.
  • the heat conductive sheet 1 has a length direction deviation of 2.5 mm or less based on the condition 1 or condition 2 sandwiched between the copper plates, so that the type OO durometer conforming to ASTM D 2240 is 20 or more. It preferably has a hardness of less than 60. If the hardness is 60 or more, the restoring force is insufficient under condition 1 or condition 2, which may cause displacement or fall from the predetermined sticking position. In addition, when the electronic component is deformed by repeating heat generation and cooling, it cannot be followed, and there is a possibility that the adhesion between the electronic component and the heat radiating member is impaired, resulting in an increase in thermal resistance.
  • the polymer matrix component is a two-liquid type It is preferable that the ratio of the main agent, which is an addition reaction type liquid silicone and contains a curing catalyst, and the curing agent, satisfies the following conditions.
  • Main agent: Curing agent 35:65 to 70:30
  • the main ingredient component is relatively smaller than the curing agent component than the above ratio, the uncured component of the silicone exudes less as described later, and the tackiness of the sheet surface becomes insufficient. It may cause misalignment or fall from the sticking position. If the main agent component is relatively larger than the curing agent component than the above ratio, the restoring force will be insufficient due to the decrease in the crosslinking density of the silicone, and the expansion and contraction of the copper plate cannot be followed under the above condition 1 or condition 2. It can cause misalignment and falling from the
  • the heat conductive sheet 1 has a compressive stress of 5.0 [psi] or more from the viewpoint that the displacement in the length direction is 2.5 mm or less with respect to the state sandwiched by the copper plates under the above condition 1 or condition 2.
  • the compressive stress is measured by cutting a 2.0 mm thick heat conductive sheet into 25 mm squares, compressing it by 30% with a Tensilon at a pressing speed of 20 mm/sec, holding it for 3 minutes, and measuring the compressive stress after 3 minutes. Measured value (psi).
  • the thermally conductive sheet 1 further contains at least one selected from aluminum compounds as a thermally conductive filler, and the content of the aluminum compound is preferably more than 39% by volume and less than 51% by volume.
  • the content of the aluminum compound is 39% by volume or less, the thermal conductivity decreases due to insufficient filling.
  • the content of the aluminum compound is 51% by volume or more, it interferes with the filling of the fibrous thermally conductive filler.
  • the thickness of the heat conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose.
  • the thickness of the heat conductive sheet 1 can be 0.05 mm or more, and can also be 0.1 mm or more.
  • the upper limit of the thickness of the heat conductive sheet 1 may be 5 mm or less, may be 4 mm or less, or may be 3 mm or less.
  • the heat conductive sheet 1 preferably has a thickness of 0.1 to 4 mm.
  • the thickness of the thermally conductive sheet 1 can be determined, for example, by measuring the thickness of the thermally conductive sheet 1 at five arbitrary points and calculating the arithmetic average value thereof.
  • the thermally conductive sheet 1 is, for example, a cured product of a composition containing at least a polymer matrix component (binder resin) 2 and a fibrous thermally conductive filler 3 .
  • the polymeric matrix component 2 is for holding the fibrous thermally conductive fillers 3 and other thermally conductive fillers 4 within the thermally conductive sheet 1 .
  • the polymer matrix component 2 is selected according to properties such as mechanical strength, heat resistance and electrical properties required for the heat conductive sheet 1 .
  • the polymer matrix component 2 can be selected from thermoplastic resins, thermoplastic elastomers, and thermosetting resins.
  • thermoplastic resins include polyethylene, polypropylene, ethylene- ⁇ -olefin copolymers such as ethylene-propylene copolymers, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymers, Fluorinated polymers such as polyvinyl alcohol, polyvinyl acetal, polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer Polymer (ABS) resin, polyphenylene-ether copolymer (PPE) resin, modified PPE resin, aliphatic polyamides, aromatic polyamides, polyimide, polyamideimide, polymeth
  • Thermoplastic elastomers include styrene-butadiene block copolymers or hydrogenated products thereof, styrene-isoprene block copolymers or hydrogenated products thereof, styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, and vinyl chloride-based thermoplastic elastomers. , polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and the like.
  • Thermosetting resins include crosslinked rubbers, epoxy resins, phenolic resins, polyimide resins, unsaturated polyester resins, diallyl phthalate resins, and the like.
  • Specific examples of crosslinked rubber include natural rubber, acrylic rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-propylene copolymer rubber, chlorinated polyethylene rubber, Chlorosulfonated polyethylene rubber, butyl rubber, halogenated butyl rubber, fluororubber, urethane rubber, and silicone rubber.
  • a silicone resin is preferable in consideration of the adhesion between the heat generating surface and the heat sink surface of the electronic component.
  • the silicone resin for example, a two-component addition reaction type silicone resin composed of a silicone having an alkenyl group as a main component, a main agent containing a curing catalyst, and a curing agent having a hydrosilyl group (Si—H group).
  • the alkenyl group-containing silicone for example, a vinyl group-containing polyorganosiloxane can be used.
  • the curing catalyst is a catalyst for promoting the addition reaction between the alkenyl group in the alkenyl group-containing silicone and the hydrosilyl group in the hydrosilyl group-containing curing agent.
  • the curing catalyst well-known catalysts used for hydrosilylation reaction can be used.
  • platinum group curing catalysts such as platinum group metals such as platinum, rhodium and palladium, and platinum chloride can be used.
  • the curing agent having hydrosilyl groups for example, polyorganosiloxane having hydrosilyl groups can be used.
  • the polymer matrix component 2 may be used singly or in combination of two or more.
  • the content of the polymer matrix component 2 in the heat conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose.
  • the content of the polymer matrix component 2 in the thermally conductive sheet 1 may be 20% by volume or more, may be 25% by volume or more, or may be 30% by volume, from the viewpoint of the flexibility of the thermally conductive sheet 1. It may be vol % or more, or 35 vol % or more.
  • the content of the polymer matrix component 2 in the thermally conductive sheet 1 can be 70% by volume or less, and may be 60% by volume or less, from the viewpoint of the thermal conductivity of the thermally conductive sheet 1. It may be 50% by volume or less, 41% by volume or less, or 39% by volume or less.
  • the content of the polymer matrix component 2 in the thermally conductive sheet 1 is preferably 20 to 50% by volume, for example, from the viewpoint of compressive stress and recovery rate of the thermally conductive sheet 1, 35% by volume or more, It is more preferable to make it 41 volume % or less.
  • a thermally conductive sheet 1 contains a fibrous thermally conductive filler 3 .
  • the fibrous thermally conductive filler 3 has a long axis and a short axis, and the length of the long axis and the short axis are different, and the aspect ratio (average long axis length/average short axis length) exceeds 1. Including those that are in shape.
  • the fibrous thermally conductive filler 3 may be used singly or in combination of two or more.
  • the fibrous thermally conductive filler 3 can be appropriately selected depending on the intended purpose. For example, metal fiber, carbon fiber, etc. can be used, and carbon fiber is preferable.
  • Carbon fibers include, for example, pitch-based carbon fiber, PAN-based carbon fiber, carbon fiber obtained by graphitizing PBO fiber, arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), growth method) or the like can be used.
  • pitch-based carbon fibers are preferable from the viewpoint of thermal conductivity.
  • the average fiber length (average long axis length) of the fibrous thermally conductive filler 3 can be, for example, 50 to 250 ⁇ m, and may be 75 to 220 ⁇ m.
  • the average fiber diameter (average minor axis length) of the fibrous thermally conductive filler 3 can be appropriately selected according to the purpose, and can be, for example, 4 to 20 ⁇ m, such as 5 to 14 ⁇ m.
  • the aspect ratio of the fibrous thermally conductive filler 3 can be appropriately selected according to the purpose. good.
  • the average major axis length and average minor axis length of the fibrous thermally conductive filler 3 can be measured with, for example, a microscope or scanning electron microscope (SEM).
  • the surface of the carbon fiber may be covered with an insulating film depending on the purpose.
  • insulation-coated carbon fibers can be used as the carbon fibers.
  • the insulation-coated carbon fiber has a carbon fiber and an insulation coating on at least part of the surface of the carbon fiber, and may contain other components as necessary.
  • the insulating film is made of an electrically insulating material, such as silicon oxide or a hardened polymer material.
  • the polymerizable material is, for example, a radical polymerizable material such as a polymerizable organic compound and a polymerizable resin.
  • the radically polymerizable material can be appropriately selected according to the purpose as long as it is a material that undergoes radical polymerization using energy. Examples thereof include compounds having a radically polymerizable double bond. Examples of radically polymerizable double bonds include vinyl groups, acryloyl groups, and methacryloyl groups.
  • the number of radically polymerizable double bonds in the compound having radically polymerizable double bonds is preferably two or more from the viewpoint of strength including heat resistance and solvent resistance.
  • Examples of compounds having two or more radically polymerizable double bonds include divinylbenzene (DVB) and compounds having two or more (meth)acryloyl groups.
  • the radically polymerizable material may be used singly or in combination of two or more.
  • the molecular weight of the radically polymerizable material can be appropriately selected depending on the purpose, and can be in the range of 50-500, for example.
  • the content of structural units derived from the polymerizable material in the insulating coating can be, for example, 50% by mass or more, and can be 90% by mass or more. can also
  • the average thickness of the insulating film can be appropriately selected depending on the purpose, and from the viewpoint of realizing high insulation, it can be 50 nm or more, may be 100 nm or more, or may be 200 nm or more. .
  • the upper limit of the average thickness of the insulating coating can be, for example, 1000 nm or less, and may be 500 nm or less.
  • the average thickness of the insulating coating can be determined, for example, by observation with a transmission electron microscope (TEM).
  • Examples of methods for coating carbon fibers with an insulating film include a sol-gel method, a liquid phase deposition method, a polysiloxane method, and a polymerizable material on at least a part of the surface of the carbon fiber described in JP-A-2018-98515. Examples include a method of forming an insulating film made of a cured product.
  • the content of the fibrous thermally conductive filler 3 in the thermally conductive sheet 1 can be, for example, 5% by volume or more, and should be 10% by volume or more, from the viewpoint of thermal conductivity of the thermally conductive sheet 1. It can be 14% by volume or more, it can be 20% by volume or more, or it can be 25% by volume or more. In addition, the content of the fibrous thermally conductive filler 3 in the thermally conductive sheet 1 can be, for example, 30% by volume or less, and 28% by volume or less, from the viewpoint of the moldability of the thermally conductive sheet 1. It can also be 25% by volume or less, or 23% by volume or less.
  • the content of the fibrous thermally conductive filler 3 in the thermally conductive sheet 1 can be, for example, 5 to 50% by volume, preferably 14 to 23% by volume. When two or more types of fibrous thermally conductive fillers 3 are used in combination, it is preferable that the total amount thereof satisfies the content described above.
  • thermally conductive fillers 4 are thermally conductive fillers other than the fibrous thermally conductive fillers 3 described above, and include, for example, inorganic fillers.
  • Other shapes of the thermally conductive filler 4 include, for example, a spherical shape, a crushed shape, an ellipsoidal shape, a massive shape, a granular shape, and a flat shape.
  • the shape of the other thermally conductive filler 4 is preferably crushed, spherical, ellipsoidal, or the like from the viewpoint of filling performance. A crushed form is preferable from the viewpoint of improving the recovery rate when a thermal cycle test is performed in .
  • Other thermally conductive fillers 4 may be used singly or in combination of two or more.
  • thermally conductive filler 4 is, for example, an inorganic filler, and specifically, aluminum oxide (alumina, sapphire), aluminum nitride, aluminum hydroxide, aluminum, zinc oxide, etc. can be used.
  • aluminum oxide alumina, sapphire
  • aluminum nitride aluminum hydroxide
  • the average particle diameter (D50) of the alumina particles may be, for example, 0.1 to 10 ⁇ m, may be 0.1 to 8 ⁇ m, may be 0.1 to 7 ⁇ m, may be 0.1 to It may be 2 ⁇ m.
  • the average particle size (D50) of the aluminum nitride particles may be, for example, 0.1 to 10 ⁇ m, may be 0.1 to 8 ⁇ m, may be 0.1 to 7 ⁇ m, may be 0.1 It may be ⁇ 2 ⁇ m.
  • the average particle size of the other thermally conductive fillers 4 is the accumulation of the particle size values from the small particle size side of the particle size distribution when the entire particle size distribution of the other thermally conductive fillers 4 is taken as 100%. It means the particle diameter when the cumulative value is 50% when the curve is obtained.
  • the particle size distribution is determined by volume. Examples of the method for measuring the particle size distribution include a method using a laser diffraction particle size distribution analyzer.
  • the other thermally conductive filler 4 may be surface-treated.
  • the surface treatment includes, for example, treating the other thermally conductive filler 4 with a coupling agent such as an alkoxysilane compound.
  • the processing amount of the coupling agent can be, for example, in the range of 0.1 to 1.5% by volume with respect to the total amount of the other thermally conductive fillers 4 .
  • An alkoxysilane compound is a compound having a structure in which 1 to 3 of the 4 bonds of a silicon atom (Si) are bonded to alkoxy groups, and the remaining bonds are bonded to organic substituents.
  • Examples of the alkoxy group that the alkoxysilane compound has include a methoxy group, an ethoxy group, and a butoxy group.
  • Specific examples of alkoxysilane compounds include trimethoxysilane compounds and triethoxysilane compounds.
  • the content of the other thermally conductive filler 4 in the thermally conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose.
  • the content of the aluminum compound is preferably more than 39% by volume and less than 51% by volume.
  • the content of the aluminum compound in the thermally conductive sheet 1 is preferably 42 to 45% by volume, for example, from the viewpoint of improving the restorability of the thermally conductive sheet 1 .
  • the total amount preferably satisfies the content described above.
  • the thermally conductive sheet 1 contains the fibrous thermally conductive filler 3 and the other thermally conductive filler 4, the fibrous thermally conductive filler 3 and the other thermally conductive filler 4 in the thermally conductive sheet 1
  • the total content may be 50% by volume or more, may be 55% by volume or more, or may be 59% by volume or more, from the viewpoint of the restorability and thermal conductivity of the heat conductive sheet 1. , 60% by volume or more.
  • the total content of the fibrous thermally conductive filler 3 and other thermally conductive fillers 4 in the thermally conductive sheet 1 should be less than 77% by volume from the viewpoint of the restorability of the thermally conductive sheet 1.
  • the total content of the fibrous thermally conductive filler 3 and the other thermally conductive filler 4 in the thermally conductive sheet 1 is preferably, for example, 59% by volume or more and 65% by volume or less.
  • the heat conductive sheet 1 may further contain components other than the components described above within a range that does not impair the effects of the present technology.
  • Other components include, for example, dispersants, curing accelerators, retarders, tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants, and the like.
  • a method for producing a thermally conductive sheet according to the present technology comprises a step of preparing a thermally conductive composition containing at least a polymer matrix component 2 and a fibrous thermally conductive filler 3 (hereinafter also referred to as step A); A step of forming a molded block from a conductive composition (hereinafter also referred to as step B), and a step of slicing the molded block into sheets to obtain a heat conductive sheet 1 (hereinafter also referred to as step C). have.
  • the thermally conductive sheet 1 obtained by this manufacturing method has a displacement of 2.5 mm or less when subjected to the thermal cycle test under the above condition 1 or condition 2, and has a good recovery rate. Therefore, when the thermally conductive sheet 1 is arranged between the heat generating component and the heat radiating member, even if a gap is created between the heat generating component and the heat radiating member, the heat conductive sheet 1 can be easily and quickly removed from the gap. can be followed. As a result, it is possible to suppress the displacement of the thermally conductive sheet 1 and the deterioration of the thermal resistance.
  • a thermally conductive composition comprising a polymeric matrix component 2 and fibrous thermally conductive fillers 3 is prepared.
  • the thermally conductive composition may contain other thermally conductive fillers 4 as described above.
  • the thermally conductive composition may be uniformly mixed with various additives and volatile solvents by known methods.
  • the polymer matrix component is a two-liquid addition reaction type liquid silicone and is composed of a main agent containing a curing catalyst and a curing agent, the ratio of the main agent to the curing agent preferably satisfies the following conditions.
  • a molded block is formed from the thermally conductive composition.
  • methods for forming the molded block include an extrusion molding method and a mold molding method.
  • the extrusion molding method and the mold molding method are not particularly limited, and various known extrusion molding methods and mold molding methods can be selected depending on the viscosity of the heat conductive composition and the properties required for the heat conductive sheet 1. can be adopted as appropriate.
  • extrusion molding when the thermally conductive composition is extruded through a die, or in mold molding, when the thermally conductive composition is pressed into a mold, the polymer matrix component 2 flows along the flow direction. , the long axis of the fibrous thermally conductive filler 3 is oriented.
  • the size and shape of the molded block can be determined according to the required size of the heat conductive sheet. For example, a rectangular parallelepiped having a cross-sectional length of 0.5 to 15 cm and a width of 0.5 to 15 cm can be used. The length of the rectangular parallelepiped may be determined as required.
  • the obtained molded block is preferably heat-cured.
  • the curing temperature in thermosetting can be appropriately selected according to the purpose.
  • the polymer matrix component 2 is a silicone resin, it can be in the range of 60°C to 120°C.
  • Curing time in thermal curing can be, for example, in the range of 30 minutes to 10 hours.
  • step C the molded block is sliced into sheets to obtain thermally conductive sheets 1 in which the long axes of the fibrous thermally conductive fillers 3 are oriented in the thickness direction.
  • the fibrous thermally conductive filler 3 is exposed on the surface (slice surface) of the sheet obtained by slicing.
  • the slicing method is not particularly limited, and can be appropriately selected from among known slicing devices according to the size and mechanical strength of the compact block. Examples of the slicing device include an ultrasonic cutter and a planer.
  • the long axis of the fibrous thermally conductive filler 3 may be oriented in the extrusion direction. Preferably 120 degrees, more preferably 70-100 degrees, and even more preferably 90 degrees (perpendicular).
  • the thermally conductive sheet 1 in which the fibrous thermally conductive filler 3 is dispersed in the polymer matrix component 2, and the fibrous thermally conductive It is possible to obtain a thermally conductive sheet 1 in which the elastic filler 3 is oriented in the thickness direction in a cross-sectional view.
  • the method for manufacturing the thermally conductive sheet 1 is not limited to the example described above, and for example, after the process C, it may further include a process D for pressing the sliced surface.
  • the surface of the thermally conductive sheet 1 obtained in the step C is made smoother, and the adhesion with other members can be further improved.
  • a pair of pressing devices comprising a flat plate and a press head having a flat surface can be used.
  • the surface of the heat conductive sheet 1 may be pressed with pinch rolls.
  • the pressure during pressing may be, for example, in the range of 0.1 to 100 MPa, may be in the range of 0.1 to 1 MPa, or may be in the range of 0.1 to 0.5 MPa.
  • the pressing time can be appropriately selected according to the pressure during pressing, the sheet area, etc., and can be, for example, in the range of 10 seconds to 5 minutes, and may be in the range of 30 seconds to 3 minutes. .
  • pressing may be performed at a temperature equal to or higher than the glass transition temperature (Tg) of the polymer matrix component constituting the molded sheet.
  • Tg glass transition temperature
  • pressing may be performed while heating using a press head with a built-in heater.
  • the pressing temperature may range, for example, from 0 to 180°C, may range from room temperature (eg, 25°C) to 100°C, or may range from 30 to 100°C.
  • the thermal conductive sheet 1 is, for example, an electronic device (thermal device) having a structure arranged between a heat-generating component and a heat-radiating member so that heat generated by the heat-generating component can escape to the heat-radiating member.
  • the electronic device has at least a heat-generating component, a heat-dissipating member, and a heat-conducting sheet 1, and may further have other members as necessary.
  • Heat-generating components are not particularly limited, and include, for example, CPU, GPU (Graphics Processing Unit), DRAM (Dynamic Random Access Memory), integrated circuit elements such as flash memory, transistors, resistors, and other electronic components that generate heat in electric circuits. etc. Heat-generating components also include components that receive optical signals, such as optical transceivers in communication equipment.
  • the heat dissipation member is not particularly limited, and examples include those used in combination with integrated circuit elements, transistors, optical transceiver housings, such as heat sinks and heat spreaders.
  • Materials for the heat sink and heat spreader include, for example, copper and aluminum.
  • a heat pipe is, for example, a cylindrical, substantially cylindrical, or flat cylindrical hollow structure.
  • FIG. 4 is a cross-sectional view showing an example of a semiconductor device to which a heat conductive sheet is applied.
  • the heat conductive sheet 1 is mounted on a semiconductor device 50 built in various electronic devices, and sandwiched between a heat generating component and a heat radiating member.
  • a semiconductor device 50 shown in FIG. 4 includes an electronic component 51 , a heat spreader 52 , and a heat conductive sheet 1 .
  • sandwiching the heat conductive sheet 1 between the heat spreader 52 and the heat sink 53 , together with the heat spreader 52 a heat dissipation member for dissipating the heat of the electronic component 51 is configured.
  • the mounting location of the heat conductive sheet 1 is not limited to between the heat spreader 52 and the electronic component 51 or between the heat spreader 52 and the heat sink 53, but can be appropriately selected according to the configuration of the electronic device or semiconductor device.
  • the heat spreader 52 is formed, for example, in the shape of a square plate, and has a main surface 52a facing the electronic component 51 and side walls 52b erected along the outer circumference of the main surface 52a.
  • the heat spreader 52 is provided with the heat conductive sheet 1 on the principal surface 52a surrounded by the side walls 52b, and is provided with the heat sink 53 via the heat conductive sheet 1 on the other surface 52c opposite to the principal surface 52a.
  • the heat conductive sheet 1 to which the present technology is applied can be used by being fixed so that the surface direction is substantially vertical.
  • electronic devices such as semiconductor devices 50 have become slimmer (miniaturized) in recent years, there are designs in which electronic components 51 that generate heat such as IC chips are installed vertically instead of horizontally.
  • the heat conductive sheet 1 has a lengthwise deviation of 2.5 mm or less in the heat cycle test under the above condition 1 or condition 2, it is used for an electronic component 51 such as a semiconductor element provided in a substantially vertical direction, Even if the electronic component 51 repeats heat generation and cooling, the sticking position does not deviate greatly, and the heat-generating component 51 is closely followed by deformation such as warping due to heat generation and cooling, preventing an increase in thermal resistance. It is possible to maintain the heat dissipation properties of the heat conductive sheet.
  • the semiconductor device 50 can be installed with the electronic component 51 such as a semiconductor element facing the vertical direction. It becomes possible to respond to requests for miniaturization of electronic equipment, such as by achieving space saving in width.
  • heat conductive sheet samples were formed by changing the amount of silicone resin, the amount of heat conductive filler, and the hardness (type OO durometer hardness according to ASTM D 2240) of the heat conductive resin composition, For each heat conductive sheet sample, the sheet surface tackiness [gf], thermal resistance [°C ⁇ cm 2 /W], compressibility, compressive stress [psi], and recovery rate [%] were measured and evaluated. Further, according to the conditions 1 and 2, each thermally conductive sheet sample was sandwiched between copper plates and placed vertically, subjected to a thermal cycle test, and displacement of the sheets was observed.
  • Thermal resistance was evaluated by measuring the thermal resistance [° C. ⁇ cm 2 /W] of a 2.0 mm thick thermal conductive sheet sample with a load of 0.7 kgf/cm 2 according to ASTM-D5470. Compressibility was calculated from the thickness at the time of thermal resistance measurement.
  • thermal conductivity For bulk thermal conductivity, the thermal resistance of each thermal conductive sheet is measured by a method in accordance with ASTM-D5470, the horizontal axis is the thickness (mm) of the thermal conductive sheet at the time of measurement, and the vertical axis is the thermal resistance of the thermal conductive sheet ( °C ⁇ cm 2 /W) was plotted, and the bulk thermal conductivity (W/m ⁇ K) of the thermal conductive sheet was calculated from the slope of the plot.
  • the hardness of the durometer type OO is measured in accordance with ASTM-D2240 by stacking 5 thermally conductive sheets with a thickness of 2 mm to a thickness of 10 mm, and measuring 5 points on one side and 10 points on both sides in total. .
  • tackiness The tackiness (gf) was measured using a Malcom tackiness tester (TK-1S) under the conditions of a load of 50 gf, a pressing time of 0.2 seconds, and a speed of 10 mm/sec.
  • TK-1S Malcom tackiness tester
  • Sheet misalignment evaluation is performed by placing a heat conductive sheet sample cut to 20 x 5 mm in outer size on the central lower side of a 3 cm square copper plate (C1100P), and aligning one side (short side) in the length direction with the lower side of the copper plate. After being placed, it was sandwiched so that the compression ratio was 10%. The length direction of the heat conductive sheet sample was vertical, and the lower side of the copper plate was placed vertically downward.
  • C1100P 3 cm square copper plate
  • thermal cycle test according to condition 1 (-40 ° C ⁇ 100 ° C: test temperature transition time within 3 minutes, heat retention time after reaching test temperature 30 minutes, total test time 672 hours) and thermal cycle test according to condition 2 (- 55°C ⁇ 125°C: test temperature transition time within 3 minutes, heat retention time after reaching test temperature 30 minutes, total test time 672 hours), and measure the amount of sheet extrusion after 672 hours.
  • the displacement distance (mm) was calculated by subtracting the initial amount of protrusion from the amount of protrusion after 672 hours.
  • Each thermal cycle test was performed with an air tank tester.
  • Example 1 In Example 1, as shown in Table 1, 42% by volume of alumina particles with an average particle diameter of 2 ⁇ m coupled with a silane coupling agent were added to a two-liquid addition reaction type liquid silicone, and fibrous thermally conductive filler was A silicone composition was prepared by mixing 23% by volume of pitch-based carbon fibers having an average fiber length of 150 ⁇ m. The total amount of thermally conductive filler in Example 1 is 65% by volume.
  • the resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding.
  • the silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product.
  • the cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
  • Example 2 In Example 2, as shown in Table 1, 45% by volume of alumina particles with an average particle size of 2 ⁇ m coupled with a silane coupling agent were added to a two-liquid addition reaction type liquid silicone, and fibrous thermally conductive filler was A silicone composition was prepared by mixing 14% by volume of pitch-based carbon fibers having an average fiber length of 150 ⁇ m. The total amount of thermally conductive filler in Example 2 is 59% by volume.
  • the two-liquid addition reaction type liquid silicone resin uses 41% by volume of organopolysiloxane as the main component together with additives
  • the completed heat conductive sheet is ASTM D 2240 compliant type OO durometer
  • the resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding.
  • the silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product.
  • the cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
  • Example 3 In Example 3, as shown in Table 1, 22% by volume of alumina particles with an average particle size of 2 ⁇ m and aluminum nitride with an average particle size of 1.5 ⁇ m, which were subjected to coupling treatment with a silane coupling agent, were added to a two-liquid addition reaction type liquid silicone.
  • a silicone composition was prepared by mixing 23% by volume of particles and 20% by volume of pitch-based carbon fiber having an average fiber length of 150 ⁇ m as a fibrous thermally conductive filler.
  • the total amount of thermally conductive filler in Example 3 is 65% by volume.
  • the two-liquid addition reaction type liquid silicone resin is mainly composed of organopolysiloxane, and 35% by volume is used together with additives.
  • the composition ratio of the main agent and the curing agent was adjusted so that the hardness would be 50 at .
  • the resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding.
  • the silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product.
  • the cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
  • Comparative Example 1 In Comparative Example 1, as shown in Table 1, 51% by volume of alumina particles with an average particle size of 2 ⁇ m coupled with a silane coupling agent were added to a two-liquid addition reaction type liquid silicone, and fibrous thermally conductive filler was A silicone composition was prepared by mixing 12% by volume of pitch-based carbon fibers having an average fiber length of 150 ⁇ m. The total amount of thermally conductive filler in Comparative Example 1 is 63% by volume.
  • the two-liquid addition reaction type liquid silicone resin uses 37% by volume of organopolysiloxane as the main component together with additives
  • the completed heat conductive sheet is ASTM D 2240 compliant type OO durometer
  • the resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding.
  • the silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product.
  • the cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
  • Comparative Example 2 In Comparative Example 2, as shown in Table 1, 21% by volume of alumina particles with an average particle size of 2 ⁇ m and aluminum nitride with an average particle size of 1.5 ⁇ m, which were subjected to coupling treatment with a silane coupling agent, were added to a two-liquid addition reaction type liquid silicone. A silicone composition was prepared by mixing 23% by volume of particles and 23% by volume of pitch-based carbon fiber having an average fiber length of 150 ⁇ m as a fibrous thermally conductive filler. The total amount of thermally conductive filler in Comparative Example 2 is 67% by volume.
  • the two-liquid addition reaction type liquid silicone resin is mainly composed of organopolysiloxane, and 33% by volume is used together with additives.
  • the resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding.
  • the silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product.
  • the cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
  • Comparative Example 3 In Comparative Example 3, as shown in Table 1, 22% by volume of alumina particles with an average particle size of 2 ⁇ m and aluminum nitride with an average particle size of 1.5 ⁇ m, which were subjected to coupling treatment with a silane coupling agent, were added to a two-liquid addition reaction type liquid silicone.
  • a silicone composition was prepared by mixing 23% by volume of particles and 20% by volume of pitch-based carbon fiber having an average fiber length of 150 ⁇ m as a fibrous thermally conductive filler.
  • the total amount of thermally conductive filler in Comparative Example 3 is 65% by volume.
  • the two-liquid addition reaction type liquid silicone resin is mainly composed of organopolysiloxane, and 35% by volume is used together with additives.
  • the resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding.
  • the silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product.
  • the cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
  • thermally conductive sheets according to Examples 1 to 3 and Comparative Examples 1 to 3 were sandwiched between release-treated PET films and pressed under the conditions of 87 ° C., 0.5 MPa, and 3 minutes, thereby heat conduction.
  • a sheet sample was obtained.
  • the sheet surface tackiness [gf], thermal resistance [°C ⁇ cm 2 /W], compressibility, compressive stress [psi], and recovery rate [%] were measured and evaluated.
  • each heat conductive sheet sample was sandwiched between copper plates and placed vertically, put into a thermal cycle test, and the amount of deviation of the sheet was measured and evaluated ( ⁇ : good, ⁇ : not good). .
  • the thermally conductive sheet samples according to Examples 1 to 3 even after undergoing the thermal cycle test under conditions 1 and 2, the deviation of the sheet was 2.5 mm or less, indicating that the attachment position deviated significantly. In addition, it has a compressive stress of 5.0 or more and a recovery rate of 85% or more. In other words, even when it is attached to a heat-generating component that repeats heat generation and cooling, the attachment position does not shift, and it follows deformation such as warping due to heat generation and cooling of the heat-generating component and adheres to it, preventing an increase in thermal resistance. It can be seen that this can be prevented and the heat dissipation properties of the heat conductive sheet can be maintained.
  • thermally conductive sheet having a low compressive stress cannot follow expansion and contraction against a thermal shock, and even if there is a tack force, the thermally conductive sheet is separated from the copper plate, resulting in deviation of the thermally conductive sheet.
  • a thermally conductive sheet with a large compressive stress can maintain adhesion to a copper plate due to contraction and expansion at the time of thermal shock.
  • thermally conductive sheet 2 polymer matrix component 3 fibrous thermally conductive filler 4 other thermally conductive filler 10 copper plate 11 thermally conductive sheet piece 12 spacer

Abstract

The present invention provides a heat-conducting sheet that exhibits excellent adhesion to an electronic component and with which offset from an attachment position can be suppressed. A heat-conducting sheet 1 is a cured product of a composition including at least a polymer matrix component 2 and a fibrous heat-conductive filler 3. Under the following condition 1, offset in the length direction is 2.5mm or less based on a state in which the heat-conducting sheet 1 is held between copper plates 10. Condition 1: A heat cycle (test temperature transition time: within 3 min, maintained temperature time after reaching test temperature: 30 min) between -40°C and 100°C is performed for 672 hours in a state in which a heat-conducting sheet sample 11 cut into a 20mm×5mm strip is held between vertically disposed copper plates 10 with the length direction thereof aligning with the vertical direction and one length-direction side thereof coinciding with one side of the copper plates 10, and the thickness of said sample is compressed by 10%.

Description

熱伝導シート、熱伝導シートの製造方法、電子機器THERMALLY CONDUCTIVE SHEET, METHOD FOR MANUFACTURING THERMALLY CONDUCTIVE SHEET, ELECTRONIC DEVICE
 本技術は、熱伝導シート、熱伝導シートの製造方法及びこれを用いた電子機器に関する。本出願は、日本国において2021年2月24日に出願された日本特許出願番号特願2021-028005を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 This technology relates to a thermally conductive sheet, a method for manufacturing a thermally conductive sheet, and an electronic device using the same. This application claims priority based on Japanese Patent Application No. 2021-028005 filed on February 24, 2021 in Japan, and this application is hereby incorporated by reference. Incorporated.
 従来、パーソナルコンピュータ等の各種電気機器やその他の機器に搭載されている半導体素子は、駆動により熱が発生し、発生した熱が蓄積すると半導体素子の駆動や周辺機器へ悪影響が生じるおそれがあるため、種々の冷却方法が用いられている。 Conventionally, semiconductor devices installed in various electrical devices such as personal computers and other equipment generate heat when driven, and accumulation of the generated heat can adversely affect the operation of semiconductor devices and peripheral devices. , various cooling methods are used.
 半導体素子を有する機器の冷却方法としては、当該機器にファンを取り付けて機器筐体内の空気を冷却する方法、半導体素子に放熱フィンや放熱板等のヒートシンクを取り付ける方法、フッ素系不活性液体に浸漬する方式等が知られている。半導体素子にヒートシンクを取り付けて冷却を行う場合、半導体素子の熱を効率よく放出させるために、半導体素子とヒートシンクとの間に放熱グリスなどの液状又はペースト状の熱伝導材が設けられている。 Cooling methods for devices with semiconductor elements include attaching a fan to the device to cool the air inside the device housing, attaching heat sinks such as heat sinks and heat sinks to the semiconductor device, and immersing the device in a fluorine-based inert liquid. There are known methods for When a heat sink is attached to a semiconductor element for cooling, a liquid or paste thermal conductive material such as thermal grease is provided between the semiconductor element and the heat sink in order to efficiently dissipate the heat of the semiconductor element.
特開2012-023335号公報JP 2012-023335 A 特開2015-029076号公報JP 2015-029076 A 特開2015-029075号公報JP 2015-029075 A
 ここで、パーソナルコンピュータのCPUなどの電子部品はその高速化、高性能化に伴って、その放熱量は年々増大する傾向にある。しかしながら、反対にプロセッサ等のチップサイズは微細シリコン回路技術の進歩によって、従来と同等サイズかより小さいサイズとなり、単位面積あたりの熱流速は高くなっている。したがって、その温度上昇による不具合などを回避するために、CPUなどの電子部品をより効率的に放熱、冷却することが求められている。 Here, electronic components such as the CPU of personal computers tend to increase their heat dissipation amount year by year as their speed and performance increase. On the contrary, however, the chip size of processors and the like has become equal to or smaller than conventional ones due to advances in fine silicon circuit technology, and the heat flux per unit area has increased. Therefore, in order to avoid problems caused by the temperature rise, it is required to efficiently dissipate and cool the electronic parts such as the CPU.
 また、電子機器のスリム化(小型化)が進んだことで、ICチップなどの発熱を伴う電子部品を水平方向にではなく、鉛直方向に向けて設置するような設計も出てきている。 In addition, as electronic devices become slimmer (miniaturized), there are designs in which electronic components that generate heat, such as IC chips, are installed vertically instead of horizontally.
 ここで、液状又はペースト状の熱伝導材を略鉛直方向に向けた電子部品に使用した場合、電子部品の発熱と冷却の熱サイクルに伴い、熱伝導材が電子部品と放熱部材との間から流出するいわゆるポンプアウト現象が生じ得る。これにより、電子部品と放熱部材の間に空気が入ることで熱抵抗が上昇し、電子部品の駆動や周辺機器への悪影響が生じ得る。また、硬化性の液状熱伝導剤を使用すると、電子部品の熱サイクルに伴うポンプアウト現象により、電子部品の反り等の変形に追従できず、空気層ができることで放熱が阻害され、電子部品の駆動や周辺機器への悪影響が生じ得る。 Here, when a liquid or paste heat-conducting material is used for an electronic component oriented in a substantially vertical direction, the heat-conducting material flows out from between the electronic component and the heat-dissipating member due to the thermal cycle of heat generation and cooling of the electronic component. A so-called pump-out phenomenon can occur. As a result, air enters between the electronic component and the heat radiating member, increasing the thermal resistance, which may adversely affect the driving of the electronic component and peripheral devices. In addition, if a curable liquid heat conductive agent is used, it will not be able to follow deformation such as warpage of the electronic component due to the pump-out phenomenon associated with the thermal cycle of the electronic component. Adverse effects on the drive and peripheral equipment may occur.
 このような問題に対して、熱伝導性樹脂組成物がシート状に成形された熱伝導シートの使用がされている。熱伝導シートの面方向を鉛直方向に向けて電子部品に使用する場合、電子機器が使用され続けていくなかで熱伝導シートが放熱特性を維持するためには、電子部品が発熱と冷却を繰り返すことによっても、所定の貼付位置からの位置ずれや落下が防止される必要が有る。また、熱伝導シートには、電子部品が発熱と冷却を繰り返すことにより変形した場合にも追従し、電子部品や放熱部材との密着性を維持し続ける復元性が求められる。 To address such problems, a thermally conductive sheet, which is formed by molding a thermally conductive resin composition into a sheet, is used. When a thermal conductive sheet is used in an electronic component with the surface direction facing the vertical direction, the electronic component must repeat heat generation and cooling in order for the thermal conductive sheet to maintain its heat dissipation characteristics as the electronic device continues to be used. In this way, it is necessary to prevent misalignment and falling from the predetermined sticking position. In addition, the thermally conductive sheet is required to have resilience to follow the deformation of the electronic parts due to repeated heat generation and cooling, and to maintain the adhesion between the electronic parts and the heat dissipating member.
 そこで、本技術は、電子部品との密着性に優れ、貼付位置からのずれを抑制できる熱伝導シート、熱伝導シートの製造方法及びこれを用いた電子機器を提供することを目的とする。 Therefore, an object of the present technology is to provide a thermally conductive sheet that is excellent in adhesion to electronic components and capable of suppressing deviation from the sticking position, a method for manufacturing the thermally conductive sheet, and an electronic device using the same.
 上述した課題を解決するために、本技術に係る熱伝導シートは、少なくとも高分子マトリックス成分と繊維状熱伝導性充填剤を含む組成物の硬化物である熱伝導シートであって、以下の条件1で、銅板で挟持した状態を基準に長さ方向のズレが2.5mm以下である。
条件1:20mm×5mmの短冊状に切断した熱伝導シート個片を、鉛直方向に設置した銅板で長さ方向を鉛直方向に向けて且つ長さ方向の一辺を上記銅板の一辺に一致させて挟持し厚さを10%圧縮した状態で、-40℃と100℃の間の熱サイクル(試験温度移行時間3分以内、試験温度到達後保温時間30分)を672時間実施
In order to solve the above-described problems, a thermally conductive sheet according to the present technology is a thermally conductive sheet that is a cured product of a composition containing at least a polymer matrix component and a fibrous thermally conductive filler, and is provided under the following conditions: In 1, the displacement in the length direction is 2.5 mm or less with respect to the state sandwiched by the copper plates.
Condition 1: A heat conductive sheet piece cut into a strip of 20 mm × 5 mm is placed vertically on a copper plate with the length direction facing the vertical direction and one side of the length direction aligned with one side of the copper plate. A heat cycle between -40°C and 100°C (test temperature transition time within 3 minutes, heat retention time after reaching the test temperature for 30 minutes) was performed for 672 hours in a state where the thickness was compressed by 10%.
 また、本技術に係る熱伝導シートの製造方法は、高分子マトリックス成分と繊維状熱伝導性充填剤とを含む熱伝導組成物を調製する工程と、上記熱伝導組成物から成形体ブロックを形成する工程と、上記成形体ブロックをシート状にスライスして熱伝導シートを得る工程とを有し、上記記載の熱伝導シートを得るものである。 Further, a method for producing a thermally conductive sheet according to the present technology includes steps of preparing a thermally conductive composition containing a polymer matrix component and a fibrous thermally conductive filler, and forming a molded block from the thermally conductive composition. and a step of slicing the molded block into sheets to obtain a thermally conductive sheet, thereby obtaining the thermally conductive sheet described above.
 また、本技術に係る電子機器は、上記記載の熱伝導シートを備えた電子機器であり、上記熱伝導シートは電子部品と放熱部材との間に挟持され、上記熱伝導シートは、面方向が略鉛直方向となるように固定されて用いられるものである。 Further, an electronic device according to the present technology is an electronic device including the thermally conductive sheet described above, the thermally conductive sheet is sandwiched between an electronic component and a heat radiating member, and the thermally conductive sheet has a surface direction of It is used by being fixed in a substantially vertical direction.
 本技術によれば、所定の熱サイクル試験における長さ方向のズレが2.5mm以下であるため、略鉛直方向に設けられた半導体素子等の発熱を伴う電子部品(発熱部品)に使用され、当該発熱部品が発熱と冷却を繰り返した場合にも、貼付位置が大きくずれることなく、また発熱部品の発熱及び冷却に伴う反りなどの変形にも追従して密着し、熱抵抗の上昇を防止でき、熱伝導シートの放熱特性を維持することができる。 According to the present technology, since the displacement in the length direction in a predetermined thermal cycle test is 2.5 mm or less, it is used for electronic components (heat generating components) that generate heat, such as semiconductor elements that are provided in a substantially vertical direction. Even if the heat-generating component repeats heat generation and cooling, the attachment position does not shift significantly, and the heat-generating component is able to adhere to deformations such as warping due to heat generation and cooling, preventing an increase in thermal resistance. , the heat dissipation properties of the heat conductive sheet can be maintained.
 また、これにより、半導体素子等の発熱部品を鉛直方向に向けて設置することが可能となり、電子機器の設計の自由度が増し、ICチップを鉛直方向に向けて設置することで設置幅の省スペース化を図る等、電子機器の小型化等の要請に応じることが可能となる。 In addition, this makes it possible to install heat-generating components such as semiconductor elements in the vertical direction, increasing the degree of freedom in designing electronic equipment, and by installing the IC chip in the vertical direction, the installation width can be reduced. It becomes possible to respond to requests for miniaturization of electronic equipment, such as space saving.
図1は、熱伝導シートの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet. 図2は、本技術に係る熱サイクル試験の構成を示す図であり、(A)は銅板で熱伝導シート個片を挟持した状態を示す断面図、(B)は締結具を用いて銅板で熱伝導シート個片を挟持する例を示す正面図、(C)は熱伝導シート個片の長さ方向の一辺を銅板の一辺に一致させた状態を示す正面図である。FIG. 2 is a diagram showing the configuration of a thermal cycle test according to the present technology, (A) is a cross-sectional view showing a state in which a piece of a thermal conductive sheet is sandwiched between copper plates, and (B) is a copper plate using a fastener. FIG. 3C is a front view showing an example of sandwiching the heat-conducting sheet pieces, and (C) is a front view showing a state in which one side of the heat-conducting sheet piece in the length direction is aligned with one side of the copper plate. 図3は、銅板で挟持した熱伝導シート個片の、熱サイクル試験後のズレ量を示す図である。FIG. 3 is a diagram showing the amount of deviation after a heat cycle test of a piece of thermally conductive sheet sandwiched between copper plates. 図4は、熱伝導シートを適用した半導体装置の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a semiconductor device to which a heat conductive sheet is applied.
 以下、本技術が適用された熱伝導シート、熱伝導シートの製造方法及びこれを用いた電子機器について、図面を参照しながら詳細に説明する。なお、本技術は、以下の実施形態のみに限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 A thermally conductive sheet to which the present technology is applied, a method for manufacturing the thermally conductive sheet, and an electronic device using the same will be described in detail below with reference to the drawings. In addition, the present technology is not limited to the following embodiments, and various modifications are possible without departing from the gist of the present technology. Also, the drawings are schematic, and the ratio of each dimension may differ from the actual one. Specific dimensions and the like should be determined with reference to the following description. In addition, it goes without saying that there are portions with different dimensional relationships and ratios between the drawings.
 図1は、本技術に係る熱伝導シートの一例を示す断面図である。図1に示す熱伝導シート1は、少なくとも高分子マトリックス成分2と繊維状の熱伝導性充填剤3を含む組成物の硬化物である熱伝導シートであって、以下の条件1で、銅板で挟持した状態を基準に長さ方向のズレが2.5mm以下である。
条件1:20mm×5mmの短冊状に切断した熱伝導シート個片を、鉛直方向に設置した銅板で長さ方向を鉛直方向に向けて且つ長さ方向の一辺を上記銅板の一辺に一致させて挟持し厚さを10%圧縮した状態で、-40℃と100℃の間の熱サイクル(試験温度移行時間3分以内、試験温度到達後保温時間30分)を672時間実施
FIG. 1 is a cross-sectional view showing an example of a heat conductive sheet according to the present technology. The heat conductive sheet 1 shown in FIG. 1 is a heat conductive sheet that is a cured product of a composition containing at least a polymer matrix component 2 and a fibrous heat conductive filler 3, and is a copper plate under the following condition 1. The displacement in the length direction is 2.5 mm or less on the basis of the sandwiched state.
Condition 1: A heat conductive sheet piece cut into a strip of 20 mm × 5 mm is placed vertically on a copper plate with the length direction facing the vertical direction and one side of the length direction aligned with one side of the copper plate. A heat cycle between -40°C and 100°C (test temperature transition time within 3 minutes, heat retention time after reaching the test temperature for 30 minutes) was performed for 672 hours in a state where the thickness was compressed by 10%.
 本技術が適用された熱伝導シート1は、条件1での長さ方向でのズレが2.5mm以下であるため、電子部品が発熱と冷却を繰り返すことによっても、ズレた長さ分が電子部品と放熱部材との間からはみ出したとしても、電子部品と放熱部材とに挟持されている部分において、85%以上の復元率を有し、所定の貼付位置からの位置ずれや落下を防止することができる。また、熱伝導シート1は、電子部品が発熱と冷却を繰り返すことにより変形した場合にも追従し、電子部品や放熱部材との密着性を維持し続け、熱抵抗の上昇を抑制することができる。 The heat conductive sheet 1 to which the present technology is applied has a deviation of 2.5 mm or less in the length direction under condition 1, so even if the electronic component repeats heat generation and cooling, the deviation length will be Even if it protrudes from between the component and the heat radiating member, it has a recovery rate of 85% or more in the part sandwiched between the electronic component and the heat radiating member, and prevents displacement and falling from the predetermined sticking position. be able to. In addition, the thermally conductive sheet 1 follows even when the electronic parts are deformed due to repeated heat generation and cooling, and can continue to maintain adhesion to the electronic parts and the heat dissipating member, thereby suppressing an increase in thermal resistance. .
 なお、熱サイクル試験によるズレ量の測定は、銅板により挟持され銅板側縁からはみ出した状態を基準とし、はみ出した部分におけるズレ量を計測する。これは、電子部品と放熱部材の間に挟持され10%圧縮された状態において、熱サイクルに対する耐性(位置ずれの有無や密着性)を検討する必要が有るためである。 It should be noted that the measurement of the amount of displacement by the thermal cycle test is based on the state where the copper plate is sandwiched between the copper plates and protrudes from the side edge of the copper plate, and the amount of displacement in the protruding portion is measured. This is because it is necessary to examine resistance to thermal cycles (presence or absence of misalignment and adhesion) in a state of being sandwiched between an electronic component and a heat radiating member and compressed by 10%.
 なお、熱サイクル試験に供する熱伝導シート個片の厚さは、例えば1.0mm又は2.0mmのものを好適に使用することができる。 It should be noted that the thickness of the heat conductive sheet piece to be subjected to the thermal cycle test can be suitably used, for example, 1.0 mm or 2.0 mm.
 図2、図3は、本技術に係る条件1に係る熱サイクル試験を示す図である。図2(A)に示すように、条件1では、2枚の銅板10(3.0mm×3.0mm、厚さ2.0mm)によって、20mm×5mmの短冊状に切断した熱伝導シート個片11を挟持する。また、図2(A)に示すように、2枚の銅板10,10間には、熱伝導シート個片11の圧縮率が10%となるように、銅板間距離を規定するスペーサ12が配置される。2枚の銅板10,10で熱伝導シート個片11を挟持した状態を保持する方法は、例えば図2(B)に示すように、2枚の銅板10,10を各コーナー部に設けたボルト及びナットなどの締結具13で締結する方法がある。また、銅板10,10の側縁をクリップで挟持してもよい。なお、熱サイクル試験における銅板10の反りを阻害しないようにする観点から、スペーサ12は、銅板10の外縁部、例えば締結具13と一体に又は近傍に設けることが好ましい。  Figures 2 and 3 are diagrams showing a thermal cycle test according to Condition 1 according to the present technology. As shown in FIG. 2(A), under Condition 1, two copper plates 10 (3.0 mm×3.0 mm, thickness 2.0 mm) were cut into strips of 20 mm×5 mm to form a thermally conductive sheet piece. 11 is sandwiched. Further, as shown in FIG. 2(A), a spacer 12 is arranged between the two copper plates 10, 10 to define the distance between the copper plates so that the compression ratio of the heat conductive sheet pieces 11 is 10%. be done. As shown in FIG. 2B, for example, two copper plates 10, 10 can hold the heat conductive sheet pieces 11 in a sandwiched state using bolts provided at the corners of the two copper plates 10, 10. and a method of fastening with a fastener 13 such as a nut. Also, the side edges of the copper plates 10, 10 may be clamped with clips. From the viewpoint of preventing warping of the copper plate 10 in the thermal cycle test, it is preferable to provide the spacer 12 integrally with or near the outer edge of the copper plate 10 , for example, the fastener 13 .
 また、図2(C)に示すように、熱伝導シート個片11は、長さ方向の一辺が銅板10の一辺10a(下片)に一致させて挟持される。これにより、熱伝導シート個片11は、図2(A)に示すように、銅板10の一辺から若干はみ出す。図3に示すように、この銅板10で挟持された状態をズレ量計測の基準とし、はみ出した先端部が鉛直下側にズレた長さをズレS(mm)とする。 In addition, as shown in FIG. 2(C), the heat-conducting sheet piece 11 is sandwiched with one side in the longitudinal direction aligned with one side 10a (lower piece) of the copper plate 10 . As a result, the heat-conducting sheet piece 11 protrudes slightly from one side of the copper plate 10, as shown in FIG. 2(A). As shown in FIG. 3, the sandwiched state between the copper plates 10 is used as a reference for measuring the amount of displacement, and the length by which the protruding tip portion is displaced vertically downward is defined as the displacement S (mm).
 銅板10で挟持された熱伝導シート個片11は、熱伝導シート個片11の長さ方向を鉛直方向とし、且つ熱伝導シート個片11がはみ出す銅板10の一辺10aを鉛直下向きにして、治具等により熱伝導シート個片11の下側縁が地面などに触れないように載置され、熱サイクル試験に供される。 The heat-conducting sheet piece 11 sandwiched between the copper plates 10 is treated with the length direction of the heat-conducting sheet piece 11 in the vertical direction and the side 10a of the copper plate 10 where the heat-conducting sheet piece 11 protrudes vertically downward. A thermal cycle test is performed by placing the piece 11 of the heat conductive sheet so that the lower edge of the piece 11 does not touch the ground.
 図1に示す熱伝導シート1は、少なくとも高分子マトリックス成分2(バインダ樹脂)と繊維状の熱伝導性充填剤3を含む組成物の硬化物である熱伝導シートである。また、熱伝導シート1は、繊維状の熱伝導性充填剤3以外の他の熱伝導性充填剤4をさらに含んでもよい。 The thermally conductive sheet 1 shown in FIG. 1 is a thermally conductive sheet that is a cured product of a composition containing at least a polymer matrix component 2 (binder resin) and a fibrous thermally conductive filler 3. Moreover, the thermally conductive sheet 1 may further contain thermally conductive fillers 4 other than the fibrous thermally conductive fillers 3 .
 そして、熱伝導シート1は、上述した条件1で熱サイクル試験を行った場合、長さ方向でのズレが2.5mm以下である。すなわち、熱伝導シート1は、発熱する電子部品と放熱部材との間に挟持され、電子部品が発熱と冷却を繰り返すことによっても、鉛直方向に対するズレが2.5mm以下に留まる。条件1での熱サイクル試験におけるズレが2.5mmを超える場合、85%以上の復元率を維持することが困難となり、電子部品が発熱と冷却を繰り返すことにより、所定の貼付位置からの位置ずれや落下が生じ得る。また、電子部品が発熱と冷却を繰り返すことにより変形した場合に追従できず、電子部品や放熱部材との密着性が低減することにより熱抵抗の上昇を招く恐れがある。 Then, the heat conductive sheet 1 has a displacement of 2.5 mm or less in the length direction when the thermal cycle test is performed under the condition 1 described above. That is, the thermally conductive sheet 1 is sandwiched between a heat-generating electronic component and a heat radiating member, and even when the electronic component repeats heat generation and cooling, the deviation in the vertical direction remains at 2.5 mm or less. If the deviation in the thermal cycle test under Condition 1 exceeds 2.5 mm, it becomes difficult to maintain a recovery rate of 85% or more, and the electronic component repeats heat generation and cooling, resulting in position deviation from the predetermined attachment position. or fall can occur. In addition, when the electronic component is deformed by repeating heat generation and cooling, it cannot be followed, and there is a risk of an increase in thermal resistance due to reduced adhesion between the electronic component and the heat radiating member.
 なお、本技術において、復元率とは、1mm厚、直径29mmの円盤状熱伝導シートを常温で0.7mm(初期厚みの70%)まで圧縮し、24時間保持し、圧力を開放した後30分経過時の厚みを元の厚み(1mm)で除した値×100(%)をいう。 In the present technology, the recovery rate means that a disk-shaped heat conductive sheet with a thickness of 1 mm and a diameter of 29 mm is compressed to 0.7 mm (70% of the initial thickness) at room temperature, held for 24 hours, and after releasing the pressure, the recovery rate is 30%. It refers to the value obtained by dividing the thickness after minutes by the original thickness (1 mm) x 100 (%).
 また、本技術に係る熱伝導シートは、少なくとも高分子マトリックス成分と繊維状の熱伝導性充填剤を含む組成物の硬化物である熱伝導シートであって、以下の条件2で、銅板で挟持した状態を基準に長さ方向のズレが2.5mm以下である熱伝導シートとしてもよい。
条件2:20mm×5mmの短冊状に切断した熱伝導シート個片を、鉛直方向に設置した銅板で長さ方向を鉛直方向に向けて且つ長さ方向の一辺を上記銅板の一辺に一致させて挟持し厚さを10%圧縮した状態で、-55℃と125℃の間の熱サイクル(試験温度移行時間3分以内、試験温度到達後保温時間30分)を672時間実施
Further, the thermally conductive sheet according to the present technology is a thermally conductive sheet that is a cured product of a composition containing at least a polymer matrix component and a fibrous thermally conductive filler, and is sandwiched between copper plates under condition 2 below. A thermally conductive sheet having a lengthwise deviation of 2.5 mm or less based on the state where the sheets are placed may be used.
Condition 2: A heat conductive sheet piece cut into a strip of 20 mm × 5 mm is placed vertically on a copper plate with the length direction facing the vertical direction and one side of the length direction aligned with one side of the copper plate. A heat cycle between -55°C and 125°C (test temperature transition time within 3 minutes, heat retention time after reaching the test temperature for 30 minutes) was performed for 672 hours in a state where the thickness was compressed by 10%.
 条件2は、上述した条件1よりも熱サイクルの温度幅が大きい。条件2での長さ方向でのズレが2.5mm以下であるため、条件1よりもさらに過酷な環境に置いた場合にも、85%以上の復元率を有し、所定の貼付位置からの位置ずれや落下を防止することができ、また、電子部品が発熱と冷却を繰り返すことにより変形した場合にも追従し、電子部品や放熱部材との密着性を維持し続け、熱抵抗の上昇を抑制することができる。 Under condition 2, the temperature range of the thermal cycle is wider than under condition 1 described above. Since the displacement in the length direction under condition 2 is 2.5 mm or less, even when placed in a harsher environment than condition 1, it has a recovery rate of 85% or more, and can be removed from the predetermined attachment position. It is possible to prevent misalignment and falling, and even if electronic parts are deformed due to repeated heat generation and cooling, it will continue to maintain adhesion to electronic parts and heat dissipation materials, preventing increases in thermal resistance. can be suppressed.
 また、熱伝導シート1は、上記条件1又は条件2で、銅板で挟持した状態を基準に長さ方向のズレを2.5mm以下とする観点から、ASTM D 2240準拠のタイプOOデュロメータで20以上60未満の硬度を有することが好ましい。該硬度が60以上の場合、上記条件1又は条件2下で、復元力が不足し、所定の貼付位置からの位置ずれや落下を生じ得る。また、電子部品が発熱と冷却を繰り返すことにより変形した場合に追従できず、電子部品や放熱部材との密着性が損なわれて熱抵抗の上昇を招く恐れがある。 In addition, the heat conductive sheet 1 has a length direction deviation of 2.5 mm or less based on the condition 1 or condition 2 sandwiched between the copper plates, so that the type OO durometer conforming to ASTM D 2240 is 20 or more. It preferably has a hardness of less than 60. If the hardness is 60 or more, the restoring force is insufficient under condition 1 or condition 2, which may cause displacement or fall from the predetermined sticking position. In addition, when the electronic component is deformed by repeating heat generation and cooling, it cannot be followed, and there is a possibility that the adhesion between the electronic component and the heat radiating member is impaired, resulting in an increase in thermal resistance.
 また、熱伝導シート1は、上記条件1又は条件2で、銅板で挟持した状態を基準に長さ方向のズレを2.5mm以下とする観点から、上記高分子マトリックス成分は、2液性の付加反応型液状シリコーンであり、硬化触媒を含有する主剤と、硬化剤の比が以下の条件を満たすことが好ましい。
 主剤:硬化剤=35:65~70:30
In addition, from the viewpoint that the heat conductive sheet 1 has a lengthwise displacement of 2.5 mm or less based on the condition 1 or condition 2 sandwiched between the copper plates, the polymer matrix component is a two-liquid type It is preferable that the ratio of the main agent, which is an addition reaction type liquid silicone and contains a curing catalyst, and the curing agent, satisfies the following conditions.
Main agent: Curing agent = 35:65 to 70:30
 上記比よりも主剤成分が硬化剤成分より相対的に少なくなると、後述するようにシリコーンの未硬化成分の滲出が少なくシート表面のタック性が不足し、上記条件1又は条件2下で、所定の貼付位置からの位置ずれや落下を生じ得る。上記比よりも主剤成分が硬化剤成分より相対的に多くなると、シリコーンの架橋密度低下により復元力が不足し、上記条件1又は条件2下で銅板の膨張収縮に追従できず、所定の貼付位置からの位置ずれや落下を生じ得る。 If the main ingredient component is relatively smaller than the curing agent component than the above ratio, the uncured component of the silicone exudes less as described later, and the tackiness of the sheet surface becomes insufficient. It may cause misalignment or fall from the sticking position. If the main agent component is relatively larger than the curing agent component than the above ratio, the restoring force will be insufficient due to the decrease in the crosslinking density of the silicone, and the expansion and contraction of the copper plate cannot be followed under the above condition 1 or condition 2. It can cause misalignment and falling from the
 また、熱伝導シート1は、上記条件1又は条件2で、銅板で挟持した状態を基準に長さ方向のズレを2.5mm以下とする観点から、圧縮応力が5.0[psi]以上であることが好ましい。圧縮応力の測定方法は、2.0mm厚の熱伝導シートを25mm角に切り出し、テンシロンにて、押し付け速度は20mm/secとし、30%圧縮して3分間保持し、3分間後の圧縮応力を測定して得た値(psi)である。 In addition, the heat conductive sheet 1 has a compressive stress of 5.0 [psi] or more from the viewpoint that the displacement in the length direction is 2.5 mm or less with respect to the state sandwiched by the copper plates under the above condition 1 or condition 2. Preferably. The compressive stress is measured by cutting a 2.0 mm thick heat conductive sheet into 25 mm squares, compressing it by 30% with a Tensilon at a pressing speed of 20 mm/sec, holding it for 3 minutes, and measuring the compressive stress after 3 minutes. Measured value (psi).
 また、熱伝導シート1は、熱伝導性充填剤としてさらにアルミニウム化合物から選ばれる少なくとも1種を含み、上記アルミニウム化合物の含有量を39体積%より多く且つ51体積%未満とすることが好ましい。アルミニウム化合物の含有量が39体積%以下の場合、充填量不足により熱伝導率が低下する。また、アルミニウム化合物の含有量が51体積%以上の場合、繊維状熱伝導性充填剤の充填の妨げになる。 In addition, the thermally conductive sheet 1 further contains at least one selected from aluminum compounds as a thermally conductive filler, and the content of the aluminum compound is preferably more than 39% by volume and less than 51% by volume. When the content of the aluminum compound is 39% by volume or less, the thermal conductivity decreases due to insufficient filling. Moreover, when the content of the aluminum compound is 51% by volume or more, it interferes with the filling of the fibrous thermally conductive filler.
 熱伝導シート1の厚みは、特に限定されず、目的に応じて適宜選択することができる。例えば、熱伝導シート1の厚みは、0.05mm以上とすることができ、0.1mm以上とすることもできる。また、熱伝導シート1の厚みの上限値は、5mm以下とすることができ、4mm以下であってもよく、3mm以下であってもよい。熱伝導シート1は、取扱性の観点では、厚みが0.1~4mmであることが好ましい。熱伝導シート1の厚みは、例えば、熱伝導シート1の厚みを任意の5箇所で測定し、その算術平均値から求めることができる。 The thickness of the heat conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose. For example, the thickness of the heat conductive sheet 1 can be 0.05 mm or more, and can also be 0.1 mm or more. Moreover, the upper limit of the thickness of the heat conductive sheet 1 may be 5 mm or less, may be 4 mm or less, or may be 3 mm or less. From the standpoint of handleability, the heat conductive sheet 1 preferably has a thickness of 0.1 to 4 mm. The thickness of the thermally conductive sheet 1 can be determined, for example, by measuring the thickness of the thermally conductive sheet 1 at five arbitrary points and calculating the arithmetic average value thereof.
 以下、熱伝導シート1の構成要素の具体例について説明する。熱伝導シート1は、例えば、少なくとも高分子マトリックス成分(バインダ樹脂)2と、繊維状の熱伝導性充填剤3とを含む組成物の硬化物である熱伝導シートである。 Specific examples of the constituent elements of the thermally conductive sheet 1 will be described below. The thermally conductive sheet 1 is, for example, a cured product of a composition containing at least a polymer matrix component (binder resin) 2 and a fibrous thermally conductive filler 3 .
 <高分子マトリックス成分>
 高分子マトリックス成分2は、繊維状熱伝導性充填剤3や他の熱伝導性充填剤4を熱伝導シート1内に保持するためのものである。高分子マトリックス成分2は、熱伝導シート1に要求される機械的強度、耐熱性、電気的性質等の特性に応じて選択される。高分子マトリックス成分2としては、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂の中から選択することができる。
<Polymer matrix component>
The polymeric matrix component 2 is for holding the fibrous thermally conductive fillers 3 and other thermally conductive fillers 4 within the thermally conductive sheet 1 . The polymer matrix component 2 is selected according to properties such as mechanical strength, heat resistance and electrical properties required for the heat conductive sheet 1 . The polymer matrix component 2 can be selected from thermoplastic resins, thermoplastic elastomers, and thermosetting resins.
 熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のエチレン-αオレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等のフッ素系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリフェニレン-エーテル共重合体(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリメタクリル酸メチルエステル等のポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等が挙げられる。 Examples of thermoplastic resins include polyethylene, polypropylene, ethylene-α-olefin copolymers such as ethylene-propylene copolymers, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene-vinyl acetate copolymers, Fluorinated polymers such as polyvinyl alcohol, polyvinyl acetal, polyvinylidene fluoride and polytetrafluoroethylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene copolymer Polymer (ABS) resin, polyphenylene-ether copolymer (PPE) resin, modified PPE resin, aliphatic polyamides, aromatic polyamides, polyimide, polyamideimide, polymethacrylic acid, polymethacrylic acid such as polymethacrylic acid methyl ester acid esters, polyacrylic acids, polycarbonates, polyphenylene sulfides, polysulfones, polyethersulfones, polyethernitrile, polyetherketones, polyketones, liquid crystal polymers, silicone resins, ionomers and the like.
 熱可塑性エラストマーとしては、スチレン- ブタジエンブロック共重合体又はその水添化物、スチレン-イソプレンブロック共重合体又はその水添化物、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。 Thermoplastic elastomers include styrene-butadiene block copolymers or hydrogenated products thereof, styrene-isoprene block copolymers or hydrogenated products thereof, styrene-based thermoplastic elastomers, olefin-based thermoplastic elastomers, and vinyl chloride-based thermoplastic elastomers. , polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, and the like.
 熱硬化性樹脂としては、架橋ゴム、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等が挙げられる。架橋ゴムの具体例としては、天然ゴム、アクリルゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、及びシリコーンゴムが挙げられる。 Thermosetting resins include crosslinked rubbers, epoxy resins, phenolic resins, polyimide resins, unsaturated polyester resins, diallyl phthalate resins, and the like. Specific examples of crosslinked rubber include natural rubber, acrylic rubber, butadiene rubber, isoprene rubber, styrene-butadiene copolymer rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene-propylene copolymer rubber, chlorinated polyethylene rubber, Chlorosulfonated polyethylene rubber, butyl rubber, halogenated butyl rubber, fluororubber, urethane rubber, and silicone rubber.
 高分子マトリックス成分2としては、例えば、電子部品の発熱面とヒートシンク面との密着性を考慮するとシリコーン樹脂が好ましい。シリコーン樹脂としては、例えば、アルケニル基を有するシリコーンを主成分とし、硬化触媒を含有する主剤と、ヒドロシリル基(Si-H基)を有する硬化剤とからなる、2液型の付加反応型シリコーン樹脂を用いることができる。アルケニル基を有するシリコーンとしては、例えば、ビニル基を有するポリオルガノシロキサンを用いることができる。硬化触媒は、アルケニル基を有するシリコーン中のアルケニル基と、ヒドロシリル基を有する硬化剤中のヒドロシリル基との付加反応を促進するための触媒である。硬化触媒としては、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられ、例えば、白金族系硬化触媒、例えば白金、ロジウム、パラジウムなどの白金族金属単体や塩化白金などを用いることができる。ヒドロシリル基を有する硬化剤としては、例えば、ヒドロシリル基を有するポリオルガノシロキサンを用いることができる。高分子マトリックス成分2は、1種単独で用いてもよいし、2種以上を併用してもよい。 As the polymer matrix component 2, for example, a silicone resin is preferable in consideration of the adhesion between the heat generating surface and the heat sink surface of the electronic component. As the silicone resin, for example, a two-component addition reaction type silicone resin composed of a silicone having an alkenyl group as a main component, a main agent containing a curing catalyst, and a curing agent having a hydrosilyl group (Si—H group). can be used. As the alkenyl group-containing silicone, for example, a vinyl group-containing polyorganosiloxane can be used. The curing catalyst is a catalyst for promoting the addition reaction between the alkenyl group in the alkenyl group-containing silicone and the hydrosilyl group in the hydrosilyl group-containing curing agent. As the curing catalyst, well-known catalysts used for hydrosilylation reaction can be used. For example, platinum group curing catalysts, such as platinum group metals such as platinum, rhodium and palladium, and platinum chloride can be used. As the curing agent having hydrosilyl groups, for example, polyorganosiloxane having hydrosilyl groups can be used. The polymer matrix component 2 may be used singly or in combination of two or more.
 熱伝導シート1中の高分子マトリックス成分2の含有量は、特に限定されず、目的に応じて適宜選択することができる。例えば、熱伝導シート1中の高分子マトリックス成分2の含有量は、熱伝導シート1の柔軟性の観点では、20体積%以上とすることができ、25体積%以上であってもよく、30体積%以上であってもよく、35体積%以上であってもよい。また、熱伝導シート1中の高分子マトリックス成分2の含有量は、熱伝導シート1の熱伝導率の観点では、70体積%以下とすることができ、60体積%以下であってもよく、50体積%以下であってもよく、41体積%以下であってもよく、39体積%以下であってもよい。また、熱伝導シート1中の高分子マトリックス成分2の含有量は、例えば、熱伝導シート1の圧縮応力や復元率の観点では、20~50体積%とすることが好ましく、35体積%以上、41体積%以下とすることがより好ましい。 The content of the polymer matrix component 2 in the heat conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose. For example, the content of the polymer matrix component 2 in the thermally conductive sheet 1 may be 20% by volume or more, may be 25% by volume or more, or may be 30% by volume, from the viewpoint of the flexibility of the thermally conductive sheet 1. It may be vol % or more, or 35 vol % or more. In addition, the content of the polymer matrix component 2 in the thermally conductive sheet 1 can be 70% by volume or less, and may be 60% by volume or less, from the viewpoint of the thermal conductivity of the thermally conductive sheet 1. It may be 50% by volume or less, 41% by volume or less, or 39% by volume or less. In addition, the content of the polymer matrix component 2 in the thermally conductive sheet 1 is preferably 20 to 50% by volume, for example, from the viewpoint of compressive stress and recovery rate of the thermally conductive sheet 1, 35% by volume or more, It is more preferable to make it 41 volume % or less.
 <繊維状熱伝導性充填剤>
 熱伝導シート1は、繊維状熱伝導性充填剤3を含む。繊維状熱伝導性充填剤3とは、長軸と短軸とを有し、長軸と短軸の長さが異なりアスペクト比(平均長軸長さ/平均短軸長さ)が1を超える形状であるものを含む。繊維状熱伝導性充填剤3は、1種単独で用いてもよいし、2種以上を併用してもよい。繊維状熱伝導性充填剤3は、目的に応じて適宜選択することができ、例えば、金属繊維、炭素繊維などを用いることができ、炭素繊維が好ましい。
<Fibrous Thermally Conductive Filler>
A thermally conductive sheet 1 contains a fibrous thermally conductive filler 3 . The fibrous thermally conductive filler 3 has a long axis and a short axis, and the length of the long axis and the short axis are different, and the aspect ratio (average long axis length/average short axis length) exceeds 1. Including those that are in shape. The fibrous thermally conductive filler 3 may be used singly or in combination of two or more. The fibrous thermally conductive filler 3 can be appropriately selected depending on the intended purpose. For example, metal fiber, carbon fiber, etc. can be used, and carbon fiber is preferable.
 炭素繊維は、例えば、ピッチ系炭素繊維、PAN系炭素繊維、PBO繊維を黒鉛化した炭素繊維、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成された炭素繊維を用いることができる。これらの中でも、熱伝導性の観点では、ピッチ系炭素繊維が好ましい。 Carbon fibers include, for example, pitch-based carbon fiber, PAN-based carbon fiber, carbon fiber obtained by graphitizing PBO fiber, arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), growth method) or the like can be used. Among these, pitch-based carbon fibers are preferable from the viewpoint of thermal conductivity.
 繊維状熱伝導性充填剤3の平均繊維長(平均長軸長さ)は、例えば、50~250μmとすることができ、75~220μmであってもよい。また、繊維状熱伝導性充填剤3の平均繊維径(平均短軸長さ)は、目的に応じて適宜選択することができ、例えば、4~20μmとすることができ、5~14μmであってもよい。繊維状熱伝導性充填剤3のアスペクト比は、目的に応じて適宜選択することができ、例えば、熱伝導性の観点では、例えば、8以上とすることができ、9~30であってもよい。繊維状熱伝導性充填剤3の平均長軸長さ及び平均短軸長さは、例えば、マイクロスコープや走査型電子顕微鏡(SEM)で測定することができる。 The average fiber length (average long axis length) of the fibrous thermally conductive filler 3 can be, for example, 50 to 250 μm, and may be 75 to 220 μm. In addition, the average fiber diameter (average minor axis length) of the fibrous thermally conductive filler 3 can be appropriately selected according to the purpose, and can be, for example, 4 to 20 μm, such as 5 to 14 μm. may The aspect ratio of the fibrous thermally conductive filler 3 can be appropriately selected according to the purpose. good. The average major axis length and average minor axis length of the fibrous thermally conductive filler 3 can be measured with, for example, a microscope or scanning electron microscope (SEM).
 炭素繊維は、目的に応じて、表面が絶縁被膜によって被覆されていてもよい。このように、炭素繊維として、絶縁被覆炭素繊維を用いることができる。絶縁被覆炭素繊維は、炭素繊維と、炭素繊維の表面の少なくとも一部に絶縁皮膜とを有し、必要に応じて、その他の成分を含有してもよい。 The surface of the carbon fiber may be covered with an insulating film depending on the purpose. Thus, insulation-coated carbon fibers can be used as the carbon fibers. The insulation-coated carbon fiber has a carbon fiber and an insulation coating on at least part of the surface of the carbon fiber, and may contain other components as necessary.
 絶縁皮膜は、電気絶縁性を有する材料からなり、例えば、酸化ケイ素や、重合性材料の硬化物で形成されている。重合性材料は、例えばラジカル重合性材料であり、重合性を有する有機化合物、重合性を有する樹脂などが挙げられる。ラジカル重合性材料は、エネルギーを利用してラジカル重合する材料であれば、目的に応じて適宜選択することができ、例えば、ラジカル重合性2重結合を有する化合物が挙げられる。ラジカル重合性2重結合としては、例えば、ビニル基、アクリロイル基、メタクリロイル基などが挙げられる。ラジカル重合性2重結合を有する化合物におけるラジカル重合性2重結合の個数は、耐熱性や、耐溶剤性を含む強度の観点では、2つ以上が好ましい。ラジカル重合性2重結合を2つ以上有する化合物は、例えば、ジビニルベンゼン(Divinylbenzene:DVB)、(メタ)アクリロイル基を2つ以上有する化合物が挙げられる。ラジカル重合性材料は、1種単独で用いてもよいし、2種以上を併用してもよい。ラジカル重合性材料の分子量は、目的に応じて適宜選択することができ、例えば、50~500の範囲とすることができる。絶縁皮膜が重合性材料の硬化物で形成されている場合、絶縁被膜における重合性材料に由来する構成単位の含有量は、例えば、50質量%以上とすることができ、90質量%以上とすることもできる。 The insulating film is made of an electrically insulating material, such as silicon oxide or a hardened polymer material. The polymerizable material is, for example, a radical polymerizable material such as a polymerizable organic compound and a polymerizable resin. The radically polymerizable material can be appropriately selected according to the purpose as long as it is a material that undergoes radical polymerization using energy. Examples thereof include compounds having a radically polymerizable double bond. Examples of radically polymerizable double bonds include vinyl groups, acryloyl groups, and methacryloyl groups. The number of radically polymerizable double bonds in the compound having radically polymerizable double bonds is preferably two or more from the viewpoint of strength including heat resistance and solvent resistance. Examples of compounds having two or more radically polymerizable double bonds include divinylbenzene (DVB) and compounds having two or more (meth)acryloyl groups. The radically polymerizable material may be used singly or in combination of two or more. The molecular weight of the radically polymerizable material can be appropriately selected depending on the purpose, and can be in the range of 50-500, for example. When the insulating coating is formed of a cured product of a polymerizable material, the content of structural units derived from the polymerizable material in the insulating coating can be, for example, 50% by mass or more, and can be 90% by mass or more. can also
 絶縁皮膜の平均厚みは、目的に応じて適宜選択することができ、高い絶縁性を実現する観点では、50nm以上とすることができ、100nm以上であってもよく、200nm以上であってもよい。絶縁被膜の平均厚みの上限値は、例えば、1000nm以下とすることができ、500nm以下であってもよい。絶縁被膜の平均厚みは、例えば、透過型電子顕微鏡(TEM)観察により求めることができる。 The average thickness of the insulating film can be appropriately selected depending on the purpose, and from the viewpoint of realizing high insulation, it can be 50 nm or more, may be 100 nm or more, or may be 200 nm or more. . The upper limit of the average thickness of the insulating coating can be, for example, 1000 nm or less, and may be 500 nm or less. The average thickness of the insulating coating can be determined, for example, by observation with a transmission electron microscope (TEM).
 絶縁皮膜により炭素繊維を被覆する方法としては、例えば、ゾルゲル法、液相堆積法、ポリシロキサン法、特開2018-98515号公報に記載された炭素繊維の表面の少なくとも一部に重合性材料の硬化物からなる絶縁皮膜を形成する方法等が挙げられる。 Examples of methods for coating carbon fibers with an insulating film include a sol-gel method, a liquid phase deposition method, a polysiloxane method, and a polymerizable material on at least a part of the surface of the carbon fiber described in JP-A-2018-98515. Examples include a method of forming an insulating film made of a cured product.
 熱伝導シート1中の繊維状熱伝導性充填剤3の含有量は、熱伝導シート1の熱伝導性の観点では、例えば、5体積%以上とすることができ、10体積%以上とすることもでき、14体積%以上とすることもでき、20体積%以上とすることもでき、25体積%以上とすることもできる。また、熱伝導シート1中の繊維状熱伝導性充填剤3の含有量は、熱伝導シート1の成形性の観点では、例えば30体積%以下とすることができ、28体積%以下とすることもでき、25体積%以下とすることもでき、23体積%以下とすることもできる。熱伝導シート1中の繊維状熱伝導性充填剤3の含有量は、例えば、5~50体積%とすることができ、14~23体積%とすることが好ましい。2種以上の繊維状熱伝導性充填剤3を併用する場合、その合計量が上述した含有量を満たすことが好ましい。 The content of the fibrous thermally conductive filler 3 in the thermally conductive sheet 1 can be, for example, 5% by volume or more, and should be 10% by volume or more, from the viewpoint of thermal conductivity of the thermally conductive sheet 1. It can be 14% by volume or more, it can be 20% by volume or more, or it can be 25% by volume or more. In addition, the content of the fibrous thermally conductive filler 3 in the thermally conductive sheet 1 can be, for example, 30% by volume or less, and 28% by volume or less, from the viewpoint of the moldability of the thermally conductive sheet 1. It can also be 25% by volume or less, or 23% by volume or less. The content of the fibrous thermally conductive filler 3 in the thermally conductive sheet 1 can be, for example, 5 to 50% by volume, preferably 14 to 23% by volume. When two or more types of fibrous thermally conductive fillers 3 are used in combination, it is preferable that the total amount thereof satisfies the content described above.
 <他の熱伝導性充填剤>
 他の熱伝導性充填剤4は、上述した繊維状熱伝導性充填剤3以外の熱伝導性充填剤であり、例えば、無機フィラーが挙げられる。他の熱伝導性充填剤4の形状は、例えば、球状、破砕状、楕円球状、塊状、粒状、扁平状などが挙げられる。他の熱伝導性充填剤4の形状は、充填性の観点では、破砕状、球状、楕円球状などが好ましく、熱伝導シート1の復元性、特に、熱伝導シート1において上記条件1又は条件2で熱サイクル試験を行った場合の復元率をより良好とする観点では破砕状が好ましい。他の熱伝導性充填剤4は、1種単独で用いてもよいし、2種以上を併用してもよい。
<Other Thermally Conductive Fillers>
Other thermally conductive fillers 4 are thermally conductive fillers other than the fibrous thermally conductive fillers 3 described above, and include, for example, inorganic fillers. Other shapes of the thermally conductive filler 4 include, for example, a spherical shape, a crushed shape, an ellipsoidal shape, a massive shape, a granular shape, and a flat shape. The shape of the other thermally conductive filler 4 is preferably crushed, spherical, ellipsoidal, or the like from the viewpoint of filling performance. A crushed form is preferable from the viewpoint of improving the recovery rate when a thermal cycle test is performed in . Other thermally conductive fillers 4 may be used singly or in combination of two or more.
 他の熱伝導性充填剤4は、例えば、無機フィラーであり、具体的には、酸化アルミニウム(アルミナ、サファイア)、窒化アルミニウム、水酸化アルミニウム、アルミニウム、酸化亜鉛などを用いることができる。特に、熱伝導シート1の復元性や熱伝導率の観点では、窒化アルミニウム及びアルミナの少なくとも1種を用いることが好ましく、具体例として、アルミナを単独で用いる態様、窒化アルミニウムを単独で用いる態様、及びこれらを併用する態様が挙げられる。 Another thermally conductive filler 4 is, for example, an inorganic filler, and specifically, aluminum oxide (alumina, sapphire), aluminum nitride, aluminum hydroxide, aluminum, zinc oxide, etc. can be used. In particular, from the viewpoint of the restorability and thermal conductivity of the heat conductive sheet 1, it is preferable to use at least one of aluminum nitride and alumina. and a mode in which these are used in combination.
 アルミナ粒子の平均粒径(D50)は、例えば、0.1~10μmとすることができ、0.1~8μmであってもよく、0.1~7μmであってもよく、0.1~2μmであってもよい。窒化アルミニウム粒子の平均粒径(D50)は、例えば、0.1~10μmとすることができ、0.1~8μmであってもよく、0.1~7μmであってもよく、0.1~2μmであってもよい。 The average particle diameter (D50) of the alumina particles may be, for example, 0.1 to 10 μm, may be 0.1 to 8 μm, may be 0.1 to 7 μm, may be 0.1 to It may be 2 μm. The average particle size (D50) of the aluminum nitride particles may be, for example, 0.1 to 10 μm, may be 0.1 to 8 μm, may be 0.1 to 7 μm, may be 0.1 It may be ˜2 μm.
 他の熱伝導性充填剤4の平均粒径は、他の熱伝導性充填剤4の粒子径分布全体を100%とした場合に、粒子径分布の小粒子径側から粒子径の値の累積カーブを求めたとき、その累積値が50%となるときの粒子径をいう。粒度分布(粒子径分布)は、体積基準によって求められたものである。粒度分布の測定方法としては、例えば、レーザー回折型粒度分布測定機を用いる方法が挙げられる。 The average particle size of the other thermally conductive fillers 4 is the accumulation of the particle size values from the small particle size side of the particle size distribution when the entire particle size distribution of the other thermally conductive fillers 4 is taken as 100%. It means the particle diameter when the cumulative value is 50% when the curve is obtained. The particle size distribution (particle size distribution) is determined by volume. Examples of the method for measuring the particle size distribution include a method using a laser diffraction particle size distribution analyzer.
 他の熱伝導性充填剤4は、表面処理が施されていてもよい。表面処理としては、例えば、アルコキシシラン化合物などのカップリング剤により他の熱伝導性充填剤4を処理することが挙げられる。カップリング剤の処理量は、例えば、他の熱伝導性充填剤4の総量に対して0.1~1.5体積%の範囲とすることができる。 The other thermally conductive filler 4 may be surface-treated. The surface treatment includes, for example, treating the other thermally conductive filler 4 with a coupling agent such as an alkoxysilane compound. The processing amount of the coupling agent can be, for example, in the range of 0.1 to 1.5% by volume with respect to the total amount of the other thermally conductive fillers 4 .
 アルコキシシラン化合物は、ケイ素原子(Si)が持つ4個の結合のうち、1~3個がアルコキシ基と結合し、残りの結合が有機置換基と結合した構造を有する化合物である。アルコキシシラン化合物が有するアルコキシ基としては、例えば、メトキシ基、エトキシ基、ブトキシ基などが挙げられる。アルコキシシラン化合物の具体例としては、トリメトキシシラン化合物、トリエトキシシラン化合物などが挙げられる。 An alkoxysilane compound is a compound having a structure in which 1 to 3 of the 4 bonds of a silicon atom (Si) are bonded to alkoxy groups, and the remaining bonds are bonded to organic substituents. Examples of the alkoxy group that the alkoxysilane compound has include a methoxy group, an ethoxy group, and a butoxy group. Specific examples of alkoxysilane compounds include trimethoxysilane compounds and triethoxysilane compounds.
 熱伝導シート1中の他の熱伝導性充填剤4の含有量は、特に限定されず、目的に応じて適宜選択できる。熱伝導シート1がアルミニウム化合物から選ばれる少なくとも1種を含む場合、アルミニウム化合物の含有量は39体積%より多く、51体積%未満とすることが好ましい。熱伝導シート1中のアルミニウム化合物の含有量は、熱伝導シート1の復元性をより良好にする観点では、例えば、42~45体積%とすることが好ましい。2種以上の他の熱伝導性充填剤4を併用する場合、その合計量が上述した含有量を満たすことが好ましい。 The content of the other thermally conductive filler 4 in the thermally conductive sheet 1 is not particularly limited, and can be appropriately selected according to the purpose. When the heat conductive sheet 1 contains at least one selected from aluminum compounds, the content of the aluminum compound is preferably more than 39% by volume and less than 51% by volume. The content of the aluminum compound in the thermally conductive sheet 1 is preferably 42 to 45% by volume, for example, from the viewpoint of improving the restorability of the thermally conductive sheet 1 . When two or more other thermally conductive fillers 4 are used in combination, the total amount preferably satisfies the content described above.
 熱伝導シート1が繊維状熱伝導性充填剤3と他の熱伝導性充填剤4を含む場合、熱伝導シート1中の繊維状熱伝導性充填剤3と他の熱伝導性充填剤4の含有量の合計は、熱伝導シート1の復元性や熱伝導率の観点では、50体積%以上とすることができ、55体積%以上であってもよく、59体積%以上であってもよく、60体積%以上であってもよい。また、熱伝導シート1中の繊維状熱伝導性充填剤3と他の熱伝導性充填剤4の含有量の合計は、熱伝導シート1の復元性の観点では、77体積%未満とすることができ、67体積%以下であってもよく、65体積%以下であってもよく、64体積%以下であってもよく、63体積%以下であってもよく、62体積%以下であってもよく、61体積%以下であってもよい。熱伝導シート1中の繊維状熱伝導性充填剤3と他の熱伝導性充填剤4の含有量の合計は、例えば、59体積%以上65体積%以下とすることが好ましい。 When the thermally conductive sheet 1 contains the fibrous thermally conductive filler 3 and the other thermally conductive filler 4, the fibrous thermally conductive filler 3 and the other thermally conductive filler 4 in the thermally conductive sheet 1 The total content may be 50% by volume or more, may be 55% by volume or more, or may be 59% by volume or more, from the viewpoint of the restorability and thermal conductivity of the heat conductive sheet 1. , 60% by volume or more. In addition, the total content of the fibrous thermally conductive filler 3 and other thermally conductive fillers 4 in the thermally conductive sheet 1 should be less than 77% by volume from the viewpoint of the restorability of the thermally conductive sheet 1. can be 67% by volume or less, 65% by volume or less, 64% by volume or less, 63% by volume or less, or 62% by volume or less may be 61% by volume or less. The total content of the fibrous thermally conductive filler 3 and the other thermally conductive filler 4 in the thermally conductive sheet 1 is preferably, for example, 59% by volume or more and 65% by volume or less.
 熱伝導シート1は、本技術の効果を損なわない範囲で、上述した成分以外の他の成分をさらに含有してもよい。他の成分としては、例えば、分散剤、硬化促進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤などが挙げられる。 The heat conductive sheet 1 may further contain components other than the components described above within a range that does not impair the effects of the present technology. Other components include, for example, dispersants, curing accelerators, retarders, tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants, and the like.
 <熱伝導シートの製造方法>
 本技術に係る熱伝導シートの製造方法は、少なくとも高分子マトリックス成分2と繊維状熱伝導性充填剤3とを含む熱伝導組成物を調製する工程(以下、工程Aともいう。)と、熱伝導組成物から成形体ブロックを形成する工程(以下、工程Bともいう。)と、成形体ブロックをシート状にスライスして熱伝導シート1を得る工程(以下、工程Cともいう。)とを有する。
<Method for manufacturing heat conductive sheet>
A method for producing a thermally conductive sheet according to the present technology comprises a step of preparing a thermally conductive composition containing at least a polymer matrix component 2 and a fibrous thermally conductive filler 3 (hereinafter also referred to as step A); A step of forming a molded block from a conductive composition (hereinafter also referred to as step B), and a step of slicing the molded block into sheets to obtain a heat conductive sheet 1 (hereinafter also referred to as step C). have.
 本製造方法で得られる熱伝導シート1は、上述のように、上記条件1又は条件2で熱サイクル試験を行った場合のズレが2.5mm以下であり、良好な復元率を有する。そのため、熱伝導シート1を発熱部品と放熱部材との間に配置した場合に、発熱部品と放熱部材との間のギャップが開いたとしても、そのギャップに対して熱伝導シート1を容易かつ迅速に追従させることができる。これにより、熱伝導シート1の位置ずれや熱抵抗の悪化を抑制できる。 As described above, the thermally conductive sheet 1 obtained by this manufacturing method has a displacement of 2.5 mm or less when subjected to the thermal cycle test under the above condition 1 or condition 2, and has a good recovery rate. Therefore, when the thermally conductive sheet 1 is arranged between the heat generating component and the heat radiating member, even if a gap is created between the heat generating component and the heat radiating member, the heat conductive sheet 1 can be easily and quickly removed from the gap. can be followed. As a result, it is possible to suppress the displacement of the thermally conductive sheet 1 and the deterioration of the thermal resistance.
 [工程A]
 工程Aでは、高分子マトリックス成分2と繊維状熱伝導性充填剤3とを含む熱伝導組成物を調製する。熱伝導組成物は、上述した他の熱伝導性充填剤4を含んでもよい。熱伝導組成物は、各種添加剤や揮発性溶剤ととともに公知の手法で均一に混合してもよい。なお高分子マトリックス成分を2液性の付加反応型液状シリコーンとし、硬化触媒を含有する主剤と硬化剤で構成する場合、主剤と硬化剤の比が以下の条件を満たすことが好ましい。当該比を満たすことにより、熱伝導シート1は、シート表面にシリコーンの未硬化成分が湧出ることによりタック性が付与され、また、シリコーンの架橋密度が適正化されることにより所望の復元力を備え、上記条件1又は条件2下で、所定の貼付位置からの位置ずれや落下がより抑制しやすくなる。
 主剤:硬化剤=35:65~70:30
[Step A]
In step A, a thermally conductive composition comprising a polymeric matrix component 2 and fibrous thermally conductive fillers 3 is prepared. The thermally conductive composition may contain other thermally conductive fillers 4 as described above. The thermally conductive composition may be uniformly mixed with various additives and volatile solvents by known methods. When the polymer matrix component is a two-liquid addition reaction type liquid silicone and is composed of a main agent containing a curing catalyst and a curing agent, the ratio of the main agent to the curing agent preferably satisfies the following conditions. By satisfying this ratio, the heat conductive sheet 1 is imparted with tackiness due to the uncured component of the silicone flowing out on the sheet surface, and the desired restoring force is obtained by optimizing the crosslinking density of the silicone. In addition, under condition 1 or condition 2 above, it becomes easier to suppress displacement and fall from the predetermined sticking position.
Main agent: Curing agent = 35:65 to 70:30
 工程Bでは、熱伝導組成物から成形体ブロックを形成する。成形体ブロックの形成方法としては、押出成形法、金型成形法などが挙げられる。押出成形法、金型成形法としては、特に制限されず、公知の各種押出成形法、金型成形法の中から、熱伝導組成物の粘度や熱伝導シート1に要求される特性等に応じて適宜採用することができる。例えば、押出成形法において、熱伝導組成物をダイより押し出す際、あるいは金型成形法において、熱伝導組成物を金型へ圧入する際、高分子マトリックス成分2が流動し、その流動方向に沿って繊維状熱伝導性充填剤3の長軸が配向する。 In step B, a molded block is formed from the thermally conductive composition. Examples of methods for forming the molded block include an extrusion molding method and a mold molding method. The extrusion molding method and the mold molding method are not particularly limited, and various known extrusion molding methods and mold molding methods can be selected depending on the viscosity of the heat conductive composition and the properties required for the heat conductive sheet 1. can be adopted as appropriate. For example, in extrusion molding, when the thermally conductive composition is extruded through a die, or in mold molding, when the thermally conductive composition is pressed into a mold, the polymer matrix component 2 flows along the flow direction. , the long axis of the fibrous thermally conductive filler 3 is oriented.
 成形体ブロックの大きさ・形状は、求められる熱伝導シートの大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5~15cmで横の大きさが0.5~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。押出成形法では、熱伝導組成物の硬化物からなり、押出方向に繊維状熱伝導性充填剤3の長軸が配向した、柱状の成形体ブロックを形成しやすい。 The size and shape of the molded block can be determined according to the required size of the heat conductive sheet. For example, a rectangular parallelepiped having a cross-sectional length of 0.5 to 15 cm and a width of 0.5 to 15 cm can be used. The length of the rectangular parallelepiped may be determined as required. In the extrusion molding method, it is easy to form a columnar molded block made of a cured product of the thermally conductive composition, in which the long axis of the fibrous thermally conductive filler 3 is oriented in the extrusion direction.
 得られた成形体ブロックは、熱硬化させることが好ましい。熱硬化における硬化温度は、目的に応じて適宜選択することができ、例えば、高分子マトリックス成分2がシリコーン樹脂である場合、60℃~120℃の範囲とすることができる。熱硬化における硬化時間は、例えば、30分~10時間の範囲とすることができる。 The obtained molded block is preferably heat-cured. The curing temperature in thermosetting can be appropriately selected according to the purpose. For example, when the polymer matrix component 2 is a silicone resin, it can be in the range of 60°C to 120°C. Curing time in thermal curing can be, for example, in the range of 30 minutes to 10 hours.
 <工程C>
 工程Cでは、成形体ブロックをシート状にスライスして、厚さ方向に繊維状熱伝導性充填剤3の長軸が配向した熱伝導シート1を得る。スライスにより得られるシートの表面(スライス面)には、繊維状熱伝導性充填剤3が露出する。スライスする方法としては特に制限はなく、成形体ブロックの大きさや機械的強度により公知のスライス装置の中から適宜選択することができる。スライス装置としては、例えば、超音波カッタ、かんな(鉋)などが挙げられる。成形体ブロックのスライス方向としては、成形方法が押出成形法である場合、押出し方向に繊維状熱伝導性充填剤3の長軸が配向しているものもあるため、押出し方向に対して60~120度であることが好ましく、70~100度の方向であることがより好ましく、90度(垂直)の方向であることがさらに好ましい。
<Process C>
In step C, the molded block is sliced into sheets to obtain thermally conductive sheets 1 in which the long axes of the fibrous thermally conductive fillers 3 are oriented in the thickness direction. The fibrous thermally conductive filler 3 is exposed on the surface (slice surface) of the sheet obtained by slicing. The slicing method is not particularly limited, and can be appropriately selected from among known slicing devices according to the size and mechanical strength of the compact block. Examples of the slicing device include an ultrasonic cutter and a planer. As for the slicing direction of the molded block, when the molding method is an extrusion molding method, the long axis of the fibrous thermally conductive filler 3 may be oriented in the extrusion direction. Preferably 120 degrees, more preferably 70-100 degrees, and even more preferably 90 degrees (perpendicular).
 このように、工程Aと、工程Bと、工程Cとを有する製造方法では、繊維状熱伝導性充填剤3が高分子マトリックス成分2に分散した熱伝導シート1であって、繊維状熱伝導性充填剤3が断面視で厚さ方向に配向された熱伝導シート1を得ることができる。 Thus, in the manufacturing method including the steps A, B, and C, the thermally conductive sheet 1 in which the fibrous thermally conductive filler 3 is dispersed in the polymer matrix component 2, and the fibrous thermally conductive It is possible to obtain a thermally conductive sheet 1 in which the elastic filler 3 is oriented in the thickness direction in a cross-sectional view.
 熱伝導シート1の製造方法は、上述した例に限定されず、例えば、工程Cの後に、スライス面をプレスする工程Dをさらに有していてもよい。このような工程Dを有する製造方法では、工程Cで得られる熱伝導シート1の表面がより平滑化され、他の部材との密着性をより向上できる。プレスの方法としては、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用することができる。また、熱伝導シート1の表面をピンチロールでプレスしてもよい。 The method for manufacturing the thermally conductive sheet 1 is not limited to the example described above, and for example, after the process C, it may further include a process D for pressing the sliced surface. In the manufacturing method having such a step D, the surface of the thermally conductive sheet 1 obtained in the step C is made smoother, and the adhesion with other members can be further improved. As a method of pressing, a pair of pressing devices comprising a flat plate and a press head having a flat surface can be used. Alternatively, the surface of the heat conductive sheet 1 may be pressed with pinch rolls.
 プレスの際の圧力は、例えば、0.1~100MPaの範囲とすることができ、0.1~1MPaの範囲であってもよく、0.1~0.5MPaの範囲であってもよい。プレス時間は、プレスの際の圧力、シート面積などに応じて適宜選択することができ、例えば、10秒~5分の範囲とすることができ、30秒~3分の範囲であってもよい。 The pressure during pressing may be, for example, in the range of 0.1 to 100 MPa, may be in the range of 0.1 to 1 MPa, or may be in the range of 0.1 to 0.5 MPa. The pressing time can be appropriately selected according to the pressure during pressing, the sheet area, etc., and can be, for example, in the range of 10 seconds to 5 minutes, and may be in the range of 30 seconds to 3 minutes. .
 プレスの効果をより高め、プレス時間を短縮するために、成形体シートを構成する高分子マトリックス成分のガラス転移温度(Tg)以上でプレスを行ってもよい。一態様として、ヒータを内蔵したプレスヘッドを用いて加熱しながらプレスを行ってもよい。プレス温度は、例えば、0~180℃の範囲とすることができ、室温(例えば25℃)~100℃の範囲であってもよく、30~100℃の範囲であってもよい。 In order to further enhance the effect of pressing and shorten the pressing time, pressing may be performed at a temperature equal to or higher than the glass transition temperature (Tg) of the polymer matrix component constituting the molded sheet. As one mode, pressing may be performed while heating using a press head with a built-in heater. The pressing temperature may range, for example, from 0 to 180°C, may range from room temperature (eg, 25°C) to 100°C, or may range from 30 to 100°C.
 <電子機器>
 熱伝導シート1は、例えば、発熱部品と放熱部材との間に配置させることにより、発熱部品で生じた熱を放熱部材に逃がすためにそれらの間に配された構造の電子機器(サーマルデバイス)とすることができる。電子機器は、発熱部品と放熱部材と熱伝導シート1とを少なくとも有し、必要に応じて、その他の部材をさらに有していてもよい。
<Electronic equipment>
The thermal conductive sheet 1 is, for example, an electronic device (thermal device) having a structure arranged between a heat-generating component and a heat-radiating member so that heat generated by the heat-generating component can escape to the heat-radiating member. can be The electronic device has at least a heat-generating component, a heat-dissipating member, and a heat-conducting sheet 1, and may further have other members as necessary.
 発熱部品としては、特に限定されず、例えば、CPU、GPU(Graphics Processing Unit)、DRAM(Dynamic Random Access Memory)、フラッシュメモリなどの集積回路素子、トランジスタ、抵抗器など、電気回路において発熱する電子部品等が挙げられる。また、発熱部品には、通信機器における光トランシーバ等の光信号を受信する部品も含まれる。 Heat-generating components are not particularly limited, and include, for example, CPU, GPU (Graphics Processing Unit), DRAM (Dynamic Random Access Memory), integrated circuit elements such as flash memory, transistors, resistors, and other electronic components that generate heat in electric circuits. etc. Heat-generating components also include components that receive optical signals, such as optical transceivers in communication equipment.
 放熱部材としては、特に限定されず、例えば、ヒートシンクやヒートスプレッダなど、集積回路素子やトランジスタ、光トランシーバ筐体などと組み合わされて用いられるものが挙げられる。ヒートシンクやヒートスプレッダの材質としては、例えば、銅、アルミニウムなどが挙げられる。放熱部材としては、ヒートスプレッダやヒートシンク以外にも、熱源から発生する熱を伝導して外部に放散させるものであればよく、例えば、放熱器、冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、ベーパーチャンバー、金属カバー、筐体等が挙げられる。ヒートパイプは、例えば、円筒状、略円筒状又は扁平筒状の中空構造体である。 The heat dissipation member is not particularly limited, and examples include those used in combination with integrated circuit elements, transistors, optical transceiver housings, such as heat sinks and heat spreaders. Materials for the heat sink and heat spreader include, for example, copper and aluminum. As the heat dissipating member, in addition to the heat spreader and the heat sink, any member may be used as long as it conducts the heat generated from the heat source and dissipates it to the outside. Heat pipes, vapor chambers, metal covers, housings, and the like. A heat pipe is, for example, a cylindrical, substantially cylindrical, or flat cylindrical hollow structure.
 図4は、熱伝導シートを適用した半導体装置の一例を示す断面図である。例えば、熱伝導シート1は、図4に示すように、各種電子機器に内蔵される半導体装置50に実装され、発熱部品と放熱部材との間に挟持される。図4に示す半導体装置50は、電子部品51と、ヒートスプレッダ52と、熱伝導シート1とを備え、熱伝導シート1がヒートスプレッダ52と電子部品51との間に挟持される。熱伝導シート1が、ヒートスプレッダ52とヒートシンク53との間に挟持されることにより、ヒートスプレッダ52とともに、電子部品51の熱を放熱する放熱部材を構成する。熱伝導シート1の実装場所は、ヒートスプレッダ52と電子部品51との間や、ヒートスプレッダ52とヒートシンク53との間に限らず、電子機器や半導体装置の構成に応じて、適宜選択できる。ヒートスプレッダ52は、例えば方形板状に形成され、電子部品51と対峙する主面52aと、主面52aの外周に沿って立設された側壁52bとを有する。ヒートスプレッダ52は、側壁52bに囲まれた主面52aに熱伝導シート1が設けられ、主面52aと反対側の他面52cに熱伝導シート1を介してヒートシンク53が設けられる。 FIG. 4 is a cross-sectional view showing an example of a semiconductor device to which a heat conductive sheet is applied. For example, as shown in FIG. 4, the heat conductive sheet 1 is mounted on a semiconductor device 50 built in various electronic devices, and sandwiched between a heat generating component and a heat radiating member. A semiconductor device 50 shown in FIG. 4 includes an electronic component 51 , a heat spreader 52 , and a heat conductive sheet 1 . By sandwiching the heat conductive sheet 1 between the heat spreader 52 and the heat sink 53 , together with the heat spreader 52 , a heat dissipation member for dissipating the heat of the electronic component 51 is configured. The mounting location of the heat conductive sheet 1 is not limited to between the heat spreader 52 and the electronic component 51 or between the heat spreader 52 and the heat sink 53, but can be appropriately selected according to the configuration of the electronic device or semiconductor device. The heat spreader 52 is formed, for example, in the shape of a square plate, and has a main surface 52a facing the electronic component 51 and side walls 52b erected along the outer circumference of the main surface 52a. The heat spreader 52 is provided with the heat conductive sheet 1 on the principal surface 52a surrounded by the side walls 52b, and is provided with the heat sink 53 via the heat conductive sheet 1 on the other surface 52c opposite to the principal surface 52a.
 ここで、本技術が適用された熱伝導シート1は、面方向が略鉛直方向となるように固定されて用いることができる。半導体装置50等の電子機器は、近年のスリム化(小型化)が進んだことで、ICチップなどの発熱を伴う電子部品51を水平方向にではなく、鉛直方向に向けて設置する設計もある。熱伝導シート1は、上記条件1又は条件2での熱サイクル試験における長さ方向のズレが2.5mm以下であるため、略鉛直方向に設けられた半導体素子等の電子部品51に使用され、当該電子部品51が発熱と冷却を繰り返した場合にも、貼付位置が大きくずれることなく、また発熱部品の発熱及び冷却に伴う反りなどの変形にも追従して密着し、熱抵抗の上昇を防止でき、熱伝導シートの放熱特性を維持することができる。 Here, the heat conductive sheet 1 to which the present technology is applied can be used by being fixed so that the surface direction is substantially vertical. As electronic devices such as semiconductor devices 50 have become slimmer (miniaturized) in recent years, there are designs in which electronic components 51 that generate heat such as IC chips are installed vertically instead of horizontally. . Since the heat conductive sheet 1 has a lengthwise deviation of 2.5 mm or less in the heat cycle test under the above condition 1 or condition 2, it is used for an electronic component 51 such as a semiconductor element provided in a substantially vertical direction, Even if the electronic component 51 repeats heat generation and cooling, the sticking position does not deviate greatly, and the heat-generating component 51 is closely followed by deformation such as warping due to heat generation and cooling, preventing an increase in thermal resistance. It is possible to maintain the heat dissipation properties of the heat conductive sheet.
 したがって、半導体装置50は、半導体素子等の電子部品51を鉛直方向に向けて設置することが可能となり、電子機器の設計の自由度が増し、ICチップを鉛直方向に向けて設置することで設置幅の省スペース化を図る等、電子機器の小型化等の要請に応じることが可能となる。 Therefore, the semiconductor device 50 can be installed with the electronic component 51 such as a semiconductor element facing the vertical direction. It becomes possible to respond to requests for miniaturization of electronic equipment, such as by achieving space saving in width.
 以下、本技術の実施例について説明する。本技術は、これらの実施例に限定されるものではない。実施例及び比較例では、熱伝導性樹脂組成物のシリコーン樹脂量、熱伝導性充填剤量、硬さ(ASTM D 2240準拠のタイプOOデュロメータ硬度)を変えた熱伝導シートのサンプルを形成し、各熱伝導シートサンプルについて、シート表面のタッキネス[gf]、熱抵抗[℃・cm/W]及び圧縮率、圧縮応力[psi]並びに復元率[%]を測定、評価した。また、上記条件1及び条件2に従って、各熱伝導シートサンプルを銅板に挟んで縦置きにし、熱サイクル試験に投入してシートのズレを観察した。 Examples of the present technology will be described below. The present technology is not limited to these examples. In Examples and Comparative Examples, heat conductive sheet samples were formed by changing the amount of silicone resin, the amount of heat conductive filler, and the hardness (type OO durometer hardness according to ASTM D 2240) of the heat conductive resin composition, For each heat conductive sheet sample, the sheet surface tackiness [gf], thermal resistance [°C·cm 2 /W], compressibility, compressive stress [psi], and recovery rate [%] were measured and evaluated. Further, according to the conditions 1 and 2, each thermally conductive sheet sample was sandwiched between copper plates and placed vertically, subjected to a thermal cycle test, and displacement of the sheets was observed.
 [熱抵抗及び圧縮率]
 熱抵抗の評価は、2.0mm厚の熱伝導シートサンプルの熱抵抗[℃・cm/W]を、ASTM-D5470に準拠した方法で0.7kgf/cmの荷重で測定した。圧縮率は熱抵抗測定時の厚みから算出した。
[Thermal resistance and compressibility]
Thermal resistance was evaluated by measuring the thermal resistance [° C.·cm 2 /W] of a 2.0 mm thick thermal conductive sheet sample with a load of 0.7 kgf/cm 2 according to ASTM-D5470. Compressibility was calculated from the thickness at the time of thermal resistance measurement.
 [バルク熱伝導率]
 バルク熱伝導率は、ASTM-D5470に準拠した方法で各熱伝導シートの熱抵抗を測定し、横軸に測定時の熱伝導シートの厚み(mm)、縦軸に熱伝導シートの熱抵抗(℃・cm/W)をプロットし、そのプロットの傾きから熱伝導シートのバルク熱伝導率(W/m・K)を算出した。
[Bulk thermal conductivity]
For bulk thermal conductivity, the thermal resistance of each thermal conductive sheet is measured by a method in accordance with ASTM-D5470, the horizontal axis is the thickness (mm) of the thermal conductive sheet at the time of measurement, and the vertical axis is the thermal resistance of the thermal conductive sheet ( °C·cm 2 /W) was plotted, and the bulk thermal conductivity (W/m·K) of the thermal conductive sheet was calculated from the slope of the plot.
 [タイプOO硬度]
 デュロメータタイプOOにおける硬度は、ASTM-D2240に準拠した測定方法で、2mm厚の熱伝導シートを5枚重ねて10mm厚とし、片面5点、両面で合計10点測定した測定結果の平均値とした。
[Type OO hardness]
The hardness of the durometer type OO is measured in accordance with ASTM-D2240 by stacking 5 thermally conductive sheets with a thickness of 2 mm to a thickness of 10 mm, and measuring 5 points on one side and 10 points on both sides in total. .
 [タッキネス]
 タッキネス(gf)について、マルコム製タッキネステスター(TK-1S)を使用し、荷重50gf、押し付け時間0.2秒、速度10mm/secの条件で測定した。
[Tackiness]
The tackiness (gf) was measured using a Malcom tackiness tester (TK-1S) under the conditions of a load of 50 gf, a pressing time of 0.2 seconds, and a speed of 10 mm/sec.
 [シートのズレ]
 シートのズレ評価は、3cm角の銅板(C1100P)の中央下辺に、外形サイズを20×5mmにカットした熱伝導シートサンプルを、長さ方向の一辺(短辺)を上記銅板の下辺に一致させて置いたのち、圧縮率10%となるように挟持した。熱伝導シートサンプルの長さ方向が鉛直方向となり、且つ銅板の下辺を鉛直下向きとなるように設置し、銅板の下辺からはみ出たシートが地面と接触しないよう浮かせ、はみ出た距離を測定した。その後、条件1に係る熱サイクル試験(-40℃⇔100℃:試験温度移行時間3分以内、試験温度到達後保温時間30分、総試験時間672時間)及び条件2に係る熱サイクル試験(-55℃⇔125℃:試験温度移行時間3分以内、試験温度到達後保温時間30分、総試験時間672時間)に投入し、672時間経過後のシートはみだし量を測定する。672時間経過後のはみだし量から初期のはみだし量を引くことでズレの距離(mm)を算出した。各熱サイクル試験は、気槽式の試験機で行った。
[Sheet misalignment]
Sheet misalignment evaluation is performed by placing a heat conductive sheet sample cut to 20 x 5 mm in outer size on the central lower side of a 3 cm square copper plate (C1100P), and aligning one side (short side) in the length direction with the lower side of the copper plate. After being placed, it was sandwiched so that the compression ratio was 10%. The length direction of the heat conductive sheet sample was vertical, and the lower side of the copper plate was placed vertically downward. After that, the thermal cycle test according to condition 1 (-40 ° C ⇔ 100 ° C: test temperature transition time within 3 minutes, heat retention time after reaching test temperature 30 minutes, total test time 672 hours) and thermal cycle test according to condition 2 (- 55°C ⇔ 125°C: test temperature transition time within 3 minutes, heat retention time after reaching test temperature 30 minutes, total test time 672 hours), and measure the amount of sheet extrusion after 672 hours. The displacement distance (mm) was calculated by subtracting the initial amount of protrusion from the amount of protrusion after 672 hours. Each thermal cycle test was performed with an air tank tester.
 [圧縮応力]
 2.0mm厚の熱伝導シートサンプルを25mm角に切り出し、テンシロンにて圧縮応力を測定した。押し付け速度は20mm/secとし、30%圧縮して3分間保持し、3分間後の圧縮応力(psi)を得た。
[Compressive stress]
A heat conductive sheet sample with a thickness of 2.0 mm was cut into a 25 mm square, and the compressive stress was measured with a Tensilon. The pressing speed was set to 20 mm/sec, and 30% compression was maintained for 3 minutes to obtain the compressive stress (psi) after 3 minutes.
 [復元率]
 1.0mm厚の熱伝導シートサンプルを、直径29mmの円盤状に切り出し、常温で0.7mm(初期厚みの70%)まで圧縮し、24時間保持し、圧力を開放した後30分経過時の厚みtnを元の厚みto(1mm)で除して復元率(=tn/to×100[%])を算出した。
[Restoration rate]
A heat conductive sheet sample with a thickness of 1.0 mm is cut into a disk shape with a diameter of 29 mm, compressed to 0.7 mm (70% of the initial thickness) at room temperature, held for 24 hours, and after 30 minutes after the pressure is released The restoration rate (=tn/t0×100[%]) was calculated by dividing the thickness tn by the original thickness to (1 mm).
 [実施例1]
 実施例1では、表1に示すように、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径2μmアルミナ粒子42体積%、繊維状熱伝導性充填剤として平均繊維長150μmのピッチ系炭素繊維23体積%を混合し、シリコーン組成物を調製した。実施例1における熱伝導性充填剤の合計量は65体積%である。また、2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものに添加剤と併せて35体積%使用し、完成後の熱伝導シートがASTM D 2240準拠のタイプOOデュロメータで硬度50となるように、主剤と硬化剤の構成比(主剤:硬化剤=58:42)を調整した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の中に押出成形し、50mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物をスライサーで切断して、厚みが1.0mm、2.0mmの熱伝導シートを得た。
[Example 1]
In Example 1, as shown in Table 1, 42% by volume of alumina particles with an average particle diameter of 2 μm coupled with a silane coupling agent were added to a two-liquid addition reaction type liquid silicone, and fibrous thermally conductive filler was A silicone composition was prepared by mixing 23% by volume of pitch-based carbon fibers having an average fiber length of 150 μm. The total amount of thermally conductive filler in Example 1 is 65% by volume. In addition, the two-liquid addition reaction type liquid silicone resin is mainly composed of organopolysiloxane, and 35% by volume is used together with additives. The composition ratio of the main agent and the curing agent (main agent:curing agent=58:42) was adjusted so that the hardness would be 50 at . The resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding. The silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product. The cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
 [実施例2]
 実施例2では、表1に示すように、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径2μmアルミナ粒子45体積%、繊維状熱伝導性充填剤として平均繊維長150μmのピッチ系炭素繊維14体積%を混合し、シリコーン組成物を調製した。実施例2における熱伝導性充填剤の合計量は59体積%である。また、2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものに添加剤と併せて41体積%使用し、完成後の熱伝導シートがASTM D 2240準拠のタイプOOデュロメータで硬度30となるように、主剤と硬化剤の構成比(主剤:硬化剤=59:41)を調整した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の中に押出成形し、50mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物をスライサーで切断して、厚みが1.0mm、2.0mmの熱伝導シートを得た。
[Example 2]
In Example 2, as shown in Table 1, 45% by volume of alumina particles with an average particle size of 2 μm coupled with a silane coupling agent were added to a two-liquid addition reaction type liquid silicone, and fibrous thermally conductive filler was A silicone composition was prepared by mixing 14% by volume of pitch-based carbon fibers having an average fiber length of 150 μm. The total amount of thermally conductive filler in Example 2 is 59% by volume. In addition, the two-liquid addition reaction type liquid silicone resin uses 41% by volume of organopolysiloxane as the main component together with additives, and the completed heat conductive sheet is ASTM D 2240 compliant type OO durometer The composition ratio of the main agent and the curing agent (main agent:curing agent=59:41) was adjusted so that the hardness would be 30 at . The resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding. The silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product. The cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
 [実施例3]
 実施例3では、表1に示すように、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径2μmアルミナ粒子22体積%、平均粒径1.5μm窒化アルミ粒子23体積%、繊維状熱伝導性充填剤として平均繊維長150μmのピッチ系炭素繊維20体積%を混合し、シリコーン組成物を調製した。実施例3における熱伝導性充填剤の合計量は65体積%である。また、2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものに添加剤と併せて35体積%使用し、完成後の熱伝導シートがASTM D 2240準拠のタイプOOデュロメータで硬度50となるように、主剤と硬化剤の構成比(主剤:硬化剤=57:43)を調整した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の中に押出成形し、50mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物をスライサーで切断して、厚みが1.0mm、2.0mmの熱伝導シートを得た。
[Example 3]
In Example 3, as shown in Table 1, 22% by volume of alumina particles with an average particle size of 2 μm and aluminum nitride with an average particle size of 1.5 μm, which were subjected to coupling treatment with a silane coupling agent, were added to a two-liquid addition reaction type liquid silicone. A silicone composition was prepared by mixing 23% by volume of particles and 20% by volume of pitch-based carbon fiber having an average fiber length of 150 μm as a fibrous thermally conductive filler. The total amount of thermally conductive filler in Example 3 is 65% by volume. In addition, the two-liquid addition reaction type liquid silicone resin is mainly composed of organopolysiloxane, and 35% by volume is used together with additives. The composition ratio of the main agent and the curing agent (main agent:curing agent=57:43) was adjusted so that the hardness would be 50 at . The resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding. The silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product. The cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
 [比較例1]
 比較例1では、表1に示すように、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径2μmアルミナ粒子51体積%、繊維状熱伝導性充填剤として平均繊維長150μmのピッチ系炭素繊維12体積%を混合し、シリコーン組成物を調製した。比較例1における熱伝導性充填剤の合計量は63体積%である。また、2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものに添加剤と併せて37体積%使用し、完成後の熱伝導シートがASTM D 2240準拠のタイプOOデュロメータで硬度45となるように、主剤と硬化剤の構成比(主剤:硬化剤=53:47)を調整した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の中に押出成形し、50mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物をスライサーで切断して、厚みが1.0mm、2.0mmの熱伝導シートを得た。
[Comparative Example 1]
In Comparative Example 1, as shown in Table 1, 51% by volume of alumina particles with an average particle size of 2 μm coupled with a silane coupling agent were added to a two-liquid addition reaction type liquid silicone, and fibrous thermally conductive filler was A silicone composition was prepared by mixing 12% by volume of pitch-based carbon fibers having an average fiber length of 150 μm. The total amount of thermally conductive filler in Comparative Example 1 is 63% by volume. In addition, the two-liquid addition reaction type liquid silicone resin uses 37% by volume of organopolysiloxane as the main component together with additives, and the completed heat conductive sheet is ASTM D 2240 compliant type OO durometer The composition ratio of the main agent and the curing agent (main agent:curing agent=53:47) was adjusted so that the hardness would be 45 at . The resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding. The silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product. The cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
 [比較例2]
 比較例2では、表1に示すように、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径2μmアルミナ粒子21体積%、平均粒径1.5μm窒化アルミ粒子23体積%、繊維状熱伝導性充填剤として平均繊維長150μmのピッチ系炭素繊維23体積%を混合し、シリコーン組成物を調製した。比較例2における熱伝導性充填剤の合計量は67体積%である。また、2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものに添加剤と併せて33体積%使用し、完成後の熱伝導シートがASTM D 2240準拠のタイプOOデュロメータで硬度30となるように、主剤と硬化剤の構成比(主剤:硬化剤=59:41)を調整した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の中に押出成形し、50mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物をスライサーで切断して、厚みが1.0mm、2.0mmの熱伝導シートを得た。
[Comparative Example 2]
In Comparative Example 2, as shown in Table 1, 21% by volume of alumina particles with an average particle size of 2 μm and aluminum nitride with an average particle size of 1.5 μm, which were subjected to coupling treatment with a silane coupling agent, were added to a two-liquid addition reaction type liquid silicone. A silicone composition was prepared by mixing 23% by volume of particles and 23% by volume of pitch-based carbon fiber having an average fiber length of 150 μm as a fibrous thermally conductive filler. The total amount of thermally conductive filler in Comparative Example 2 is 67% by volume. In addition, the two-liquid addition reaction type liquid silicone resin is mainly composed of organopolysiloxane, and 33% by volume is used together with additives. The composition ratio of the main agent and the curing agent (main agent:curing agent=59:41) was adjusted so that the hardness would be 30 at . The resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding. The silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product. The cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
 [比較例3]
 比較例3では、表1に示すように、2液性の付加反応型液状シリコーンに、シランカップリング剤でカップリング処理した平均粒径2μmアルミナ粒子22体積%、平均粒径1.5μm窒化アルミ粒子23体積%、繊維状熱伝導性充填剤として平均繊維長150μmのピッチ系炭素繊維20体積%を混合し、シリコーン組成物を調製した。比較例3における熱伝導性充填剤の合計量は65体積%である。また、2液性の付加反応型液状シリコーン樹脂は、オルガノポリシロキサンを主成分とするものに添加剤と併せて35体積%使用し、完成後の熱伝導シートがASTM D 2240準拠のタイプOOデュロメータで硬度60となるように、主剤と硬化剤の構成比(主剤:硬化剤=50:50)を調整した。得られたシリコーン組成物を、中空四角柱状の金型(50mm×50mm)の中に押出成形し、50mm□のシリコーン成型体を成型した。シリコーン成型体をオーブンにて100℃で6時間加熱してシリコーン硬化物とした。シリコーン硬化物をスライサーで切断して、厚みが1.0mm、2.0mmの熱伝導シートを得た。
[Comparative Example 3]
In Comparative Example 3, as shown in Table 1, 22% by volume of alumina particles with an average particle size of 2 μm and aluminum nitride with an average particle size of 1.5 μm, which were subjected to coupling treatment with a silane coupling agent, were added to a two-liquid addition reaction type liquid silicone. A silicone composition was prepared by mixing 23% by volume of particles and 20% by volume of pitch-based carbon fiber having an average fiber length of 150 μm as a fibrous thermally conductive filler. The total amount of thermally conductive filler in Comparative Example 3 is 65% by volume. In addition, the two-liquid addition reaction type liquid silicone resin is mainly composed of organopolysiloxane, and 35% by volume is used together with additives. The composition ratio of the main agent and the curing agent (main agent:curing agent=50:50) was adjusted so that the hardness would be 60 at . The resulting silicone composition was extruded into a hollow quadrangular prism-shaped mold (50 mm x 50 mm) to form a 50 mm square silicone molding. The silicone molded product was heated in an oven at 100° C. for 6 hours to obtain a cured silicone product. The cured silicone material was cut with a slicer to obtain heat conductive sheets with a thickness of 1.0 mm and 2.0 mm.
 次に、上記実施例1~3及び比較例1~3に係る熱伝導性シートを剥離処理されたPETフィルムで挟み、87℃、0.5MPa、3分の条件でプレスすることで、熱伝導シートサンプルを得た。各熱伝導シートサンプルについて、シート表面のタッキネス[gf]、熱抵抗[℃・cm/W]及び圧縮率、圧縮応力[psi]並びに復元率[%]を測定、評価した。また、上記条件1及び条件2に従って、各熱伝導シートサンプルを銅板に挟んで縦置きにし、熱サイクル試験に投入してシートのずれ量を計測し、評価(○:良、×:不可)した。 Next, the thermally conductive sheets according to Examples 1 to 3 and Comparative Examples 1 to 3 were sandwiched between release-treated PET films and pressed under the conditions of 87 ° C., 0.5 MPa, and 3 minutes, thereby heat conduction. A sheet sample was obtained. For each heat conductive sheet sample, the sheet surface tackiness [gf], thermal resistance [°C·cm 2 /W], compressibility, compressive stress [psi], and recovery rate [%] were measured and evaluated. In addition, according to the above conditions 1 and 2, each heat conductive sheet sample was sandwiched between copper plates and placed vertically, put into a thermal cycle test, and the amount of deviation of the sheet was measured and evaluated (○: good, ×: not good). .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~3に係る熱伝導シートサンプルでは、条件1及び条件2での熱サイクル試験を経ても、シートのズレが2.5mm以下と、貼付位置が大きくずれることなく、また圧縮応力5.0以上及び復元率85%以上を有することが分かる。すなわち、発熱と冷却を繰り返す発熱部品に貼付された場合にも、貼付位置がずれることなく、また発熱部品の発熱及び冷却に伴う反りなどの変形にも追従して密着し、熱抵抗の上昇を防止でき、熱伝導シートの放熱特性を維持することができるものであることが分かる。 As shown in Table 1, in the thermally conductive sheet samples according to Examples 1 to 3, even after undergoing the thermal cycle test under conditions 1 and 2, the deviation of the sheet was 2.5 mm or less, indicating that the attachment position deviated significantly. In addition, it has a compressive stress of 5.0 or more and a recovery rate of 85% or more. In other words, even when it is attached to a heat-generating component that repeats heat generation and cooling, the attachment position does not shift, and it follows deformation such as warping due to heat generation and cooling of the heat-generating component and adheres to it, preventing an increase in thermal resistance. It can be seen that this can be prevented and the heat dissipation properties of the heat conductive sheet can be maintained.
 一方、比較例1~3に係る熱伝導シートサンプルでは、条件1及び条件2での熱サイクル試験により、2.5mmを超えるシートのズレが見られた。したがって、貼付位置ずれが生じ、また圧縮応力及び復元率も悪化し、発熱と冷却を繰り返す発熱部品に貼付された場合に貼付位置ずれを起こし、また発熱部品の発熱及び冷却に伴う反りなどの変形に追従できず、熱抵抗の上昇を招く恐れがあるものであることが分かる。 On the other hand, in the heat conductive sheet samples according to Comparative Examples 1 to 3, sheet misalignment exceeding 2.5 mm was observed in the thermal cycle test under conditions 1 and 2. Therefore, the sticking position shifts, and the compressive stress and the recovery rate deteriorate. When the adhesive is stuck to a heat-generating part that repeats heat generation and cooling, the sticking position shifts, and the heat-generating part deforms such as warping due to heat generation and cooling. , and there is a risk of causing an increase in thermal resistance.
 なお、表1[比較例2]に示すように、タックがあっても熱伝導シートの位置ずれは発生する。すなわち、熱伝導シートのタックの有無と熱伝導シートのズレには相関はなく、タックの強さに関わらず熱伝導シートの圧縮応力に応じて熱伝導シートの位置ずれの抑制の可否が決まることが分かる。 It should be noted that, as shown in Table 1 [Comparative Example 2], misalignment of the heat conductive sheet occurs even if there is tack. In other words, there is no correlation between the presence or absence of tack in the heat conductive sheet and the misalignment of the heat conductive sheet. I understand.
 これは、熱伝導シートと銅板の熱膨張係数が異なることに起因するものと考えられる。すなわち、圧縮応力が低い熱伝導シートは、熱衝撃に対して収縮膨張が追従できず、タック力があっても銅板と離れてしまうことで、熱伝導シートがずれてしまう。圧縮応力が大きい熱伝導シートは、熱衝撃時の収縮膨張により銅板との密着性を維持できるので、タック力がなくても銅板とのずれを抑制することができると考えられる。 This is thought to be due to the different coefficients of thermal expansion between the heat conductive sheet and the copper plate. That is, a thermally conductive sheet having a low compressive stress cannot follow expansion and contraction against a thermal shock, and even if there is a tack force, the thermally conductive sheet is separated from the copper plate, resulting in deviation of the thermally conductive sheet. A thermally conductive sheet with a large compressive stress can maintain adhesion to a copper plate due to contraction and expansion at the time of thermal shock.
1 熱伝導シート、2 高分子マトリックス成分、3 繊維状熱伝導性充填剤、4 他の熱伝導性充填剤、10 銅板、11 熱伝導シート個片、12 スペーサ
 
1 thermally conductive sheet 2 polymer matrix component 3 fibrous thermally conductive filler 4 other thermally conductive filler 10 copper plate 11 thermally conductive sheet piece 12 spacer

Claims (9)

  1.  少なくとも高分子マトリックス成分と繊維状熱伝導性充填剤を含む組成物の硬化物である熱伝導シートであって、以下の条件1で、銅板で挟持した状態を基準に長さ方向のズレが2.5mm以下である熱伝導シート。
    条件1:20mm×5mmの短冊状に切断した熱伝導シート個片を、鉛直方向に設置した銅板で長さ方向を鉛直方向に向けて且つ長さ方向の一辺を上記銅板の一辺に一致させて挟持し厚さを10%圧縮した状態で、-40℃と100℃の間の熱サイクル(試験温度移行時間3分以内、試験温度到達後保温時間30分)を672時間実施
    A thermally conductive sheet that is a cured product of a composition containing at least a polymer matrix component and a fibrous thermally conductive filler, and has a lengthwise shift of 2 with respect to the state sandwiched between copper plates under the following condition 1: A thermally conductive sheet that is 5 mm or less.
    Condition 1: A heat conductive sheet piece cut into a strip of 20 mm × 5 mm is placed vertically on a copper plate with the length direction facing the vertical direction and one side of the length direction aligned with one side of the copper plate. A heat cycle between -40°C and 100°C (test temperature transition time within 3 minutes, heat retention time after reaching the test temperature for 30 minutes) was performed for 672 hours in a state where the thickness was compressed by 10%.
  2.  少なくとも高分子マトリックス成分と繊維状熱伝導性充填剤を含む組成物の硬化物である熱伝導シートであって、以下の条件2で、銅板で挟持した状態を基準に長さ方向のズレが2.5mm以下である熱伝導シート。
    条件2:20mm×5mmの短冊状に切断した熱伝導シート個片を、鉛直方向に設置した銅板で長さ方向を鉛直方向に向けて且つ長さ方向の一辺を上記銅板の一辺に一致させて挟持し厚さを10%圧縮した状態で、-55℃と125℃の間の熱サイクル(試験温度移行時間3分以内、試験温度到達後保温時間30分)を672時間実施
    A thermally conductive sheet that is a cured product of a composition containing at least a polymer matrix component and a fibrous thermally conductive filler, and has a lengthwise deviation of 2 based on the state sandwiched between copper plates under condition 2 below. A thermally conductive sheet that is 5 mm or less.
    Condition 2: A heat conductive sheet piece cut into a strip of 20 mm × 5 mm is placed vertically on a copper plate with the length direction facing the vertical direction and one side of the length direction aligned with one side of the copper plate. A heat cycle between -55°C and 125°C (test temperature transition time within 3 minutes, heat retention time after reaching the test temperature for 30 minutes) was performed for 672 hours in a state where the thickness was compressed by 10%.
  3.  ASTM D 2240準拠のタイプOOデュロメータで20以上60未満の硬度を有する請求項1又は2に記載の熱伝導シート。 The thermally conductive sheet according to claim 1 or 2, having a hardness of 20 or more and less than 60 in type OO durometer conforming to ASTM D 2240.
  4.  上記高分子マトリックス成分は、2液性の付加反応型液状シリコーンである請求項1~3のいずれか1項に記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 3, wherein the polymer matrix component is a two-liquid addition reaction type liquid silicone.
  5.  初期厚みの70%まで圧縮し、常温で24時間保持した後に開放し30分経過した時の復元率が85%以上である、請求項1~4のいずれか1項に記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 4, wherein the sheet is compressed to 70% of its initial thickness, held at room temperature for 24 hours, and then released, and has a recovery rate of 85% or more after 30 minutes.
  6.  圧縮応力が5.0psi以上である、請求項1~5のいずれか1項に記載の熱伝導シート。 The heat conductive sheet according to any one of claims 1 to 5, which has a compressive stress of 5.0 psi or more.
  7.  熱伝導性充填剤としてさらにアルミニウム化合物から選ばれる少なくとも1種を含み、上記アルミニウム化合物の含有量が39体積%より多く51体積%未満である、請求項1~6のいずれか1項に記載の熱伝導シート 7. The method according to any one of claims 1 to 6, further comprising at least one selected from aluminum compounds as a thermally conductive filler, wherein the content of the aluminum compound is more than 39% by volume and less than 51% by volume. thermal conductive sheet
  8.  高分子マトリックス成分と繊維状熱伝導性充填剤とを含む熱伝導組成物を調製する工程と、
     上記熱伝導組成物から成形体ブロックを形成する工程と、
     上記成形体ブロックをシート状にスライスして熱伝導シートを得る工程とを有し、
     上記熱伝導シートが、請求項1~7のいずれか1項に記載の熱伝導シートである、熱伝導シートの製造方法。
    preparing a thermally conductive composition comprising a polymeric matrix component and a fibrous thermally conductive filler;
    forming a molded block from the thermally conductive composition;
    and obtaining a heat conductive sheet by slicing the molded block into a sheet,
    A method for producing a thermally conductive sheet, wherein the thermally conductive sheet is the thermally conductive sheet according to any one of claims 1 to 7.
  9.  請求項1~7のいずれか1項に記載の熱伝導シートを備えた電子機器であり、上記熱伝導シートは電子部品と放熱部材との間に挟持され、
     上記熱伝導シートは、面方向が略鉛直方向となるように固定されて用いられることを特徴とする電子機器。
     
    An electronic device comprising the heat conductive sheet according to any one of claims 1 to 7, wherein the heat conductive sheet is sandwiched between an electronic component and a heat dissipation member,
    An electronic device, wherein the heat conductive sheet is fixed so that the surface direction thereof is substantially vertical.
PCT/JP2022/003359 2021-02-24 2022-01-28 Heat-conducting sheet, heat-conducting sheet production method, and electronic device WO2022181206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021028005A JP2022129315A (en) 2021-02-24 2021-02-24 Heat conductive sheet, manufacturing method thereof, and electronic device
JP2021-028005 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022181206A1 true WO2022181206A1 (en) 2022-09-01

Family

ID=83049201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003359 WO2022181206A1 (en) 2021-02-24 2022-01-28 Heat-conducting sheet, heat-conducting sheet production method, and electronic device

Country Status (2)

Country Link
JP (1) JP2022129315A (en)
WO (1) WO2022181206A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093842A (en) * 2003-09-19 2005-04-07 Nitto Denko Corp Heat dissipation sheet and heat dissipation member
JP2013131564A (en) * 2011-12-20 2013-07-04 Dexerials Corp Heat conductive sheet, semiconductor device using the heat conductive sheet, and method of manufacturing semiconductor device
JP2020019884A (en) * 2018-07-31 2020-02-06 日本ゼオン株式会社 Method for producing thermally conductive sheet
WO2020149335A1 (en) * 2019-01-17 2020-07-23 バンドー化学株式会社 Heat-conductive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093842A (en) * 2003-09-19 2005-04-07 Nitto Denko Corp Heat dissipation sheet and heat dissipation member
JP2013131564A (en) * 2011-12-20 2013-07-04 Dexerials Corp Heat conductive sheet, semiconductor device using the heat conductive sheet, and method of manufacturing semiconductor device
JP2020019884A (en) * 2018-07-31 2020-02-06 日本ゼオン株式会社 Method for producing thermally conductive sheet
WO2020149335A1 (en) * 2019-01-17 2020-07-23 バンドー化学株式会社 Heat-conductive sheet

Also Published As

Publication number Publication date
JP2022129315A (en) 2022-09-05

Similar Documents

Publication Publication Date Title
TWI670464B (en) Thermally conductive sheet, method for producing the same, heat dissipation member, and semiconductor device
TWI658550B (en) Manufacturing method of heat conductive sheet, heat conductive sheet, and heat radiation member
CN108461462B (en) Method for manufacturing thermally conductive sheet, and heat dissipating member
JP7096723B2 (en) Method for manufacturing a heat conductive sheet
JP6807355B2 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
JP6999019B2 (en) Thermally conductive sheet and its manufacturing method, mounting method of thermally conductive sheet
WO2022181206A1 (en) Heat-conducting sheet, heat-conducting sheet production method, and electronic device
WO2022176628A1 (en) Method for producing heat transfer sheet, heat transfer sheet package, and method for producing heat transfer sheet package
WO2022044724A1 (en) Thermally conductive sheet and method for manufacturing thermally conductive sheet
JP6986648B2 (en) Heat conduction sheet and its manufacturing method, heat dissipation structure and electronic equipment
WO2022181171A1 (en) Heat-conductive sheet and heat-conductive sheet production method
JP2022129325A (en) Thermally conductive sheet and manufacturing method thereof
WO2022264895A1 (en) Thermally-conductive sheet and thermally-conductive sheet production method
JP6987941B1 (en) Method for manufacturing a heat conductive sheet and a heat conductive sheet
WO2021241249A1 (en) Thermally conductive sheet, method for manufacturing same, heat-dissipating structure, and electronic apparatus
JP6862601B1 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
WO2022172795A1 (en) Thermal conductive sheet supply mode, and thermal conductive sheet body
WO2022181172A1 (en) Heat transfer sheet and production method for heat transfer sheet
TW202218071A (en) Heat conduction member, method for manufacturing heat conduction member and heat radiation structure
JP2022192025A (en) Heat-conductive sheet and method for producing heat-conductive sheet
CN116941030A (en) Heat conductive sheet and method for manufacturing heat conductive sheet
CN117480600A (en) Heat conductive sheet and method for manufacturing heat conductive sheet
JP2021050350A (en) Thermally conductive sheet, method for producing the same, and method for mounting thermally conductive sheet
WO2016068157A1 (en) Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759247

Country of ref document: EP

Kind code of ref document: A1