JP2004172313A - Thermally conductive heat dissipating sheet and semiconductor device using the same - Google Patents

Thermally conductive heat dissipating sheet and semiconductor device using the same Download PDF

Info

Publication number
JP2004172313A
JP2004172313A JP2002335780A JP2002335780A JP2004172313A JP 2004172313 A JP2004172313 A JP 2004172313A JP 2002335780 A JP2002335780 A JP 2002335780A JP 2002335780 A JP2002335780 A JP 2002335780A JP 2004172313 A JP2004172313 A JP 2004172313A
Authority
JP
Japan
Prior art keywords
metal
resin
heat
hole
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002335780A
Other languages
Japanese (ja)
Inventor
Noriaki Harada
憲章 原田
Ichiro Suehiro
一郎 末▲ひろ▼
Yuji Hotta
祐治 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002335780A priority Critical patent/JP2004172313A/en
Publication of JP2004172313A publication Critical patent/JP2004172313A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipating sheet having high conduction efficiency from a heat generator to a heat sink and having high reliability in heat dissipating effects irrespective of the changes in surrounding conditions. <P>SOLUTION: The heat dissipating sheet is provided, having an arrangement wherein a plurality of metal projections are arranged/formed at any positions on opposite surfaces of a metal foil, and at least one portion of the gap between the metal projections on at least one surface is filled with a resin which exerts adhesiveness in melting or flowing conditions after heating and pressurization. The heat dissipating sheet used in semiconductor devices is so arranged that through-holes are formed at portions of the metal foil where no metal projections are formed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子で発生する熱を放熱板へ効率よく伝えることができかつ応力分散機能をもたせた放熱シート、およびこれを組み込んだ半導体装置に関する。
【0002】
【従来の技術】
近年、電子機器の高機能化・小型化に伴う高密度実装や各種半導体素子の集積度の増大により、電子部品等の発熱体から発生する熱量が増大してきており、放熱技術がさらに重要となってきた。
【0003】
従来、これらの電子部品からの放熱方法としては、発熱体から発生した熱を熱伝導性シリコーンゲルや熱伝導性シリコーングリス等を介してヒートシンクや筐体等の放熱体に伝導させ、熱の拡散を行っている。
このような熱伝導性シリコーンゲルや熱伝導性シリコーングリス等の熱伝導性材料は、発熱体からの熱をヒートシンク等の放熱体へ確実に伝導させる為に、熱抵抗が小さく、接続性が良好で且つ、耐熱性を有する材料が求められる。
そのため、熱伝導性シリコーンゲルや熱伝導性シリコーングリスには、熱伝導性を向上させるためにシリコーンゲル等の母材に、熱伝導性の高い金属酸化物や窒化ホウ素等の熱伝導性フィラーが多量に混入されているものが多い(例えば、特許文献1参照)。
【0004】
しかしながら、従来使用されている熱伝導性シリコーンゲルや熱伝導性シリコーングリスは、パソコンなどのMPUの処理速度が高速化される中で発熱体から発生する熱量の急速な増大に対して放熱効果が間に合わなくなってきている。
【0005】
また、放熱板と発熱体との間に熱伝導性を高めたゴムを設けて放熱を行う方法が提案されているが、固定にネジ等の機械的な手法を用いなければならず、製造効率が悪いという問題がある(特許文献2参照)。
【0006】
このような状況下で、発熱体からの熱伝導効率を向上させ、且つ、ヒートシンクなどの放熱体への熱伝導効率をさらに高めることが求められている。
また、それらの放熱効果が環境変化、特に温度変化に対して信頼性が高いことも必要とされる。そこで、放熱材料には環境変化、特に温度変化に対してその熱抵抗率が変動しにくい、もしくは変動を緩和する機能を有することが求められている。
【0007】
【特許文献1】
特開平5−259671号公報
【特許文献2】
特開2002−184920号公報
【0008】
【発明が解決しようとする課題】
本発明の課題は、発熱体から放熱体への熱伝導効率が高く、且つ、環境変化、特に温度変化に対して放熱効果の信頼性が高い放熱シートを提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、これらの課題を解決するために鋭意検討した結果、一定の間隔で開口部を設けた熱伝導性の高い金属箔上に熱伝導性の高い金属材料で放熱路を配列し、且つ、接着性を有する樹脂を放熱路間に充填することで、接着機能を持ち、熱伝導性の高く、かつ温度変化に対して信頼性が高い放熱シートを提供するに至った。
【0010】
すなわち、本発明は、以下の通りである。
(1)金属箔の両面に複数の金属凸状物を任意に配列・形成し、少なくとも片面の金属凸状物の間隙の、少なくとも一部を樹脂が充填しており、該樹脂は加熱および加圧することにより、溶融または流動することで接着機能を有する構造の放熱シートであって、該金属箔の金属凸状物が形成されていない部位に貫通孔を形成してなることを特徴とする、放熱シート。
(2)金属凸状物の間隙を満たしている上記樹脂のうち、金属箔の貫通孔と同位置に接する部位の樹脂部分に貫通孔を形成した上記(1)の放熱シート。
(3)上記金属凸状物が半導体素子と直接、接する面積が放熱シート片面の全面積の30%〜70%である上記(1)または(2)記載の放熱シート。
(4)上記樹脂に熱伝導性フィラーを分散させて熱伝導性を付与した上記(1)〜(3)のいずれかに記載の放熱シート。
(5)上記(1)〜(4)のいずれかに記載の放熱シートを介して、少なくとも半導体素子と放熱板とを接着した半導体装置。
【0011】
【発明の実施の形態】
以下、本発明を図を用いて詳細に説明するが、本発明は図面に記載された態様に限定されるものではない。
【0012】
図1は、本発明の放熱シートの一例を示した図であり、図1(a)は放熱シート5の樹脂3が充填された側の平面図、図1(b)は図1(a)中のAI−AI線における断面図、図1(c)は図1(a)と反対側の平面図である。
図1の例では、放熱シート5は、半導体装着用の放熱シートであり、半導体装置を構成するための部材である。
【0013】
図1の放熱シートには、図1(a)に示すように、放熱シート基材である金属箔4に貫通孔1が形成され、複数の金属凸状物2は金属箔4の貫通孔1を除く金属箔4上に配列されている。貫通孔1を有することで金属凸状物2の端部に集中する応力をシート全体に分散させることにより環境変化、特に温度変化によって生じる熱ひずみ等の応力を緩和させる機能をもつ。
図1(b)に示すように、接着機能を有する樹脂3と金属凸状物2は金属箔4に保持されており、金属箔は貫通孔1を有する。
図1(c)に示すように、金属凸状物2は、金属箔4の両面に配設されている。
【0014】
図2は、本発明の他の例を示した図であり、図2(a)は放熱シート5の樹脂3が充填された側の平面図、図2(b)は図2(a)中のBI−BI線における断面図、図2(c)は図2(a)と反対側の平面図である。図2の例では、貫通孔1と同位置の樹脂3に貫通孔が形成されている。これにより更に効率のよい応力緩和が可能となる。
【0015】
図3は、放熱シート5を半導体装置に実装を行った図であり、放熱シート5の金属凸状物2の間隙に埋め込まれた樹脂3とを有する側が半導体素子6に接合する面であり、反対側の面は放熱板7と接する面である。
図3に示されるように本発明の放熱シートは半導体素子に直接装着されるものである。
【0016】
本発明において、金属箔4は当該技術分野で公知の金属箔を用いることができ、その中でも熱伝導性が高い銅、アルミニウム等の金属箔が好ましい。どの材料を用いるかは放熱シートの用途によって適宜選択されるが、半導体装置の放熱シートとする場合、銅箔が好ましく用いられる。金属凸状物2は、後述するようにメッキ処理、エッチング処理、はんだ等のスクリーン印刷等によって形成されるが、特に銅箔であれば、かかるメッキ処理、エッチング処理、スクリーン印刷等を安定に行うことができるためである。
【0017】
金属箔4の厚みは、入手し易さやコスト等の生産性の観点から、通常18μm〜100μmの範囲内で選択されるが、金属凸状物2の形成時のハンドリングのしやすさ、金属箔4そのものの(変形に対する)追従性等の機能性を考慮して18μm〜50μmが好ましく、20μm〜40μmがより好ましい。
【0018】
複数の金属凸状物2は、金属箔4の両面に、隣接する凸状物間に所定の間隙をあけて配設される。金属凸状物2は、放熱路として機能するものであり、本発明に係る放熱シート5の使用時には、図3に示すように、半導体素子(すなわち発熱体)6および/または放熱板7の表面に、この金属凸状物2の頂上部の表面が直接接触して、効率よく熱を伝達し得る。具体的には、半導体素子6から発生した熱は、該半導体素子6に接触する金属凸状物2を介して、金属箔4に伝達されて、金属箔4の全面に広がる。そして、金属箔4から放熱板7へは全面で伝熱される。これにより、半導体素子6における局所的な発熱に対して、放熱板7への放熱は全面で効率よく行われ得る。このように、本発明に係る放熱シート5は、金属箔4と金属凸状物2とを併せ持つことで従来の放熱シートよりも格段に優れた熱伝導性を示す。
【0019】
金属凸状物2の形状は特に限定されず、球状、半球状、円柱状、角柱状、円錐状、立方体状等が好ましい。これらの中でも、熱伝導性、加工性、半導体素子への接触安定性等の点から、円柱状、角柱状、球状又は半球状が特に好ましい。なお、角柱状の場合、四角柱状が好ましい。また、複数の金属凸状物2は、その形成効率、半導体素子への接触安定性等の点から基本的に全てを実質的に同一の形状とするのが好ましいが、2種以上の形状が異なるものが混在していてもよい。
【0020】
金属凸状物2は金属箔4の両面上の任意の位置に配列させることができるが、接着時の安定性、応力集中の回避の点から、最密状または行列状に等間隔で配列させるのが好ましく、特に図1に示されるように最密状に配列するのが好ましい。その場合の金属凸状物2間のピッチ(離間距離)は、接着面積の安定化、応力緩和の点から、0.3mm〜2.0mmの範囲から選択するのが好ましく、0.5mm〜1.0mmの範囲からから選択するのがより好ましい。ここで、ピッチとは、隣接する金属凸状物2の中心(軸心)間の距離を意味する。
【0021】
金属凸状物2における太さは、半導体素子への追従性、放熱路の面積の安定化の点から、0.2mm〜0.8mmの範囲から選択するのが好ましく、0.3mm〜0.6mmの範囲から選択するのがより好ましい。
ここで、金属凸状物2の太さとは、金属凸状物2が球状である場合はその球体の直径であり、半球状、円柱状、円錐状等である場合はその半球、円柱または円錐の底面の直径を意味する。また、金属凸状物が角柱状である場合はその角柱の底面の一辺の長さ、立方体状である場合はその立方体の一辺の長さを意味する。
【0022】
本発明において、金属凸状物2は、形成のしやすさ、半導体素子への接触安定性、効率的に応力を分散させる観点等から、基本的に全てが実質的に同一の太さであるのが好ましいが、異なる太さのものが混在していてもよい。
【0023】
複数の金属凸状物2の高さは、低すぎると、半導体素子の主面の反りや粗さ等による高低差に対する追従性が低下し、また、高すぎると熱抵抗率が高くなることから、30μm〜150μmから選択するのが好ましく、30μm〜100μmから選択するのが特に好ましい。なお、複数の金属凸状物2は、基本的に全てが実質的に同じ高さであるのが好ましいが、高さの異なるものが混在していてもよい。
【0024】
本発明において、複数の金属凸状物2の形成方法は、特に限定されず、プリント基板等において従来から使用されているバンプ形成技術を適用できる。具体例としては、金属箔4の表面を、例えば、エッチングなどで選択的に除去して金属凸状物2を形成する方法、金属箔4に選択的にメッキ等で金属凸状物2を形成する方法、はんだ等を含有したペースト状流動物をスクリーン印刷で印刷後、リフローをかけて金属凸状物2を形成する方法等が挙げられる。メッキで金属凸状物2を形成する場合、ニッケルメッキ、錫メッキ、銅メッキ、金メッキ、はんだメッキ等が挙げられる。半導体素子(発熱面)への追従性の点からは、圧力を受けて容易に変形する、錫メッキ、金メッキ、はんだメッキ等が好ましく、特に好ましくははんだメッキである。はんだ等の低融点の金属材料でバンプを形成した場合、装着時に溶融させることで、発熱体・放熱体との間の接触抵抗を減少させ放熱効率を向上させることができるので、好ましい。
【0025】
金属凸状物2を半導体素子6と接着した場合、金属凸状物2と半導体素子6が直接、接する面積は、金属箔4の半導体素子6と接着する面(片面)の表面積の30%〜70%の面積を占めるのが好ましい。これは、金属凸状物2の占める割合が多いほど熱伝導性が向上する一方、金属凸状物2の占める割合が小さいほど半導体素子6の反りといった変形に追従し易いことによる。また、接着面積の変化による接着安定性の点からも、30%〜70%が好ましい。
【0026】
本発明において、貫通孔1は、金属箔上の金属凸状物2が形成されていない部位に配設して形成される。貫通孔1を有することで金属凸状物2の端部に集中する応力が分散されるため、環境変化、特に温度変化で生じる熱ひずみ等に対する信頼性を高めることができる。
【0027】
貫通孔1の形状は特に限定されず、例えば円状、正多角形(例えば、正方形、正六角形等)等が挙げられる。なかでも、応力集中の回避の観点から、円状であることが好ましい。また、複数の貫通孔1は、応力分散の均一性等の点から基本的に全てを実質的に同一の形状とするのが好ましいが、2種以上の形状が異なるものが混在していてもよい。
【0028】
貫通孔1は、金属箔4上の金属凸状物2が形成されていない部位に任意に配列させることができるが、応力分散の均一性等の観点から、上記金属凸状物2の間に規則的に配列するのが好ましい。例えば、金属凸状物2が図1に示すような最密状の場合は、図1に示すように複数の金属凸状物2の間に等間隔になるように配列させることが好ましい。このとき、隣接する金属凸状物2と貫通孔1の中心(軸心)間の距離L(図1(a)参照)は、0.1mm〜0.5mmの範囲から選択するのが好ましい。
【0029】
貫通孔1の口径は、金属凸状物2の太さの1/3〜1/4程度が好ましい。貫通孔1の口径が金属凸状物2の太さの1/4未満では応力緩和性が低下する傾向があり、1/3を越えると接着樹脂が流出しやすくなり、またシートの強度が低下する傾向があるためである。
ここで、貫通孔1の口径とは、円状である場合は内径、多角形の場合は対角線の長さを意味する。
【0030】
貫通孔1は、応力分散性の均一化等の観点から、基本的に全てが実質的に同一の口径であるのが好ましいが、異なる口径のものが混在していてもよい。
【0031】
貫通孔1の形成方法は、特に限定されず、例えば、エッチングなどで選択的に除去して貫通孔1を形成する方法、レーザー加工機で貫通孔1を形成する方法、パンチングマシーンで貫通孔1を形成する方法等が挙げられる。貫通孔1は、金属凸状物2を形成する前に設けてもよいし、金属凸状物2を形成した後に設けても良い。
【0032】
なお、本発明において、複数の金属凸状物2の形状、高さ又は太さまたは貫通孔1の形状または口径が実質的に同一であるとは、その形成時に、複数の金属凸状物2間の形状、高さ又は太さ、あるいは、貫通孔1の形状または口径を、意図して異ならせるような形成の仕方(処理)を行わず、同一にすることを意図して形成されたものであることを意味し、通常の誤差範囲で生じる形状、高さ又は太さ、あるいは口径の変化(相異)は、当該同一の範囲内である。
【0033】
本発明において金属凸状物2の間隙に充填される樹脂3を形成する樹脂材料は耐熱性を有し且つ、高い接着力を有する樹脂からなるが、それ自体がそのままの状態で接着性を示す材料だけでなく、そのままの状態では接着性を示さないが、加熱および加圧することにより、溶融または流動することで接着機能を発揮する樹脂も含まれる。例えば、加熱および加圧により、融着または圧着する熱可塑性樹脂や、加熱により熱硬化する熱硬化性樹脂が挙げられる。
また、熱伝導性フィラーを分散させて熱伝導性を付加することで、半導体素子に装着される面の金属凸状物2以外の樹脂部分も熱伝導性の機能を有しているほうが好ましい。
【0034】
ここで、加熱および加圧とは、50℃〜300℃に加熱および0.1MPa〜1.0MPaに加圧することを意味し、接着機能を有するとは、他の固体(即ち、半導体素子6、放熱板7)と接着し得ることをいう。このような樹脂3を用いることにより、結果として低圧力で半導体素子6および放熱板7へ接着し得ることになり、半導体素子の損傷を防ぐことが期待される。
樹脂3の接着力が十分であれば圧接は不要であるが、そうでない場合は、半導体素子6と放熱板7との間に配置したクランプを使用して圧接を加えてもよい。
【0035】
樹脂3としては、一般的な樹脂シートに用いられる材料等を用いることができる。但し、樹脂材料が接着性材料であるならば、熱可塑性ポリイミド樹脂、エポキシ樹脂、ポリエーテルイミド樹脂、ポリアミド樹脂、シリコーン樹脂、フェノキシ樹脂、アクリル樹脂、ポリカルボジイミド樹脂、フッ素樹脂、ポリエステル樹脂、ポリウレタン樹脂等が挙げられ、これらの中から目的に応じて適宜選択すれば良い。なお、これらの樹脂は単独で使用しても良いし、二種以上を混合して使用しても良い。
【0036】
熱伝導性フィラーには例えば、銀、銅、アルミニウム、アルミナ、はんだ、酸化亜鉛、錫等が挙げられ、形状として球状、麟片状、針状、繊維状等が挙げられる。どの伝導性フィラーを用いるかは放熱シートの用途によって適宜決定すればよい。
【0037】
金属凸状物2の間隙へ樹脂3を入れる方法としては、低粘度で流動性を有する液状の樹脂3を塗布して、スキージなどを用いて金属凸状物2の頂上の表面より上部の樹脂3をかき取り、間隙内のみに樹脂3を残す方法、または、金属凸状物2の間隙に十分に埋まる体積を有するシート状樹脂を当該間隙に挿入して加熱および/または加圧することで、樹脂3を溶融および/または流動させて、金属凸状物2の間隙に挿入後、研磨等により金属凸状物2の頭面を露出させる方法等が挙げられる。さらには、金属凸状物2の間隙に十分に埋まる体積を有するシート状樹脂を当該間隙に挿入して加熱および加圧することで、樹脂3を溶融または流動させて、金属凸状物2が該樹脂3を貫通して半導体素子6および/または放熱板7へ接触せしめ、さらに樹脂3を半導体素子6および/または放熱板7に接着せしめる方法等が挙げられるが、これらに限定されない。
【0038】
また、本発明において、「複数の金属凸状物の間隙の少なくとも一部に樹脂が充填される」とは、半導体素子に対して十分に高い接着(接合)力が得られるのであれば、金属箔の片面上の、半導体素子との接合領域に在る全ての金属凸状物間の間隙が樹脂で埋め込まれていなくてもよいことを意味している。
【0039】
本発明の金属凸状物2の間隙を満たしている樹脂3は、図2に示すように、金属箔4の貫通孔1と同位置に接する部位の樹脂部分に貫通孔を形成したものであることが好ましい。樹脂3に該貫通孔が形成されることによって、さらに効率的に応力が分散緩和される。
【0040】
樹脂3に上記貫通孔を形成する方法は、特に限定されず、例えば、レーザー加工機で樹脂3に貫通孔を形成する方法、パンチングマシーンで樹脂3に貫通孔を形成する方法、孔を空ける部位に予め離型性の良いピン等を配列し、低粘度で流動性を有する液状の樹脂を塗布して、スキージなどを用いて金属凸状物2および離型ピン上部の樹脂をかきとり、離型ピンを引き抜くことで樹脂3に貫通孔を形成する方法等が挙げられる。樹脂3における上記貫通孔は、貫通孔1を形成した後に設けてもよいし、また同時に形成してもよい。
【0041】
本発明において、放熱シート5と、半導体素子6および放熱板7との接着(接合)作業、即ち、半導体装置の作製作業は、例えば、フリップチップボンダーのような、各種部材の接着(接合)作業に用いられる公知の装置を使用して行うことができる。その際の加圧力は1.0MPa以下の低圧であり、好ましくは0.5MPa以下である。ただし、圧力が0.1MPaより低い場合、十分に高い接着力が得られなくなるおそれがあるので、その下限は0.1MPa以上が好ましく、0.2MPa以上がより好ましく、0.3MPa以上がさらに好ましい。また、加熱温度は樹脂3の種類に応じて前記の50℃〜300℃の温度範囲から適宜選択できるが、好ましくは100〜250℃である。
このようにして、図3に示すように、放熱シート5を介して半導体素子6と放熱板7とを接着した半導体装置を得ることができる。該半導体装置は、放熱シート5、半導体素子6および放熱板7以外の他の要素(ヒートシンク、放熱ファン等)をさらに有していてもよい。
【0042】
【実施例】
以下、本発明の熱伝導性放熱シートについて、実施例を挙げてさらに具体的に説明する。本発明はこれらにより何ら限定されるものではない。
【0043】
実施例と比較例にて得られた熱伝導性放熱シートの熱抵抗率は、ヒーターとクーラーの間に試験片を挟み込み、その時の温度勾配の測定をすることで熱抵抗を測定できる熱抵抗測定装置で測定した。
【0044】
実施例1
ポリカルボジイミド樹脂を、実験塗工機を使用して縦300mm、横250mm、厚さ約40μmのシート状物に成形した。
次に、縦250mm、横150mm、厚さ約35μm銅箔上にフォトレジスト(旭化成社製、CB−100)を両面貼り合わせ、一方の面に直径0.2mm、ピッチ1.0mmの円状の開口部が最密状に配列するパターンを有するパターンマスクを用いて露光し、もう一方の面は全面露光する。レジスト現像液(1%炭酸ナトリウム水溶液)でフォトレジストの現像を行い、開口部の部分のみ露出した状態を得た。
次に、銅箔エッチング用の塩化第二鉄溶液に浸け、開口部となる部分の銅箔をエッチングで抜き取った。次に、フォトレジストを3%水酸化カリウム水溶液に浸けて剥離させ、円状の貫通孔を形成した銅箔を得た。
次に、厚手のフォトレジストを上記銅箔上の両面に貼り合わせ、金属凸状物に相当する円状のパターン(直径0.6mm、ピッチ1.0mm)を有するパターンマスクを貫通孔と重ならないように位置合わせをして両面露光する。レジスト現像液で現像を行い、金属凸状物となる部分のみ露出した状態を得た。
次に、クリームはんだをその露光した部分にスキージを用いて埋め込み、リフローをかけて円柱状の半田バンプを形成する。もう一方の面も同様に円柱状のバンプを形成させ、3%水酸化カリウム水溶液に浸けてフォトレジストを剥離させた。
次に、上記に示したポリカルボジイミドの接着基材となる樹脂をラミネータで片面に気泡が入らないように注意して貼り合わせ、バンプを頭まで埋め込んだ。最後に表面の研磨を行ってバンプ面と樹脂面とを凹凸なく一様な面に仕上げ、太さ0.6mm、高さ70μmの円柱状の金属凸状物および直径0.2mmの円状の貫通孔を有し、金属凸状物と貫通孔の中心間の距離が0.5mmであり、かつ厚さ175μmである図1に示す状態の放熱シートを得た。
つぎに、上記で作成した1.5mm□(一辺が1.5mmの正方形)の放熱シートの樹脂を形成した面を、15mm□のシリコーンチップに重ねて、240℃、0.5MPaの条件で加熱および加圧を10秒間実施し、厚さ250μmの半導体装置を完成させた。このとき、金属凸状物と半導体素子が接する面積の合計は、放熱シート片面の全面積の30%であった。
【0045】
比較例1
貫通孔を設けなかったこと以外は実施例1と同様な方法により、貫通孔を持たない放熱シートを得、同様にシリコーンチップとの接合を行った。
表1に実施例1および比較例1で得られた半導体装置の冷熱衝撃試験(125℃⇔−55℃、30分/30分、100サイクル)を行う前後の熱低効率を示す。
【0046】
【表1】

Figure 2004172313
【0047】
表1から明らかなように、比較例1の放熱シートに比べ、実施例1の放熱シートは温度変化による影響が少なく、応力が緩和されていることが分かった。
【0048】
【発明の効果】
本発明は、熱伝導率の高い金属材料と接着機能を有する樹脂材料を組み合わせることによって効率よく放熱が行え、且つ基材に貫通孔を設けることで環境変化に対する応力緩和性を付加することで環境変化、特に温度変化に対する信頼性の高い放熱シートを提供する。
【図面の簡単な説明】
【図1】図(a)、図(b)および図(c)は本発明の第1の態様による放熱シートの例を模式的に示した平面図および断面図である。
【図2】図(a)、図(b)および図(c)は本発明の第2の態様による放熱シートの例を模式的に示した平面図および断面図である。
【図3】半導体装置に実装を行った状態の図を示す。
【符号の説明】
1 貫通孔
2 金属凸状物
3 樹脂
4 放熱シート基材(金属箔)
5 放熱シート
6 半導体素子
7 放熱板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat radiating sheet capable of efficiently transmitting heat generated in a semiconductor element to a heat radiating plate and having a stress dispersing function, and a semiconductor device incorporating the heat radiating sheet.
[0002]
[Prior art]
In recent years, the amount of heat generated from heating elements such as electronic components has been increasing due to the high density packaging and the increase in the degree of integration of various semiconductor elements accompanying the advancement of functions and miniaturization of electronic devices. Have been.
[0003]
Conventionally, as a method of radiating heat from these electronic components, heat generated from the heat generating element is conducted to a heat radiating element such as a heat sink or a housing through a heat conductive silicone gel or heat conductive silicone grease to diffuse the heat. It is carried out.
Such heat conductive materials such as heat conductive silicone gel and heat conductive silicone grease have low thermal resistance and good connectivity in order to reliably conduct heat from the heat generating body to a heat radiating body such as a heat sink. In addition, a material having heat resistance is required.
Therefore, in order to improve thermal conductivity, a thermally conductive filler such as a metal oxide having high thermal conductivity or boron nitride is added to a thermally conductive silicone gel or thermally conductive silicone grease in order to improve thermal conductivity. Many are mixed in a large amount (for example, see Patent Document 1).
[0004]
However, conventionally used heat conductive silicone gels and heat conductive silicone greases have a heat dissipation effect against the rapid increase in the amount of heat generated from the heating element as the processing speed of MPUs such as personal computers increases. It is getting too late.
[0005]
In addition, there has been proposed a method of dissipating heat by providing rubber with enhanced thermal conductivity between a heat sink and a heating element. However, a mechanical method such as a screw has to be used for fixing, and manufacturing efficiency has to be increased. Is bad (see Patent Document 2).
[0006]
Under such circumstances, there is a need to improve the efficiency of heat conduction from the heating element and to further enhance the efficiency of heat conduction to a heat radiating element such as a heat sink.
It is also required that their heat radiation effect is highly reliable against environmental changes, especially temperature changes. Therefore, the heat radiating material is required to have a function of hardly changing or reducing the change in the thermal resistivity with respect to an environmental change, particularly a temperature change.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H5-259671 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-184920
[Problems to be solved by the invention]
An object of the present invention is to provide a heat radiating sheet having high heat conduction efficiency from a heat generating body to a heat radiating body and having high reliability of a heat radiating effect with respect to an environmental change, particularly a temperature change.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve these problems, and as a result, arranged heat radiation paths with a metal material having a high thermal conductivity on a metal foil having a high thermal conductivity having openings at regular intervals. In addition, by filling an adhesive resin between the heat radiating paths, a heat radiating sheet having an adhesive function, high thermal conductivity, and high reliability against temperature change has been provided.
[0010]
That is, the present invention is as follows.
(1) A plurality of metal protrusions are arbitrarily arranged and formed on both surfaces of a metal foil, and at least a part of a gap between the metal protrusions on at least one surface is filled with a resin. By pressing, a heat dissipation sheet having a structure having an adhesive function by melting or flowing, characterized in that a through-hole is formed in a portion of the metal foil where the metal convex is not formed, Heat dissipation sheet.
(2) The heat-dissipating sheet according to (1), wherein a through-hole is formed in a resin portion of a portion of the resin filling the gap between the metal protrusions, which is in contact with the through-hole of the metal foil.
(3) The heat dissipation sheet according to the above (1) or (2), wherein the area in which the metal protrusion directly contacts the semiconductor element is 30% to 70% of the total area of one surface of the heat dissipation sheet.
(4) The heat dissipation sheet according to any one of (1) to (3) above, wherein a heat conductive filler is dispersed in the resin to impart heat conductivity.
(5) A semiconductor device in which at least a semiconductor element and a heat radiating plate are bonded via the heat radiating sheet according to any one of the above (1) to (4).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the embodiments illustrated in the drawings.
[0012]
FIG. 1 is a view showing an example of a heat radiation sheet of the present invention. FIG. 1 (a) is a plan view of a heat radiation sheet 5 on a side where the resin 3 is filled, and FIG. 1 (b) is FIG. FIG. 1C is a cross-sectional view taken along line AI-AI, and FIG. 1C is a plan view on the opposite side to FIG.
In the example of FIG. 1, the heat radiation sheet 5 is a heat radiation sheet for mounting a semiconductor, and is a member for constituting a semiconductor device.
[0013]
In the heat dissipation sheet of FIG. 1, as shown in FIG. 1 (a), a through hole 1 is formed in a metal foil 4 which is a heat dissipation sheet base, and a plurality of metal protrusions 2 are formed in the through hole 1 of the metal foil 4. Are arranged on the metal foil 4 excluding. The presence of the through-holes 1 has a function of dispersing the stress concentrated on the end portions of the metal protrusions 2 over the entire sheet, thereby relieving stress such as thermal strain caused by environmental changes, particularly temperature changes.
As shown in FIG. 1B, a resin 3 having an adhesive function and a metal convex 2 are held by a metal foil 4, and the metal foil has a through hole 1.
As shown in FIG. 1C, the metal protrusions 2 are provided on both surfaces of the metal foil 4.
[0014]
2A and 2B are views showing another example of the present invention. FIG. 2A is a plan view of the heat radiation sheet 5 on the side where the resin 3 is filled, and FIG. 2C is a cross-sectional view taken along the line BI-BI, and FIG. 2C is a plan view on the opposite side to FIG. In the example of FIG. 2, a through hole is formed in the resin 3 at the same position as the through hole 1. This enables more efficient stress relaxation.
[0015]
FIG. 3 is a view in which the heat radiating sheet 5 is mounted on a semiconductor device, and the side of the heat radiating sheet 5 having the resin 3 embedded in the gap between the metal protrusions 2 is a surface to be joined to the semiconductor element 6. The opposite surface is a surface that is in contact with the heat sink 7.
As shown in FIG. 3, the heat dissipation sheet of the present invention is directly mounted on a semiconductor element.
[0016]
In the present invention, as the metal foil 4, a metal foil known in the art can be used, and among them, a metal foil such as copper and aluminum having high thermal conductivity is preferable. Which material is used is appropriately selected depending on the use of the heat dissipation sheet, but when the heat dissipation sheet is used for a semiconductor device, a copper foil is preferably used. The metal protrusions 2 are formed by plating, etching, screen printing of solder or the like as described later, and particularly in the case of copper foil, such plating, etching, screen printing, etc. are stably performed. This is because it can be done.
[0017]
The thickness of the metal foil 4 is usually selected from the range of 18 μm to 100 μm from the viewpoint of productivity such as availability and cost. Considering the functionality such as the followability (to deformation) of 4 itself, it is preferably 18 μm to 50 μm, more preferably 20 μm to 40 μm.
[0018]
The plurality of metal protrusions 2 are disposed on both surfaces of the metal foil 4 with a predetermined gap between adjacent protrusions. The metal convex 2 functions as a heat radiating path. When the heat radiating sheet 5 according to the present invention is used, as shown in FIG. 3, the surface of the semiconductor element (that is, the heating element) 6 and / or the heat radiating plate 7 is used. In addition, the surface of the top of the metal protrusion 2 comes into direct contact, so that heat can be efficiently transferred. Specifically, the heat generated from the semiconductor element 6 is transmitted to the metal foil 4 via the metal protrusion 2 in contact with the semiconductor element 6, and spreads over the entire surface of the metal foil 4. Then, heat is transferred from the metal foil 4 to the heat sink 7 over the entire surface. Thus, heat radiation to the heat radiating plate 7 can be efficiently performed over the entire surface with respect to local heat generation in the semiconductor element 6. As described above, the heat dissipation sheet 5 according to the present invention exhibits a significantly higher thermal conductivity than the conventional heat dissipation sheet by having both the metal foil 4 and the metal protrusion 2.
[0019]
The shape of the metal protrusion 2 is not particularly limited, and is preferably a sphere, a hemisphere, a column, a prism, a cone, a cube, or the like. Among these, a columnar shape, a prismatic shape, a spherical shape, or a hemispherical shape are particularly preferable from the viewpoints of thermal conductivity, workability, contact stability with a semiconductor element, and the like. In the case of a rectangular column, a quadrangular column is preferable. In addition, it is preferable that all of the plurality of metal protrusions 2 have substantially the same shape in terms of formation efficiency, contact stability with a semiconductor element, and the like. Different ones may be mixed.
[0020]
The metal protrusions 2 can be arranged at any positions on both surfaces of the metal foil 4, but are arranged at equal intervals in a close-packed or matrix form from the viewpoint of stability during bonding and avoiding stress concentration. Preferably, they are arranged in a close-packed manner, as shown in FIG. In this case, the pitch (separation distance) between the metal protrusions 2 is preferably selected from the range of 0.3 mm to 2.0 mm from the viewpoint of stabilizing the adhesive area and relaxing the stress, and is preferably 0.5 mm to 1 mm. It is more preferable to select from the range of 0.0 mm. Here, the pitch means a distance between the centers (axial centers) of the adjacent metal protrusions 2.
[0021]
The thickness of the metal protrusion 2 is preferably selected from the range of 0.2 mm to 0.8 mm from the viewpoint of followability to the semiconductor element and stabilization of the area of the heat radiating path. It is more preferable to select from a range of 6 mm.
Here, the thickness of the metal protrusion 2 is the diameter of the sphere when the metal protrusion 2 is spherical, and when the metal protrusion 2 is hemispherical, cylindrical, conical, or the like, the hemisphere, column, or cone. Means the diameter of the bottom surface. Further, when the metal protrusion is in the shape of a prism, it means the length of one side of the bottom surface of the prism, and when it is in the shape of a cube, it means the length of one side of the cube.
[0022]
In the present invention, the metal protrusions 2 are basically all substantially the same in thickness from the viewpoints of ease of formation, contact stability to the semiconductor element, and efficient dispersion of stress. It is preferable that the thickness is different, but those having different thicknesses may be mixed.
[0023]
If the height of the plurality of metal protrusions 2 is too low, the ability to follow a difference in elevation due to warpage or roughness of the main surface of the semiconductor element decreases, and if too high, the thermal resistivity increases. , 30 μm to 150 μm, particularly preferably 30 μm to 100 μm. In addition, it is preferable that all the plurality of metal protrusions 2 have basically the same height, but those having different heights may be mixed.
[0024]
In the present invention, the method of forming the plurality of metal protrusions 2 is not particularly limited, and a bump forming technique conventionally used for a printed board or the like can be applied. As a specific example, for example, a method of selectively removing the surface of the metal foil 4 by etching or the like to form the metal protrusion 2 or selectively forming the metal protrusion 2 on the metal foil 4 by plating or the like And a method in which a paste-like fluid containing solder or the like is printed by screen printing, followed by reflow to form the metal convex 2. When the metal convex 2 is formed by plating, nickel plating, tin plating, copper plating, gold plating, solder plating, or the like can be used. From the viewpoint of followability to the semiconductor element (heating surface), tin plating, gold plating, solder plating, or the like, which is easily deformed by receiving pressure, is preferable, and solder plating is particularly preferable. It is preferable that the bumps are formed of a low melting point metal material such as solder, since the bumps are melted at the time of mounting so that the contact resistance between the heating element and the heat radiator can be reduced and the heat radiation efficiency can be improved.
[0025]
When the metal protrusion 2 is bonded to the semiconductor element 6, the area where the metal protrusion 2 directly contacts the semiconductor element 6 is 30% to 30% of the surface area (one side) of the metal foil 4 bonded to the semiconductor element 6. It preferably occupies 70% of the area. This is because the higher the proportion of the metal protrusions 2 is, the higher the thermal conductivity is, while the smaller the proportion of the metal protrusions 2 is, the easier it is to follow deformation such as warpage of the semiconductor element 6. Also, from the viewpoint of adhesion stability due to a change in the adhesion area, 30% to 70% is preferable.
[0026]
In the present invention, the through-hole 1 is formed by disposing at a portion on the metal foil where the metal protrusion 2 is not formed. The presence of the through hole 1 disperses the stress concentrated on the end of the metal convex 2, so that the reliability against environmental changes, particularly thermal strain caused by temperature changes, can be improved.
[0027]
The shape of the through hole 1 is not particularly limited, and examples thereof include a circular shape and a regular polygon (for example, a square, a regular hexagon, and the like). Among them, a circular shape is preferable from the viewpoint of avoiding stress concentration. In addition, it is preferable that the plurality of through-holes 1 have substantially the same shape basically from the viewpoint of the uniformity of stress dispersion and the like, but even if two or more kinds having different shapes are mixed. Good.
[0028]
The through-holes 1 can be arbitrarily arranged at portions of the metal foil 4 where the metal protrusions 2 are not formed, but from the viewpoint of the uniformity of stress distribution and the like, the through holes 1 are located between the metal protrusions 2. It is preferable to arrange them regularly. For example, in the case where the metal protrusions 2 are in the close-packed state as shown in FIG. 1, it is preferable to arrange the metal protrusions 2 at equal intervals between the plurality of metal protrusions 2 as shown in FIG. At this time, it is preferable that the distance L (see FIG. 1A) between the adjacent metal protrusion 2 and the center (axial center) of the through hole 1 be selected from the range of 0.1 mm to 0.5 mm.
[0029]
The diameter of the through-hole 1 is preferably about 1/3 to 1/4 of the thickness of the metal convex 2. When the diameter of the through hole 1 is less than 1/4 of the thickness of the metal convex 2, the stress relaxation property tends to decrease, and when it exceeds 1/3, the adhesive resin easily flows out and the strength of the sheet decreases. This is because there is a tendency to do so.
Here, the diameter of the through hole 1 means an inner diameter when it is circular, and a diagonal length when it is polygonal.
[0030]
It is preferable that all the through holes 1 have substantially the same diameter, from the viewpoint of making the stress dispersibility uniform, etc., but different diameters may be mixed.
[0031]
The method of forming the through-hole 1 is not particularly limited, and for example, a method of forming the through-hole 1 by selectively removing it by etching, a method of forming the through-hole 1 with a laser processing machine, and a method of forming the through-hole 1 with a punching machine. And the like. The through hole 1 may be provided before forming the metal protrusion 2 or may be provided after forming the metal protrusion 2.
[0032]
In the present invention, the phrase that the shape, height or thickness of the plurality of metal protrusions 2 or the shape or diameter of the through hole 1 is substantially the same means that the plurality of metal protrusions 2 It is formed with the intention of making the shape, height or thickness between them, or the shape or diameter of the through-hole 1 the same without performing a forming method (processing) that intentionally differs. And the change (difference) in the shape, height or thickness, or bore diameter that occurs within the normal error range is within the same range.
[0033]
In the present invention, the resin material forming the resin 3 filled in the gaps between the metal convexes 2 is made of a resin having heat resistance and high adhesive strength, but shows adhesiveness as it is. Not only materials but also resins which do not exhibit adhesiveness as they are, but which exhibit an adhesive function by melting or flowing when heated and pressed. For example, a thermoplastic resin that is fused or pressed by heating and pressurizing, and a thermosetting resin that is thermoset by heating.
Further, by dispersing the heat conductive filler and adding heat conductivity, it is preferable that the resin portion other than the metal protrusion 2 on the surface to be mounted on the semiconductor element also has the function of heat conductivity.
[0034]
Here, the heating and pressurizing means heating to 50 ° C. to 300 ° C. and pressurizing to 0.1 MPa to 1.0 MPa, and having an adhesive function means other solids (that is, the semiconductor element 6, It means that it can be bonded to the heat sink 7). By using such a resin 3, it is possible to adhere to the semiconductor element 6 and the heat sink 7 at a low pressure as a result, and it is expected that damage to the semiconductor element is prevented.
If the adhesive strength of the resin 3 is sufficient, pressure contact is not necessary, but if not, pressure contact may be applied using a clamp disposed between the semiconductor element 6 and the heat sink 7.
[0035]
As the resin 3, a material or the like used for a general resin sheet can be used. However, if the resin material is an adhesive material, thermoplastic polyimide resin, epoxy resin, polyetherimide resin, polyamide resin, silicone resin, phenoxy resin, acrylic resin, polycarbodiimide resin, fluororesin, polyester resin, polyurethane resin And the like may be appropriately selected from these depending on the purpose. These resins may be used alone or in combination of two or more.
[0036]
The heat conductive filler includes, for example, silver, copper, aluminum, alumina, solder, zinc oxide, tin, and the like, and includes spherical, scale-like, needle-like, and fiber-like shapes. Which conductive filler is used may be appropriately determined depending on the use of the heat radiation sheet.
[0037]
As a method of putting the resin 3 into the gap between the metal convexes 2, a liquid resin 3 having low viscosity and fluidity is applied, and a resin above the surface of the top of the metal convexes 2 is applied using a squeegee or the like. 3 by scraping and leaving the resin 3 only in the gap, or by inserting and heating and / or pressurizing a sheet-like resin having a volume sufficiently buried in the gap between the metal protrusions 2, After the resin 3 is melted and / or fluidized and inserted into the gap between the metal protrusions 2, a method of exposing the head surface of the metal protrusion 2 by polishing or the like is used. Further, by inserting a sheet-shaped resin having a volume sufficiently buried in the gap between the metal convexes 2 into the gap and applying heat and pressure, the resin 3 is melted or fluidized, and the metal convex 2 is formed. A method of penetrating the resin 3 to make contact with the semiconductor element 6 and / or the heat sink 7 and further bonding the resin 3 to the semiconductor element 6 and / or the heat sink 7 is not limited thereto.
[0038]
Further, in the present invention, "at least a part of the gap between the plurality of metal convexes is filled with the resin" means that if a sufficiently high adhesive (bonding) force to the semiconductor element can be obtained, This means that the gaps between all the metal protrusions on the one surface of the foil in the bonding region with the semiconductor element do not have to be filled with the resin.
[0039]
As shown in FIG. 2, the resin 3 that fills the gap between the metal protrusions 2 of the present invention has a through hole formed in the resin portion of the metal foil 4 at a position in contact with the through hole 1. Is preferred. By forming the through holes in the resin 3, the stress is more efficiently dispersed and alleviated.
[0040]
The method of forming the through hole in the resin 3 is not particularly limited. For example, a method of forming a through hole in the resin 3 by a laser processing machine, a method of forming a through hole in the resin 3 by a punching machine, and a portion to form a hole A pin having good releasability is arranged in advance, a low-viscosity liquid resin having fluidity is applied, and a metal squeegee 2 and the resin above the release pin are scraped off using a squeegee or the like. A method of forming a through hole in the resin 3 by pulling out a pin, and the like can be given. The through hole in the resin 3 may be provided after the through hole 1 is formed, or may be formed at the same time.
[0041]
In the present invention, the work of bonding (joining) the heat radiating sheet 5 to the semiconductor element 6 and the heat radiating plate 7, ie, the work of manufacturing the semiconductor device, is the work of bonding (joining) various members such as a flip chip bonder. It can be performed using a known device used for the above. The pressing force at that time is a low pressure of 1.0 MPa or less, preferably 0.5 MPa or less. However, when the pressure is lower than 0.1 MPa, a sufficiently high adhesive force may not be obtained. Therefore, the lower limit is preferably 0.1 MPa or more, more preferably 0.2 MPa or more, and still more preferably 0.3 MPa or more. . The heating temperature can be appropriately selected from the above-mentioned temperature range of 50 ° C. to 300 ° C. depending on the type of the resin 3, but is preferably 100 to 250 ° C.
In this way, as shown in FIG. 3, a semiconductor device in which the semiconductor element 6 and the heat radiating plate 7 are bonded via the heat radiating sheet 5 can be obtained. The semiconductor device may further include other elements (heat sink, heat radiating fan, etc.) other than the heat radiating sheet 5, the semiconductor element 6, and the heat radiating plate 7.
[0042]
【Example】
Hereinafter, the heat conductive heat dissipation sheet of the present invention will be described more specifically with reference to examples. The present invention is not limited by these.
[0043]
The thermal resistivity of the heat conductive heat radiating sheet obtained in the example and the comparative example can be measured by inserting a test piece between a heater and a cooler and measuring a temperature gradient at that time to measure a thermal resistance. Measured with the instrument.
[0044]
Example 1
The polycarbodiimide resin was formed into a sheet having a length of 300 mm, a width of 250 mm, and a thickness of about 40 μm using an experimental coating machine.
Next, a photoresist (CB-100, manufactured by Asahi Kasei Corporation) was laminated on both sides of a copper foil having a length of 250 mm, a width of 150 mm and a thickness of about 35 μm, and a circular shape having a diameter of 0.2 mm and a pitch of 1.0 mm was applied to one surface. Exposure is performed using a pattern mask having a pattern in which openings are arranged in a close-packed manner, and the other surface is entirely exposed. The photoresist was developed with a resist developing solution (1% aqueous solution of sodium carbonate) to obtain a state where only the openings were exposed.
Next, the copper foil was immersed in a ferric chloride solution for copper foil etching, and a portion of the copper foil to be an opening was extracted by etching. Next, the photoresist was immersed in a 3% aqueous solution of potassium hydroxide and peeled off to obtain a copper foil having a circular through hole.
Next, a thick photoresist is stuck on both surfaces of the copper foil, and a pattern mask having a circular pattern (diameter 0.6 mm, pitch 1.0 mm) corresponding to a metal convex does not overlap with the through hole. And double-sided exposure. Development was carried out with a resist developer to obtain a state in which only the portions that would be metal convexes were exposed.
Next, cream solder is embedded in the exposed portion using a squeegee, and reflow is performed to form a columnar solder bump. Similarly, a columnar bump was formed on the other surface, and the photoresist was peeled off by dipping in a 3% aqueous potassium hydroxide solution.
Next, the above-mentioned resin serving as an adhesion base material of polycarbodiimide was bonded with a laminator with care so that air bubbles did not enter on one side, and the bumps were buried to the head. Finally, the surface is polished to finish the bump surface and the resin surface uniformly without unevenness, and a cylindrical metal convex having a thickness of 0.6 mm and a height of 70 μm and a circular metal having a diameter of 0.2 mm. A heat radiating sheet having a through hole, a distance between the center of the metal protrusion and the center of the through hole of 0.5 mm, and a thickness of 175 μm as shown in FIG. 1 was obtained.
Next, the resin-formed surface of the heat-dissipating sheet of 1.5 mm square (one side of 1.5 mm square) formed above was placed on a 15 mm square silicone chip and heated at 240 ° C. and 0.5 MPa. Pressure and pressure were applied for 10 seconds to complete a semiconductor device having a thickness of 250 μm. At this time, the total area of contact between the metal protrusions and the semiconductor element was 30% of the total area of one surface of the heat dissipation sheet.
[0045]
Comparative Example 1
A heat radiation sheet having no through-hole was obtained in the same manner as in Example 1 except that no through-hole was provided, and bonding with a silicone chip was performed in the same manner.
Table 1 shows the thermal low efficiencies of the semiconductor devices obtained in Example 1 and Comparative Example 1 before and after performing the thermal shock test (125 ° C.-55 ° C., 30 minutes / 30 minutes, 100 cycles).
[0046]
[Table 1]
Figure 2004172313
[0047]
As is clear from Table 1, the heat radiation sheet of Example 1 was less affected by the temperature change and the stress was relaxed, as compared with the heat radiation sheet of Comparative Example 1.
[0048]
【The invention's effect】
The present invention can efficiently radiate heat by combining a metal material having a high thermal conductivity and a resin material having an adhesive function, and by providing a through hole in a base material to add stress relaxation to environmental changes to thereby provide environmental protection. A highly reliable heat radiating sheet for a change, particularly a temperature change, is provided.
[Brief description of the drawings]
FIGS. 1 (a), 1 (b) and 1 (c) are a plan view and a sectional view schematically showing an example of a heat dissipation sheet according to a first embodiment of the present invention.
FIGS. 2 (a), 2 (b) and 2 (c) are a plan view and a sectional view schematically showing an example of a heat dissipation sheet according to a second embodiment of the present invention.
FIG. 3 is a diagram showing a state where the semiconductor device is mounted on the semiconductor device;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Through hole 2 Metal convex 3 Resin 4 Heat dissipation sheet base material (metal foil)
5 heat dissipation sheet 6 semiconductor element 7 heat dissipation plate

Claims (5)

金属箔の両面に複数の金属凸状物を任意に配列・形成し、少なくとも片面の金属凸状物の間隙の、少なくとも一部を樹脂が充填しており、該樹脂は加熱および加圧することにより、溶融または流動することで接着機能を有する構造の放熱シートであって、該金属箔の金属凸状物が形成されていない部位に貫通孔を形成してなることを特徴とする、放熱シート。Arrange and form a plurality of metal protrusions arbitrarily on both surfaces of the metal foil, at least a part of the gap between the metal protrusions on at least one side is filled with a resin, and the resin is heated and pressurized. A heat dissipation sheet having a structure having an adhesive function by melting or flowing, wherein a through hole is formed in a portion of the metal foil where a metal convex is not formed. 金属凸状物の間隙を満たしている上記樹脂のうち、金属箔の貫通孔と同位置に接する部位の樹脂部分に貫通孔を形成した請求項1の放熱シート。The heat dissipation sheet according to claim 1, wherein a through hole is formed in a resin portion of a portion of the resin filling the gap between the metal protrusions, the portion being in contact with the through hole of the metal foil. 上記金属凸状物が半導体素子と直接、接する面積が放熱シート片面の全面積の30%〜70%である請求項1または2記載の放熱シート。3. The heat dissipation sheet according to claim 1, wherein an area of the metal protrusion directly in contact with the semiconductor element is 30% to 70% of a total area of one surface of the heat dissipation sheet. 上記樹脂に熱伝導性フィラーを分散させて熱伝導性を付与した請求項1〜3のいずれかに記載の放熱シート。The heat dissipation sheet according to any one of claims 1 to 3, wherein a thermal conductive filler is dispersed in the resin to impart thermal conductivity. 請求項1〜4のいずれかに記載の放熱シートを介して、少なくとも半導体素子と放熱板とを接着した半導体装置。A semiconductor device in which at least a semiconductor element and a heat radiating plate are bonded via the heat radiating sheet according to claim 1.
JP2002335780A 2002-11-19 2002-11-19 Thermally conductive heat dissipating sheet and semiconductor device using the same Pending JP2004172313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335780A JP2004172313A (en) 2002-11-19 2002-11-19 Thermally conductive heat dissipating sheet and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335780A JP2004172313A (en) 2002-11-19 2002-11-19 Thermally conductive heat dissipating sheet and semiconductor device using the same

Publications (1)

Publication Number Publication Date
JP2004172313A true JP2004172313A (en) 2004-06-17

Family

ID=32699815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335780A Pending JP2004172313A (en) 2002-11-19 2002-11-19 Thermally conductive heat dissipating sheet and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2004172313A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7995344B2 (en) * 2007-01-09 2011-08-09 Lockheed Martin Corporation High performance large tolerance heat sink
JP2013214738A (en) * 2012-03-30 2013-10-17 Semikron Elektronik Gmbh & Co Kg Substrate, and method of manufacturing substrate for at least one power semiconductor component
JP2015002272A (en) * 2013-06-15 2015-01-05 京セラ株式会社 Heat dissipation member, electronic device, and image forming device
JP2015192003A (en) * 2014-03-28 2015-11-02 昭和電工株式会社 Heat sink and electronic component
CN114631400A (en) * 2019-10-28 2022-06-14 株式会社自动网络技术研究所 Substrate with heat transfer member and method for manufacturing substrate with heat transfer member
CN114864413A (en) * 2022-04-26 2022-08-05 扬州赛诺高德电子科技有限公司 Etching process of ultrathin metal radiating fin

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7995344B2 (en) * 2007-01-09 2011-08-09 Lockheed Martin Corporation High performance large tolerance heat sink
JP2013214738A (en) * 2012-03-30 2013-10-17 Semikron Elektronik Gmbh & Co Kg Substrate, and method of manufacturing substrate for at least one power semiconductor component
JP2015002272A (en) * 2013-06-15 2015-01-05 京セラ株式会社 Heat dissipation member, electronic device, and image forming device
JP2015192003A (en) * 2014-03-28 2015-11-02 昭和電工株式会社 Heat sink and electronic component
CN114631400A (en) * 2019-10-28 2022-06-14 株式会社自动网络技术研究所 Substrate with heat transfer member and method for manufacturing substrate with heat transfer member
CN114631400B (en) * 2019-10-28 2024-03-26 株式会社自动网络技术研究所 Substrate with heat transfer member and method for manufacturing substrate with heat transfer member
CN114864413A (en) * 2022-04-26 2022-08-05 扬州赛诺高德电子科技有限公司 Etching process of ultrathin metal radiating fin
CN114864413B (en) * 2022-04-26 2023-09-15 扬州赛诺高德电子科技有限公司 Etching process of ultrathin metal radiating fin

Similar Documents

Publication Publication Date Title
JP4159861B2 (en) Method for manufacturing heat dissipation structure of printed circuit board
US20030134454A1 (en) Apparatus and method for containing excess thermal interface material
JP5838065B2 (en) Heat conducting member and joining structure using heat conducting member
EP1732130A2 (en) Circuit assembly with surface-mount IC package and heat sink
JP2009105345A (en) Wiring substrate with built-in plate-like component
JP2008311584A (en) Mounting structure of semiconductor package
JP2008135521A (en) Semiconductor device and its manufacturing method
EP2750490A1 (en) Component-mounting printed circuit board and manufacturing method for same
JP5885630B2 (en) Printed board
JP6569314B2 (en) Substrate heat dissipation structure and assembly method thereof
JP2004172313A (en) Thermally conductive heat dissipating sheet and semiconductor device using the same
JP2009231657A (en) Semiconductor device and method of manufacturing the same
US20030127727A1 (en) Thermally conductive sheet and semiconductor device using same
JP2006261505A (en) Insulating heat transfer sheet
KR20120117850A (en) Thermal plug for use with a heat sink and method of assembling same
JP2005191541A (en) Semiconductor device, semiconductor chip, manufacturing method of the semiconductor device, and electronic apparatus
JP2009004447A (en) Printed circuit board, electronic apparatus, and semiconductor package
JP2005093842A (en) Heat dissipation sheet and heat dissipation member
JP6715618B2 (en) Printed wiring board
US9263817B2 (en) Adapter apparatus with suspended conductive elastomer interconnect
JP2005032894A (en) Tape carrier for semiconductor device
JP2003273294A (en) Thermal conductive sheet and semiconductor device using the same
JP5902598B2 (en) Heat dissipation structure for electronic devices
JPS6376462A (en) Heat transfer device
JP4193702B2 (en) Semiconductor package mounting structure