JP2009105345A - Wiring substrate with built-in plate-like component - Google Patents

Wiring substrate with built-in plate-like component Download PDF

Info

Publication number
JP2009105345A
JP2009105345A JP2007278197A JP2007278197A JP2009105345A JP 2009105345 A JP2009105345 A JP 2009105345A JP 2007278197 A JP2007278197 A JP 2007278197A JP 2007278197 A JP2007278197 A JP 2007278197A JP 2009105345 A JP2009105345 A JP 2009105345A
Authority
JP
Japan
Prior art keywords
component
plate
core
ceramic capacitor
accommodation hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007278197A
Other languages
Japanese (ja)
Other versions
JP5101240B2 (en
Inventor
Noboru Nakayama
昇 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2007278197A priority Critical patent/JP5101240B2/en
Publication of JP2009105345A publication Critical patent/JP2009105345A/en
Application granted granted Critical
Publication of JP5101240B2 publication Critical patent/JP5101240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring substrate with a built-in plate-like component which is superior in reliability, by increasing the contact area of a housing hole and resin filler, and thereby surely absorbing the stress acting between the housing hole and a plate-like member. <P>SOLUTION: A wring substrate with a built-in ceramic capacitor comprises a core substrate 11 and a ceramic capacitor 101, which is housed in a housing hole 91 of the core substrate 11. The ceramic capacitor 101 is fixed to the core substrate 11, by filling the clearance between the inner surface of the housing hole 91 and the side surface of the ceramic capacitor 101 with resin filler 92. The visible outline of the housing hole 91 is formed into a concavo-convex shape, in plan view. A concave recess 93, the aperture width L1 of which is set to be larger than the width L2 of a chamfer 107, is provided at a position opposed to the chamfer 107 of the ceramic capacitor 101, in the inner surface of the housing hole 91. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、コア基板の内部に板状部品が収容される板状部品内蔵配線基板に関するものである。   The present invention relates to a wiring board with a built-in plate-like component in which a plate-like component is accommodated inside a core substrate.

コンピュータのマイクロプロセッサ等として使用される半導体集積回路素子(ICチップ)は、近年ますます高速化、高機能化しており、これに付随して端子数が増え、端子間ピッチも狭くなる傾向にある。一般的にICチップの底面には多数の端子が密集してアレイ状に配置されており、このような端子群はマザーボード側の端子群に対してフリップチップの形態で接続される。ただし、ICチップ側の端子群とマザーボード側の端子群とでは端子間ピッチに大きな差があることから、ICチップをマザーボード上に直接的に接続することは困難である。そのため、通常はICチップをICチップ搭載用配線基板上に搭載し、そのICチップ搭載用配線基板をマザーボード上に搭載するという手法が採用される。この種のICチップ搭載用配線基板においては、ICチップのスイッチングノイズの低減や電源電圧の安定化を図るために、コンデンサ(「キャパシタ」とも言う)を設けることが提案されている。その一例として、高分子材料製のコア基板内にセラミックコンデンサを埋め込み、そのコア基板の表面及び裏面にビルドアップ層を形成した配線基板が従来提案されている(例えば、特許文献1,2参照)。   In recent years, semiconductor integrated circuit elements (IC chips) used as computer microprocessors and the like have become increasingly faster and more functional, with an accompanying increase in the number of terminals and a tendency to narrow the pitch between terminals. . In general, a large number of terminals are densely arranged on the bottom surface of an IC chip, and such a terminal group is connected to a terminal group on the motherboard side in the form of a flip chip. However, it is difficult to connect the IC chip directly on the mother board because there is a large difference in the pitch between the terminals on the IC chip side terminal group and the mother board side terminal group. For this reason, generally, a technique is adopted in which an IC chip is mounted on an IC chip mounting wiring board, and the IC chip mounting wiring board is mounted on a motherboard. In this type of IC chip mounting wiring board, it has been proposed to provide a capacitor (also referred to as a “capacitor”) in order to reduce switching noise of the IC chip and to stabilize the power supply voltage. As an example, a wiring substrate in which a ceramic capacitor is embedded in a core substrate made of a polymer material and buildup layers are formed on the front surface and the back surface of the core substrate has been conventionally proposed (for example, see Patent Documents 1 and 2). .

図15は、特許文献1に記載されている従来のICチップ搭載用配線基板200を示している。ICチップ搭載用配線基板200は、ガラスエポキシからなる平板状のコア基板201と、コア基板201の上面及び下面の上に形成されるビルドアップ層202,203とからなる。コア基板201は、上面及び下面にて開口する収容穴部205を有し、その収容穴部205にセラミックチップ206が収容されている。このICチップ搭載用配線基板200では、収容穴部205の内面とセラミックチップ206の側面との隙間を樹脂充填剤207で埋めることでセラミックチップ206が固定されている。この配線基板200において、ICチップ208を実装する際には、はんだ接合後の温度変化によってセラミックチップ206と収容穴部205との間に応力が発生するが、セラミックチップ206と収容穴部205との間に樹脂充填剤207を介在させることにより、その応力が吸収される。図15及び図16に示されるように、収容穴部205は、配線基板200の厚さ方向に貫通する貫通穴であり、平面視で略矩形状に形成されている。収容穴部205は、その内周縁が凹凸のない直線的な四辺形状であり、角部には面取り部209が形成されている。この面取り部209を形成することにより、樹脂充填剤207の充填時において収容穴部205の角部に気泡が形成されることが防止される。
特開2006−253668号公報 特開2004−95851号公報
FIG. 15 shows a conventional IC chip mounting wiring board 200 described in Patent Document 1. In FIG. The IC chip mounting wiring substrate 200 includes a flat core substrate 201 made of glass epoxy, and build-up layers 202 and 203 formed on the upper and lower surfaces of the core substrate 201. The core substrate 201 has a housing hole 205 that opens at the upper surface and the lower surface, and the ceramic chip 206 is housed in the housing hole 205. In this IC chip mounting wiring board 200, the ceramic chip 206 is fixed by filling a gap between the inner surface of the accommodation hole 205 and the side surface of the ceramic chip 206 with a resin filler 207. When the IC chip 208 is mounted on the wiring board 200, a stress is generated between the ceramic chip 206 and the receiving hole 205 due to a temperature change after soldering. By interposing the resin filler 207 between the two, the stress is absorbed. As shown in FIGS. 15 and 16, the accommodation hole 205 is a through-hole penetrating in the thickness direction of the wiring board 200, and is formed in a substantially rectangular shape in plan view. The accommodation hole 205 has a linear quadrilateral shape with no irregularities on the inner periphery, and chamfered portions 209 are formed at the corners. By forming the chamfered portion 209, bubbles are prevented from being formed at the corners of the accommodation hole 205 when the resin filler 207 is filled.
JP 2006-253668 A JP 200495851 A

ところが、配線基板200において、温度変化等による応力の吸収を確実に行うためには、収容穴部205を大きくしてセラミックチップ206との隙間に十分な樹脂充填剤207を充填する必要があるが、収容穴部205を大きくすると、配線基板200において配線パターンを設けるためのスペースが減少してしまう。このため、収容穴部205とセラミックチップ206との隙間は極力狭くしたいが、隙間を狭くすると樹脂充填剤207の充填が困難となり、その隙間の下方まで樹脂充填剤207を確実に充填することができなくなる。この場合、セラミックチップ206と収容穴部205との間に働く応力の吸収が不十分となり、配線基板200の信頼性が低下してしまう。   However, in order to reliably absorb stress due to temperature change or the like in the wiring substrate 200, it is necessary to enlarge the accommodation hole 205 and fill the gap with the ceramic chip 206 with a sufficient resin filler 207. If the accommodation hole 205 is enlarged, a space for providing a wiring pattern on the wiring board 200 is reduced. For this reason, the gap between the accommodation hole 205 and the ceramic chip 206 is desired to be as narrow as possible. However, if the gap is narrowed, it becomes difficult to fill the resin filler 207, and the resin filler 207 can be reliably filled to the lower part of the gap. become unable. In this case, the absorption of stress acting between the ceramic chip 206 and the accommodation hole 205 becomes insufficient, and the reliability of the wiring board 200 is lowered.

因みに、特許文献2の配線基板では、コンデンサを収納する収容穴部において、その側面に電気的な導通を図るための凹溝及び凹溝導体が形成されている。この凹溝は、導通を図るために形成されたものであり比較的にサイズが小さい。従って、この凹溝(凹溝導体)の内側に充填剤が充填されたとしても、応力を十分に吸収することはできない。また、セラミックチップ内蔵配線基板では、セラミックチップの角部に応力が最も集中するが、その角部に対応した位置には凹溝が形成されていない。   Incidentally, in the wiring board of Patent Document 2, a concave groove and a concave groove conductor are formed on the side surface of the accommodation hole for accommodating the capacitor. These concave grooves are formed for the purpose of conduction and are relatively small in size. Therefore, even if the inner side of the concave groove (concave groove conductor) is filled with the filler, the stress cannot be sufficiently absorbed. Further, in the ceramic chip built-in wiring board, stress is concentrated most at the corner of the ceramic chip, but no concave groove is formed at a position corresponding to the corner.

本発明は上記の課題に鑑みてなされたものであり、その目的は、収容穴部と樹脂充填剤との接触面積を増すことにより、収容穴部と板状部材との間に働く応力を確実に吸収し、信頼性に優れた板状部品内蔵配線基板を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to increase the contact area between the accommodation hole and the resin filler, thereby ensuring the stress acting between the accommodation hole and the plate-like member. It is an object of the present invention to provide a wiring board with a built-in plate-like component that absorbs heat and has excellent reliability.

そして上記課題を解決するための手段(手段1)としては、コア主面及びコア裏面を有し、前記コア主面及び前記コア裏面にて開口する収容穴部を有するコア基板と、部品第1主面及び部品第2主面を有する平面視で略矩形状をなし、その四隅が面取りされ、前記部品第1主面を前記コア主面側に向けかつ前記部品第2主面を前記コア裏面側に向けた状態で前記収容穴部内に収容された板状部品と、前記収容穴部の内面と前記板状部品の側面との隙間を埋めることで前記板状部品を前記コア基板に固定させている樹脂充填剤とを備え、前記収容穴部の外形線が平面視で凹凸状に形成されるとともに、少なくとも前記収容穴部の内面において前記板状部品の面取り部に対向する位置には、その開口幅が前記面取り部の幅よりも長く設定された凹状逃がし部が設けられていることを特徴とする板状部品内蔵配線基板がある。   And as means (means 1) for solving the above-mentioned problems, there are a core substrate having a core main surface and a core back surface, and having an accommodation hole opening at the core main surface and the core back surface, and a component first It has a substantially rectangular shape in plan view having a main surface and a component second main surface, its four corners are chamfered, the component first main surface faces the core main surface side, and the component second main surface faces the core back surface. The plate-like component is fixed to the core substrate by filling a gap between the plate-like component housed in the housing hole portion in a state directed toward the side and the inner surface of the housing hole portion and the side surface of the plate-like component. And the resin filler, the outer shape line of the accommodation hole is formed in a concavo-convex shape in a plan view, and at the position facing the chamfered portion of the plate-shaped part at least on the inner surface of the accommodation hole, A recess whose opening width is set longer than the width of the chamfered portion. The relief portion is provided there is a plate-like component-incorporated wiring substrate according to claim.

従って、手段1の板状部品内蔵配線基板によると、収容穴部の外形線が平面視で凹凸状に形成されているので、その収容穴部の内面と樹脂充填剤との接触面積を増大させることができる。また、板状部品の四隅に形成された面取り部に応力が最も集中するが、その面取り部に対応する位置には、開口幅が面取り部の幅よりも長く設定された凹状逃がし部が設けられている。このように構成すれば、板状部品と収容穴部との間に働く応力を樹脂充填剤によって確実に吸収することができる。また、樹脂充填剤と収容穴部の内面との密着性が増し、アンカー効果によって板状部品をコア基板に確実に固定させることができる。   Therefore, according to the plate-like component built-in wiring board of means 1, since the outline of the accommodation hole is formed in an uneven shape in plan view, the contact area between the inner surface of the accommodation hole and the resin filler is increased. be able to. In addition, the stress is most concentrated on the chamfered portions formed at the four corners of the plate-like component, but at the position corresponding to the chamfered portion, a concave relief portion having an opening width longer than the width of the chamfered portion is provided. ing. If comprised in this way, the stress which acts between a plate-shaped component and an accommodation hole part can be reliably absorbed with a resin filler. In addition, the adhesion between the resin filler and the inner surface of the accommodation hole is increased, and the plate-like component can be reliably fixed to the core substrate by the anchor effect.

前記凹状逃がし部における開口部が曲線的な形状を呈していることが好ましい。このようにすれば、凹状逃がし部における開口部に応力が集中することがなく、凹状逃がし部の全体で応力を確実に吸収することができる。   It is preferable that the opening in the concave relief portion has a curvilinear shape. In this way, stress does not concentrate on the opening in the concave relief portion, and the stress can be reliably absorbed by the entire concave relief portion.

前記収容穴部の外形線が、連続曲線からなる波状を呈していることが好ましい。このようにすれば、収容穴部と樹脂充填剤との接触面には角部がないため、ボイドが生じることなく樹脂充填剤を確実に充填することができる。従って、その樹脂充填剤で応力を確実に吸収することができ、クラックの発生を防止することができる。   It is preferable that the outer shape line of the accommodation hole portion has a wavy shape composed of a continuous curve. In this way, since there is no corner on the contact surface between the accommodation hole and the resin filler, it is possible to reliably fill the resin filler without generating voids. Therefore, stress can be reliably absorbed by the resin filler, and generation of cracks can be prevented.

前記収容穴部は、前記樹脂充填剤を充填する充填側ほど開口面積が広くなるよう形成されていることが好ましい。このようにすれば、収容穴部と板状部品との隙間に樹脂充填剤を確実に充填することができる。また、配線基板に半導体集積回路素子をフリップチップ接続する場合、はんだ接合後の冷却時には、コア基板がコア裏面側に反りやすく、その反りに対して板状部品が追従できない。この場合、コア裏面側ほど応力が集中してしまうが、収容穴部と板状部品と間に介在される樹脂充填剤がコア裏面側ほど厚くなるので、その応力を確実に吸収することができ、配線基板の信頼性を高めることができる。   It is preferable that the accommodation hole portion is formed so that an opening area becomes wider toward a filling side where the resin filler is filled. If it does in this way, the resin filler can be reliably filled in the clearance gap between an accommodation hole part and plate-shaped components. Further, when the semiconductor integrated circuit element is flip-chip connected to the wiring board, the core substrate tends to warp to the back side of the core during cooling after soldering, and the plate-like component cannot follow the warpage. In this case, the stress concentrates on the back side of the core, but since the resin filler interposed between the receiving hole and the plate-like component becomes thicker on the back side of the core, the stress can be absorbed with certainty. The reliability of the wiring board can be improved.

前記コア基板を形成する材料は特に限定されないが、好ましいコア基板は有機材料を主体として形成される。コア基板を形成する有機材料の具体例としては、例えば、EP樹脂(エポキシ樹脂)、PI樹脂(ポリイミド樹脂)、BT樹脂(ビスマレイミド・トリアジン樹脂)、PPE樹脂(ポリフェニレンエーテル樹脂)などがある。そのほか、これらの樹脂とガラス繊維(ガラス織布やガラス不織布)やポリアミド繊維等の有機繊維との複合材料を使用してもよい。   A material for forming the core substrate is not particularly limited, but a preferable core substrate is formed mainly of an organic material. Specific examples of the organic material forming the core substrate include EP resin (epoxy resin), PI resin (polyimide resin), BT resin (bismaleimide / triazine resin), PPE resin (polyphenylene ether resin), and the like. In addition, composite materials of these resins and glass fibers (glass woven fabric or glass nonwoven fabric) or organic fibers such as polyamide fibers may be used.

前記板状部品としては、セラミック製板状部品、金属製板状部品、ガラス製板状部品などの無機材料製板状部品を挙げることができる。セラミック製板状部品を構成するセラミック材料としては、例えばアルミナ、ガラスセラミック、結晶化ガラス等の低温焼成材料、窒化アルミニウム、炭化珪素、窒化珪素などがある。また、金属製板状部品を構成する金属材料としては、鉄、金、銀、銅、銅合金、鉄ニッケル合金、珪素、ガリウム砒素などがある。なお、金属製板状部品としては、半導体集積回路チップ(ICチップ)や、半導体製造プロセスで製造されたMEMS(Micro Electro Mechanical Systems)素子などを挙げることができる。ここで、「半導体集積回路チップ」とは、主としてコンピュータのマイクロプロセッサ等として使用される素子をいう。   Examples of the plate-like parts include inorganic plate-like parts such as ceramic plate-like parts, metal plate-like parts, and glass plate-like parts. Examples of the ceramic material constituting the ceramic plate-like component include low-temperature fired materials such as alumina, glass ceramic, and crystallized glass, aluminum nitride, silicon carbide, and silicon nitride. Examples of the metal material constituting the metal plate-like component include iron, gold, silver, copper, copper alloy, iron nickel alloy, silicon, and gallium arsenide. Examples of the metal plate-like component include a semiconductor integrated circuit chip (IC chip) and a MEMS (Micro Electro Mechanical Systems) element manufactured by a semiconductor manufacturing process. Here, “semiconductor integrated circuit chip” refers to an element mainly used as a microprocessor of a computer.

一方、好適なセラミック製板状部品の例としては、チップコンデンサや、複数のコンデンサ内ビア導体を有するビアアレイタイプのセラミックコンデンサなどを挙げることができる。なお、セラミックコンデンサは、複数のコンデンサ内ビア導体が全体としてアレイ状に配置されていることが好ましい。このような構造であれば、セラミックコンデンサのインダクタンスの低減化が図られ、ノイズ吸収や電源変動平滑化のための高速電源供給が可能となる。また、セラミックコンデンサ全体の小型化が図りやすくなり、ひいては配線基板全体の小型化も図りやすくなる。しかも、小さい割りに高静電容量が達成しやすく、より安定した電源供給が可能となる。   On the other hand, examples of suitable ceramic plate-like parts include a chip capacitor and a via array type ceramic capacitor having a plurality of via conductors in the capacitor. In the ceramic capacitor, it is preferable that a plurality of via conductors in the capacitor are arranged in an array as a whole. With such a structure, the inductance of the ceramic capacitor can be reduced, and high-speed power supply for noise absorption and power supply fluctuation smoothing can be performed. In addition, the entire ceramic capacitor can be easily reduced in size, and as a result, the entire wiring board can be easily reduced in size. Moreover, a high electrostatic capacity is easily achieved for a small amount, and a more stable power supply can be achieved.

前記セラミックコンデンサを構成するセラミック誘電体層としては、アルミナ、窒化アルミニウム、窒化ほう素、炭化珪素、窒化珪素などといった高温焼成セラミックの焼結体が好適に使用されるほか、ホウケイ酸系ガラスやホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを添加したガラスセラミックのような低温焼成セラミックの焼結体が好適に使用される。この場合、用途に応じて、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウムなどの誘電体セラミックの焼結体を使用することも好ましい。誘電体セラミックの焼結体を使用した場合、静電容量の大きなセラミックコンデンサを実現しやすくなる。   As the ceramic dielectric layer constituting the ceramic capacitor, a sintered body of high-temperature fired ceramic such as alumina, aluminum nitride, boron nitride, silicon carbide, silicon nitride, or the like is preferably used, and borosilicate glass or borosilicate is used. A sintered body of low-temperature fired ceramic such as glass ceramic obtained by adding an inorganic ceramic filler such as alumina to lead acid glass is preferably used. In this case, it is also preferable to use a sintered body of a dielectric ceramic such as barium titanate, lead titanate, or strontium titanate depending on the application. When a dielectric ceramic sintered body is used, a ceramic capacitor having a large capacitance can be easily realized.

前記樹脂充填剤は、板状部品を固定するためのものであり、応力緩和特性、絶縁性、耐熱性などを考慮して適宜選択することができる。樹脂充填剤を形成するための樹脂材料の好適例としては、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、シリコーン樹脂、ポリイミド樹脂などの熱硬化性樹脂や、ポリカーボネート樹脂、アクリル樹脂、ポリアセタール樹脂、エポリプロピレン樹脂などの熱可塑性樹脂などが挙げられる。また、この樹脂充填剤としては、前記熱硬化性樹脂や熱可塑性樹脂にガラスフィラーを添加した材料等を使用してもよい。   The resin filler is for fixing the plate-like component, and can be appropriately selected in consideration of stress relaxation characteristics, insulation properties, heat resistance, and the like. Preferred examples of the resin material for forming the resin filler include thermosetting resins such as epoxy resins, phenol resins, urethane resins, silicone resins, polyimide resins, polycarbonate resins, acrylic resins, polyacetal resins, e-polypropylene resins. And thermoplastic resins. Moreover, as this resin filler, you may use the material etc. which added the glass filler to the said thermosetting resin or a thermoplastic resin.

以下、本発明を具体化した一実施の形態を図面に基づき詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1に示されるように、本実施の形態のセラミックコンデンサ内蔵配線基板10(板状部品内蔵配線基板)は、ICチップ搭載用の配線基板であって、ガラスエポキシからなる略矩形板状のコア基板11と、コア基板11のコア主面12(図1では上面)の上に形成される第1ビルドアップ層31と、コア基板11のコア裏面13(図1では下面)の上に形成される第2ビルドアップ層32とからなる。コア基板11における複数箇所には厚さ方向に貫通するスルーホール用孔15が形成されており、そのスルーホール用孔15の内面に、銅めっきを施すことによって外径が300μm、厚さが20μmのスルーホール導体16が形成されている。かかるスルーホール導体16は、コア基板11のコア主面12側とコア裏面13側とを接続導通している。なお、スルーホール導体16の内部は、絶縁材料(例えば、シリカフィラーを含むエポキシ樹脂など)からなる閉塞体17で埋められている。また、コア基板11のコア主面12及びコア裏面13には、銅からなる導体層41がパターン形成されており、各導体層41は、スルーホール導体16に電気的に接続されている。   As shown in FIG. 1, a ceramic capacitor built-in wiring board 10 (plate-like component built-in wiring board) of the present embodiment is a wiring board for mounting an IC chip, and is a substantially rectangular plate-shaped core made of glass epoxy. It is formed on the substrate 11, the first buildup layer 31 formed on the core main surface 12 (upper surface in FIG. 1) of the core substrate 11, and the core back surface 13 (lower surface in FIG. 1) of the core substrate 11. And a second buildup layer 32. Through holes 15 penetrating in the thickness direction are formed at a plurality of locations in the core substrate 11, and an inner diameter of the through hole 15 is copper plated to give an outer diameter of 300 μm and a thickness of 20 μm. Through-hole conductors 16 are formed. The through-hole conductor 16 connects and connects the core main surface 12 side and the core back surface 13 side of the core substrate 11. Note that the inside of the through-hole conductor 16 is filled with a closing body 17 made of an insulating material (for example, an epoxy resin containing a silica filler). A conductor layer 41 made of copper is patterned on the core main surface 12 and the core back surface 13 of the core substrate 11, and each conductor layer 41 is electrically connected to the through-hole conductor 16.

コア基板11のコア主面12上に形成された第1ビルドアップ層31は、エポキシ樹脂からなる2層の樹脂絶縁層33,35と、銅からなる導体層42とを交互に積層した構造を有している。樹脂絶縁層35の表面上における複数箇所には、端子パッド44がアレイ状に形成されている。また、樹脂絶縁層35の表面は、ソルダーレジスト37によってほぼ全体的に覆われている。ソルダーレジスト37の所定箇所には、端子パッド44を露出させる開口部46が形成されている。端子パッド44は、複数のはんだバンプ45を介してICチップ21の面接続端子22にフリップチップ接続される。なお、ICチップ21は、例えば、MPUとしての機能を有する半導体集積回路素子であり、縦14.0mm×横14.0mm×厚さ0.7mmの矩形平板状に形成されている。   The first buildup layer 31 formed on the core main surface 12 of the core substrate 11 has a structure in which two resin insulating layers 33 and 35 made of epoxy resin and conductor layers 42 made of copper are alternately laminated. Have. Terminal pads 44 are formed in an array at a plurality of locations on the surface of the resin insulation layer 35. The surface of the resin insulating layer 35 is almost entirely covered with a solder resist 37. An opening 46 for exposing the terminal pad 44 is formed at a predetermined position of the solder resist 37. The terminal pads 44 are flip-chip connected to the surface connection terminals 22 of the IC chip 21 via a plurality of solder bumps 45. The IC chip 21 is, for example, a semiconductor integrated circuit element having a function as an MPU, and is formed in a rectangular flat plate shape having a length of 14.0 mm × width of 14.0 mm × thickness of 0.7 mm.

各端子パッド44及び各はんだバンプ45が位置する領域は、ICチップ21を搭載可能な部品搭載領域23である。部品搭載領域23は、ビルドアップ層31の表面39に設定されており、縦14.0mm×横14.0mmの平面視正方形状の領域である。即ち、部品搭載領域23は、ICチップ21の下面の直下に配置された領域であって、厚さ方向から見た場合、ICチップ21の下面と同じ外形及び面積を有している。また、樹脂絶縁層33,35内には、それぞれビア導体43,47が設けられている。これらのビア導体43,47は、導体層42及び端子パッド44を相互に電気的に接続している。   A region where each terminal pad 44 and each solder bump 45 is located is a component mounting region 23 in which the IC chip 21 can be mounted. The component mounting area 23 is set on the surface 39 of the buildup layer 31 and is a square area in plan view of 14.0 mm in length × 14.0 mm in width. That is, the component mounting area 23 is an area arranged immediately below the lower surface of the IC chip 21 and has the same outer shape and area as the lower surface of the IC chip 21 when viewed from the thickness direction. Further, via conductors 43 and 47 are provided in the resin insulation layers 33 and 35, respectively. These via conductors 43 and 47 electrically connect the conductor layer 42 and the terminal pad 44 to each other.

コア基板11のコア裏面13上に形成されたビルドアップ層32は、上述したビルドアップ層31とほぼ同じ構造を有している。即ち、ビルドアップ層32は、エポキシ樹脂からなる2層の樹脂絶縁層34,36と、導体層50とを交互に積層した構造を有している。樹脂絶縁層36の下面上における複数箇所には、ビア導体47を介して導体層50に電気的に接続されるBGA用パッド48が格子状に形成されている。また、樹脂絶縁層36の下面は、ソルダーレジスト38によってほぼ全体的に覆われている。ソルダーレジスト38の所定箇所には、BGA用パッド48を露出させる開口部40が形成されている。BGA用パッド48の表面上には、マザーボード60との電気的な接続を図るための複数のはんだバンプ49が配設されている。そして、各はんだバンプ49により、配線基板10はマザーボード60上に実装される。   The buildup layer 32 formed on the core back surface 13 of the core substrate 11 has substantially the same structure as the buildup layer 31 described above. That is, the buildup layer 32 has a structure in which two resin insulating layers 34 and 36 made of an epoxy resin and the conductor layer 50 are alternately laminated. BGA pads 48 that are electrically connected to the conductor layer 50 through via conductors 47 are formed in a plurality of locations on the lower surface of the resin insulating layer 36 in a lattice shape. The lower surface of the resin insulating layer 36 is almost entirely covered with a solder resist 38. An opening 40 for exposing the BGA pad 48 is formed at a predetermined portion of the solder resist 38. On the surface of the BGA pad 48, a plurality of solder bumps 49 for electrical connection with the mother board 60 are disposed. The wiring board 10 is mounted on the mother board 60 by the solder bumps 49.

前記コア基板11は、コア主面12の中央部及びコア裏面13の中央部にて開口する収容穴部91を1つ有している。即ち、収容穴部91は貫通穴部である。   The core substrate 11 has one accommodation hole 91 that opens at the center of the core main surface 12 and the center of the core back surface 13. That is, the accommodation hole 91 is a through hole.

収容穴部91内には、図2,図3に示すセラミックコンデンサ101が、埋め込んだ状態で収容されている。なお、セラミックコンデンサ101は、部品第1主面102(図1,2では上面)をコア基板11のコア主面12と同じ側に向け、かつ部品第2主面103(図1,2では下面)をコア基板11のコア裏面13と同じ側に向けた状態で収容されている。本実施形態のセラミックコンデンサ101は、縦10.0mm×横10.0mm×厚さ0.80mmの略矩形状であり、その四隅が面取りされた板状部材である。   The ceramic capacitor 101 shown in FIGS. 2 and 3 is housed in the housing hole 91 in an embedded state. The ceramic capacitor 101 has a component first main surface 102 (upper surface in FIGS. 1 and 2) facing the same side as the core main surface 12 of the core substrate 11, and a component second main surface 103 (lower surface in FIGS. 1 and 2). ) Is directed to the same side as the core back surface 13 of the core substrate 11. The ceramic capacitor 101 of the present embodiment is a plate-like member having a substantially rectangular shape with a length of 10.0 mm × width of 10.0 mm × thickness of 0.80 mm, with four corners chamfered.

また、収容穴部91の内面とセラミックコンデンサ101の側面との隙間は、高分子材料(本実施形態では熱硬化性樹脂)からなる樹脂充填剤92によって埋められている。樹脂充填剤92は、セラミックコンデンサ101をコア基板11に固定するとともに、セラミックコンデンサ101及びコア基板11の面方向や厚さ方向への変形を自身の弾性変形により吸収する機能を有している。   Further, a gap between the inner surface of the accommodation hole 91 and the side surface of the ceramic capacitor 101 is filled with a resin filler 92 made of a polymer material (thermosetting resin in the present embodiment). The resin filler 92 has a function of fixing the ceramic capacitor 101 to the core substrate 11 and absorbing the deformation of the ceramic capacitor 101 and the core substrate 11 in the surface direction and the thickness direction by its own elastic deformation.

図4に示されるように、本実施の形態の収容穴部91は、その外形線が平面視で凹凸状に形成されるとともに、セラミックコンデンサ101の面取り部107に対向する位置には、開口幅L1がその面取り部107の幅L2よりも長く設定された凹状逃がし部93が設けられている。具体的には、凹状逃がし部93の開口幅L1は1.0mm程度であり、面取り部107の幅L2は0.7mm程度である。この凹状逃がし部93は、湾曲状に窪んだ凹部であり、その凹状逃がし部93における開口部94は曲線的な形状を呈している。また、収容穴部91の外形線は、連続曲線からなる波状を呈している。   As shown in FIG. 4, the receiving hole 91 of the present embodiment has an outer shape that is formed in a concavo-convex shape in plan view, and has an opening width at a position facing the chamfered portion 107 of the ceramic capacitor 101. A concave relief portion 93 is provided in which L1 is set longer than the width L2 of the chamfered portion 107. Specifically, the opening width L1 of the concave relief portion 93 is about 1.0 mm, and the width L2 of the chamfered portion 107 is about 0.7 mm. The concave relief portion 93 is a concave portion that is recessed in a curved shape, and the opening 94 in the concave relief portion 93 has a curvilinear shape. Further, the outline of the accommodation hole 91 has a wavy shape consisting of a continuous curve.

図1〜図3に示されるように、本実施形態のセラミックコンデンサ101は、いわゆるビアアレイタイプのセラミックコンデンサである。セラミックコンデンサ101を構成するセラミック焼結体104は、部品第1主面102(上面)及び部品第2主面103(下面)を有する板状部品である。セラミック焼結体104は、セラミック誘電体層105を介して第1内部電極層141と第2内部電極層142とを交互に積層配置した構造を有している。セラミック誘電体層105は、高誘電率セラミックの一種であるチタン酸バリウムの焼結体からなり、第1内部電極層141及び第2内部電極層142間の誘電体として機能する。第1内部電極層141及び第2内部電極層142は、いずれもニッケルを主成分として形成された層であって、セラミック焼結体104の内部において一層おきに配置されている。   As shown in FIGS. 1 to 3, the ceramic capacitor 101 of this embodiment is a so-called via array type ceramic capacitor. A ceramic sintered body 104 constituting the ceramic capacitor 101 is a plate-like component having a component first main surface 102 (upper surface) and a component second main surface 103 (lower surface). The ceramic sintered body 104 has a structure in which the first internal electrode layers 141 and the second internal electrode layers 142 are alternately stacked via the ceramic dielectric layer 105. The ceramic dielectric layer 105 is made of a sintered body of barium titanate, which is a kind of high dielectric constant ceramic, and functions as a dielectric between the first internal electrode layer 141 and the second internal electrode layer 142. Each of the first internal electrode layer 141 and the second internal electrode layer 142 is a layer formed mainly of nickel, and is disposed every other layer inside the ceramic sintered body 104.

セラミック焼結体104には多数のビアホール130が形成されている。これらのビアホール130は、セラミック焼結体104をその厚さ方向に貫通するとともに、全面にわたって格子状(アレイ状)に配置されている。各ビアホール130内には、セラミック焼結体104の上面102及び下面103間を貫通する複数のビア導体131,132(コンデンサ内ビア導体)が、ニッケルを主材料として形成されている。各第1ビア導体131は、各第1内部電極層141を貫通しており、それら同士を互いに電気的に接続している。各第2ビア導体132は、各第2内部電極層142を貫通しており、それら同士を互いに電気的に接続している。   A number of via holes 130 are formed in the ceramic sintered body 104. These via holes 130 penetrate the ceramic sintered body 104 in the thickness direction and are arranged in a lattice shape (array shape) over the entire surface. In each via hole 130, a plurality of via conductors 131 and 132 (via conductors in a capacitor) penetrating between the upper surface 102 and the lower surface 103 of the ceramic sintered body 104 are formed using nickel as a main material. Each first via conductor 131 passes through each first internal electrode layer 141 and electrically connects them to each other. Each second via conductor 132 penetrates each second internal electrode layer 142 and electrically connects them to each other.

セラミック焼結体104の上面102上には、複数の第1外部端子電極111,112が突設されている。また、セラミック焼結体104の下面103上には、複数の第2外部端子電極121,122が突設されている。上面102側にある第1外部端子電極111,112は、前記ICチップ21が有する面接続端子22に対して、ビア導体43、導体層42、ビア導体47、端子パッド44及びはんだバンプ45を介して電気的に接続される。一方、下面103側にある第2外部端子電極121,122は、マザーボード60が有する電極(接触子)に対して、ビア導体43、導体層50、ビア導体47、BGA用パッド48及びはんだバンプ49を介して電気的に接続される。また、第1外部端子電極111,112の底面略中央部は、ビア導体131,132の上面102側の端面に対して直接接続されており、第2外部端子電極121,122の底面略中央部は、ビア導体131,132の下面103側の端面に対して直接接続されている。よって、外部端子電極111,121はビア導体131及び第1内部電極層141に導通しており、外部端子電極112,122はビア導体132及び第2内部電極層142に導通している。   A plurality of first external terminal electrodes 111 and 112 protrude from the upper surface 102 of the ceramic sintered body 104. A plurality of second external terminal electrodes 121 and 122 protrude from the lower surface 103 of the ceramic sintered body 104. The first external terminal electrodes 111 and 112 on the upper surface 102 side are connected to the surface connection terminals 22 of the IC chip 21 via via conductors 43, conductor layers 42, via conductors 47, terminal pads 44 and solder bumps 45. Are electrically connected. On the other hand, the second external terminal electrodes 121 and 122 on the lower surface 103 side have via conductors 43, conductor layers 50, via conductors 47, BGA pads 48 and solder bumps 49 with respect to the electrodes (contactors) included in the mother board 60. It is electrically connected via. In addition, the substantially central portions of the bottom surfaces of the first external terminal electrodes 111 and 112 are directly connected to the end surfaces of the via conductors 131 and 132 on the top surface 102 side, and the substantially central portions of the bottom surfaces of the second external terminal electrodes 121 and 122. Are directly connected to the end surfaces of the via conductors 131 and 132 on the lower surface 103 side. Therefore, the external terminal electrodes 111 and 121 are electrically connected to the via conductor 131 and the first internal electrode layer 141, and the external terminal electrodes 112 and 122 are electrically connected to the via conductor 132 and the second internal electrode layer 142.

外部端子電極111,112,121,122は、ニッケルを主材料とするメタライズ層上に銅めっき層を形成した層構造を有している。銅めっき層は、メタライズ層を構成する金属よりも軟かい金属からなり、その表面は粗化されている。このため、第1外部端子電極111,112の表面は、セラミック焼結体104の上面102よりも粗くなっている。同様に、第2外部端子電極121,122の表面も、セラミック焼結体104の下面103よりも粗くなっている。また、上面102に垂直な方向(部品厚さ方向)から見たときの外部端子電極111,112,121,122は略円形状をなしている(図3参照)。   The external terminal electrodes 111, 112, 121, and 122 have a layer structure in which a copper plating layer is formed on a metallized layer containing nickel as a main material. A copper plating layer consists of a metal softer than the metal which comprises a metallization layer, and the surface is roughened. For this reason, the surfaces of the first external terminal electrodes 111 and 112 are rougher than the upper surface 102 of the ceramic sintered body 104. Similarly, the surfaces of the second external terminal electrodes 121 and 122 are also rougher than the lower surface 103 of the ceramic sintered body 104. Further, the external terminal electrodes 111, 112, 121, 122 when viewed from the direction perpendicular to the upper surface 102 (part thickness direction) are substantially circular (see FIG. 3).

上記構成のセラミックコンデンサ内蔵配線基板10において、マザーボード60側から第2外部端子電極121,122を介して通電を行い、第1内部電極層141−第2内部電極層142間に電圧を加えると、第1内部電極層141に例えばプラスの電荷が蓄積し、第2内部電極層142に例えばマイナスの電荷が蓄積する。その結果、セラミックコンデンサ101がキャパシタとして機能する。また、このセラミックコンデンサ101では、第1ビア導体131及び第2ビア導体132がそれぞれ交互に隣接して配置され、かつ、第1ビア導体131及び第2ビア導体132を流れる電流の方向が互いに逆向きになるように設定されている。これにより、インダクタンス成分の低減化が図られている。また、各ビア導体131,132を介してICチップ21に電流が供給されるとともに、スルーホール導体16を介してICチップ21に電流が供給されることで、ICチップ21が動作する。   In the ceramic capacitor built-in wiring board 10 having the above configuration, when energization is performed from the mother board 60 side through the second external terminal electrodes 121 and 122 and a voltage is applied between the first internal electrode layer 141 and the second internal electrode layer 142, For example, positive charges are accumulated in the first internal electrode layer 141, and negative charges are accumulated in the second internal electrode layer 142, for example. As a result, the ceramic capacitor 101 functions as a capacitor. Further, in the ceramic capacitor 101, the first via conductors 131 and the second via conductors 132 are alternately arranged adjacent to each other, and the directions of the currents flowing through the first via conductors 131 and the second via conductors 132 are opposite to each other. It is set to face. Thereby, the inductance component is reduced. In addition, current is supplied to the IC chip 21 through the via conductors 131 and 132, and current is supplied to the IC chip 21 through the through-hole conductor 16, whereby the IC chip 21 operates.

次に、本実施の形態のセラミックコンデンサ内蔵配線基板10の製造方法について述べる。   Next, a method for manufacturing the ceramic capacitor built-in wiring board 10 of the present embodiment will be described.

基板準備工程ではコア基板11を従来周知の手法により作製し、セラミックチップ準備工程では、セラミックコンデンサ101を従来周知の手法により作製し、コア基板11とセラミックコンデンサ101とをあらかじめ準備しておく。   In the substrate preparation step, the core substrate 11 is manufactured by a conventionally known method. In the ceramic chip preparation step, the ceramic capacitor 101 is manufactured by a conventionally known method, and the core substrate 11 and the ceramic capacitor 101 are prepared in advance.

基板準備工程において、コア基板11は以下のように作製される。まず、縦400mm×横400mm×厚み0.80mmの基材の両面に、厚み35μmの銅箔が貼付された銅張積層板を準備する。次に、銅張積層板に対してドリル機を用いて孔あけ加工を行い、スルーホール導体16を形成するための貫通孔を所定位置にあらかじめ形成しておく。そして、従来公知の手法に従って無電解銅めっき及び電解銅めっきを行うことでスルーホール導体16を形成する。次に、スルーホール導体16の空洞部にエポキシ樹脂を主成分とするペーストを印刷した後、硬化することにより閉塞体17を形成する。さらに、銅張積層板の両面の銅箔のエッチングを行って導体層41を例えばサブトラクティブ法によってパターニングする(図5参照)。具体的には、無電解銅めっきの後、この無電解銅めっき層を共通電極として電解銅めっきを施す。さらにドライフィルムをラミネートし、同ドライフィルムに対して露光及び現像を行うことにより、ドライフィルムを所定パターンに形成する。この状態で、不要な電解銅めっき層、無電解銅めっき層及び銅箔をエッチングで除去した後、ドライフィルムを剥離する。   In the substrate preparation process, the core substrate 11 is manufactured as follows. First, a copper clad laminate is prepared in which a copper foil having a thickness of 35 μm is bonded to both surfaces of a base having a length of 400 mm × width of 400 mm × thickness of 0.80 mm. Next, drilling is performed on the copper-clad laminate using a drill, and a through hole for forming the through-hole conductor 16 is formed in advance at a predetermined position. And the through-hole conductor 16 is formed by performing electroless copper plating and electrolytic copper plating according to a conventionally well-known method. Next, after the paste which has an epoxy resin as a main component is printed in the cavity part of the through-hole conductor 16, the obstruction | occlusion body 17 is formed by hardening. Further, the copper foil on both sides of the copper clad laminate is etched to pattern the conductor layer 41 by, for example, a subtractive method (see FIG. 5). Specifically, after the electroless copper plating, electrolytic copper plating is performed using the electroless copper plating layer as a common electrode. Further, the dry film is laminated, and the dry film is exposed and developed to form a dry film in a predetermined pattern. In this state, after removing unnecessary electrolytic copper plating layer, electroless copper plating layer and copper foil by etching, the dry film is peeled off.

次いで、コア基板11に対してルータを用いて穴加工工程を行い、収容穴部91を所定位置に形成する(図6参照)。この穴加工工程では、外形線が平面視で凹凸状となり、4隅となる位置に凹状逃がし部93を有する収容穴部91(図4参照)を形成する。   Next, a hole processing step is performed on the core substrate 11 using a router, and the accommodation hole 91 is formed at a predetermined position (see FIG. 6). In this hole machining step, the housing hole 91 (see FIG. 4) having concave and convex relief portions 93 at the four corners is formed as the contour line is uneven in plan view.

セラミックチップ準備工程において、セラミックコンデンサ101は以下のように作製される。即ち、セラミックのグリーンシートを形成し、このグリーンシートに内部電極層用ニッケルペーストをスクリーン印刷して乾燥させる。これにより、後に第1内部電極層141となる第1内部電極部と、第2内部電極層142となる第2内部電極部とが形成される。次に、第1内部電極部が形成されたグリーンシートと第2内部電極部が形成されたグリーンシートとを交互に積層し、シート積層方向に押圧力を付与することにより、各グリーンシートを一体化してグリーンシート積層体を形成する。   In the ceramic chip preparation process, the ceramic capacitor 101 is manufactured as follows. That is, a ceramic green sheet is formed, and nickel paste for internal electrode layers is screen printed on the green sheet and dried. As a result, a first internal electrode portion that later becomes the first internal electrode layer 141 and a second internal electrode portion that becomes the second internal electrode layer 142 are formed. Next, the green sheets on which the first internal electrode portions are formed and the green sheets on which the second internal electrode portions are formed are alternately stacked, and each green sheet is integrated by applying a pressing force in the sheet stacking direction. To form a green sheet laminate.

さらに、レーザー加工機を用いてグリーンシート積層体にビアホール130を多数個貫通形成し、図示しないペースト圧入充填装置を用いて、ビア導体用ニッケルペーストを各ビアホール130内に充填する。次に、グリーンシート積層体の上面上にペーストを印刷し、グリーンシート積層体の上面側にて各導体部の上端面を覆うように第1外部端子電極111,112のメタライズ層を形成する。また、グリーンシート積層体の下面上にペーストを印刷し、グリーンシート積層体の下面側にて各導体部の下端面を覆うように第2外部端子電極121,122のメタライズ層を形成する。   Further, a number of via holes 130 are formed through the green sheet laminate using a laser processing machine, and a via conductor nickel paste is filled into each via hole 130 using a paste press-fitting and filling device (not shown). Next, a paste is printed on the upper surface of the green sheet laminate, and metallized layers of the first external terminal electrodes 111 and 112 are formed so as to cover the upper end surfaces of the respective conductor portions on the upper surface side of the green sheet laminate. Further, a paste is printed on the lower surface of the green sheet laminate, and the metallized layers of the second external terminal electrodes 121 and 122 are formed so as to cover the lower end surfaces of the respective conductor portions on the lower surface side of the green sheet laminate.

この後、グリーンシート積層体の乾燥を行い、表面端子部をある程度固化させる。次に、グリーンシート積層体を脱脂し、さらに所定温度で所定時間焼成を行う。その結果、チタン酸バリウム及びペースト中のニッケルが同時焼結し、セラミック焼結体104となる。そして、得られたセラミック焼結体104が有する各外部端子電極111,112,121,122に対して電解銅めっき(厚さ10μm程度)を行う。その結果、各外部端子電極111,112,121,122の上に銅めっき層が形成され、セラミックコンデンサ101が完成する。   Thereafter, the green sheet laminate is dried to solidify the surface terminal part to some extent. Next, the green sheet laminate is degreased and fired at a predetermined temperature for a predetermined time. As a result, barium titanate and nickel in the paste are simultaneously sintered to form a ceramic sintered body 104. Then, electrolytic copper plating (thickness of about 10 μm) is performed on each external terminal electrode 111, 112, 121, 122 included in the obtained ceramic sintered body 104. As a result, a copper plating layer is formed on each external terminal electrode 111, 112, 121, 122, and the ceramic capacitor 101 is completed.

その後、部品収納工程において、収容穴部91のコア主面12側の開口96に、マスキング材としての剥離可能な粘着テープ152を密着するよう配置して、その開口96を封止する(図7参照)。なお、この粘着テープ152は、図示しない支持台によって支持されている。次に、マウント装置(ヤマハ発動機株式会社製)を用いて、収容穴部91内にセラミックコンデンサ101を収容配置する(図8参照)。このとき、粘着テープ152には、セラミックコンデンサ101が貼り付けられて仮固定される。なおここでは、チップ搭載時(図1に示す状態)において上面となる部品第1主面102を下方に向けた状態(上面と下面とを反転させた状態)で粘着テープ152に密着させている。同様に、コア基板11もチップ搭載時に上面となるコア主面12を下方に向けた状態となっている。   After that, in the component housing step, a peelable adhesive tape 152 as a masking material is disposed in close contact with the opening 96 on the core main surface 12 side of the housing hole 91, and the opening 96 is sealed (FIG. 7). reference). The adhesive tape 152 is supported by a support base (not shown). Next, the ceramic capacitor 101 is accommodated in the accommodation hole 91 using a mounting device (manufactured by Yamaha Motor Co., Ltd.) (see FIG. 8). At this time, the ceramic capacitor 101 is attached to the adhesive tape 152 and temporarily fixed. Here, when the chip is mounted (the state shown in FIG. 1), the component first main surface 102 which is the upper surface is in close contact with the adhesive tape 152 in a state where the first main surface 102 is directed downward (the upper surface and the lower surface are reversed). . Similarly, the core substrate 11 is also in a state where the core main surface 12 which is the upper surface when the chip is mounted faces downward.

そして、部品固定工程において、収容穴部91の内面とセラミックコンデンサ101の側面との隙間に、ディスペンサ装置(Asymtek社製)を用いて、コア裏面13側の開口97から熱硬化性樹脂製の樹脂充填剤92(株式会社ナミックス製)を充填する(図9参照)。その後、加熱処理を行うと、樹脂充填剤92が硬化してセラミックコンデンサ101が収容穴部91内に固定される。このとき、粘着テープ152と接する側となるコア主面12、部品第1主面102、及び樹脂充填剤92の表面の位置が揃いフラット(面一)に形成される。従って、部品第1主面102とコア主面12との段差は殆どなく、部品第2主面103とコア裏面13との段差よりも小さくなる。   In the component fixing step, a resin made of a thermosetting resin is provided from the opening 97 on the core back surface 13 side using a dispenser device (manufactured by Asymtek) in the gap between the inner surface of the accommodation hole 91 and the side surface of the ceramic capacitor 101. Filler 92 (Namics Co., Ltd.) is filled (see FIG. 9). Thereafter, when heat treatment is performed, the resin filler 92 is cured and the ceramic capacitor 101 is fixed in the accommodation hole 91. At this time, the positions of the core main surface 12, the component first main surface 102, and the surface of the resin filler 92 on the side in contact with the adhesive tape 152 are aligned and formed flat. Accordingly, there is almost no step between the component first main surface 102 and the core main surface 12, which is smaller than the step between the component second main surface 103 and the core back surface 13.

そして、セラミックコンデンサ101の固定後において、粘着テープ152を剥離する。その後、コア基板11のコア主面12及びセラミックコンデンサ101の部品第1主面102を酸性脱脂で溶剤洗浄をしてから研磨することで、コア主面12及び部品第1主面102に張り付いて残っている粘着材を除去する。   Then, after fixing the ceramic capacitor 101, the adhesive tape 152 is peeled off. After that, the core main surface 12 of the core substrate 11 and the component first main surface 102 of the ceramic capacitor 101 are washed with a solvent by acid degreasing and then polished, thereby sticking to the core main surface 12 and the component first main surface 102. Remove any remaining adhesive.

さらに、外部端子電極111,112,121,122の上にある銅めっき層の表面の粗化(CZ処理)を行う。同時に、コア主面12及びコア裏面13に形成された導体層41の表面の粗化も行う。その後、洗浄工程を実施し、必要に応じて、シランカップリング剤(信越化学工業株式会社製)を用いて、コア主面12及びコア裏面13に対してカップリング処理を行ってもよい。   Further, the surface of the copper plating layer on the external terminal electrodes 111, 112, 121, 122 is roughened (CZ treatment). At the same time, the surface of the conductor layer 41 formed on the core main surface 12 and the core back surface 13 is also roughened. Thereafter, a cleaning process is performed, and if necessary, the core main surface 12 and the core back surface 13 may be subjected to a coupling treatment using a silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd.).

次に、ビルドアップ層形成工程において、従来周知の手法に基づいてコア主面12の上に第1ビルドアップ層31を形成するとともに、コア裏面13の上に第2ビルドアップ層32を形成する(図10参照)。さらに、端子パッド44上のはんだバンプ45やBGA用パッド48上のはんだバンプ49等を形成することで、セラミックコンデンサ内蔵配線基板10が完成する。なお、図10においては、図9のコア基板11及びセラミックコンデンサ101の上下面を反転させた状態(チップ搭載時の状態)で示している。ここで、部品第1主面102とコア主面12との段差は殆どなく、部品第2主面103とコア裏面13との段差よりも小さくなっているので、第1ビルドアップ層31の表面は、凹凸がなく平坦に形成される。その結果、第1ビルドアップ層31に形成された複数の端子パッド44に対し、ICチップ21を確実にフリップチップ接続することが可能となる。   Next, in the buildup layer forming step, the first buildup layer 31 is formed on the core main surface 12 and the second buildup layer 32 is formed on the core back surface 13 based on a conventionally known technique. (See FIG. 10). Furthermore, by forming solder bumps 45 on the terminal pads 44, solder bumps 49 on the BGA pads 48, etc., the ceramic capacitor built-in wiring board 10 is completed. In FIG. 10, the upper and lower surfaces of the core substrate 11 and the ceramic capacitor 101 in FIG. 9 are inverted (in a state where the chip is mounted). Here, there is almost no step between the component first main surface 102 and the core main surface 12, which is smaller than the step between the component second main surface 103 and the core back surface 13. Is formed flat without any irregularities. As a result, the IC chip 21 can be reliably flip-chip connected to the plurality of terminal pads 44 formed in the first buildup layer 31.

従って、本実施の形態によれば以下の効果を得ることができる。   Therefore, according to the present embodiment, the following effects can be obtained.

(1)本実施の形態のセラミックコンデンサ内蔵配線基板10では、収容穴部91は、その外形線が平面視で凹凸状に形成されているので、収容穴部91の内面と樹脂充填剤92との接触面積を増大させることができる。また、セラミックコンデンサ101の四隅(面取り部107)に応力が最も集中するが、収容穴部91において面取り部107に対応する位置には、凹状逃がし部93が設けられている。この凹状逃がし部93は、開口幅L1が面取り部107の幅L2よりも長く設定されている。このように形成すれば、セラミックコンデンサ101と収容穴部91との間に働く応力を樹脂充填剤92によって確実に吸収することができる。また、樹脂充填剤92と収容穴部91の内面との密着性が増し、アンカー効果によってセラミックコンデンサ101をコア基板11に確実に固定させることができる。   (1) In the ceramic capacitor built-in wiring substrate 10 according to the present embodiment, the housing hole 91 has an outer shape that is formed in an uneven shape in plan view, so that the inner surface of the housing hole 91, the resin filler 92, The contact area can be increased. Further, the stress is concentrated most at the four corners (the chamfered portion 107) of the ceramic capacitor 101, but a concave relief portion 93 is provided at a position corresponding to the chamfered portion 107 in the accommodation hole portion 91. The concave relief portion 93 is set such that the opening width L 1 is longer than the width L 2 of the chamfered portion 107. If formed in this way, the stress acting between the ceramic capacitor 101 and the accommodation hole 91 can be reliably absorbed by the resin filler 92. Further, the adhesion between the resin filler 92 and the inner surface of the accommodation hole 91 is increased, and the ceramic capacitor 101 can be reliably fixed to the core substrate 11 by the anchor effect.

(2)本実施の形態のセラミックコンデンサ内蔵配線基板10では、凹状逃がし部93における開口部94が曲線的な形状を呈しているので、開口部94に応力が集中することがなく、凹状逃がし部93の全体で応力を確実に吸収することができる。   (2) In the ceramic capacitor built-in wiring board 10 of the present embodiment, since the opening 94 in the concave relief portion 93 has a curved shape, the stress does not concentrate on the opening 94, and the concave relief portion. The whole of 93 can absorb the stress reliably.

(3)本実施の形態のセラミックコンデンサ内蔵配線基板10では、収容穴部91は、その外形線が連続曲線からなる波状を呈している。この場合、収容穴部91と樹脂充填剤92との接触面には角部が存在しないため、ボイドが生じることなく樹脂充填剤92を確実に充填することができる。従って、その樹脂充填剤92で応力を確実に吸収することができ、クラックの発生を防止することができる。   (3) In the ceramic capacitor built-in wiring board 10 of the present embodiment, the accommodation hole 91 has a wave shape whose outer contour line is a continuous curve. In this case, since there is no corner on the contact surface between the accommodation hole 91 and the resin filler 92, the resin filler 92 can be reliably filled without any voids. Therefore, the resin filler 92 can reliably absorb the stress and prevent the occurrence of cracks.

(4)本実施の形態のセラミックコンデンサ内蔵配線基板10では、板状部品としてビアアレイタイプのセラミックコンデンサ101が収容穴部91に収納されている。このセラミックコンデンサ101では、複数のビア導体131,132が全体としてアレイ状に配置されているので、セラミックコンデンサ101のインダクタンスの低減化が図られ、ノイズ吸収や電源変動平滑化のための高速電源供給が可能となる。また、セラミックコンデンサ101全体の小型化が図りやすくなり、ひいては配線基板全体の小型化も図りやすくなる。しかも、小さい割りに高静電容量が達成しやすく、ICチップ21に対してより安定した電源供給が可能となる。   (4) In the ceramic capacitor built-in wiring substrate 10 of the present embodiment, the via array type ceramic capacitor 101 is housed in the housing hole 91 as a plate-like component. In this ceramic capacitor 101, since the plurality of via conductors 131 and 132 are arranged in an array as a whole, the inductance of the ceramic capacitor 101 can be reduced, and high-speed power supply for noise absorption and power fluctuation smoothing can be achieved. Is possible. In addition, the entire ceramic capacitor 101 can be easily reduced in size, and as a result, the entire wiring board can be easily reduced in size. In addition, a high capacitance is easily achieved for a small amount, and more stable power supply to the IC chip 21 is possible.

(5)本実施の形態では、ルータ加工を行うことにより、外形線が連続曲線からなる波状の収容穴部91を正確に形成することができる。   (5) In the present embodiment, by performing router processing, it is possible to accurately form the wavy accommodation hole portion 91 whose contour line is a continuous curve.

なお、本発明の実施の形態は以下のように変更してもよい。   In addition, you may change embodiment of this invention as follows.

・上記実施の形態のセラミックコンデンサ内蔵配線基板10において、収容穴部91は、その外形線が連続曲線からなる波状に形成されていたが、これに限定されるものではない。例えば、図11に示される収容穴部91Aのように、直線的な凹凸95Aがある形状や、図12に示される収容穴部91Bのように、半円状の凹部95Bがある形状に変更してもよい。これら収容穴部91A,91Bのように、外形線が凹凸状となるよう形成することにより、樹脂充填剤92との接触面積を増大させることができ、収容穴部91A,91Bとセラミックコンデンサ101の間に働く応力を樹脂充填剤92によって確実に吸収することができる。   In the ceramic capacitor built-in wiring substrate 10 of the above embodiment, the housing hole 91 is formed in a wave shape whose outer shape is a continuous curve, but is not limited to this. For example, the shape is changed to a shape having a linear unevenness 95A such as a housing hole 91A shown in FIG. 11 or a shape having a semicircular recess 95B such as a housing hole 91B shown in FIG. May be. By forming the outer shape of the housing holes 91A and 91B so as to be uneven, the contact area with the resin filler 92 can be increased, and the housing holes 91A and 91B and the ceramic capacitor 101 The stress acting between them can be reliably absorbed by the resin filler 92.

・上記実施の形態のセラミックコンデンサ内蔵配線基板10において、収容穴部91は、コア主面12側とコア裏面13側とで同じ開口面積を有するものであったが、これに限定されるものではなく、図13及び図14に示されるような収容穴部91Cに変更してもよい。すなわち、収容穴部91Cは、コア基板11をその厚さ方向に切断したときに現れる断面形状がコア主面12側からコア裏面13側に行くに従って徐々に広くなるよう形成されている。このように収容穴部91を形成することにより、樹脂充填剤92を充填するコア裏面13側ほど開口面積が大きくなるので、収容穴部91Cとセラミックコンデンサ101との隙間に樹脂充填剤92を確実に充填することができる。   In the ceramic capacitor built-in wiring substrate 10 of the above embodiment, the accommodation hole 91 has the same opening area on the core main surface 12 side and the core back surface 13 side, but is not limited thereto. Instead, it may be changed to the accommodation hole 91C as shown in FIGS. That is, the accommodating hole portion 91 </ b> C is formed so that the cross-sectional shape that appears when the core substrate 11 is cut in the thickness direction gradually widens from the core main surface 12 side to the core back surface 13 side. By forming the accommodation hole 91 in this manner, the opening area becomes larger toward the core back surface 13 side where the resin filler 92 is filled, so that the resin filler 92 is surely placed in the gap between the accommodation hole 91C and the ceramic capacitor 101. Can be filled.

また、セラミックコンデンサ内蔵配線基板10にICチップ21を搭載する際、ICチップ接合後の冷却時には、コア裏面13側に位置する第2ビルドアップ層32は収縮するが、コア主面12側に位置する第1ビルドアップ層31はICチップ21があるため殆ど収縮しない。この結果、コア基板11はコア裏面13側に反る。また、セラミックコンデンサ101はコア基板11やビルドアップ層31,32よりも可塑性が小さいため、その反りに対してセラミックコンデンサ101は追従できない。そのため、コア裏面13側ほど応力が集中してしまうが、収容穴部91とセラミックコンデンサ101と間に介在される樹脂充填剤92は、コア裏面13側ほど平面方向の厚さが厚く形成されるので、その応力集中を確実に吸収することができる。   Further, when the IC chip 21 is mounted on the wiring board 10 with a built-in ceramic capacitor, the second buildup layer 32 positioned on the core back surface 13 side contracts during cooling after bonding the IC chip, but is positioned on the core main surface 12 side. The first buildup layer 31 that does not shrink almost because the IC chip 21 exists. As a result, the core substrate 11 warps to the core back surface 13 side. Further, since the ceramic capacitor 101 is less plastic than the core substrate 11 and the build-up layers 31 and 32, the ceramic capacitor 101 cannot follow the warpage. Therefore, stress concentrates on the core back surface 13 side, but the resin filler 92 interposed between the accommodation hole 91 and the ceramic capacitor 101 is formed so that the thickness in the plane direction is thicker on the core back surface 13 side. Therefore, the stress concentration can be absorbed reliably.

・上記実施の形態では、収容穴部91の内面とセラミックコンデンサ101の側面との隙間にディスペンサ装置を用いて樹脂充填剤92を充填していたが、第2ビルドアップ層32の最下層に位置する樹脂絶縁層34の一部を前記隙間に落とし込んでその隙間を埋めることによりセラミックコンデンサ101をコア基板11に固定してよい。この場合、樹脂絶縁層34が樹脂充填剤92を兼ねるため、樹脂充填剤92の形成に際して、樹脂絶縁層34とは別の材料を準備しなくても済み、製造コストを抑えることができる。   In the above embodiment, the resin filler 92 is filled in the gap between the inner surface of the accommodation hole portion 91 and the side surface of the ceramic capacitor 101 using the dispenser device, but is positioned at the lowermost layer of the second buildup layer 32. The ceramic capacitor 101 may be fixed to the core substrate 11 by dropping a part of the resin insulation layer 34 to be filled into the gap and filling the gap. In this case, since the resin insulating layer 34 also serves as the resin filler 92, it is not necessary to prepare a material different from the resin insulating layer 34 when forming the resin filler 92, and the manufacturing cost can be reduced.

・上記実施の形態のセラミックコンデンサ内蔵配線基板10では、コア基板11の収容穴部91に1つのセラミックコンデンサ101を収納していたが、収容穴部91に複数の板状部品(例えば、チップコンデンサ)を埋め込むように構成してもよい。   In the ceramic capacitor built-in wiring substrate 10 of the above embodiment, one ceramic capacitor 101 is accommodated in the accommodation hole 91 of the core substrate 11, but a plurality of plate-like components (for example, chip capacitors) are accommodated in the accommodation hole 91. ) May be embedded.

・上記実施の形態では、セラミックコンデンサ内蔵配線基板10のパッケージ形態はBGA(ボールグリッドアレイ)であるが、BGAのみに限定されず、例えばPGA(ピングリッドアレイ)やLGA(ランドグリッドアレイ)等であってもよい。   In the above embodiment, the package form of the ceramic capacitor built-in wiring board 10 is BGA (ball grid array), but is not limited to BGA alone, for example, PGA (pin grid array), LGA (land grid array), etc. There may be.

本発明を具体化した一実施の形態のセラミックコンデンサ内蔵配線基板を示す概略断面図。1 is a schematic sectional view showing a ceramic capacitor built-in wiring board according to an embodiment of the present invention. 同じく、セラミックコンデンサを示す概略断面図。Similarly, the schematic sectional drawing which shows a ceramic capacitor. 同じく、セラミックコンデンサを示す平面図。Similarly, the top view which shows a ceramic capacitor. 同じく、コア基板における収容穴部を示す説明図。Similarly, explanatory drawing which shows the accommodation hole part in a core board | substrate. 同じく、配線基板の製造方法を示す説明図。Similarly, explanatory drawing which shows the manufacturing method of a wiring board. 同じく、配線基板の製造方法を示す説明図。Similarly, explanatory drawing which shows the manufacturing method of a wiring board. 同じく、配線基板の製造方法を示す説明図。Similarly, explanatory drawing which shows the manufacturing method of a wiring board. 同じく、配線基板の製造方法を示す説明図。Similarly, explanatory drawing which shows the manufacturing method of a wiring board. 同じく、配線基板の製造方法を示す説明図。Similarly, explanatory drawing which shows the manufacturing method of a wiring board. 同じく、配線基板の製造方法を示す説明図。Similarly, explanatory drawing which shows the manufacturing method of a wiring board. 他の実施の形態のコア基板における収容穴部を示す説明図。Explanatory drawing which shows the accommodation hole part in the core board | substrate of other embodiment. 他の実施の形態のコア基板における収容穴部を示す説明図。Explanatory drawing which shows the accommodation hole part in the core board | substrate of other embodiment. 他の実施の形態のコア基板における収容穴部を示す説明図。Explanatory drawing which shows the accommodation hole part in the core board | substrate of other embodiment. 他の実施の形態のコア基板における収容穴部を示す説明図。Explanatory drawing which shows the accommodation hole part in the core board | substrate of other embodiment. 従来技術の配線基板を示す概略断面図。The schematic sectional drawing which shows the wiring board of a prior art. 従来技術のコア基板における収納穴部を示す説明図。Explanatory drawing which shows the accommodation hole part in the core board | substrate of a prior art.

符号の説明Explanation of symbols

10…板状部品内蔵配線基板としてのセラミックコンデンサ内蔵配線基板
11…コア基板
12…コア主面
13…コア裏面
21…半導体集積回路素子としてのICチップ
91,91A,91B,91C…収容穴部
92…樹脂充填剤
93…凹状逃がし部
94…開口部
101…板状部品としてのセラミックコンデンサ
102…部品第1主面
103…部品第2主面
107…面取り部
131,132…コンデンサ内ビア導体としてのビア導体
L1…凹状逃がし部の開口幅
L2…面取り部の幅
DESCRIPTION OF SYMBOLS 10 ... Ceramic capacitor built-in wiring board as a board | substrate with built-in plate-shaped components 11 ... Core board 12 ... Core main surface 13 ... Core back surface 21 ... IC chip as a semiconductor integrated circuit element 91, 91A, 91B, 91C ... Accommodating hole part 92 ... Resin filler 93 ... Recessed relief part 94 ... Opening part 101 ... Ceramic capacitor as a plate-like part 102 ... Part first main surface 103 ... Part second main surface 107 ... Chamfered part 131, 132 ... As via conductor in capacitor Via conductor L1 ... Opening width of concave relief L2 ... Width of chamfer

Claims (5)

コア主面及びコア裏面を有し、前記コア主面及び前記コア裏面にて開口する収容穴部を有するコア基板と、
部品第1主面及び部品第2主面を有する平面視で略矩形状をなし、その四隅が面取りされ、前記部品第1主面を前記コア主面側に向けかつ前記部品第2主面を前記コア裏面側に向けた状態で前記収容穴部内に収容された板状部品と、
前記収容穴部の内面と前記板状部品の側面との隙間を埋めることで前記板状部品を前記コア基板に固定させている樹脂充填剤と
を備え、前記収容穴部の外形線が平面視で凹凸状に形成されるとともに、少なくとも前記収容穴部の内面において前記板状部品の面取り部に対向する位置には、その開口幅が前記面取り部の幅よりも長く設定された凹状逃がし部が設けられていることを特徴とする板状部品内蔵配線基板。
A core substrate having a core main surface and a core back surface, and having an accommodation hole opening at the core main surface and the core back surface;
It has a substantially rectangular shape in plan view having a component first main surface and a component second main surface, its four corners are chamfered, the component first main surface faces the core main surface side, and the component second main surface is A plate-like component housed in the housing hole in a state directed toward the back side of the core;
A resin filler that fixes the plate-like component to the core substrate by filling a gap between the inner surface of the accommodation hole and the side surface of the plate-like component, and the outline of the accommodation hole is in plan view And a concave relief portion whose opening width is set to be longer than the width of the chamfered portion at least at a position facing the chamfered portion of the plate-like component on the inner surface of the accommodation hole portion. A wiring board with a built-in plate-like component, which is provided.
前記凹状逃がし部における開口部が曲線的な形状を呈していることを特徴とする請求項1に記載の板状部品内蔵配線基板。   The plate-like component built-in wiring board according to claim 1, wherein the opening in the concave relief portion has a curvilinear shape. 前記収容穴部の外形線が、連続曲線からなる波状を呈していることを特徴とする請求項1または2に記載の板状部品内蔵配線基板。   3. The plate-like component built-in wiring board according to claim 1 or 2, wherein an outline of the accommodation hole portion has a wave shape composed of a continuous curve. 前記収容穴部は、前記樹脂充填剤を充填する充填側ほど開口面積が広くなるよう形成されていることを特徴とする請求項1乃至3のいずれか1項に記載の板状部品内蔵配線基板。   4. The wiring board with a built-in plate-like component according to claim 1, wherein the accommodation hole portion is formed so that an opening area becomes larger toward a filling side filled with the resin filler. 5. . 前記板状部品が、複数のコンデンサ内ビア導体を有するビアアレイタイプのセラミックコンデンサであることを特徴とする請求項1乃至4のいずれか1項に記載の板状部品内蔵配線基板。   The plate-like component built-in wiring board according to any one of claims 1 to 4, wherein the plate-like component is a via array type ceramic capacitor having a plurality of via conductors in the capacitor.
JP2007278197A 2007-10-25 2007-10-25 Board component built-in wiring board Active JP5101240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278197A JP5101240B2 (en) 2007-10-25 2007-10-25 Board component built-in wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278197A JP5101240B2 (en) 2007-10-25 2007-10-25 Board component built-in wiring board

Publications (2)

Publication Number Publication Date
JP2009105345A true JP2009105345A (en) 2009-05-14
JP5101240B2 JP5101240B2 (en) 2012-12-19

Family

ID=40706721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278197A Active JP5101240B2 (en) 2007-10-25 2007-10-25 Board component built-in wiring board

Country Status (1)

Country Link
JP (1) JP5101240B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011010498A1 (en) * 2009-07-24 2011-01-27 イビデン株式会社 Wiring board and method for manufacturing same
JP2011049555A (en) * 2009-08-25 2011-03-10 Samsung Electro-Mechanics Co Ltd Method of processing cavity of core substrate
JP2011199288A (en) * 2010-03-18 2011-10-06 Marvell World Trade Ltd Embedded die with protective interposer
JP2011211194A (en) * 2010-03-30 2011-10-20 Ibiden Co Ltd Wiring board and method for manufacturing the same
JP2011216790A (en) * 2010-04-01 2011-10-27 Ngk Spark Plug Co Ltd Capacitor incorporated in wiring board, and wiring board
WO2012089275A1 (en) * 2010-12-30 2012-07-05 Option Wireless Limited Multi board module with implant
WO2012157426A1 (en) * 2011-05-13 2012-11-22 イビデン株式会社 Circuit board and manufacturing method thereof
US20130025914A1 (en) * 2011-07-25 2013-01-31 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
JP2013058619A (en) * 2011-09-08 2013-03-28 Ngk Spark Plug Co Ltd Component built-in wiring board and manufacturing method of the same
TWI425886B (en) * 2011-06-07 2014-02-01 Unimicron Technology Corp Package structure having embedded electronic components and method of making same
JP5462404B1 (en) * 2013-09-12 2014-04-02 太陽誘電株式会社 Component embedded substrate and core substrate for component embedded substrate
JP2014107431A (en) * 2012-11-28 2014-06-09 Ibiden Co Ltd Electronic component built-in wiring board, and manufacturing method for electronic component built-in wiring board
JP2014216580A (en) * 2013-04-27 2014-11-17 京セラSlcテクノロジー株式会社 Wiring board and manufacturing method of the same
CN104684254A (en) * 2013-11-27 2015-06-03 Tdk株式会社 IC embedded substrate and method of manufacturing the same
US9113574B2 (en) 2012-10-25 2015-08-18 Ibiden Co., Ltd. Wiring board with built-in electronic component and method for manufacturing the same
JP5858203B2 (en) * 2013-10-15 2016-02-10 株式会社村田製作所 Manufacturing method of component-embedded substrate and component-embedded substrate
CN107041082A (en) * 2016-11-18 2017-08-11 江门崇达电路技术有限公司 The PCB process for pressing of dissymmetrical structure
JP2018120954A (en) * 2017-01-25 2018-08-02 京セラ株式会社 Wiring board
JP2019029427A (en) * 2017-07-27 2019-02-21 京セラ株式会社 Electronic component mounting board, electronic apparatus, and method for manufacturing electronic component mounting board
CN111385959A (en) * 2018-12-27 2020-07-07 欣兴电子股份有限公司 Circuit board with heat dissipation block and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814545A (en) * 1981-07-17 1983-01-27 Citizen Watch Co Ltd Mounting method for ic
JPH04243152A (en) * 1991-01-17 1992-08-31 Ibiden Co Ltd Electronic parts mounting board having storage recess
JPH06120673A (en) * 1992-10-07 1994-04-28 Matsushita Electric Ind Co Ltd Multilayer printed wiring board and production thereof
JPH10284631A (en) * 1997-04-03 1998-10-23 Shinko Electric Ind Co Ltd Semiconductor package
JP2004119732A (en) * 2002-09-26 2004-04-15 Kyocera Corp Multilayer wiring board with built-in capacitor
JP2004128134A (en) * 2002-10-01 2004-04-22 Hitachi Metals Ltd Ceramic multilayer substrate and its manufacturing method
JP3659167B2 (en) * 1999-04-16 2005-06-15 松下電器産業株式会社 Module parts and manufacturing method thereof
JP2007027527A (en) * 2005-07-20 2007-02-01 Shinko Electric Ind Co Ltd Board and its manufacturing method
JP2007194617A (en) * 2005-12-22 2007-08-02 Ngk Spark Plug Co Ltd Wiring board, and capacitor incorporated therein

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814545A (en) * 1981-07-17 1983-01-27 Citizen Watch Co Ltd Mounting method for ic
JPH04243152A (en) * 1991-01-17 1992-08-31 Ibiden Co Ltd Electronic parts mounting board having storage recess
JPH06120673A (en) * 1992-10-07 1994-04-28 Matsushita Electric Ind Co Ltd Multilayer printed wiring board and production thereof
JPH10284631A (en) * 1997-04-03 1998-10-23 Shinko Electric Ind Co Ltd Semiconductor package
JP3659167B2 (en) * 1999-04-16 2005-06-15 松下電器産業株式会社 Module parts and manufacturing method thereof
JP2004119732A (en) * 2002-09-26 2004-04-15 Kyocera Corp Multilayer wiring board with built-in capacitor
JP2004128134A (en) * 2002-10-01 2004-04-22 Hitachi Metals Ltd Ceramic multilayer substrate and its manufacturing method
JP2007027527A (en) * 2005-07-20 2007-02-01 Shinko Electric Ind Co Ltd Board and its manufacturing method
JP2007194617A (en) * 2005-12-22 2007-08-02 Ngk Spark Plug Co Ltd Wiring board, and capacitor incorporated therein

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102293069A (en) * 2009-07-24 2011-12-21 揖斐电株式会社 Wiring board and method for manufacturing the same
US8400782B2 (en) 2009-07-24 2013-03-19 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
JP4684368B2 (en) * 2009-07-24 2011-05-18 イビデン株式会社 Wiring board and manufacturing method thereof
WO2011010498A1 (en) * 2009-07-24 2011-01-27 イビデン株式会社 Wiring board and method for manufacturing same
US8687380B2 (en) 2009-07-24 2014-04-01 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
US8934262B2 (en) 2009-07-24 2015-01-13 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
JP2012235175A (en) * 2009-08-25 2012-11-29 Samsung Electro-Mechanics Co Ltd Electronic element built-in printed circuit board
US8633397B2 (en) 2009-08-25 2014-01-21 Samsung Electro-Mechanics Co., Ltd. Method of processing cavity of core substrate
JP2011049555A (en) * 2009-08-25 2011-03-10 Samsung Electro-Mechanics Co Ltd Method of processing cavity of core substrate
TWI418272B (en) * 2009-08-25 2013-12-01 Samsung Electro Mech Method of processing a cavity of core substrate
JP2011199288A (en) * 2010-03-18 2011-10-06 Marvell World Trade Ltd Embedded die with protective interposer
US8971053B2 (en) 2010-03-30 2015-03-03 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
JP2011211194A (en) * 2010-03-30 2011-10-20 Ibiden Co Ltd Wiring board and method for manufacturing the same
US8654538B2 (en) 2010-03-30 2014-02-18 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
JP2011216790A (en) * 2010-04-01 2011-10-27 Ngk Spark Plug Co Ltd Capacitor incorporated in wiring board, and wiring board
WO2012089275A1 (en) * 2010-12-30 2012-07-05 Option Wireless Limited Multi board module with implant
CN103563498A (en) * 2011-05-13 2014-02-05 揖斐电株式会社 Circuit board and manufacturing method thereof
US9232656B2 (en) 2011-05-13 2016-01-05 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
WO2012157426A1 (en) * 2011-05-13 2012-11-22 イビデン株式会社 Circuit board and manufacturing method thereof
US8693209B2 (en) 2011-05-13 2014-04-08 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
JP5600803B2 (en) * 2011-05-13 2014-10-01 イビデン株式会社 Wiring board and manufacturing method thereof
KR101422437B1 (en) 2011-05-13 2014-07-22 이비덴 가부시키가이샤 Circuit board and manufacturing method thereof
TWI425886B (en) * 2011-06-07 2014-02-01 Unimicron Technology Corp Package structure having embedded electronic components and method of making same
US20130025914A1 (en) * 2011-07-25 2013-01-31 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
JP2013058619A (en) * 2011-09-08 2013-03-28 Ngk Spark Plug Co Ltd Component built-in wiring board and manufacturing method of the same
US9113574B2 (en) 2012-10-25 2015-08-18 Ibiden Co., Ltd. Wiring board with built-in electronic component and method for manufacturing the same
JP2014107431A (en) * 2012-11-28 2014-06-09 Ibiden Co Ltd Electronic component built-in wiring board, and manufacturing method for electronic component built-in wiring board
JP2014216580A (en) * 2013-04-27 2014-11-17 京セラSlcテクノロジー株式会社 Wiring board and manufacturing method of the same
JP5462404B1 (en) * 2013-09-12 2014-04-02 太陽誘電株式会社 Component embedded substrate and core substrate for component embedded substrate
US20150068795A1 (en) * 2013-09-12 2015-03-12 Taiyo Yuden Co., Ltd. Substrate with built-in electronic component and core base-material for substrate with built-in electronic component
CN106102321B (en) * 2013-09-12 2020-10-16 太阳诱电株式会社 Substrate with built-in component and core substrate for substrate with built-in component
CN106102321A (en) * 2013-09-12 2016-11-09 太阳诱电株式会社 Including components therein substrate and including components therein substrate core substrate
US9730322B2 (en) 2013-10-15 2017-08-08 Murata Manufacturing Co., Ltd. Production method of component-embedded substrate, and component-embedded substrate
JP5858203B2 (en) * 2013-10-15 2016-02-10 株式会社村田製作所 Manufacturing method of component-embedded substrate and component-embedded substrate
CN104684254A (en) * 2013-11-27 2015-06-03 Tdk株式会社 IC embedded substrate and method of manufacturing the same
CN104684254B (en) * 2013-11-27 2017-12-19 Tdk株式会社 IC built-in substrates and its manufacture method
JP2015103753A (en) * 2013-11-27 2015-06-04 Tdk株式会社 Ic built-in substrate and method for manufacturing the same
CN107041082A (en) * 2016-11-18 2017-08-11 江门崇达电路技术有限公司 The PCB process for pressing of dissymmetrical structure
JP2018120954A (en) * 2017-01-25 2018-08-02 京セラ株式会社 Wiring board
JP2019029427A (en) * 2017-07-27 2019-02-21 京セラ株式会社 Electronic component mounting board, electronic apparatus, and method for manufacturing electronic component mounting board
CN111385959A (en) * 2018-12-27 2020-07-07 欣兴电子股份有限公司 Circuit board with heat dissipation block and manufacturing method thereof

Also Published As

Publication number Publication date
JP5101240B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5101240B2 (en) Board component built-in wiring board
JP4509972B2 (en) Wiring board, embedded ceramic chip
JP4838068B2 (en) Wiring board
JP5129645B2 (en) Manufacturing method of wiring board with built-in components
JP5089880B2 (en) Capacitor for wiring board built-in, wiring board with built-in capacitor and manufacturing method thereof
US7932471B2 (en) Capacitor for incorporation in wiring board, wiring board, method of manufacturing wiring board, and ceramic chip for embedment
JP4964481B2 (en) Wiring board
JP2010171413A (en) Method of manufacturing wiring board with built-in component
JP2007096258A (en) Wiring substrate and ceramic capacitor
KR20090089267A (en) Semiconductor device manufacturing method, semiconductor device and wiring board
JP4405477B2 (en) WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME
JP4954824B2 (en) Wiring board with built-in components, capacitor for wiring board
JP5179856B2 (en) Wiring board built-in component and manufacturing method thereof, wiring board
JP5112005B2 (en) Wiring board with built-in plate-shaped component and manufacturing method thereof
JP5078759B2 (en) Wiring board built-in electronic components and wiring board
JP4405478B2 (en) WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME
JP2007318089A (en) Wiring board
JP2012151154A (en) Method for manufacturing component built-in wiring substrate
JP5306797B2 (en) Manufacturing method of wiring board with built-in components
JP2009004459A (en) Capacitor built-in wiring board
JP4814129B2 (en) Wiring board with built-in components, Wiring board built-in components
JP4975655B2 (en) Wiring board, semiconductor package
JP2009147177A (en) Capacitor incorporated in wiring board, and wiring board
JP4668822B2 (en) Wiring board manufacturing method
CN113964093A (en) Packaging structure and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5101240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250