JP2004247296A - 通電処理方法、電子源基板の製造方法および製造装置 - Google Patents

通電処理方法、電子源基板の製造方法および製造装置 Download PDF

Info

Publication number
JP2004247296A
JP2004247296A JP2004012994A JP2004012994A JP2004247296A JP 2004247296 A JP2004247296 A JP 2004247296A JP 2004012994 A JP2004012994 A JP 2004012994A JP 2004012994 A JP2004012994 A JP 2004012994A JP 2004247296 A JP2004247296 A JP 2004247296A
Authority
JP
Japan
Prior art keywords
substrate
region
electron source
manufacturing
source substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004012994A
Other languages
English (en)
Other versions
JP3740484B2 (ja
Inventor
Hisafumi Azuma
尚史 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004012994A priority Critical patent/JP3740484B2/ja
Publication of JP2004247296A publication Critical patent/JP2004247296A/ja
Application granted granted Critical
Publication of JP3740484B2 publication Critical patent/JP3740484B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

【課題】 通電領域(発熱領域)とその周辺領域とで生ずる基板の温度差によって基板割れが起きるのを効果的に防止することができ、電子源基板および画像形成装置の製造プロセスに好適な通電処理方法を提供する。
【解決手段】 基板10上に配置された複数の導電体6への通電処理方法であって、基板10上の、複数の導電体が配置された領域S0と当該領域S0の周辺領域S1との通電処理時の平均温度差が15℃以上であり、基板10は、前記領域S0の幅L0[m]と前記領域S1の幅L1[m]とが以下の関係式を満足することを特徴とする。
L1/L0 > EαΔT/σth − 1
(ここで、ΔT[K]は前記平均温度差、E[Pa]は基板のヤング率、α[/K]は基板の線膨張係数、σth[Pa]は基板の材料定数である。)
【選択図】 図1

Description

本発明は、基板上に配置された複数の導電体への通電処理方法に関し、特に通電処理時の基板の温度差によって基板割れが起きるのを防止しうる通電処理方法、更にはかかる通電処理方法を応用した複数の電子放出素子を配設した電子源基板の製造方法および製造装置に関する。
従来、電子放出素子としては、大別して熱電子放出素子と冷陰極電子放出素子を用いた二種類の素子が知られている。冷陰極電子放出素子には、電界放出型、金属/絶縁層/金属型や表面伝導型電子放出素子等が知られている。
表面伝導型電子放出素子は基板上に形成された小面積の導電性膜に、膜面に平行に電流を流すことにより、電子放出が生じる現象を利用するものである。本出願人は、新規な構成を有する表面伝導型電子放出素子とその応用に関し、多数の提案を行っている。その基本的な構成、製造方法は、例えば特許文献1、特許文献2などに開示されている。
上記特許文献に記載の表面伝導型電子放出素子は、基板上に対向する一対の素子電極と、その素子電極に接続されその一部に電子放出部を有する導電性膜とを有してなることを特徴とするものである。また、上記導電性膜の一部に亀裂が形成されている。また、上記亀裂の端部には、炭素または炭素化合物の少なくとも一方を主成分とする堆積膜が形成されている。
このような電子放出素子を基板上に複数個配置し、各電子放出素子を配線で電気的に接続することにより、複数個の表面伝導型電子放出素子を備える電子源基板を作成することができる。
また、上記電子源基板と蛍光体とを組み合わせることにより、画像形成装置の表示パネルを形成することができる。
従来、このような電子源基板の製造は以下のように行われていた。
まず、基板上に、導電性膜及び該導電性膜に接続された一対の素子電極からなる複数の素子と、該素子を複数個接続した配線を形成する。次に、作成した電子源基板の一部(少なくとも前記導電性膜の形成領域を含む)を真空チャンバー内に設置する。次に、真空チャンバーを排気した後、プローブ等と配線を通して該素子に電圧を印加し、各素子の導電性膜に亀裂を形成(以下:フォーミング)する。しかる後に、該真空チャンバーに有機物質を含むガスを導入し、所望の有機物質のガス分圧下で該各素子に再び電圧を印加し、該亀裂端に炭素、あるいは炭素化合物を堆積させる(以下:活性化)。
また、特許文献3には、図10に示すとおり、基板とこれを覆う容器とで気密雰囲気を形成し、基板表面に配置された導電性膜に通電(フォーミング、活性化)処理を行うことが記載されている。
図10において、1010は基板、1011は支持体、1012は真空容器、1015は気体の導入口、1016は排気口、1018はシール部材、1019は拡散板、1020はヒーター、1021は水素または有機物質ガス、1022はキャリアガス、1023は水分除去フィルター、1024はガス流量制御装置、1025a〜1025fはバルブ、1026は真空ポンプ、1027は真空計、1028は配管、1032は電源及び電流制御系からなる駆動ドライバー、1031は基板の取り出し配線と駆動ドライバーとを接続する配線、1033は拡散板1019の開口部、1041は熱伝導部材である。
支持体1011は、基板1010を保持して固定するもので、真空チャッキング機構、静電チャッキング機構若しくは固定冶具などにより、機械的に基板1010を固定する機構を有する。
真空容器1012には、容器内部を排気するための真空ポンプ1026と有機物質をガスとして容器内部に導入するためのガス導入装置が接続されている。
支持体1011上に基板1010を配置し、基板上に形成された複数の素子を含む一部の領域を排気するための真空容器1012で基板面上を覆う。これにより、基板上に形成された複数の素子を有する領域面を真空に排気したり、有機物質が、所望の圧力、分圧となる雰囲気に暴露させることができる。さらに、基板上に形成された複数の素子に接続されるように形成された夫々の配線の一部が露出されるため、駆動ドライバー1032から所望の電気信号(電位)を、各素子を構成する一対の電極にプローブユニット(不図示)を介して供給することができる。
活性化工程終了後、基板面から容器1012を取り除き、さらに支持体1011上から剥離して得られた基板1010は電子源基板となる。
特開平7−235255号公報 特開平8−171849号公報 特開2000−311594号公報
以上の製造方法を採用していたが、電子源基板製造のタクトタイム短縮と、電子源特性の向上のために、前記活性化工程において有機物質を含むガス中で該各素子に印加する電圧波形を高デューティーとすることが必要不可欠となっている。
一方、最近の液晶ディスプレイやプラズマディスプレイなどへのユーザーのニーズから狭額縁構造が要求されている。
従来の活性化工程における有機ガス中での通電方法により、狭額縁電子源基板を高デューティー通電を行うと、主として電子源基板上の電子放出素子形成領域(基板中央部)が発熱により温度上昇し、電子源基板の周辺部との温度差による熱応力により、電子源基板端に割れが生じることが大きな問題となった。
電子源基板の電子放出素子形成領域の裏面を冷却し、周辺部を加熱することにより応力緩和を図る手法もあるが、熱回収を基板厚方向で行うため、高デューティーになるほど、基板裏表面での温度差が大きくなり、応力緩和効果にも限界があった。
そこで本発明は、通電領域(発熱領域)とその周辺領域とで生ずる基板の温度差によって基板割れが起きるのを防止し得る通電処理方法を提供することを目的とする。
また、本発明は、電子源基板の電子放出素子の特性向上と、量産性向上と、歩留り向上と、を達成する電子源基板の製造方法と製造装置を提供するものである。
上記の目的を達成すべく成された本発明の構成は、以下の通りである。
すなわち本発明は、
基板上に配置された複数の導電体への通電処理方法であって、
前記基板上の、複数の導電体が配置された領域S0と当該領域S0の周辺領域S1との通電処理時の平均温度差が、15℃以上であり、
前記基板は、前記領域S0の幅L0[m]と前記領域S1の幅L1[m]とが以下の関係式を満足するものであることを特徴とするものである。
L1/L0 > EαΔT/σth − 1
(ここで、ΔT[K]は前記平均温度差、E[Pa]は基板のヤング率、α[/K]は基板の線膨張係数、σth[Pa]は基板の材料定数である。)
また、本発明は、基板上に配置された複数の導電体に、気密雰囲気下で通電を行い、当該導電体の一部に電子放出機能を付与する電子源基板の製造方法において、
前記基板上の、複数の導電体が配置された領域S0と当該領域S0の周辺領域S1との通電処理時の平均温度差が、15℃以上であり、
前記基板は、前記領域S0の幅L0[m]と前記領域S1の幅L1[m]とが以下の関係式を満足するものであることを特徴とするものである。
L1/L0 > EαΔT/σth − 1
(ここで、ΔT[K]は前記平均温度差、E[Pa]は基板のヤング率、α[/K]は基板の線膨張係数、σth[Pa]は基板の材料定数である。)
上記本発明の電子源基板の製造方法は、好ましい実施形態として、
「前記通電処理をした後に、前記基板を所望の大きさに切断する切断工程を有すること」、
「前記切断工程は、前記導電体の領域を覆う防塵工程と、ホイールカッター切断工程、もしくはダイシング切断工程、もしくはサンドブラスト切断工程のいずれかの切断工程を有すること」、さらに「切断後の基板の周辺部の面取り工程と研磨工程と洗浄工程と、を有すること」、
「前記気密雰囲気下で通電を行う工程が、前記基板上の前記導電体の領域を容器で覆う被覆工程と、該被覆工程後にはガスの排気工程と導入工程を有すること」、
「前記導電体は一対の電極と当該電極間に形成された導電性膜からなり、該電極は配線と電気的に接続されており、前記通電処理の後に該導電性膜が表面伝導型電子放出素子となること」、
を含むものである。
また、本発明は、基板上に配置された複数の導電体に、気密雰囲気下で通電を行い、当該導電体の一部に電子放出機能を付与する電子源基板の製造装置であって、前記基板を固定支持する固定手段と、該基板の雰囲気を制御する雰囲気制御手段と、通電処理した後に該基板を所望の大きさに切断する切断手段と、を備えることを特徴とするものである。
上記本発明の電子源基板の製造装置は、好ましい実施形態として、
「前記基板上の、複数の導電体が配置された領域S0と当該領域S0の周辺領域S1との通電処理時の平均温度差が、15℃以上であり、
前記基板は、前記領域S0の幅L0[m]と前記領域S1の幅L1[m]とが以下の関係式を満足するものであること。
L1/L0 > EαΔT/σth − 1
(ここで、ΔT[K]は前記平均温度差、E[Pa]は基板のヤング率、α[/K]は基板の線膨張係数、σth[Pa]は基板の材料定数である。)」、
「前記材料定数σthが20×106[Pa]である電子源基板を処理できること」、
「前記切断手段はホイールカッター、もしくはダイシング、もしくはサンドブラストのいずれかの切断手段と、前記導電体の領域を覆う防塵手段を有すること」、さらに「切断後の基板の周辺部の面取り手段と研磨手段と洗浄手段とを有すること」、
「前記雰囲気制御手段が前記基板上の前記導電体の領域を覆う容器からなり、該容器にはガスの排気手段と導入手段を備えていること」、
「前記固定手段は当該固定手段上に前記基板を真空吸着させる手段を備えていること」、
「前記固定手段は当該固定手段上に前記基板を静電吸着させる手段を備えていること」、
「前記固定手段は当該固定手段上に前記基板の温度を制御する加熱手段と冷却手段からなる制御手段を備えていること」。
本発明の通電処理方法によれば、通電領域(発熱領域)とその周辺領域とで生ずる基板の温度差によって基板割れが起きるのを効果的に防止することができ、例えば電子源基板および画像形成装置の製造プロセスに応用することにより、画像品位向上(高デューティー活性化)、製品付加価値向上(狭額縁構造)、コストダウン(歩留り、量産性)を図ることができる。
本発明の通電処理方法は、基板上に配置された複数の導電体への通電処理方法に関するものであり、通電領域(即ち、導電体が配置された領域)とその周辺領域とで生じる基板の温度差によって、基板割れが起きるのを防止しようとするものである。本発明の通電処理方法は、具体的には、例えば、表面伝導型電子放出素子製造プロセスにおける活性化などの通電処理工程に好適に用いることができる。以下ではこの表面伝導型電子放出素子を有する電子源基板の製造を例に挙げて本発明の実施の形態を具体的に説明する。
図1、図2は、本発明の好ましい第1の実施の形態に係る電子源基板の製造装置を示す断面図である。図1は、基板上に配置された複数の導電体に、気密雰囲気下で通電を行うための装置部分を示し、図2は、通電処理後の基板を所望の大きさに切断するための装置部分を示している。
図1と図2において、10は基板、11は支持体、12は真空容器、15は気体の導入口、16は排気口、18はシール部材、19は拡散板、20a,20bはヒーター、21は水素または有機物質ガス、22はキャリアガス、23は水分除去フィルター、24はガス流量制御装置、25a〜25fはバルブ、26は真空ポンプ、27は真空計、28は配管、31は基板10上に形成された取り出し配線(不図示)と駆動ドライバーとを接続する配線、32は電源及び電流制御系からなる駆動ドライバー、33は拡散板19の開口部、41は熱伝導部材である。6は基板10上の導電体が配置された領域(以下、「導電体形成領域」と記す。)であり、70は切断手段、71は防塵手段、72は切断時固定台、73は基板切断部を示す中心線、74は切断時の固定台逃げ部である。
支持体11は、基板10を保持して固定するもので、真空チャッキング機構、静電チャッキング機構、若しくは機械的固定治具などにより基板10を固定する機構を有する。支持体11の内部には、ヒーター20a,20bが設けられ、必要に応じて熱伝導部材41を介して基板10を加熱することが出来る。
熱伝導部材41は、支持体11上に設置され、基板10を保持して固定する機構の障害にならないように、支持体11と基板10の間で狭持されるか、あるいは支持体11に埋め込まれるように設置されていてもよい。
熱伝導部材41は基板の反り、うねりを吸収し、基板への電気的処理工程における発熱を確実に支持体11へ伝え、放熱することができる。
熱伝導部材41としては、シリコーングリスや、オイルシリコーン、ジェル状物質等の粘性液状物質を使用することができる。粘性液状物質である熱伝導部材41が支持体11上を移動する弊害がある場合には、支持体11上に粘性液状物質が所定の位置及び領域、すなわち、少なくとも基板10の導電体形成領域下で停留するように、支持体11に停留機構を設置してあっても良い。これは例えば、Oリングや、耐熱性の袋に液状粘性物質を入れ、密封した熱伝導部材とした構成とすることができる。
一方、熱伝導部材41として弾性部材を使用することも可能である。弾性部材としては、テフロン(登録商標)樹脂などの合成樹脂材料、シリコーンゴムなどのゴム材料、アルミナなどのセラミック材料、銅やアルミの金属材料などを使用することができる。
ヒーター20a,20bは温度制御用熱電対を併設したヒーターとクーラーである。両者ともに密封された管状であり、この中に温調媒体が封入されている。
真空容器12は、ガラスやステンレス製の容器であり、容器内壁からの放出ガスが少ない材料からなるものが好ましい。真空容器12は、基板10の取り出し配線部を除き、導電体形成領域6を覆い、かつ少なくとも大気圧の圧力に耐えられる構造のものである。
シール部材18は、基板10と真空容器12との気密性を保持するためのものであり、Oリングやゴム製のシートなどが用いられる。
有機物質ガス21には、後述する電子放出素子の活性化に用いられる有機物質、または有機物質を窒素、ヘリウム、アルゴンなどで希釈した混合気体が用いられる。また、後述するフォーミングの通電処理を行う際には、導電性膜への亀裂形成を促進するための気体、例えば還元性を有する水素ガス等を真空容器12内に導入することもある。このように、他の工程で気体を導入する際には、導入配管、バルブ25eを用いて、所望の系統を真空容器12への導入配管28に接続すれば、使用することができる。
上記電子放出素子の活性化に用いられる有機物質としては、アルカン、アルケン、アルキンの脂肪族炭化水素類、芳香族炭化水素類、アルコール類、アルデヒド類、ケトン類、アミン類、ニトリル類、フェノール、カルボン、スルホン酸等の有機酸類などを挙げる事ができる。より具体的には、メタン、エタン、プロパンなどのCn2n+2で表される飽和炭化水素、エチレン、プロピレンなどのCn2n等の組成式で表される不飽和炭化水素、ベンゼン、トルエン、メタノール、エタノール、アセトアルデヒド、アセトン、メチルエチルケトン、メチルアミン、エチルアミン、フェノール、ベンゾニトリル、トルニトリル、アセトニトリルなどが使用できる。
活性化に用いる有機物質の種類にもよるが、本実施態様において上記有機物質ガスの分圧は10-4〜10-1Pa程度が好ましい。
有機ガス21は、有機物質が常温で気体である場合にはそのまま使用でき、常温下で液体、または固体の場合は容器内で蒸発または昇華させて用いる。或いはこれを希釈ガスと混合するなどの方法で用いることができる。キャリアガス22には、窒素、またはアルゴン、ヘリウムなどの不活性ガスを用いる。
有機物質ガス21とキャリアガス22は一定の割合で混合されて、真空容器12内に導入される。両者の流量及び混合比はガス流量制御装置24によって制御される。ガス流量制御装置24はマスフローコントローラー及び電磁弁等から構成される。これらの混合ガスは、必要に応じて配管28の周囲に設けられたヒーター(不図示)によって所望の温度に加熱された後、導入口15より、真空容器12内に導入される。混合ガスの加熱温度は基板10の温度と同等にすることが望ましい。
なお、配管28の途中に水分除去フィルター23を設けて、導入ガス中の水分を除去することが好ましい。水分除去フィルター23には、シリカゲル、モレキュラーシーブ、水酸化マグネシウム等の吸湿材を用いることが出来る。
真空容器12に導入された混合ガスは、排気口16を通じて、真空ポンプ26により一定の排気速度で排気され、真空容器12内の混合ガスの圧力は一定に保持される。真空ポンプ26は、ドライポンプ、ダイアフラムポンプ、スクロールポンプ等、低真空用ポンプであり、オイルフリーポンプが好ましい。
また、真空容器12の気体導入口15と基板10との間に拡散板19を設けると、混合気体の流れが制御され、基板全面に均一に有機物質が供給されるため、電子放出素子の均一性が向上し好ましい。拡散板19としては、図1に示したように、開口部33を有する金属板などが用いられる。
基板10の取り出し電極(不図示)は、真空容器12の外側にあり、TAB配線やプローブなどを用いて配線31から駆動ドライバー32に接続される。
本実施態様において、真空容器12は基板10上の導電体形成領域6のみを覆えばよいため、装置の小型化が可能である。また、基板10の取り出し電極部が真空容器外にあるため、基板10と電気的処理を行うための駆動ドライバー32との電気的接続を容易に行うことができる。
以上のようにして真空容器12内に有機物質を含む混合ガスを流した状態で駆動ドライバー32を用い、配線31を通じて基板10上の各素子にパルス電圧を印加することにより、素子の活性化を行うことができる。
表面伝導型電子放出素子を有する電子源基板の製造にあたっては、素子特性の向上と、プロセス時間短縮の要求から、活性化時に印加する電圧パルスを高デューティー化することが不可欠となっている。
しかしながら、高デューティー化に伴い、基板10上の発熱領域(導電体形成領域6に相当する。)とその周辺部、発熱領域(導電体形成領域6に相当する。)とその裏面、の温度差ΔT1、ΔT2が拡大してしまう。その様子を図3に示す。その結果、基板10の周辺端部に大きな引張り応力が作用し、基板の破損確率が激増してしまう。
このような基板の破損を防止するために、基板裏面から、基板10上の発熱領域(導電体形成領域6)からの熱を効率良く逃がす構成が公知となっているが、発熱量の増加に伴い温度差ΔT2が増加するのは避けようがない。さらに、近年では液晶ディスプレイやプラズマディスプレイのトレンドとして狭額縁構造が強くユーザーに支持されており、画像形成領域(導電体形成領域6)と電子源基板のサイズを近づけ、周辺部を極力狭くすることが望まれている。
導電体形成領域6での発熱によって基板の周辺部に作用する応力σは近似的に、導電体形成領域6と周辺部の平均温度差ΔT(ΔT1+ΔT2/2)と幅比L1/L0、基板10の線膨張係数αと弾性係数(ヤング率)Eにより式(1)の通りに表すことが出来る。
σ=EαΔT/(L1/L0+1) …式(1)
この式の意味するところは、高デューティー化により温度差ΔTが増加し、狭額縁化により幅比L1/L0が減少するため、応力増加が生じることを当然の如く表している。
本発明者は、多くの困難を克服しつつ、甚大なる努力と鋭意検討を行った結果、高デューティー化と狭額縁化を両立させ得る本発明に至ったものである。すなわち、温度差ΔTは受け入れざるを得ないため、活性化プロセス時には幅比L1/L0が大きな基板を用い、プロセス後、適当なタイミングで切断し、所望の狭額縁基板とするというものである。
一般に基板10としてガラス基板を用いる上で、歩留り良く安定にプロセスを進めるためには、基板の材料定数σth=20×106[Pa]とすることが好ましい。式(1)を幅比L1/L0について変形すると式(2)の通りとなる。
L1/L0>EαΔT/σth−1 …式(2)
つまり、平均的温度差ΔT、基板10の弾性係数Eと線膨張係数αが求められると、最低限必要な幅比L1/L0が求められる。本発明者の研究によれば、前記温度差ΔTが15℃より大きくなると基板割れの頻度が増すが、式(2)の関係を満足するようにL1およびL0を設計することにより(即ち、糊代を大きくとることにより)、基板割れの頻度を大きく低減することができる。
本実施態様の通りの製造装置と製造方法によれば、高デューティー活性化と狭額縁基板を歩留り良く、すなわち量産性良く生産することが可能となり、一方、電子源特性向上により明るく低消費電力の狭額縁表示パネルが得られる。
以下、具体的な実施例を挙げて本発明を詳しく説明するが、本発明はかかる実施例に限定されるものではなく、本発明の目的が達成される範囲内での各要素の置換や設計変更がなされたものも包含する。
[実施例1]
本実施例1は、本発明に係る製造装置を用いて図6、図7に示す表面伝導型電子放出素子を複数個備える図8に示される電子源基板を製造するものである。尚、図6乃至図8において10は基板、2、3は素子電極、4は導電性膜、29は炭素膜、5は炭素膜29の間隙、Gは導電性膜4の間隙である。
SiO2層を形成したガラス基板10(サイズ350mm×300mm、厚さ2.8mm)上にオフセット印刷法によりPtペーストを印刷し、加熱焼成して、図9に示される厚み50nmの素子電極2、3を形成した。また、スクリーン印刷法により、Agペーストを印刷し、加熱焼成することにより、図9に示されるX方向配線7(240本)及びY方向配線8(720本)を形成し、X方向配線7とY方向配線8の交差部にはスクリーン印刷法により、絶縁ペーストを印刷し、加熱焼成して絶縁層9を形成した。
次に、素子電極2、3間にバブルジェット(登録商標)方式の噴射装置を用いて、パラジウム錯体溶液を滴下し、350℃で30分間加熱して酸化パラジウム(PdO)の微粒子からなる図9に示される導電性膜4を形成した。導電性膜4の膜厚は20nmであった。
以上のようにして、一対の素子電極2、3及び導電性膜4からなる導電体の複数がX方向配線7及びY方向配線8にてマトリクス配線された基板10を作成した。なお、画像形成領域(導電体形成領域6)のサイズは165.6mm×165.6mmである。
基板の反り、うねりについて観察したところ、基板そのものが持っていた反り、うねり及び上記までの加熱工程によって生じたと思われる基板の反り、うねりによって、基板中央部に対して、0.5mmほど周辺が反った状態であった。
以上のようにして導電体を形成した基板10を、図1に示した製造装置の支持体11上に固定した。支持体11と基板10との間には、厚さ1.5mmの熱伝導性ゴムシート41が狭持される。
次に、シリコーンゴム製のシール部材18を介してステンレス製真空容器12を基板10上の取り出し配線が該真空容器12の真空外部になるよう設置した。基板10上には、図1に示すような開口部33を形成した金属板を拡散板19として設置した。
次に、排気口16側のバルブ25fを開け、真空容器12内を真空ポンプ26(スクロールポンプ)で1.33×10-1Pa程度に排気した後、排気装置の配管や、基板10に付着している水分を除去するため、配管用ヒーター(不図示)と基板10用の加熱ヒーター20a,20bを用いて、120℃まで昇温させ、2時間保持後、室温まで徐冷した。
基板10の温度が室温に戻った後、図1に示す配線31を介して取り出し配線(不図示)に接続された駆動ドライバー32を用いて、X方向配線7及びY方向配線8を通じて、各素子の素子電極2、3間に電圧を印加し、導電性膜4をフォームミング処理し、図7に示す間隙Gを各導電性膜4に形成した。
続いて、同装置を用いて活性化処理を行った。図1に示す気体供給用のバルブ25a乃至25d及び気体導入口15側のバルブ25eを開け、有機物質ガス21とキャリアガス22との混合気体を真空容器12内に導入した。有機ガス21には、1%エチレン混合窒素ガスを用い、キャリアガス22には窒素ガスを用いた。両者の流量は、それぞれ40sccm及び400sccmとした。排気口16側の真空計27の圧力を見ながら、バルブ25fの開閉度を調整し、真空容器12内の圧力が133×102Paとなるようにした。
有機物質ガス導入開始から約30分後、駆動ドライバー32を用いて、X方向配線7及びY方向配線8を通じて各素子の電極2、3間に電圧を印加して活性化処理を行った。電圧は10Vから17Vまで25分で上昇するように制御し、パルス幅は1ms、周波数は100Hzとし、活性化時間は30分とした。なお、活性化はY方向配線8全部及びX方向配線7の非選択ラインを共通としてGND(接地電位)に接続し、X方向配線7の24ラインを選択し、24ラインの選択ラインに1msのパルス電圧を順次印加する方法で行い、上記方法を10回を繰り返すことにより、X方向の全ラインについて活性化を行った。上記方法で行ったため、全ラインの活性化は5時間で終了した。
従来は、10ラインを選択して、上記活性化を24回繰り返していたため、全ラインの活性化には12時間を要していた(例えば特許文献3)。さらに、高デューティー活性化により、素子特性の向上も確認されている。
本実施例のように高デューティー活性化を行った場合、図3に示す電子源基板10の導電体形成領域6と周辺部での平均的な温度差ΔTが53.5℃となってしまう。導電体形成領域6の幅をL0、周辺部の幅をL1として、幅比L1/L0を前述の式(2)から考えると、
L1/L0 > 0.64
が得られる。但し、本実施例で使用した基板はPD200ガラスであり、弾性係数E=77.5×109[Pa]、線膨張係数α=79×10-7[/℃]、σth=20×106[Pa]である。
上記の条件から、L0=165.6mm、L1>105mmが得られ、本実施例での条件下での基板サイズは270.6mm以上が必要となるため、図4に示す通り、350mm×300mm(導電体形成領域サイズ165.6mm×165.6mm)を採用した。切断後のサイズは265.6mm×265.6mmである。本実施例の製造装置及び製造方法を採用することにより、基板割れを生ずることなく、安定に活性化処理を行うことが可能となった。
活性化終了時の素子電流If(電子放出素子の素子電極間に流れる電流)を各X方向配線毎に測定し、素子電流If値を比較したところ、その値は、約1.35A乃至1.56A、平均で1.45A(1素子当たり約2mAに相当)であり、その配線毎のばらつきは約8%であり、良好な活性化処理を行うことができた。
上記活性化処理が終了した電子放出素子には、図6、図7に示すように間隙5を隔てて炭素膜29が形成された。
また、上記活性化処理時に、差動排気付きのマススペクトラム測定装置を用いて、排気口16側のガス分析を行ったところ、上記混合ガス導入と同時に、窒素及びエチレンのマスナンバー28とエチレンのフラグメントのマスナンバー26が瞬間的に増加して飽和し、両者の値は活性化処理中ほぼ一定であった。
次に、上述のとおり作成した電子源基板10を狭額縁基板とするために、図2に示す通り、電子源基板10を切断時固定台72に載せ変え、防塵手段であるカバー71で導電体形成領域6を覆う。続いて、切断手段であるホイールカッター70にて基板端部を切断し、その後不図示の面取り手段と研磨手段と洗浄手段を用いて面取り・研磨・洗浄を行った。
なお、切断はX方向配線7、Y方向配線8を残して行う。切断方法は、本実施例に限定されること無く、ホイールカッターの他、ダイシング法、サンドブラスト法など、一般的な手法の適用が可能である。
このようにして作成した電子源基板10を用いて図5に示すような画像形成装置(表示パネル)を製造した。図5において、69は電子放出素子、62は支持枠、66はガラス基板63、メタルバック64及び蛍光体65からなるフェースプレート、68は表示パネルである。
先ず、電子源基板10から2mm上方に支持枠62とスペーサ(不図示)を介してフェースプレート66を設置した。なお、パネル内部を真空とするための排気管(不図示)とゲッター(不図示)もパネルに設けてある。パネルの封着はアルゴン雰囲気中で420℃にて行った。
その後、図5に示すパネルに不図示のX方向、Y方向配線ドライバーと、高圧電源を接続し、フェースプレート66のメタルバック64への高圧を8kVとして、画像表示を行った。比較例として、従来手法の低デューティー活性化でのパネルを上述の手法にて作成したが、明らかに輝度、コントラストの点で、本発明に基づくパネルのほうが勝っていた。また、本発明では熱応力による基板割れが抑制されたため、歩留り、量産性の向上が達成された。
本発明に係る電子源基板の製造装置における気密雰囲気下で通電を行うための部分を模式的に示す断面図である。 本発明に係る電子源基板の製造装置における通電処理後の基板を所望の大きさに切断するための部分を模式的に示す断面図である。 通電領域とその周辺領域との温度差によって基板に生ずる力を説明するための図である。 本発明の実施例に係る電子源基板の構成を模式的に示す平面図である。 画像形成装置の構成を一部を破断して示す斜視図である。 本発明に係る電子放出素子の構成を示す平面図である。 本発明に係る電子放出素子の構成を示す断面図である。 本発明に係る電子源基板を示す平面図である。 本発明に係る電子源基板の作成方法を説明するための平面図である。 従来の電子源基板の製造装置を模式的に示す断面図である。
符号の説明
2,3 素子電極
4 導電性膜
5 電子放出部
6 導電体領域(発熱領域)
7 X方向配線
8 Y方向配線
9 絶縁層
10 電子源基板
11 支持体
12 真空容器
15 気体の導入口
16 排気口
18 シール部材
19 拡散板
20a、20b ヒーター
21 水素または有機物質ガス
22 キャリアガス
23 水分除去フィルター
24 ガス流量制御装置
25a〜25f バルブ
26 真空ポンプ
27 真空計
28 配管
29 炭素膜
31 取り出し配線と駆動ドライバーとを接続する配線
32 電源、電流測定装置及び電流―電圧制御装置からなる駆動ドライバー
33 拡散板の開口部
62 支持枠
63 ガラス基板
64 メタルバック
65 蛍光体
66 フェースプレート
68 画像形成装置(表示パネル)
70 切断手段
71 防塵手段
72 切断時固定台
73 基板切断部を示す中心線
74 切断時の固定台逃げ部
1010 基板
1011 支持体
1012 真空容器
1015 気体の導入口
1016 排気口
1018 シール部材
1019 拡散板
1020 ヒーター
1021 水素または有機物質ガス
1022 キャリアガス
1023 水分除去フィルター
1024 ガス流量制御装置
1025a〜1025f バルブ
1026 真空ポンプ
1027 真空計
1028 配管
1031 配線
1032 駆動ドライバー
1033 拡散板の開口部
1041 熱伝導部材

Claims (16)

  1. 基板上に配置された複数の導電体への通電処理方法であって、
    前記基板上の、複数の導電体が配置された領域S0と当該領域S0の周辺領域S1との通電処理時の平均温度差が、15℃以上であり、
    前記基板は、前記領域S0の幅L0[m]と前記領域S1の幅L1[m]とが以下の関係式を満足するものであることを特徴とする通電処理方法。
    L1/L0 > EαΔT/σth − 1
    (ここで、ΔT[K]は前記平均温度差、E[Pa]は基板のヤング率、α[/K]は基板の線膨張係数、σth[Pa]は基板の材料定数である。)
  2. 基板上に配置された複数の導電体に、気密雰囲気下で通電を行い、当該導電体の一部に電子放出機能を付与する電子源基板の製造方法において、
    前記基板上の、複数の導電体が配置された領域S0と当該領域S0の周辺領域S1との通電処理時の平均温度差が、15℃以上であり、
    前記基板は、前記領域S0の幅L0[m]と前記領域S1の幅L1[m]とが以下の関係式を満足するものであることを特徴とする電子源基板の製造方法。
    L1/L0 > EαΔT/σth − 1
    (ここで、ΔT[K]は前記平均温度差、E[Pa]は基板のヤング率、α[/K]は基板の線膨張係数、σth[Pa]は基板の材料定数である。)
  3. 前記通電処理をした後に、前記基板を所望の大きさに切断する切断工程を有する請求項2に記載の電子源基板の製造方法。
  4. 前記切断工程は、前記導電体の領域を覆う防塵工程と、ホイールカッター切断工程、もしくはダイシング切断工程、もしくはサンドブラスト切断工程のいずれかの切断工程を有する請求項3に記載の電子源基板の製造方法。
  5. 切断後の基板の周辺部の面取り工程と研磨工程と洗浄工程と、を有する請求項3または4に記載の電子源基板の製造方法。
  6. 前記気密雰囲気下で通電を行う工程が、前記基板上の前記導電体の領域を容器で覆う被覆工程と、該被覆工程後にはガスの排気工程と導入工程を有する請求項2乃至5のいずれかに記載の電子源基板の製造方法。
  7. 前記導電体は一対の電極と当該電極間に形成された導電性膜からなり、該電極は配線と電気的に接続されており、前記通電処理の後に該導電性膜が表面伝導型電子放出素子となる請求項2乃至6のいずれかに記載の電子源基板の製造方法。
  8. 基板上に配置された複数の導電体に、気密雰囲気下で通電を行い、当該導電体の一部に電子放出機能を付与する電子源基板の製造装置であって、前記基板を固定支持する固定手段と、該基板の雰囲気を制御する雰囲気制御手段と、通電処理した後に該基板を所望の大きさに切断する切断手段と、を備えることを特徴とする電子源基板の製造装置。
  9. 前記基板上の、複数の導電体が配置された領域S0と当該領域S0の周辺領域S1との通電処理時の平均温度差が、15℃以上であり、
    前記基板は、前記領域S0の幅L0[m]と前記領域S1の幅L1[m]とが以下の関係式を満足するものである請求項8に記載の電子源基板の製造装置。
    L1/L0 > EαΔT/σth − 1
    (ここで、ΔT[K]は前記平均温度差、E[Pa]は基板のヤング率、α[/K]は基板の線膨張係数、σth[Pa]は基板の材料定数である。)
  10. 前記材料定数σthが20×106[Pa]である電子源基板を処理できる請求項9に記載の電子源基板の製造装置。
  11. 前記切断手段はホイールカッター、もしくはダイシング、もしくはサンドブラストのいずれかの切断手段と、前記導電体の領域を覆う防塵手段を有する請求項8乃至10のいずれかに記載の電子源基板の製造装置。
  12. 切断後の基板の周辺部の面取り手段と研磨手段と洗浄手段とを有する請求項8乃至11のいずれかに記載の電子源基板の製造装置。
  13. 前記雰囲気制御手段が前記基板上の前記導電体の領域を覆う容器からなり、該容器にはガスの排気手段と導入手段を備えている請求項8乃至12のいずれかに記載の電子源基板の製造装置。
  14. 前記固定手段は当該固定手段上に前記基板を真空吸着させる手段を備えている請求項8乃至13のいずれかに記載の電子源基板の製造装置。
  15. 前記固定手段は当該固定手段上に前記基板を静電吸着させる手段を備えている求項8乃至13のいずれかに記載の電子源基板の製造装置。
  16. 前記固定手段は当該固定手段上に前記基板の温度を制御する加熱手段と冷却手段からなる制御手段を備えている求項8乃至15のいずれかに記載の電子源基板の製造装置。
JP2004012994A 2003-01-21 2004-01-21 通電処理方法、電子源基板の製造方法および製造装置 Expired - Fee Related JP3740484B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012994A JP3740484B2 (ja) 2003-01-21 2004-01-21 通電処理方法、電子源基板の製造方法および製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003011733 2003-01-21
JP2004012994A JP3740484B2 (ja) 2003-01-21 2004-01-21 通電処理方法、電子源基板の製造方法および製造装置

Publications (2)

Publication Number Publication Date
JP2004247296A true JP2004247296A (ja) 2004-09-02
JP3740484B2 JP3740484B2 (ja) 2006-02-01

Family

ID=33031930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012994A Expired - Fee Related JP3740484B2 (ja) 2003-01-21 2004-01-21 通電処理方法、電子源基板の製造方法および製造装置

Country Status (1)

Country Link
JP (1) JP3740484B2 (ja)

Also Published As

Publication number Publication date
JP3740484B2 (ja) 2006-02-01

Similar Documents

Publication Publication Date Title
US7381578B2 (en) Electrifying method and manufacturing method of electron-source substrate
JP3320387B2 (ja) 電子源の製造装置及び製造方法
US7326097B2 (en) Method and apparatus for manufacturing image displaying apparatus
JP2002350462A (ja) 電圧印加プローブ、電子源の製造装置及び製造方法
JP3483537B2 (ja) 画像表示装置の製造方法
JP3890258B2 (ja) 電子源の製造方法、および、電子源の製造装置
JP3740484B2 (ja) 通電処理方法、電子源基板の製造方法および製造装置
US6962516B2 (en) Voltage applying apparatus, and apparatus and method for manufacturing electron source
US7828623B2 (en) Apparatus for processing substrate and apparatus for processing electron source substrate
JP2004227821A (ja) 通電処理装置および電子源の製造装置
US20020137423A1 (en) Method of fabricating electron source substrate and image forming apparatus
JP2004146152A (ja) 電圧印加装置
JP2003007203A (ja) 電子源の製造装置及び製造方法
JP2003092060A (ja) 電子源の製造装置及び製造方法
JP2003007205A (ja) 電子源の製造装置及び製造方法
JP2005197241A (ja) 電子源の製造装置及び電子源の製造方法
JP2002367506A (ja) 電圧印加装置、電子源の製造装置及び製造方法
JP2002352701A (ja) 電子源の製造装置及び製造方法
JP2003086086A (ja) 電子源の製造装置及び製造方法
JP2004152601A (ja) 電子源の製造装置
JP2002075169A (ja) 電子放出素子、電子源、および画像形成装置、並びにそれらの製造方法
JP2002245929A (ja) 電子源の製造装置及びその製造方法、並びに画像表示装置の製造方法
JP2004207125A (ja) 基板処理方法
JP2004241299A (ja) 電子源の製造装置および製造方法
JP2002334651A (ja) 電子源及び画像形成装置の製造方法、電子源の製造装置、導電体の通電方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees