JP2004241367A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2004241367A
JP2004241367A JP2003163404A JP2003163404A JP2004241367A JP 2004241367 A JP2004241367 A JP 2004241367A JP 2003163404 A JP2003163404 A JP 2003163404A JP 2003163404 A JP2003163404 A JP 2003163404A JP 2004241367 A JP2004241367 A JP 2004241367A
Authority
JP
Japan
Prior art keywords
flow path
gas flow
separator
fuel cell
porous portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003163404A
Other languages
English (en)
Other versions
JP2004241367A5 (ja
JP4706167B2 (ja
Inventor
Seiji Sano
誠治 佐野
Yasushi Araki
康 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003163404A priority Critical patent/JP4706167B2/ja
Publication of JP2004241367A publication Critical patent/JP2004241367A/ja
Publication of JP2004241367A5 publication Critical patent/JP2004241367A5/ja
Application granted granted Critical
Publication of JP4706167B2 publication Critical patent/JP4706167B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】生成水の排出性を向上。生成水を加湿に再利用。生成水を均一排出。
【解決手段】(1)セパレータに多孔質部32を形成し、多孔質部の反応ガス流路背面に冷却用ガス流路33を形成した。(2)冷却用ガス流路33を下流で燃料電池に供給される反応ガスの供給流路に接続した。(3)冷却用ガス流路33は流量制御可能である。(4)反応ガス流路27、28の下流部が位置するセパレータ部分のみに多孔質部32を形成した。(5)反応ガス流路27、28の上流部が位置するセパレータ部分には別の冷媒(冷却水)流路26を形成した。(6)山部、または山部と山下部の気孔率を大とした。(7)溝を多孔質49で埋めた。(8)多孔質部32を水分交換部32’とした。(9)多孔質部32以外の領域も反応ガス流路側部を多孔質材51で形成した。(10)多孔質部32の通気抵抗をアノード>カソードとした。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池に関し、とくに生成水の排出を良好にした固体高分子電解質型燃料電池に関する。
【0002】
【従来の技術】
【特許文献1】
特表平11−508726号公報
【0003】
固体高分子電解質型燃料電池は、膜−電極アッセンブリ(MEA:Membrane−Electrode Assembly )とセパレータとの積層体からなる。膜−電極アッセンブリは、イオン交換膜からなる電解質膜と、この電解質膜の一面に配置された触媒層からなる電極(アノード)および電解質膜の他面に配置された触媒層からなる電極(カソード)とからなる。セパレータには、アノードに燃料ガス(水素)を供給するための燃料ガス流路、またはカソードに酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路、および/または冷媒(通常、冷却水)を流すための冷媒流路が形成されている。膜−電極アッセンブリとセパレータとの間には、アノード側、カソード側にそれぞれガス拡散層が設けられる。
各セルの、アノード側では、水素を水素イオン(プロトン)と電子にする反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水を生成する反応が行われ、かくして発電が行われる。
アノード側:H→2H+2e
カソード側:2H+2e+(1/2)O→H
生成水は、酸化ガス流路下流部で多くなり、フラッディングを生じやすい。フラッディング域では、酸化ガスのカソードへの供給が阻害されるので、上記反応が円滑に行われなくなり、発電能力が低下する。そのため、生成水を排水しフラッディングを抑制することが重要となる。また、酸化ガス流路から水分が電解質膜を通して一部燃料ガス流路側に拡散するので、燃料ガス流路にも類似の問題は生じる。上記反応が円滑に起きるには電解質膜が湿潤状態になければならず、酸化ガスも燃料ガスも通常は加湿して供給するので、フラッディングはさらに起こりやすくなる。
特表平11−508726号公報は、セパレータを全域にわたって多孔質とし、カソードで生じた生成水を、多孔質セパレータを通して冷却水流路に押出し、フラッディングを防止した燃料電池を開示している。
【0004】
【発明が解決しようとする課題】
しかし、特表平11−508726号公報のように、カソードで生じた生成水を冷却水流路に押し出す燃料電池には、つぎの問題がある。
冷媒が純水でないと生成水を冷媒として再利用できない。冷却水が不凍液の場合、冷却水が酸化ガス流路側に移動すると、冷却水中の成分が膜を傷めてしまうという問題が生じる。そのため、特表平11−508726号公報では、冷却水に純水を用いているが、氷点下での運転が不可能になる。また、酸化ガス流路から冷却水に不純物が混入して冷却水のイオン伝導度が上がってしまうという問題が生じる。
更に、生成水を冷却水中に移動させるために、ガス流路と冷却水流路間の差圧制御が必要になり、システムが複雑化する。
また、生成水を冷却水中に押し出すので、生成水を反応ガスの加湿に再利用することはできない。
また、カソード流路が山と溝とから成るため、生成水透過が山と溝部位とで異なり、均一な生成水押出ができない。
本発明の第1の目的は、生成水をガス流路から(冷却水流路ではなく)ガス流路に排出することができる燃料電池を提供することにある。
本発明の第2の目的は、生成水を再利用することができる燃料電池を提供することにある。
本発明の第3の目的は、生成水を生成水排出部領域でほぼ均一に排出することができる燃料電池を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(イ) MEAとセパレータとを有し、セパレータのMEA対向面に反応ガス流路が形成されている燃料電池であって、セパレータに多孔質部を形成し、多孔質部の反応ガス流路背面に冷却用ガス流路を形成した燃料電池。
(ロ) 冷却用ガス流路は下流で燃料電池に供給される反応ガスの供給流路に接続している(イ)の燃料電池。
(ハ) 多孔質部において、反応ガス流路と冷却用ガス流路の少なくとも一方のガス流路の山部、または山部と山下部の気孔率を他の部分より大とするか、または冷却用ガス流路と反応ガス流路の少なくとも一方のガス流路の山/溝比を多孔質部以外の部位のガス流路の山/溝比より小とするか、または冷却用ガス流路を多孔質材で埋めた(イ)の燃料電池。
(ニ) MEAとセパレータとを有し、セパレータのMEA対向面に反応ガス流路が形成されている燃料電池であって、セパレータに水分交換部を形成し、水分交換部の反応ガス流路背面に冷却用ガス流路を形成した燃料電池。
(ホ) セパレータの、反応ガス流路側表面の少なくとも一部の領域で、セパレータ厚さ方向に反応ガス流路側表面から背面側に向かって一部の厚さ部分を、多孔質材で形成した(イ)の燃料電池。
(ヘ) セパレータの反応ガス下流部にのみ多孔質部が設けられ、該多孔質部が、アノード側にも、酸化ガス側にも形成され、通気抵抗がアノード>カソードとしてある(イ)の燃料電池。
【0006】
上記(イ)の燃料電池では、セパレータに多孔質部を形成し、多孔質部の反応ガス流路背面に冷却用ガス流路を形成したので、生成水は反応ガス流路から多孔質部を通過して冷却用ガス流路に移動できる。冷却用ガスとして反応ガスと同種のガスを使用することにより、冷却用ガスが反応ガス流路に移動しても、冷却水が反応ガス流路に移動した場合のような電解質膜の損傷、フラッディングの問題は生じない。
上記(ロ)の燃料電池では、冷却用ガス流路が下流で燃料電池に供給される反応ガスの供給流路に接続しているので、冷却用ガス流路に移動した生成水が燃料電池に供給される反応ガスに流れ、その反応ガスの加湿に再利用できる。
上記(ハ)の燃料電池では、山部の気孔率大、山部と山下部の気孔率大、山/溝比小、溝への多孔質材の充填の何れか少なくとも一つを採用することにより、反応ガス流路から冷却用ガス流路への生成水の移行が、多孔質部域において均一化される。
上記(ニ)の燃料電池では、多孔質部に代えて水分交換部とすることにより、水分交換部の一面の冷却用ガスと水分交換部の他面の反応ガスに互いに異種のガスを用いることもできる。
上記(ホ)の燃料電池では、セパレータの、反応ガス流路側表面の少なくとも一部の領域を多孔質材で形成したので、集電面の排水性と、ガス供給性が向上する。
上記(ヘ)の燃料電池では、燃料ガスの冷却用ガスへの漏れを抑制できる。
【0007】
【発明の実施の形態】
以下に、本発明の燃料電池を図1〜図25を参照して説明する。
図中、図1〜図4は本発明の実施例1を示し、図5は本発明の実施例2を示し、図6は本発明の実施例3を示し、図7は本発明の実施例4を示し、図8は本発明の実施例5を示し、図9、図10は本発明の実施例6を示し、図11は本発明の実施例7を示し、図12は本発明の実施例8を示し、図13、図14は本発明の実施例9を示し、図15は本発明の実施例10を示し、図16、図17は本発明の実施例11を示し、図18、図19は本発明の実施例12を示し、図20、図21は本発明の実施例13を示し、図22、図23は本発明の実施例14を示し、図24は本発明の実施例15を示す。図25は本発明の全実施例に適用される。
本発明の全実施例にわたって共通する、または類似する部分には、本発明の全実施例にわたって同じ符合を付してある。
まず、本発明の全実施例にわたって共通する、または類似する部分を、図1〜図4、および図16〜図19、図25を参照して、説明する。
本発明の制御装置が適用される燃料電池は固体高分子電解質型燃料電池10である。該燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
【0008】
固体高分子電解質型燃料電池10は、図3、図25に示すように、膜−電極アッセンブリ(MEA:Membrane−Electrode Assembly )とセパレータ18との積層体からなる。膜−電極アッセンブリは、イオン交換膜からなる電解質膜11と、この電解質膜の一面に配置された触媒層12からなる電極(アノード、燃料極)14および電解質膜11の他面に配置された触媒層15からなる電極(カソード、空気極)17とからなる。膜−電極アッセンブリとセパレータ18との間には、アノード側、カソード側にそれぞれ拡散層13、16が設けられる。
【0009】
膜−電極アッセンブリとセパレータ18を重ねてセル19を構成し、少なくとも1つのセルからモジュールを構成し、モジュールを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル20、インシュレータ21、エンドプレート22を配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート24)、ボルト・ナット25にて固定して、スタック23を構成する。
【0010】
膜−電極アッセンブリ(MEA)を挟んで対向する一対のセパレータ18のうちアノード側のセパレータ18のMEA対向面には、アノードに燃料ガス(水素)を供給するための燃料ガス流路27が、カソード側のセパレータ18のMEA対向面には、カソードに酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が、形成されている。ただし、燃料ガス流路27、酸化ガス流路28はセパレータ18に形成されてもよいし、あるいは拡散層13、16に形成されてもよい。燃料ガス、酸化ガスは、それぞれ、反応ガスと呼ばれ、燃料ガス流路27、酸化ガス流路28は、それぞれ、反応ガス流路と呼ばれる。また、セパレータ18には、冷媒(冷却水)を流すための冷媒(冷却水)流路26が形成されている。
セパレータの反応ガス流路27、28は、ストレート状流路であってもよいし、サーペンタイン流路であってもよい。また、セパレータの反応ガス流路27、28は、溝状流路または溝状流路の流路群であってもよい。流路は、溝でなく、千鳥状の多数の突起で区画されたものであってもよい。
【0011】
セパレータ18には、図1、図2に示すように、冷媒(冷却水)供給マニホールド29a、冷媒(冷却水)排出マニホールド29b、燃料ガス(水素)供給マニホールド30a、燃料ガス(水素)排出マニホールド30b、酸化ガス(空気)供給マニホールド31a、酸化ガス(空気)排出マニホールド31bが形成されている。そして、セル面内冷媒(冷却水)流路26は、冷媒(冷却水)供給マニホールド29a、冷媒(冷却水)排出マニホールド29bに接続しており、セル面内燃料ガス流路27は、燃料ガス(水素)供給マニホールド30a、燃料ガス(水素)排出マニホールド30bに接続しており、セル面内酸化ガス流路28は、酸化ガス(空気)供給マニホールド31a、酸化ガス(空気)排出マニホールド31bに接続している。
【0012】
セパレータ18は、カーボン(黒鉛である場合を含む)製、または金属製(焼結合金などである場合を含む)、または金属製と樹脂フレーム製との組み合わせ、または導電性樹脂製、またはこれらの組み合わせ、である。
本発明の燃料電池では、燃料電池発電領域の少なくとも一部において、セパレータ18に多孔質部32が形成されており、多孔質部32の反応ガス流路(燃料ガス流路27、酸化ガス流路28の何れか少なくとも一方のガス流路)背面には、セル面内に冷却用ガス流路33が形成されている。
セパレータ18には、冷却ガス供給マニホールド34aと冷却ガス排出マニホールド34bが設けられ、セル面内冷却用ガス流路33は冷却ガス供給マニホールド34a、冷却ガス排出マニホールド34bに接続している。冷却用ガスは、冷却ガス供給マニホールド34aからセル面内冷却用ガス流路33に流れ、セル面内冷却用ガス流路33から冷却ガス排出マニホールド34bに流れる。
冷却用ガス流路33は、溝状流路または溝状流路の流路群であってもよい。また、冷却用ガス流路33は、千鳥状の多数の突起で区画されたものであってもよい。また、冷却用ガス流路33は、溝に多孔質材が充填された流路であってもよい。
【0013】
多孔質部32は、燃料電池のセル面内の少なくとも一部の領域(全領域であってもよい)に、セパレータ18の厚み方向全厚(溝部では溝底での全厚)にわたって、形成されている。多孔質部32は、燃料電池の生成水をセパレータ厚み方向に移動させる。多孔質部32を構成したため、反応ガス流路27、28に燃料電池の生成水が生じても、その生成水が多孔質部32を移動して冷却用ガス流路33に蒸発して出ていくことができる。その場合、生成水の蒸発の際に熱を奪うので、生成水の排出と燃料電池の冷却を達成できる。
【0014】
多孔質部32は、セパレータの集電機能をもつ必要があるので、導電性材料から形成される。
多孔質部32の材料はセパレータ18の材料と同種であることが接続上望ましい。たとえば、セパレータ18がカーボン製である場合は多孔質部32はポーラス状に形成されたカーボン(カーボン粒子の形状や、サイズや、バインダとの濃度を適宜選定することによりカーボン成形体はポーラスとなる)から形成され、セパレータ18が金属製である場合は多孔質部32は多孔質の金属(たとえば、焼結金属、金属メッシュ、等)から形成される。多孔質部32は、多孔質部32以外のセパレータ部分と一体形成されていてもよいし、あるいは多孔質部32以外のセパレータ部分と別体に形成されて多孔質部32以外のセパレータ部分と結合されてもよい。
【0015】
多孔質部32の一面に反応ガス流路27、28が形成され他面に冷却用ガス流路33が形成された構造において、冷却用ガス流路33を流れる冷却用ガスは反応ガス流路27、28を流れるガスと同じ種類のガスとされることが望ましい。たとえば、多孔質部32の一面の反応ガス流路28を流れるガスが空気の場合、多孔質部32の他面に流れる冷却用ガスには空気が用いられ、多孔質部32の一面の反応ガス流路27を流れるガスが水素の場合、多孔質部32の他面に流れる冷却用ガスには水素が用いられることが望ましい。同種のガスとした場合、反応ガス流路27、28と冷却用ガス流路33との間にガスが移動しても、水とガスが対向した場合と異なり、電解質膜11への悪影響やフラッディングの助長などの問題を生じない。ただし、図15の実施例の場合はこの限りでない。
【0016】
図3、図7に示すように、冷却用ガス流路33が形成されたセルに隣接するセルにも、冷却用ガス流路33に対応させて冷却用ガス流路33’が形成され、冷却用ガス流路33’に、冷却用ガス流路33を流れるガスと同種のガス(冷却用ガス流路33’が形成されたセパレータの反応ガス流路を流れるガスと異種のガス)が流されてもよい。ただし、冷却用ガス流路33’が形成されたセパレータはガス、水不透過性であり、冷却用ガス流路33’が形成されたセパレータの反応ガス流路と冷却用ガス流路33’との間のセパレータ部分は多孔質部32ではない。冷却用ガス流路33および冷却用ガス流路33’のまわりには、Oリング45(図3)が配置され、冷却用ガス流路33および冷却用ガス流路33’をまわりからシールしている。図3は冷却用ガス流路33、33’に酸化ガスが流される場合であり、図7は冷却用ガス流路33、33’に燃料ガスが流される場合である。
【0017】
冷却用ガス流路33は下流で燃料電池10に供給される反応ガスの供給流路(たとえば、反応ガスの供給マニホールド27a、28a)に接続している。この構成により、冷却用ガス流路で生成水を冷却用ガスに蒸発させて冷却用ガスを加湿し、それを反応ガス供給マニホールドに供給して反応ガスとして用いることができ、その場合生成水を加湿水分として再利用することができるようになる。
冷却用ガス流路33の下流で、冷却用ガス流路33と反応ガスの供給流路とを接続する接続流路35は、セル面内に形成されてもよいし、スタック23外に形成されてもよい。図1では、接続流路35が、冷却用ガス排出マニホールド34bと反応ガスの供給マニホールド27a、28aとを接続する流路から構成され、スタック外に配置され、各セルの冷却用ガスが冷却用ガス排出マニホールド34bで一たん集められ接続流路35を通って反応ガスの供給マニホールド27a、28aに供給される場合を、一例として、示している。ただし、接続流路35は、スタック23内で、かつ、各セル面に、設けられてもよい。
【0018】
冷却用ガス流路33を含む冷却用ガス回路は、冷却用ガス流路33を流れる冷却用ガスの流量が制御可能な構成となっている。たとえば、冷却用ガス回路の、セル面内冷却用ガス流路33より上流側部分とセル面内冷却用ガス流路33より下流側部分とをセル面内冷却用ガス流路33を迂回して接続するバイパス流路36を設け、バイパス流路36または冷却用ガス流路33側流路の何れか少なくも一方の流路に流量制御弁37を設ける(図1の例では流量制御弁37をバイパス流路36に設けた場合を示す)構成とすれば、流量制御弁37を流量制御することにより、セル面内冷却用ガス流路33を流れる冷却用ガスの流量が制御可能となる。
バイパス流路36を設ける構成では、セル面内冷却用ガス流路33を流れる冷却用ガスの流量を変えても、反応ガスの供給マニホールド27a、28aに供給される冷却用ガス(別の反応ガス供給系を設けない場合は、そのまま反応ガスとなる)の流量があまり変化せず、燃料電池の運転が安定する。ただし、図4に示すように、別の反応ガス供給系を設けて、その反応ガス供給流路に冷却用ガスを合流させてもよい。
【0019】
生成水排出上は多孔質部32はセル面のできるだけ広い領域に設けることがよいが、多孔質部32では冷却用ガスによる冷却が行われガスによる冷却は水による冷却に比べて冷却効率が低いので、燃料電池の冷却上は多孔質部32はセル面のできるだけ狭い領域に設けることがよい。
その両立をはかるためには、セル面内反応ガス流路27、28を上流部、中流部、下流部に分けた場合、その下流部が位置するセパレータ部分(図2の「Wet(湿潤)」に対応する部分)のみに多孔質部32を形成することが望ましい。セル面内反応ガス流路27、28の下流部は、生成水が多い部分であるが、そこに多孔質部32を設けることにより、速やかに生成水を排出でき、その部分の発電能力低下を効率よく防止することができる。また、ガス冷却部を、セル面内反応ガス流路27、28の下流部が位置するセパレータ部分のみに限定でき、冷却上の問題の発生を抑制することができる。
【0020】
セル面内反応ガス流路27、28の下流部以外の部分(セル面内反応ガス流路27、28の上流部および中間部)が位置するセパレータ部分には冷却水が流れる冷媒流路26を配置し、冷媒流路26には、たとえば、氷点下での運転が可能であるLLC(Long Life Coolant の略、不凍液のこと)を流す。冷媒(冷却水)流路26とセル面内冷却用ガス流路33とは、互いに別系統である。セル面内反応ガス流路27、28の上流部および中間部が位置するセパレータ部分は、反応ガス濃度が高い(消費されないで残っている反応ガス量が多い)領域であるため、発電量が多く、発熱が多い領域であるので、そこを、冷却用ガスではなく、冷却水で冷却することにより、冷却効率がよい冷却を行うことができる。
【0021】
多孔質部32では、セル面内反応ガス流路27、28および冷却用ガス流路33が山部間に形成された溝からなる場合、山部に対応する部分での生成水排出作用が溝に対応する部分での生成水排出作用より小のため、生成水を生成水排出部領域でほぼ均一に排出することが難しい。
そのため、多孔質部32において、反応ガス流路27、28と冷却用ガス流路33の少なくとも一方(両方でもよい)のガス流路の山部46(溝底面より先端の部分)、または山部とその山下部48(流路27、28の溝底面と流路33の溝底面との間の部分)の気孔率を他の部分より大とするか、または冷却用ガス流路33と反応ガス流路27、28の少なくとも一方のガス流路の山/溝比を多孔質部以外の部位のガス流路の山/溝比より小とするか、または冷却用ガス流路33を多孔質材で埋める。図中、50はガスケットを示す。
これによって、反応ガス流路27、28から冷却用ガス流路33への生成水の移行が、多孔質部32領域において均一化される。
【0022】
また、図16、図17に示すように、セパレータ18の、反応ガス流路側表面の面方向の少なくとも一部の領域(たとえば、反応ガス流路方向中流域、または反応ガス流路方向中流域と上流域)で、セパレータ厚さ方向に反応ガス流路側表面から背面側に向かって一部の厚さ部分(たとえば、反応ガス流路の溝と山のうち、山と溝底の部分、または山の部分)を、多孔質材51で形成してもよい。この多孔質材51は多孔質部32とつながっており、多孔質材51で吸収された水分が多孔質部32に毛管作用(拡散作用)で移動できるようになっている。多孔質材51は多孔質部32の材料と同じ材料、同じ多孔度であってもよいし、あるいは異なる材料、異なる多孔度であってもよい。
セパレータ18の、反応ガス流路側表面の少なくとも一部の領域を多孔質材51で形成した場合は、集電面(拡散層とセパレータの接触面)の排水性と、ガス供給性が向上する。ガス供給性の向上は、セパレータの溝間の山で押された部分へのガスの供給が、拡散層を通して供給されるだけでなく、セパレータ18の多孔質材51で形成された山部を通しても供給されるからである。
【0023】
また、図18、19に示すように、燃料ガス流路27と酸化ガス流路28の両方のガス流路の出口部に対応するセパレータ部分を多孔質化し、冷却用ガス流路33に大気エアを流して燃料ガス流路27と酸化ガス流路28の両方のガス流路の出口部の水分を冷却用ガスに蒸発させ、そのエアを酸化ガス流路28に供給することで、フラッディングを防止するとともに酸化ガス流路28入口部のドライアップを防止するようにした燃料電池においては、燃費の確保と安全の観点より、多孔質部32を通しての燃料ガス(水素)の冷却用ガスへの漏れが抑制されることが望ましい。
そのために、セパレータの反応ガス下流部に設けられる多孔質部32が、燃料ガス側(アノード側)にも、酸化ガス側(カソード側)にも形成され、多孔質部32の通気抵抗がアノード>カソードとしてある。
通気抵抗を変えるパラメータは、気孔率、気孔径、多孔質部の面積、多孔質部の厚みがある。多孔質部32の通気抵抗をアノード>カソードとすることは、多孔質部32の気孔率をアノード<カソードとするか、多孔質部32の気孔径をアノード<カソードとするか、多孔質部32の面積をアノード<カソードとするか、多孔質部32の厚みをアノード>カソードとするか、あるいはこれらの組合せによって得られる。
【0024】
つぎに、本発明の各実施例に特有な部分を説明する。
本発明の実施例1では、図1〜図4に示すように、セパレータ18のセル面内冷却用ガス流路33の上流にブロワ38が接続されている。ブロワ38の吐出側は冷却用ガス供給マニホールド34aに接続しており、ブロワ38の吸引側は冷却用ガス源(大気)に連通している。冷却用ガスはセル面内冷却用ガス流路33より下流で反応ガス供給マニホールド30a、31a(図示例では酸化ガス供給マニホールド31a)に接続流路35を介して接続している。接続流路35にはブロワは設けられていない。冷却用ガスがそのまま反応ガスとして用いられる。図1では冷却用ガスが空気の場合を示している。
【0025】
セル面内反応ガス流路27、28(図示例では酸化ガス流路28)の下流部領域には、多孔質部32が形成されている。多孔質部32のMEA側の面には反応ガス流路27、28が形成されており、多孔質部32のMEAと反対側の面には冷却用ガス流路33が形成されている。生成水はガス流路27、28から多孔質部32中を移動して冷却用ガス流路33側に排出され、フラッディングが抑制される。冷却用ガス流路33側に排出された水分は、冷却用ガスを加湿する。加湿した冷却用ガスをそのまま反応ガスとして用いるので、従来必要であった反応ガスの加湿器が不要になるか、または従来に比べて加湿器容量を減少させることができる。また、生成水は多孔質部32を移動する時に蒸発して、潜熱と顕熱で多量の熱を奪い、燃料電池10を冷却する。フラッディングの抑制と燃料電池の冷却との両方が達成される。
【0026】
実施例1の流路構成では、多孔質部32を挟んで対峙する反応ガス流路27、28と冷却用ガス流路33のうち、反応ガス流路27、28は冷却用ガス流路33より下流にあるので、反応ガス流路27、28のガス圧は冷却用ガス流路33のガス圧より低く、冷却用ガスが冷却用ガス流路33から多孔質部32を移動して反応ガス流路27、28に流れる。これによって、反応ガス流路27、28の下流部の反応ガスの濃度を上げることができ、反応ガス流路27、28の下流部の発電能力を上げることができる。冷却用ガスの冷却用ガス流路33から反応ガス流路27、28への流れにかかわらず、生成水は多孔質部32の毛細管現象や蒸発により反応ガス流路27、28から冷却用ガス流路33に移動できる。しかし、生成水の反応ガス流路27、28から冷却用ガス流路33への移動を助長するために、多孔質部32領域における冷却用ガスの圧力を低くしたい時には、冷却用ガス流路33を絞って流速を高くし、静圧を下げるようにする。
【0027】
本発明の実施例2では、図5に示すように、セル面内冷却用ガス流路33の下流で、冷却用ガス流路33と反応ガスの供給流路とを接続する接続流路35に、ブロワ38が配置されている。ブロワ38の吐出側は反応ガス供給マニホールド30a、31aに接続しており、ブロワ38の吸引側は冷却用ガス排出マニホールド34bに接続している。冷却用ガスはセル面内冷却用ガス流路33より下流で反応ガス供給マニホールド30a、31a(図示例では酸化ガス供給マニホールド31a)に接続流路35、ブロワ38を介して接続している。セル面内冷却用ガス流路33の上流側にはブロワは設けられていない。冷却用ガスがそのまま反応ガスとして用いられる。図5では冷却用ガスが空気の場合を示している。
【0028】
セル面内反応ガス流路27、28(図示例では酸化ガス流路28)の下流部領域には、多孔質部32が形成されている。多孔質部32のMEA側の面には反応ガス流路27、28が形成されており、多孔質部32のMEAと反対側の面には冷却用ガス流路33が形成されている。生成水はガス流路27、28から多孔質部32中を移動して冷却用ガス流路33側に排出され、フラッディングが抑制される。冷却用ガス流路33側に排出された水分は、冷却用ガスを加湿する。加湿した冷却用ガスをそのまま反応ガスとして用いるので、従来必要であった反応ガスの加湿器が不要になるか、または従来に比べて加湿器容量を減少することができる。また、生成水は多孔質部32を移動する時に蒸発して、潜熱および顕熱で多量の熱を奪い、燃料電池10を冷却する。これによって、フラッディングの抑制と燃料電池の冷却との両方が達成される。
【0029】
実施例2の流路構成では、接続流路35にブロワ38を設けたので、多孔質部32を挟んで対峙する反応ガス流路27、28と冷却用ガス流路33のうち、反応ガス流路27、28のガス圧は冷却用ガス流路33のガス圧より高く、反応ガスが反応ガス流路27、28から多孔質部32を移動して冷却用ガス流路33に流れ、生成水は、多孔質部32の水分拡散作用に加えて、圧力によって反応ガス流路27、28から冷却用ガス流路33に移動できる。これによって、生成水の排出とフラッディング防止が効果的に達成される。
【0030】
本発明の実施例3は、本発明の実施例1で多孔質部32の詰まりが発生した場合の対策に係る実施例である。本発明の実施例3では、図6に示すように、セル面内冷却用ガス流路33の下流で、冷却用ガス流路33と反応ガスの供給流路とを接続する接続流路35に、大気に通じる枝管39が分岐され、その枝管39にもう一つのブロワ43が配置され、枝管39には枝管39の分岐部40より下流に開閉弁41が設けられ、接続流路35には枝管39の分岐部40より下流に開閉弁42が設けられる。ブロワ43は他の負圧発生手段に置き換えられてもよい。その他は本発明の実施例1と同じである。
【0031】
燃料電池の通常運転時には、開閉弁42が開で、開閉弁41が閉とされ、ブロワ43は停止している。燃料電池の通常運転時に多孔質部32の詰まりが発生した場合、開閉弁42が閉、開閉弁41が開とされ、ブロワ43が運転され、ブロワ38は停止される。これによって、多孔質部32の一面の冷却用ガス流路33が負圧となり、多孔質部32の詰まりを生じていた異物を吸引し、除去する。異物の除去が終わると、再び開閉弁42が開、開閉弁41が閉とされ、ブロワ43が停止され、ブロワ38が運転される。
【0032】
本発明の実施例4では、図7に示すように、MEAのアノード側のセパレータ18に多孔質部32が形成され、多孔質部32の一面に燃料ガス流路27が形成され、多孔質部32の他面に冷却用ガス流路33’が形成されている。冷却用ガス流路33’には燃料ガス(水素)が流される。隣接するセルの、MEAのカソード側のセパレータ18の酸化ガス流路33の背面にも冷却用ガス流路33が形成されており、その冷却用ガス流路33は隣接するセルの冷却用ガス流路33’と区画されておらず、その冷却用ガス流路33にも燃料ガス(水素)が流される。隣接するセルの、MEAのカソード側のセパレータ18の酸化ガス流路33と、その背面の冷却用ガス流路33との間のセパレータ部分は、多孔質部32ではなく、ガス不透過性のため、冷却用ガス流路33を流れる燃料ガス(水素)と、酸化ガス流路33を流れる酸化ガス(エア)とが混ざり合うことはない。
【0033】
セル面内燃料ガス流路27内の水分(酸化ガス流路28の生成水が電解質膜11を透過して来る水分)は、多孔質部32を通り蒸発して冷却用ガス流路33’に移動する。そのため、セル面内燃料ガス流路27のフラッディングが解消される。また、水分の蒸発により潜熱、顕熱により多量の熱が奪われ、燃料電池が効果的に冷却される。
また、冷却用ガス流路33’を流れる水素は、多孔質部32を移動して来た水分で加湿され、接続流路35を介して、そのまま燃料ガス供給マニホールド30aに供給され、燃料ガスとして用いられる。燃料ガスの加湿器が不要となるか、または設けても小容量のもので済む。
【0034】
本発明の実施例5では、図8に示すように、MEAのアノード側のセパレータ18とMEAのカソード側のセパレータ18の両方に多孔質部32が形成される。アノード側のセパレータでは、多孔質部32の一面に燃料ガス流路27が形成され、多孔質部32の他面に冷却用ガス流路33’が形成され、この冷却用ガス流路33’には燃料ガス(水素)が流される。カソード側のセパレータでは、多孔質部32の一面に酸化ガス流路28が形成され、多孔質部32の他面に冷却用ガス流路33が形成され、この冷却用ガス流路33には酸化ガス(空気)が流される。セルの積層体において、酸化ガスが流れる冷却用ガス流路33と、燃料ガスが流れる冷却用ガス流路33との間には仕切板44が配置され、燃料ガスと空気とは混じり合わないようにしてある。
【0035】
セル面内燃料ガス流路27内の水分は多孔質部32を通り蒸発して燃料ガスが流れる冷却用ガス流路33’に移動する。そのため、セル面内燃料ガス流路27のフラッディングが解消される。また、水分の蒸発による潜熱、顕熱により多量の熱が奪われ、燃料電池が効果的に冷却される。同様に、セル面内酸化ガス流路28内の生成水は多孔質部32を通り蒸発して酸化ガスが流れる冷却用ガス流路33に移動する。そのため、セル面内燃料ガス流路28のフラッディングが解消される。また、水分の蒸発により潜熱により多量の熱が奪われ、燃料電池が効果的に冷却される。
また、冷却用ガス流路33’を流れる水素は、多孔質部32を移動して来た水分で加湿され、接続流路35を介して、そのまま燃料ガス供給マニホールド30aに供給され、燃料ガスとして用いられる。そのため、燃料ガスの加湿器が不要となるか、または設けても小容量のもので済む。同様に、冷却用ガス流路33を流れる空気は、多孔質部32を移動して来た水分で加湿され、接続流路35を介して、そのまま酸化ガス供給マニホールド31aに供給され、酸化ガスとして用いられる。そのため、酸化ガスの加湿器が不要となるか、または設けても小容量のもので済む。
【0036】
本発明の実施例6では、図9(図2のA−A断面)、図10(図2のB−B断面)に示すように、多孔質部32の反応ガス流路28(または27)と冷却用ガス流路33との少なくとも一方のガス流路(図9、図10では両方のガス流路)が、山部46間に形成された溝部から形成されており、多孔質部32のうち山部(溝底より先端側の部分)46のみが、多孔質部32のその他の部分(山部46以外の部分、すなわち反応ガス流路28(または27)の溝底面と冷却用ガス流路33の溝底面の間の部分)より孔径、気孔率を大とされている。図9は反応ガス流路28(または27)の山部46の孔径、気孔率がその他の部位より大とされていることを示し、図10は冷却用ガス流路33の山部46の孔径、気孔率がその他の部位より大とされていることを示している。
【0037】
反応ガスが多孔質部32の反応ガス流路28(または27)を通過する時、山部46の孔径、気孔率が山部以外の部分の孔径、気孔率と同じであれば、反応ガス流路28(または27)から山部46を通過して冷却用ガス流路33に抜ける流路抵抗が、反応ガス流路28(または27)から溝下部47を通過して冷却用ガス流路33に抜ける流路抵抗より大きいため、反応ガス流路28(または27)の生成水は、多孔質部32のうち流路抵抗小の溝下部47を通って冷却用ガス流路33に移行する。しかし、本発明の実施例6では、多孔質部32のうち山部(溝底より先端側の部分)46が、多孔質部32のその他の部分(山部46以外の部分)より孔径、気孔率を大とされているため、反応ガス流路28(または27)から山部46を通過して冷却用ガス流路33に抜ける流路抵抗が小さくなって、反応ガス流路28(または27)から溝下部47を通過して冷却用ガス流路33に抜ける流路抵抗にほぼ等しくなり、山部46が有る部位か無い部位かと無関係に、多孔質部32のほぼ全域からほぼ均一に生成水が冷却用ガス流路33に移行するようになる。したがって、多孔質部32のほぼ全域でフラッディングの発生を抑制できる。
【0038】
本発明の実施例7では、図11に示すように、多孔質部32の反応ガス流路28(または27)と冷却用ガス流路33が、それぞれ、山部46間に形成された溝部から形成されており、多孔質部32のうち、反応ガス流路28(または27)と冷却用ガス流路33との少なくとも一方のガス流路(両方のガス流路でもよい)の、山部(溝底よりMEA側の部分)46とその山下部(反応ガス流路28または27の溝底面の延長面と冷却用ガス流路33の溝底面の延長面との間の部位)48のみが、多孔質部32のその他の部分(溝下部47)よりも孔径、気孔率を大とされている。
【0039】
反応ガスが多孔質部32の反応ガス流路28(または27)を通過する時、山部46とその山下部48の孔径、気孔率が山部以外の部分の孔径、気孔率と同じであれば、反応ガス流路28(または27)から山部46とその山下部48を通過して冷却用ガス流路33に抜ける流路抵抗が、反応ガス流路28(または27)から溝下部47を通過して冷却用ガス流路33に抜ける流路抵抗より大きいため、反応ガス流路28(または27)の生成水は、多孔質部32のうち流路抵抗小の溝下部47を通って冷却用ガス流路33に移行する。しかし、本発明の実施例6では、多孔質部32のうち山部(溝底より先端側の部分)46とその山下部48が、多孔質部32のその他の部分(溝下部47)より孔径、気孔率を大とされているため、反応ガス流路28(または27)から山部46とその山下部48を通過して冷却用ガス流路33に抜ける流路抵抗が小さくなって、反応ガス流路28(または27)から溝下部を通過して冷却用ガス流路33に抜ける流路抵抗にほぼ等しくなり、山部46が有る部位か無い部位かと無関係に、多孔質部32のほぼ全域からほぼ均一に生成水が冷却用ガス流路33に移行するようになる。したがって、多孔質部32のほぼ全域で、反応ガス流路におけるフラッディングの発生を抑制できる。
【0040】
本発明の実施例8では、図12に示すように、セパレータの多孔質部32の反応ガス流路28(または27)と冷却用ガス流路33がそれぞれ山部46間に位置する溝部から形成されており、多孔質部32の反応ガス流路28(または27)と冷却用ガス流路33の少なくとも一方のガス流路の山/溝比が、それ以外の部分(LLC冷却部分)の反応ガス流路28(または27)と冷却用ガス流路33の少なくとも一方のガス流路の山/溝比より小とされている。この場合、セパレータ間の接触面積が小さくなるが、反応ガス流路28(または27)の下流部にあるため、ガス濃度が小で、発電量が小さく、その弊害(接触抵抗増など)は小さい。
反応ガスが多孔質部32の反応ガス流路28(または27)を通過する時、山部46では生成水は冷却用ガス流路33に抜け難く、溝下部47では生成水は冷却用ガス流路33に抜けやすい。本発明の実施例8では、多孔質部32の反応ガス流路28(または27)と冷却用ガス流路33の少なくとも一方のガス流路の山/溝比をそれ以外の部分の山/溝比より小としたので、山部の影響が小さくなり、多孔質部32のほぼ全域からほぼ均一に生成水が冷却用ガス流路33に移行するようになる。したがって、多孔質部32のほぼ全域で、フラッディングの発生を抑制できる。
【0041】
本発明の実施例9では、図13、図14に示すように、セパレータ18の多孔質部32の冷却用ガス流路33が、冷却用ガスを通す導電性多孔質材49で充填されている。冷却用ガス流路33を構成する多孔質材49は、多孔質部32を構成する多孔質材料より、気孔率、孔径が大きく、冷却用ガスの流れの圧損を低減してある。冷却用ガス流路33を構成する多孔質材49は、たとえば、ポーラスカーボンやポーラスメタルからなる。
冷却用ガス流路33を構成する多孔質材49は、図13に示すように、互いに同種の材料の場合多孔質部32と一体に形成してもよいし、あるいは図14に示すように、互いに同種、異種の材料にかかわらず多孔質部32と別体に形成して多孔質部32に固定するようにしてもよい。
冷却用ガス流路33が、冷却用ガスを通す導電性多孔質材49で充填されているため、山、溝がないので、反応ガス流路28(または27)から冷却用ガス流路33への生成水の移行が、多孔質部32のほぼ全域でほぼ均一に行われる。また、溝部がないので、冷却用ガス流路33においてもセパレータ間の接触が得られ、接触抵抗が低減する。
【0042】
本発明の実施例10の燃料電池では、図15に示すように、MEAとセパレータ18とを有し、セパレータ18のMEA対向面に反応ガス流路が形成されている。そして、セパレータ18に水分交換部32’が形成されており、水分交換部32’の反応ガス流路背面に冷却用ガス流路33が形成されている。したがって、本発明の実施例10は、本発明の他の実施例の多孔質部32を水分交換部32’とした構造となっている。この水分交換部32’は、ガスを遮断し水分のみを交換することができる特殊な多孔質材からなる。このような多孔質材には、従来公知の、湿潤時にガス不透過性となり、乾燥時にはガス透過性となる多孔質材を用いることができる。この多孔質材は、導電性であることが望ましく、セパレータ18と同種材料であることが接合上望ましい。
【0043】
冷却用ガス流路33が下流で燃料電池に供給される反応ガスの供給流路に接続していること、反応ガス流路の下流部が位置するセパレータ部分のみに水分交換部32’が形成されることは、本発明の他の実施例の場合と同じであり、その作用、効果は本発明の他の実施例の場合に準じる。
【0044】
本発明の実施例10では、水分交換部32’が水分のみを透過しガスを透過しないため、水分交換部32’の両面にあるガス流路に異種のガスを流すことができる。異種のガスを流してもガスの混合は生じない。図15は、水分交換部32’の一面に空気を、他面に乾燥水素を流す場合を示す。乾燥水素は酸化ガス流路の下流部の空気から水分交換部32’を透過して来る水分により加湿される。加湿された水素は、そのまま反応ガスとして燃料ガス流路に流される。これにより、酸化ガス流路の下流部のフラッディングを防止できるとともに、従来必要であった燃料ガス供給流路にあった加湿器を無くすことができる。
【0045】
本発明の実施例11では、図16、図17に示すように、燃料電池10は、MEA、MEAの一側の第1のセパレータ18、MEAの他側の第2のセパレータ18を有している。第1、第2のセパレータのMEA対向面に、反応ガス流路27、28が形成されている。第1、第2のセパレータ18の何れか少なくとも一方のセパレータ18の、セパレータ面内方向には反応ガス流路側表面の少なくとも一部の領域で、セパレータ厚さ方向には反応ガス流路側表面から背面に向かって一部の厚さ部分が、多孔質材51で形成されている。
セパレータ18はカーボンセパレータでも、メタルセパレータでもよい。メタルセパレータ18の場合は多孔質材51部は通気性のあるポーラスな焼結体などからなる。
【0046】
図16、図17の例では、酸化ガス流路28下流部のセパレータ18(第2のセパレータ)を多孔質化して多孔質部32とし、多孔質部32の酸化ガス流路28と反対側に冷却用ガス流路33を形成して、酸化ガス流路28と冷却用ガス流路33を多孔質部32を介して連通させる。
また、燃料ガス流路27の少なくとも一部の領域(図示例では全域)および酸化ガス流路28の多孔質部32以外の少なくとも一部の領域(図示例では多孔質部32以外の全域)も、セパレータ18の厚さ方向の反応ガス流路27、28側部分(流路の溝底部と山部)を多孔質材51で形成する。ただし、セパレータ18の厚さ方向の冷媒流路26側は、緻密質のままとし、反応ガス流路27、28を冷媒流路26と連通させない。多孔質部32が形成されている方のセパレータ18では、多孔質材51で形成した部分と多孔質部32とはつながっている。
冷却用ガス流路33に冷却用ガスを流すことで、反応ガス流路下流部の水分を冷却用ガスに蒸発させ、フラッディングを防止する。冷却用ガス流路33を流れるドライ空気の流量は調整可能である。冷媒流路26にはLLC(不凍液)を流す。冷却用ガス流路33を流れた後のエアを反応ガス流路27、28に供給することで、反応ガス流路27、28入口部のドライアップを防止する。
【0047】
ただし、多孔質部32が形成されていない方のセパレータ18(図示例ではアノード側セパレータ)には多孔質材51部分を形成しなくてもよい。
また、多孔質部32が形成されている方のセパレータ18(図示例ではカソード側セパレータ)に多孔質材51部分を形成する場合、反応ガス流路の一部の領域にのみ多孔質材51で形成した部分を形成してもよい。たとえば、酸化ガス流路28の下流部に多孔質部32が形成されている場合、酸化ガス流路28の中流域のみに多孔質材51部分を形成してもよい。ただし、酸化ガス流路28の中流域と上流域との両方に多孔質材51部分を形成してもよい。
また、多孔質材51部分は、反応ガス流路27、28の溝底部と山部の両方に形成されてもよいし、反応ガス流路27、28の山部のみに形成されてもよい。ただし、多孔質材51で形成した部分の反応ガス流路27、28と反対側部分(冷媒流路が形成されている側部分)は緻密部とされている。
【0048】
本発明の実施例11の作用については、セパレータ18に多孔質部32を形成しその背面に冷却用ガスを流したことにより、反応ガス中の水分および生成水が多孔質部32を通して冷却用ガスに流れるので、反応ガス流路27、28側でのフラッディングを防止することができる。
また、水分を吸収した冷却用ガスを反応ガス流路27、28に供給することにより、反応ガス流路上流側でのドライアップも解消することができる。
また、セパレータの多孔質部32形成域以外の領域の少なくとも一部の領域の、セパレータ厚さ方向に反応ガス流路27、28側部分を多孔質材51で形成したため、多孔質部32領域以外の領域の水分、生成水も、多孔質材51で吸収され、毛管作用で多孔質材51形成域から多孔質部32に移動し、多孔質部32から多孔質部32背面の冷却用ガスに吸収される。その結果、多孔質部32領域以外の領域のフラッディングも防止される。
さらに、セパレータ厚さ方向に反応ガス流路27、28側部分を多孔質材51で形成したため、山間の溝からなる反応ガス流路27、28の山部にも反応ガスが流れ込みやすくなり、拡散層13、16のうちセパレータの山部で押されている部分(山下部)のガス濃度が向上し、発電能力が向上する。
【0049】
本発明の実施例12では、図18、図19に示すように、燃料電池10は、MEA、MEAの一側の第1のセパレータ(アノード側セパレータ)18、MEAの他側の第2のセパレータ(カソード側セパレータ)18を有している。第1、第2のセパレータのMEA対向面に、それぞれ、燃料ガス流路27、酸化ガス流路28が形成されている。燃料ガス流路27の下流部(出口部)と酸化ガス流路28の下流部(出口部)とは、電解質膜11を挟んで相対する位置にある。ただし、燃料ガス流路27と酸化ガス流路28の流路パターンは指定はない。
燃料ガス流路27の下流部(出口部)と酸化ガス流路28の下流部(出口部)のセパレータ部分を多孔質化して多孔質部32とし、燃料ガス流路27、酸化ガス流路28と冷却用ガス流路33を多孔質部32を介して透過可能とする。
また、図16、図17に示したように、反応ガス流路27、28と冷却用ガス流路33との連通部以外の領域の、セパレータの厚み方向の一部を多孔質化(多孔質材51の部分)して構わないが、その部分51の冷媒流路26側は緻密質のままとして、反応ガス流路27、28を冷媒流路26と連通させない。
冷却用ガス流路33には、冷却用ガス(大気エア)を流し、燃料ガス流路27、酸化ガス流路28の出口部分の水分を冷却用ガス中に蒸発させることで反応ガス流路出口部でのフラッディングを防止する。冷却用空気を、酸化ガス流路28に供給することで、酸化ガス流路28の入口部およびその近傍の膜11のドライアップを防止する。
多孔質部32に流す冷却用ガス(大気エア)の量は調整可能である。セパレータの、ポーラスでない中実部に設けられている冷媒流路26には、LLC(不凍液)を流す。
【0050】
セパレータ18の反応ガス下流部に設けられる多孔質部32は、アノード側セパレータにも、カソード側セパレータにも形成され、通気抵抗が、アノード側セパレータの多孔質部32の通気抵抗>カソード側セパレータの多孔質部32の通気抵抗としてある。
通気抵抗を、アノード>カソードとするために、多孔質部32の気孔率をアノード<カソードとするか、または多孔質部32の気孔径をアノード<カソードとするか、または多孔質部32の気孔率をアノード<カソードとすると共に多孔質部32の気孔径をアノード<カソードとしてある。
【0051】
本発明の実施例12の作用については、通気抵抗を、アノード>カソードとしたため、燃料ガス(水素)の冷却ガス流路33側への漏れが防止または抑制され、水素利用率が向上する。
この場合、燃料ガス流路27から冷却用ガス中への水分蒸発量が低減するが、生成水はカソードで生成するため、燃料ガス流路27中の水分量は酸化ガス流路28中よりも少なく、水素の拡散性も酸素より優れているため、アノードでのフラッディングの規模もカソードでのフラッディングの規模より小さく、アノード水分蒸発低減の影響は小さい。
【0052】
本発明の実施例13では、図20、図21に示すように、燃料電池10は、MEA、MEAの一側の第1のセパレータ(アノード側セパレータ)18、MEAの他側の第2のセパレータ(カソード側セパレータ)18を有している。第1、第2のセパレータのMEA対向面に、それぞれ、燃料ガス流路27、酸化ガス流路28が形成されている。燃料ガス流路27の下流部(出口部)と酸化ガス流路28の下流部(出口部)とは、電解質膜11を挟んで相対する位置にある。ただし、燃料ガス流路27と酸化ガス流路28の流路パターンは指定はない。
燃料ガス流路27の下流部(出口部)と酸化ガス流路28の下流部(出口部)のセパレータ部分を多孔質化して多孔質部32とし、燃料ガス流路27、酸化ガス流路28と冷却用ガス流路33を多孔質部32を介して透過可能とする。
また、図16、図17に示したように、反応ガス流路27、28と冷却用ガス流路33との連通部以外の領域の、セパレータの厚み方向の一部を多孔質化(多孔質材51の部分)して構わないが、その部分51の冷媒流路26側は緻密質のままとして、反応ガス流路27、28を冷媒流路26と連通させない。
冷却用ガス流路33には、冷却用ガス(大気エア)を流し、燃料ガス流路27、酸化ガス流路28の出口部分の水分を冷却用ガス中に拡散、蒸発させることで反応ガス流路出口部でのフラッディングを防止する。冷却用空気を、酸化ガス流路28に供給することで、酸化ガス流路28の入口部およびその近傍の膜11のドライアップを防止する。
多孔質部32に流す冷却用ガス(大気エア)の量は調整可能である。セパレータの、ポーラスでない中実部に設けられている冷媒流路26には、LLC(不凍液)を流す。
【0053】
セパレータ18の反応ガス下流部に設けられる多孔質部32は、アノード側セパレータにも、カソード側セパレータにも形成され、通気抵抗が、アノード側セパレータの多孔質部32の通気抵抗>カソード側セパレータの多孔質部32の通気抵抗としてある。
通気抵抗を、アノード>カソードとするために、多孔質部32の面積(セル面内方向の面積)を、アノード<カソードとするか、または多孔質部32の厚み(セル面と直交する方向の厚み)をアノード>カソードとするか、または多孔質部32の面積をアノード<カソードとすると共に多孔質部32の厚みアノード≧カソードとしてある。または、通気抵抗を、アノード>カソードとするために、本発明の実施例12の構成要件の少なくとも一つの要件と実施例13の構成要件の少なくとも一つの要件とを組み合わせてもよい。
【0054】
本発明の実施例13の作用については、通気抵抗を、アノード>カソードとしたため、燃料ガス(水素)の冷却ガス流路33側への漏れが防止または抑制され、水素利用率が向上する。
この場合、燃料ガス流路27から冷却用ガス中への水分蒸発量が低減するが、生成水はカソードで生成するため、燃料ガス流路27中の水分量は酸化ガス流路28中よりも少なく、水素の拡散性も酸素より優れているため、アノードでのフラッディングの規模もカソードでのフラッディングの規模より小さく、アノード水分蒸発低減の影響は小さい。
【0055】
本発明の実施例14では、燃料電池10は、MEA、MEAの一側の第1のセパレータ(アノード側セパレータ)18、MEAの他側の第2のセパレータ(カソード側セパレータ)18を有している。第1、第2のセパレータのMEA対向面に、それぞれ、燃料ガス流路27、酸化ガス流路28が形成されている。燃料ガス流路27の下流部(出口部)と酸化ガス流路28の下流部(出口部)とは、電解質膜11を挟んで相対する位置にある。ただし、燃料ガス流路27と酸化ガス流路28の流路パターンは指定はない。
全セル19の酸化ガス流路28の下流部(出口部)のセパレータ部分と、スタック23の一部のみのセル19(アノードに水が詰まりやすいセル19のみ)の燃料ガス流路27の下流部(出口部)のセパレータ部分を、多孔質化して多孔質部32とし、燃料ガス流路27、酸化ガス流路28と冷却用ガス流路33を多孔質部32を介して透過可能とする。
また、図16、図17に示したように、反応ガス流路27、28と冷却用ガス流路33との連通部以外の領域の、セパレータの厚み方向の一部を多孔質化(多孔質材51の部分)して構わないが、その部分51の冷媒流路26側は緻密質のままとして、反応ガス流路27、28を冷媒流路26と連通させない。
冷却用ガス流路33には、冷却用ガス(大気エア)を流し、燃料ガス流路27、酸化ガス流路28の出口部分の水分を冷却用ガス中に蒸発させることで反応ガス流路出口部でのフラッディングを防止する。冷却用空気を、酸化ガス流路28に供給することで、酸化ガス流路28の入口部およびその近傍の膜11のドライアップを防止する。
多孔質部32に流す冷却用ガス(大気エア)の量は調整可能である。セパレータの、ポーラスでない中実部に設けられている冷媒流路26には、LLC(不凍液)を流す。
【0056】
実施例14における、アノードに水が詰まりやすいセルとは、放熱により温度が低下しやすいスタック23端部の数セル(図22で斜線を施したセル)、もしくは、アノードマニホールド出口に近い数セル(図23で斜線を施したセル)のことである。
【0057】
本発明の実施例14の作用については、アノードに水が詰まりやすいセルで、燃料ガス流路27出口部と冷却用ガス流路33を多孔質部32を通して水分移動可能としたので、アノードフラッディングが防止または抑制される。
また、セパレータの燃料ガス流路に対し多孔質部32が形成されるセルは、アノードフラッディングの発生しやすいセルのみとしたので、全セルに対して設けられる場合に比べて、燃料ガス(水素)の冷却ガス流路33側への漏れが抑制され、水素利用率が向上する。
【0058】
本発明の実施例15では、燃料電池10は、MEA、MEAの一側の第1のセパレータ(アノード側セパレータ)18、MEAの他側の第2のセパレータ(カソード側セパレータ)18を有している。第1、第2のセパレータのMEA対向面に、拡散層13、16の部分に、それぞれ、燃料ガス流路27、酸化ガス流路28が形成されている。
酸化ガス流路28の下流部(出口部)のセパレータ部分を、多孔質化して多孔質部32とし、酸化ガス流路28と冷却用ガス流路33を多孔質部32を介して移動可能とする。
また、多孔質部32を形成した部分以外の領域では、セパレータ18は緻密質のままとして、反応ガス流路27、28を冷媒流路26と連通させない。
冷却用ガス流路33には、冷却用ガス(大気エア)を流し、酸化ガス流路28の出口部分の水分を冷却用ガス中に拡散、蒸発させることで酸化ガス流路出口部でのフラッディングを防止する。冷却用空気を、酸化ガス流路28に供給することで、酸化ガス流路28の入口部およびその近傍の膜11のドライアップを防止する。
多孔質部32に流す冷却用ガス(大気エア)の量は調整可能である。セパレータの、ポーラスでない中実部に設けられている冷媒流路26には、LLC(不凍液)を流す。
【0059】
反応ガス流路27、28は、セパレータ18内にではなく、拡散層13、16内に設けられる。また、冷媒流路26、冷却用ガス流路33も、セパレータ18内にではなく、アノード側セパレータ18とカソード側セパレータ18との間に導電性多孔質体52を挿入して、導電性多孔質体52の内部に冷媒、冷却用ガスを流す。導電性多孔質体52には、冷媒が流れる部分と冷却用ガスが流れる部分との間、および冷媒が流れる部分と外気との間、および冷却用ガスが流れる部分と外気との間に、それぞれ、シール53が設けられる。アノード側セパレータ18とカソード側セパレータ18は平板セパレータであり、カソード側セパレータ18に設けられる多孔質部32も平板である。導電性多孔質体52は平板であってもよいし、あるいは溝があってもよい。セパレータ18はカーボン製でも、メタル製でもよい。メタルの場合は、多孔質部32は焼結体、発泡体、不織布状物から形成される。
【0060】
本発明の実施例15の作用については、セパレータ18、導電性多孔質体52を平板状としたので、セパレータ18、導電性多孔質体52が製造しやすい。また、シール性もよい。
【0061】
【発明の効果】
請求項1の燃料電池によれば、セパレータに多孔質部を形成し、多孔質部の反応ガス流路背面に冷却用ガス流路を形成したので、生成水の排出と燃料電池の冷却との両方を達成することができる。
請求項2の燃料電池によれば、冷却用ガス流路は下流で燃料電池に供給される反応ガスの供給流路に接続しているので、供給反応ガスの加湿器が不要になるか、設けても小型なもので済む。
請求項3の燃料電池によれば、冷却用ガス流路が流量制御可能であるため、排水性の制御が可能となる。
請求項4の燃料電池によれば、反応ガス流路の下流部が位置するセパレータ部分のみに多孔質部を形成したので、反応ガス流路の下流部は生成水が生成されやすい部位と一致し、フラッディングを効果的に抑制することができる。
請求項5の燃料電池によれば、反応ガス流路の上流部が位置するセパレータ部分には別の冷媒流路を形成したので、この別の冷媒流路に冷却水を流すことにより、発熱量の多い上流部を冷却能が大きい冷却水で冷却できる。
請求項6の燃料電池によれば、多孔質部のうち反応ガス流路と冷却用ガス流路の少なくとも一方のガス流路の、山部、または山部とその山下部が、多孔質部のその他の部分より気孔率を大とされているので、山部がある部位か溝部がある部位かにかかわらず多孔質部のほぼ全域でほぼ均一に生成水を冷却用ガス流路に移行させることができる。
請求項7の燃料電池によれば、多孔質部の反応ガス流路と冷却用ガス流路の少なくとも一方のガス流路の山/溝比がそれ以外の部分(LLCによる冷却部)のガス流路の山/溝比より小とされているので、山部がある部位か溝部がある部位かにかかわらず多孔質部のほぼ全域でほぼ均一に生成水を冷却用ガス流路に移行させることができる。
請求項8の燃料電池によれば、セパレータの多孔質部の冷却用ガス流路が多孔質材で充填されているので、多孔質部のほぼ全域でほぼ均一に生成水を冷却用ガス流路に移行させることができる。
請求項9の燃料電池によれば、多孔質部の両側のガスが互いに同種であるため、混合しても問題が生じない。
請求項10の燃料電池によれば、セパレータの冷却用ガス流路の上流にブロワを接続したので、セパレータの冷却用ガス流路のガス圧が高くなり、冷却用ガス流路から多孔質部を通して反応ガス流路の下流部(濃度が低下している)に新しい反応ガスを一部供給でき、反応ガス流路の下流部の発電能力を上げることができる。
請求項11の燃料電池によれば、セパレータの冷却用ガス流路の下流の接続流路にブロワを配置したので、セパレータの冷却用ガス流路のガス圧が負圧となり、多孔質部で反応ガス流路から多孔質部を通して冷却用ガス流路にガスを流すことができ、このガスの流れに載せて生成水を排出でき、生成水の排出が促進される。
請求項12の燃料電池によれば、冷却用ガス流路の下流で、接続流路に負圧発生手段への通路を接続したので、多孔質部に詰まりが発生した場合に負圧を作用させて詰まりを除去することができる。
請求項13の燃料電池によれば、冷却用ガス流路が空気流路であるので、冷却ガスを加湿してそのまま酸化ガスに利用できる。
請求項14の燃料電池によれば、冷却用ガス流路が燃料ガス流路であるので、冷却ガスを加湿してそのまま燃料ガスに利用できる。
請求項15の燃料電池によれば、一対のセパレータのうち、一方のセパレータに形成された冷却用ガス流路が空気流路であり、他方のセパレータに形成された冷却用ガス流路が燃料ガス流路であるので、空気流路を流れる冷却ガスを加湿してそのまま酸化ガスに利用でき、燃料ガス流路を流れる冷却ガスを加湿してそのまま燃料ガスに利用できる。
請求項16、25の燃料電池によれば、水分交換部がガスを透過させずに水分のみを透過させるので、水分交換部の両側に互いに異種のガスを流してもガスは混合せず問題は生じない。
請求項17、26の燃料電池によれば、セパレータの、反応ガス流路側表面の少なくとも一部の領域で、セパレータ厚さ方向に反応ガス流路側表面から背面側に向かって一部の厚さ部分を、多孔質材で形成したので、集電面の排水性と、ガス供給性が向上する。
請求項18の燃料電池によれば、多孔質部の通気抵抗をアノード>カソードとしてあるので、水素漏れを抑制できる。
請求項19の燃料電池によれば、多孔質部の気孔率をアノード<カソードとしてあるので、水素漏れを抑制できる。
請求項20の燃料電池によれば、多孔質部の気孔径をアノード<カソードとしてあるので、水素漏れを抑制できる。
請求項21の燃料電池によれば、多孔質部の面積をアノード<カソードとしてあるので、水素漏れを抑制できる。
請求項22の燃料電池によれば、多孔質部の厚みをアノード>カソードとしてあるので、水素漏れを抑制できる。
請求項23の燃料電池によれば、多孔質部が形成されるセルは、アノードフラッディングの発生しやすいセルのみであので、水素漏れを抑制できる。
請求項24の燃料電池によれば、セパレータのMEA対向面に形成される反応ガス流路が拡散層側に形成されているので、セパレータに製造が容易になる。
【図面の簡単な説明】
【図1】本発明の実施例1(他の本発明の実施例にも適用可能)の燃料電池の冷却用ガス流路およびその系統、冷却水流路を示す燃料電池の正面図兼系統図である。
【図2】本発明の燃料電池の反応ガス流路を示す燃料電池の正面図である。
【図3】本発明の実施例1の燃料電池の断面図である。
【図4】本発明の実施例1の燃料電池で、冷却用ガスを反応ガスに合流させる場合の、正面図兼系統図である。
【図5】本発明の実施例2の燃料電池の冷却用ガス流路およびその系統を示す燃料電池の正面図兼系統図である。
【図6】本発明の実施例3の燃料電池の冷却用ガス流路およびその系統を示す燃料電池の正面図兼系統図である。
【図7】本発明の実施例4の燃料電池の断面図である。
【図8】本発明の実施例5の燃料電池の断面図である。
【図9】本発明の実施例6の燃料電池の断面図(図2のA−A断面図)である。
【図10】本発明の実施例6の燃料電池の断面図(図2のB−B断面図)である。
【図11】本発明の実施例7の燃料電池の断面図である。
【図12】本発明の実施例8の燃料電池の断面図である。
【図13】本発明の実施例9の燃料電池の断面図(冷却用ガス流路を埋める多孔質材が多孔質部に一体形成の場合)である。
【図14】本発明の実施例9の燃料電池の断面図(冷却用ガス流路を埋める多孔質材が多孔質部に別体形成の場合)である。
【図15】本発明の実施例10の燃料電池の斜視図である。
【図16】本発明の実施例11の燃料電池の、流路溝部断面図である。
【図17】本発明の実施例11の燃料電池の、流路山部断面図である。
【図18】本発明の実施例12の燃料電池の、流路溝部断面図である。
【図19】本発明の実施例12の燃料電池の、流路山部断面図である。
【図20】本発明の実施例13の燃料電池の、流路溝部断面図である。
【図21】本発明の実施例13の燃料電池の、流路山部断面図である。
【図22】本発明の実施例14の燃料電池のスタックの側面図である。
【図23】本発明の実施例14の燃料電池のスタックの側面図である。
【図24】本発明の実施例15の燃料電池の流路断面図である。
【図25】本発明の燃料電池スタックの全体側面図である。
【符号の説明】
10 (固体高分子電解質型)燃料電池
11 電解質膜
12 触媒層
13 拡散層
14 電極(アノード、燃料極)
15 触媒層
16 拡散層
17 電極(カソード、空気極)
18 セパレータ
19 単セル(またはモジュール)
20 ターミナル
21 インシュレータ
22 エンドプレート
23 スタック
24 締結部材(テンションプレート)
25 ボルト
26 冷媒(冷却水)流路
27 燃料ガス流路
28 酸化ガス流路
29a 冷媒(冷却水)供給マニホールド
29b 冷媒(冷却水)排出マニホールド
30a 燃料ガス(水素)供給マニホールド
30b 燃料ガス(水素)排出マニホールド
31a 酸化ガス(空気)供給マニホールド
31b 酸化ガス(空気)排出マニホールド
32 多孔質部
32’ 水分交換部
33、33’ 冷却用ガス流路
34a 冷却ガス供給マニホールド
34b 冷却ガス排出マニホールド
35 接続流路
36 バイパス流路
37 流量制御弁
38 ブロワ
39 枝管
40 分岐部
41、42 開閉弁
43 ブロワ
44 仕切板
45 Oリング
46 山部
47 溝下部
48 山下部
49 多孔質材
50 ガスケット
51 多孔質材
52 導電性多孔質体
53 シール

Claims (26)

  1. MEAとセパレータとを有し、セパレータのMEA対向面に反応ガス流路が形成されている燃料電池であって、前記セパレータの少なくとも一部に多孔質部を形成し、該多孔質部の反応ガス流路背面に冷却用ガス流路を形成した燃料電池。
  2. 前記冷却用ガス流路は下流で燃料電池に供給される反応ガスの供給流路に接続している請求項1記載の燃料電池。
  3. 前記冷却用ガス流路は流量制御可能である請求項2記載の燃料電池。
  4. 反応ガス流路の下流部が位置するセパレータ部分のみに前記多孔質部を形成した請求項1記載の燃料電池。
  5. 反応ガス流路の上流部が位置するセパレータ部分には別の冷媒流路を形成した請求項1記載の燃料電池。
  6. 前記セパレータの前記多孔質部の前記反応ガス流路と前記冷却用ガス流路がそれぞれ山部間に位置する溝部から形成されており、前記多孔質部のうち前記反応ガス流路と前記冷却用ガス流路の少なくとも一方の、前記山部、または前記山部とその山下部が、前記多孔質部のその他の部分より気孔率を大とされている請求項1記載の燃料電池。
  7. 前記セパレータの前記多孔質部の前記反応ガス流路と前記冷却用ガス流路がそれぞれ山部間に位置する溝部から形成されており、前記多孔質部の前記反応ガス流路と前記冷却用ガス流路の少なくとも一方のガス流路の山/溝比がそれ以外の部分のガス流路の山/溝比より小とされている請求項1記載の燃料電池。
  8. 前記セパレータの前記多孔質部の前記冷却用ガス流路が多孔質材で充填されている請求項1記載の燃料電池。
  9. 前記セパレータの多孔質部の表裏に流すガスが同種である請求項1記載の燃料電池。
  10. 前記セパレータの前記冷却用ガス流路の上流にブロワを接続した請求項1記載の燃料電池。
  11. 前記セパレータの前記冷却用ガス流路の下流で、反応ガス供給流路への接続部の上流側にブロワを配置した請求項2記載の燃料電池。
  12. 前記セパレータの前記冷却用ガス流路の下流で、反応ガス供給流路への接続部の上流側に、負圧発生手段への通路を接続した請求項2記載の燃料電池。
  13. 前記冷却用ガス流路が空気流路である請求項1記載の燃料電池。
  14. 前記冷却用ガス流路が燃料ガス流路である請求項1記載の燃料電池。
  15. MEAを挟んで対向する一対のセパレータにそれぞれ前記冷却用ガス流路が形成され、該一対のセパレータのうち、一方のセパレータに形成された冷却用ガス流路は空気流路であり、他方のセパレータに形成された冷却用ガス流路は燃料ガス流路である請求項1記載の燃料電池。
  16. 前記多孔質部を、ガスを遮断し水分のみを透過させる水分交換膜から構成した請求項1記載の燃料電池。
  17. 前記セパレータの、反応ガス流路側表面の少なくとも一部の領域で、セパレータ厚さ方向に反応ガス流路側表面から背面側に向かって一部の厚さ部分を、多孔質材で形成した請求項1記載の燃料電池。
  18. 前記セパレータの反応ガス下流部に設けられる多孔質部が、アノード側にも、カソード側にも形成され、該多孔質部の通気抵抗がアノード>カソードとしてある請求項4記載の燃料電池。
  19. 前記セパレータの反応ガス下流部に設けられる多孔質部が、アノード側にも、酸化ガス側にも形成され、気孔率がアノード<カソードとしてある請求項18記載の燃料電池。
  20. 前記セパレータの反応ガス下流部に設けられる多孔質部が、アノード側にも、酸化ガス側にも形成され、気孔径がアノード<カソードとしてある請求項18記載の燃料電池。
  21. 前記セパレータの反応ガス下流部に設けられる多孔質部が、アノード側にも、酸化ガス側にも形成され、多孔質部の面積がアノード<カソードとしてある請求項18記載の燃料電池。
  22. 前記セパレータの反応ガス下流部に設けられる多孔質部が、アノード側にも、酸化ガス側にも形成され、多孔質部の厚みがアノード>カソードとしてある請求項18記載の燃料電池。
  23. セパレータの燃料ガス流路に対し多孔質部が形成されるセルは、アノードフラッディングの発生しやすいセルのみとした請求項1記載の燃料電池。
  24. セパレータのMEA対向面に形成される反応ガス流路が拡散層側に形成されている請求項1記載の燃料電池。
  25. MEAとセパレータとを有し、セパレータのMEA対向面に反応ガス流路が形成されている燃料電池であって、前記セパレータにガスを遮断し水分のみを透過させる水分交換部を形成し、該水分交換部の反応ガス流路背面に冷却用ガス流路を形成した燃料電池。
  26. MEA、MEAの一側の第1のセパレータ、MEAの他側の第2のセパレータを有し、該第1、第2のセパレータのMEA対向面に反応ガス流路が形成されている燃料電池であって、前記第1、第2のセパレータの何れか少なくとも一方のセパレータの、セパレータ面内方向には反応ガス流路側表面の少なくとも一部の領域で、セパレータ厚さ方向には反応ガス流路側表面から背面に向かって一部の厚さ部分が、多孔質材で形成されている燃料電池。
JP2003163404A 2002-06-28 2003-06-09 燃料電池 Expired - Fee Related JP4706167B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163404A JP4706167B2 (ja) 2002-06-28 2003-06-09 燃料電池

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2002189046 2002-06-28
JP2002189046 2002-06-28
JP2002289347 2002-10-02
JP2002289347 2002-10-02
JP2002360587 2002-12-12
JP2002360587 2002-12-12
JP2003163404A JP4706167B2 (ja) 2002-06-28 2003-06-09 燃料電池

Publications (3)

Publication Number Publication Date
JP2004241367A true JP2004241367A (ja) 2004-08-26
JP2004241367A5 JP2004241367A5 (ja) 2006-06-29
JP4706167B2 JP4706167B2 (ja) 2011-06-22

Family

ID=30003593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163404A Expired - Fee Related JP4706167B2 (ja) 2002-06-28 2003-06-09 燃料電池

Country Status (7)

Country Link
US (1) US7531266B2 (ja)
EP (1) EP1551073B1 (ja)
JP (1) JP4706167B2 (ja)
KR (1) KR100619509B1 (ja)
CA (1) CA2488935C (ja)
DE (1) DE60333852D1 (ja)
WO (1) WO2004004048A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129431A (ja) * 2003-10-27 2005-05-19 Toyota Motor Corp 燃料電池および燃料電池用ガスセパレータ
JP2005197186A (ja) * 2004-01-09 2005-07-21 Toyota Motor Corp 燃料電池用セパレータ
JP2007220637A (ja) * 2006-02-20 2007-08-30 Furukawa Battery Co Ltd:The 燃料電池発電装置
JP2007305402A (ja) * 2006-05-11 2007-11-22 Toshiba Fuel Cell Power Systems Corp 固体高分子電解質型燃料電池
JP2008016450A (ja) * 2006-06-30 2008-01-24 Helion 封止手段を備える燃料電池に対する基本的なセル構造
JP2008305627A (ja) * 2007-06-06 2008-12-18 Hitachi Ltd 燃料電池スタックシステム
JP2009538509A (ja) * 2006-05-25 2009-11-05 本田技研工業株式会社 燃料電池の熱及び水の管理装置並びに管理方法
JP2010044989A (ja) * 2008-08-18 2010-02-25 Panasonic Corp 燃料電池用ガスの加湿装置
JP2010129515A (ja) * 2008-12-01 2010-06-10 Toyota Motor Corp 燃料電池
US8277987B2 (en) 2006-03-06 2012-10-02 Nec Corporation Fuel cell system
WO2013018317A1 (ja) * 2011-08-02 2013-02-07 パナソニック株式会社 高分子電解質形燃料電池
JP2017199608A (ja) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 燃料電池

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322595A (ja) * 2004-05-11 2005-11-17 Toyota Motor Corp 燃料電池
KR101065376B1 (ko) * 2004-06-29 2011-09-16 삼성에스디아이 주식회사 연료 전지 시스템, 이에 사용되는 스택 및 세퍼레이터
US20060008695A1 (en) * 2004-07-09 2006-01-12 Dingrong Bai Fuel cell with in-cell humidification
US7829231B2 (en) 2005-04-22 2010-11-09 Gm Global Technology Operations, Inc. Fuel cell design with an integrated heat exchanger and gas humidification unit
JP5332092B2 (ja) * 2006-09-11 2013-11-06 トヨタ自動車株式会社 燃料電池
US7883810B2 (en) 2006-11-09 2011-02-08 GM Global Technology Operations LLC Slow purge for improved water removal, freeze durability, purge energy efficiency and voltage degradation due to shutdown/startup cycling
KR100877714B1 (ko) * 2007-03-23 2009-01-09 한국과학기술연구원 용융탄산염 연료전지의 냉각용 분리판, 이를 포함하는용융탄산염 연료전지 및 상기 냉각용 분리판을 이용한용융탄산염 연료전지의 냉각 방법
KR101364093B1 (ko) * 2007-12-18 2014-02-20 삼성에스디아이 주식회사 열 회수 장치 및 이를 구비된 연료전지
KR100952023B1 (ko) * 2008-02-14 2010-04-08 현대자동차주식회사 연료전지 스택 가습 장치
DE602008001552D1 (de) * 2008-02-29 2010-07-29 Tenaris Connections Ag Gewindeverbindungsstück mit verbesserten elastischen Dichtungsringen
TW201114096A (en) * 2009-10-09 2011-04-16 Chung Hsin Elec & Mach Mfg Fuel cell structure having porous metal plate
JP5777892B2 (ja) 2011-01-12 2015-09-09 本田技研工業株式会社 燃料電池
TWI447995B (zh) * 2011-12-20 2014-08-01 Ind Tech Res Inst 雙極板與燃料電池
DE202013011724U1 (de) * 2013-03-11 2014-08-05 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Bipolarplatte mit Umlenkungskühlung für eine Brennstoffzelle und eine solche enthaltende Brennstoffzelle
DE102015218703A1 (de) * 2015-09-29 2017-03-30 Robert Bosch Gmbh Elektrische Energiequelle
CN113346101B (zh) * 2021-05-26 2023-05-02 中国科学院广州能源研究所 一种无双极板的多孔流场燃料电池单体及串并联电堆结构
US11424460B1 (en) * 2021-06-10 2022-08-23 Nimbus Power Systems Inc. Four-fluid bipolar plate for fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275284A (ja) * 1993-03-24 1994-09-30 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜型燃料電池
JPH09283157A (ja) * 1996-04-18 1997-10-31 Mitsubishi Electric Corp 燃料電池、燃料電池の製造方法、複合ガスセパレータ、およびその製造方法
JP2000173633A (ja) * 1998-11-30 2000-06-23 Sanyo Electric Co Ltd 固体高分子型燃料電池
JP2002539583A (ja) * 1999-03-12 2002-11-19 インターナショナル フュエル セルズ,エルエルシー 燃料電池用の水管理装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147518B2 (ja) 1992-08-20 2001-03-19 富士電機株式会社 固体高分子電解質型燃料電池のセル構造
JP3111697B2 (ja) * 1992-10-20 2000-11-27 富士電機株式会社 固体高分子電解質型燃料電池
US5503944A (en) 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
JPH0992308A (ja) * 1995-09-20 1997-04-04 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
CA2241566A1 (en) * 1998-06-23 1999-12-23 Bondface Technology Inc. Flow field plate
US6303245B1 (en) * 1999-08-27 2001-10-16 Plug Power Inc. Fuel cell channeled distribution of hydration water
US6905792B2 (en) * 2000-10-13 2005-06-14 Honda Giken Kogyo Kabushiki Kaisha Cooling system and cooling process of fuel cell
JP3921936B2 (ja) * 2000-11-09 2007-05-30 トヨタ自動車株式会社 燃料電池のガス流路
US20020076582A1 (en) * 2000-12-20 2002-06-20 Reiser Carl A. Procedure for starting up a fuel cell system using a fuel purge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275284A (ja) * 1993-03-24 1994-09-30 Mitsubishi Heavy Ind Ltd 固体高分子電解質膜型燃料電池
JPH09283157A (ja) * 1996-04-18 1997-10-31 Mitsubishi Electric Corp 燃料電池、燃料電池の製造方法、複合ガスセパレータ、およびその製造方法
JP2000173633A (ja) * 1998-11-30 2000-06-23 Sanyo Electric Co Ltd 固体高分子型燃料電池
JP2002539583A (ja) * 1999-03-12 2002-11-19 インターナショナル フュエル セルズ,エルエルシー 燃料電池用の水管理装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129431A (ja) * 2003-10-27 2005-05-19 Toyota Motor Corp 燃料電池および燃料電池用ガスセパレータ
JP4659366B2 (ja) * 2004-01-09 2011-03-30 トヨタ自動車株式会社 燃料電池用セパレータ
JP2005197186A (ja) * 2004-01-09 2005-07-21 Toyota Motor Corp 燃料電池用セパレータ
JP2007220637A (ja) * 2006-02-20 2007-08-30 Furukawa Battery Co Ltd:The 燃料電池発電装置
US8277987B2 (en) 2006-03-06 2012-10-02 Nec Corporation Fuel cell system
JP2007305402A (ja) * 2006-05-11 2007-11-22 Toshiba Fuel Cell Power Systems Corp 固体高分子電解質型燃料電池
JP2009538509A (ja) * 2006-05-25 2009-11-05 本田技研工業株式会社 燃料電池の熱及び水の管理装置並びに管理方法
JP2008016450A (ja) * 2006-06-30 2008-01-24 Helion 封止手段を備える燃料電池に対する基本的なセル構造
JP2008305627A (ja) * 2007-06-06 2008-12-18 Hitachi Ltd 燃料電池スタックシステム
JP2010044989A (ja) * 2008-08-18 2010-02-25 Panasonic Corp 燃料電池用ガスの加湿装置
JP2010129515A (ja) * 2008-12-01 2010-06-10 Toyota Motor Corp 燃料電池
WO2013018317A1 (ja) * 2011-08-02 2013-02-07 パナソニック株式会社 高分子電解質形燃料電池
JP5259888B1 (ja) * 2011-08-02 2013-08-07 パナソニック株式会社 高分子電解質形燃料電池
US9178236B2 (en) 2011-08-02 2015-11-03 Panasonic Intellectual Property Management Co., Ltd. Polymer electrolyte fuel cell
JP2017199608A (ja) * 2016-04-28 2017-11-02 トヨタ自動車株式会社 燃料電池

Also Published As

Publication number Publication date
KR20050010969A (ko) 2005-01-28
EP1551073B1 (en) 2010-08-18
WO2004004048A1 (ja) 2004-01-08
US7531266B2 (en) 2009-05-12
EP1551073A4 (en) 2008-01-23
CA2488935C (en) 2008-09-16
DE60333852D1 (de) 2010-09-30
KR100619509B1 (ko) 2006-09-08
CA2488935A1 (en) 2004-01-08
JP4706167B2 (ja) 2011-06-22
EP1551073A1 (en) 2005-07-06
US20050118490A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4706167B2 (ja) 燃料電池
US6723461B2 (en) Water management system for fuel cell
JP3971969B2 (ja) 固体高分子型燃料電池
JP7192148B2 (ja) 燃料電池プレート、バイポーラプレートおよび燃料電池装置
JP2004031135A (ja) 燃料電池およびその制御方法
JPH10284096A (ja) 固体高分子電解質型燃料電池
CA2616650C (en) Modified fuel cells with internal humidification and/or temperature control systems
JPH08111230A (ja) 固体高分子型燃料電池の運転方法
JP5385371B2 (ja) 燃料電池の分離プレート構成
JP3736475B2 (ja) 燃料電池
JP4340417B2 (ja) 高分子電解質型燃料電池
JP2004134130A (ja) 燃料電池スタック
JP2004529458A (ja) 燃料電池の水分平衡を改良する方法
RU2289177C2 (ru) Топливный элемент
JPH07122280A (ja) 固体高分子電解質型燃料電池
JP2008243540A (ja) 固体高分子電解質形燃料電池発電装置
US7063907B2 (en) Passive water management system for a fuel cell power plant
CN1300887C (zh) 燃料电池
JP2013157315A (ja) 燃料電池
JPH11111311A (ja) 固体高分子型燃料電池
JP2003331870A (ja) 燃料電池
KR20180080324A (ko) 바이폴라 플레이트를 갖는 연료 전지 스택, 및 연료 전지 시스템
JP2004319165A (ja) 高分子電解質型燃料電池
CN115997311A (zh) 具有在活性区域中存在的通道划分部的双极板和燃料电池堆
JP2008004309A (ja) 燃料電池装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

LAPS Cancellation because of no payment of annual fees