JP2004186487A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2004186487A
JP2004186487A JP2002352527A JP2002352527A JP2004186487A JP 2004186487 A JP2004186487 A JP 2004186487A JP 2002352527 A JP2002352527 A JP 2002352527A JP 2002352527 A JP2002352527 A JP 2002352527A JP 2004186487 A JP2004186487 A JP 2004186487A
Authority
JP
Japan
Prior art keywords
conductive layer
forming
film
conductor portion
inner conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002352527A
Other languages
English (en)
Inventor
Takaaki Tsunomura
貴昭 角村
Masahiko Takeuchi
雅彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002352527A priority Critical patent/JP2004186487A/ja
Priority to US10/455,325 priority patent/US20040108534A1/en
Priority to TW092116058A priority patent/TW200410395A/zh
Priority to KR1020030054324A priority patent/KR20040048802A/ko
Publication of JP2004186487A publication Critical patent/JP2004186487A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/91Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】容量が確保されるキャパシタを備えた半導体装置と、その製造方法を提供する。
【解決手段】半導体装置のキャパシタCにおけるストレージノード13は、底面、側面および上面を有する柱状の内側導電体部13aと、内側導電体部13aの底面上(底面と半導体基板との間)、側面上および上面上に位置し、内側導電体部13aとは材質の異なる外側導電体部13b、13cとによって構成される。外側導電体部13b,13cは膜厚約40nm〜80nmのRu等の金属膜によって形成されている。内側導電体部13aは、たとえばTiN膜、TaN膜、WN膜などのRu等の金属膜と密着性の高い膜から形成されている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置およびその製造方法に関し、特に、半導体メモリを構成するMIM(Metal Insulator Metal)キャパシタを備えた半導体装置とその製造方法に関するものである。
【0002】
【従来の技術】
メモリデバイスやメモリ混載デバイス等の半導体装置では、情報としての電荷が所定のキャパシタに蓄積される。半導体装置の微細化および高集積化に伴い、高誘電率のキャパシタ誘電体膜を適用するためにMIMキャパシタが提案されている。
【0003】
そこで、MIMキャパシタ部分の製造方法の一例(第1の従来技術)について説明する。まず、半導体基板上に形成された所定の膜厚の層間絶縁膜に開口部が形成される。開口部を埋めるように層間絶縁膜上にストレージノードとなるRuなどの所定の金属膜が形成される。
【0004】
次に、開口部内に金属膜を残して層間絶縁膜の上面上に位置する金属膜が除去される。その後、層間絶縁膜が除去されて金属膜が露出する。露出した金属膜を覆うように、Taなどの誘電体膜が形成される。
【0005】
次に、誘電体膜を覆うように、セルプレートとなるRuなどの所定の金属膜が形成される。このようにして、Ru等のストレージノードとセルプレートの間にTaなどのキャパシタ誘電体膜を介在させたMIMキャパシタが形成される。
【0006】
次に、第2の従来技術としてMIMキャパシタ部分の製造方法の他の例(特許文献1参照)について説明する。半導体基板上に所定の膜厚のストレージノードとなる所定の金属膜が形成される。その金属膜上にレジストパターンが形成される。そのレジストパターンをマスクとして金属膜にエッチングが施される。
【0007】
金属膜の側面上には、エッチングの際にレジストと金属膜との反応によって生成した壁状プレートが形成される。金属膜上にその壁状プレートを覆うように導電層が形成される。金属膜と導電層とによってストレージノードが形成される。そのストレージノード上にTaなどのキャパシタ誘電体膜が形成される。
【0008】
そのキャパシタ誘電体膜上にセルプレートとなる導電層が形成される。このようにして、ストレージノードとセルプレートの間にTaなどのキャパシタ誘電体膜を介在させたMIMキャパシタが形成される。
【0009】
【特許文献1】
USP6,037,206
【0010】
【発明が解決しようとする課題】
しかしながら、従来のMIMキャパシタを備えた半導体装置では次のような問題点があった。半導体装置の微細化および高集積化に対応するために、限られた領域内においてMIMキャパシタの容量を確保する手法の一つとして、MIMキャパシタの高さを高くする手法が採用される。
【0011】
上述した2つの半導体装置の製造方法において、MIMキャパシタの高さを高くしようとすると、ストレージノードとなる金属膜をより厚く形成する必要がある。
【0012】
たとえば、第1の従来技術の場合では、たとえば膜厚約1000nm〜1500nm程度の層間絶縁膜が形成され、その層間絶縁膜上に膜厚約80nm〜120nmのRu膜が形成されて開口部内にストレージノードが形成されることになる。
【0013】
ところが、Ru膜の膜厚を約数百〜千数百nm程度にすると、Ru膜が下地の部分から剥がれやすくなるという問題が発生した。そのため、成膜されるRu膜の膜厚に限界が生じてMIMキャパシタの高さが制限されてしまい、MIMキャパシタの容量を十分に確保することができないという問題が発生した。
【0014】
また、第2の従来技術においても、Ru膜を約数百〜千数百nm程度の膜厚に成膜すると、Ru膜が下地から剥がれやすくなって、MIMキャパシタの容量を十分に確保することができないという問題が発生した。
【0015】
本発明は上記問題点を解決するためになされたものであり、1つの目的は容量が確保されるキャパシタを備えた半導体装置を提供することであり、他の目的はそのような半導体装置の製造方法を提供することである。
【0016】
【課題を解決するための手段】
本発明に係る半導体装置は、第1電極部と第2電極部との間に誘電体膜を介在させたキャパシタを含む半導体装置であって、第1電極部は、内側導電体部と外側導電体部とを備えている。内側導電体部は、半導体基板の主表面上に形成され、底面、側面および上面を有する。外側導電体部は、内側導電体部の側面上および上面上にそれぞれ形成され、内側導電体部とは材質が異なる。
【0017】
【発明の実施の形態】
実施の形態1
本発明の実施の形態1に係る半導体装置の製造方法について説明する。図1に示すように、半導体基板1の主表面にゲート電極4およびソース・ドレイン領域3a,3bを含むメモリセルトランジスタが形成されている。
【0018】
そのメモリセルトランジスタを覆うように半導体基板1上にシリコン酸化膜5が形成されている。そのシリコン酸化膜5に形成された開口部に、ソース・ドレイン領域3a,3bに電気的に接続される所定のポリシリコン膜のパッド6が形成されている。
【0019】
シリコン酸化膜5上にさらにシリコン酸化膜7が形成されている。そのシリコン酸化膜7上に一のパッド6に電気的に接続されるビットライン8が形成されている。そのビットライン8を覆うように、さらにシリコン酸化膜9が形成されている。
【0020】
そのシリコン酸化膜9に他のパッド6の表面を露出するストレージノードコンタクトホール9aが形成されている。そのストレージノードコンタクトホール9a内にプラグ10およびバリアメタル11が形成されている。
【0021】
シリコン酸化膜9上にプラグ10およびバリアメタル11に電気的に接続されるストレージノード13が形成されている。ストレージノード13が位置していない部分では、シリコン酸化膜9上にシリコン窒化膜12が形成されている。そのストレージノード13の表面上にTaの誘電体膜14を介在させてセルプレート15が形成されている。
【0022】
ストレージノード13、誘電体膜14およびセルプレート15によってキャパシタCが構成される。そのキャパシタCを覆うように半導体基板1上にシリコン酸化膜16が形成されている。
【0023】
そのシリコン酸化膜16上に1層目のアルミニウム配線17aが形成されている、そのアルミニウム配線17aを覆うようにシリコン酸化膜19が形成されている。
【0024】
そのシリコン酸化膜19上に2層目のアルミニウム配線17bが形成されている。そのアルミニウム配線17bを覆うようにパッシベーションコート膜18が形成されている。
【0025】
特に、本半導体装置ではキャパシタCにおけるストレージノード13は、底面、側面および上面を有する柱状の内側導電体部13aと、内側導電体部13aの底面上(底面と半導体基板との間)、側面上および上面上に位置し、内側導電体部13aとは材質の異なる外側導電体部13b、13cとによって構成される。
【0026】
外側導電体部13b,13cは膜厚約40nm〜80nmのRu等の金属膜によって形成されている。内側導電体部13aは、Ruなどの金属膜と密着性の高い膜から形成されている。Ru等と密着性の高い膜として、たとえばTiN膜、TaN膜、WN膜等が用いられる。
【0027】
上述した半導体装置のストレージノード13では、内側導電体部13aの底面上、側面上および上面上にRu膜等の金属膜からなる外側導電体部13b,13cが形成されている。
【0028】
これにより、従来、Ru膜等の金属膜を厚く形成することによってストレージノードの高さを高くするにはRu膜の剥がれによる限界があったのに対して、本半導体装置では、Ruと密着性の高い内側導電体部13aによってストレージノード13の所望の高さが確保されて、その内側導電体部13aの側面上および上面上にRuの外側導電体部13b、13cが形成されている。
【0029】
その結果,Ru等の金属膜を厚く形成することなくストレージノード13の高さをより高く形成でき、キャパシタCの容量を確保することができる。
【0030】
また、比較的薄いRu膜が外側導電体部13b,13cとして内側導電体部13aの表面に形成されていることで、外側導電体部13b,13cの剥がれを防止することができ、半導体装置の歩留まりが向上する。
【0031】
さらに、比較的薄いRu膜が外側導電体部13b,13cとして形成されることで、高価なRu膜を用いることによる生産コストの上昇も抑えることができる。
【0032】
実施の形態2
本発明の実施の形態2として、実施の形態1において説明した半導体装置の製造方法の一例について説明する。
【0033】
まず、図1に示されたキャパシタCより下方に位置する、素子分離絶縁膜2、ゲート電極4およびソース・ドレイン領域3a,3bを含むメモリセルトランジスタ、パッド6、ビットライン8、プラグ10およびバリアメタル11は、一般に知られた製造方法によって形成される。
【0034】
次に、図2に示すように、シリコン酸化膜9上にシリコン窒化膜12が形成される。そのシリコン窒化膜12上に膜厚約1000nm〜1500nmのシリコン酸化膜20が形成される。
【0035】
そのシリコン酸化膜20上に所定のレジストパターン(図示せず)が形成される。そのレジストパターンをマスクとしてシリコン酸化膜20に異方性エッチングを施すことにより、シリコン窒化膜12の表面を露出する開口部20aが形成される。
【0036】
次に、図3に示すように、露出したシリコン窒化膜12にさらに異方性エッチングを施すことにより、バリアメタル11の表面を露出する開口部20a,12aが形成される。
【0037】
次に、図4に示すように、その開口部20a,12aの底面および側面を含むシリコン酸化膜20の表面上にRu膜の外側導電体部となる外側導電層13bbが形成される。
【0038】
次に、図5に示すように、開口部20a,12aを埋めるように外側導電層13bb上に内側導電体部となる内側導電層13aaが形成される。内側導電層13aaとしてRu膜との密着性の高い、たとえばTiN膜,TaN膜,WN膜等が形成される。
【0039】
次に、図6に示すように、塩素系ガスを用いたドライエッチングを施すことにより、開口部20a,12a内に内側導電層13aaを残してシリコン酸化膜20上面上に位置する内側導電層13aaが除去される。
【0040】
また、この際に、アンモニア系スラリーを用いたCMP(Chemical Mechanical Polishing)処理を施してもよい。これにより、内側導電体部13aが形成される。
【0041】
次に、図7に示すように、半導体基板1上にRuの外側導電体部となる外側導電層13ccが形成される。次に、図8に示すように、その外側導電層13cc上にレジストパターン21が形成される。
【0042】
そのレジストパターン21をマスクとして、酸素系ガスを用いたドライエッチングを施すことにより、図9に示すように,シリコン酸化膜20の上面上に位置する外側導電層13cc,13bbの部分が除去される。
【0043】
次に、図10に示すようにレジストパターン21が除去される。その後、図11に示すように、バッファードフッ酸(BHF)によるウエットエッチングを施すことにより、シリコン酸化膜20が除去される。
【0044】
これにより、内側導電体部13aおよび外側導電体部13b、13cからなるストレージノード13が形成される。次に、図12に示すように、ストレージノード13の表面上に膜厚約5nm〜15nmのTaなどの誘電体膜14が形成される。
【0045】
次に、図13に示すように、誘電体膜14上に膜厚約40nm〜80nmのRu等のセルプレート15が形成される。これにより、ストレージノード13、誘電体膜14およびセルプレート15からなるキャパシタCが形成されたことになる。
【0046】
その後、図1に示すように、キャパシタCを覆うように半導体基板1上にシリコン酸化膜16が形成される。そのシリコン酸化膜16上に1層目のアルミニウム配線17aが形成される。そのアルミニウム配線17aを覆うようにシリコン酸化膜19が形成される。
【0047】
そのシリコン酸化膜19上に2層目のアルミニウム配線17bが形成される。そのアルミニウム配線17bを覆うようにパッシベーションコート膜18が形成される。このようにして、キャパシタCを備えた半導体装置が完成する。
【0048】
上述した半導体装置の製造方法では、所定の厚さのシリコン酸化膜20に形成された開口部の底面上および側面上にRu等の外側導電体部13bが形成される。そして、その開口部を埋めるようにRuと密着性の高い内側導電体部13aが形成される。さらに、その内側導電体部13aを覆うRu等の外側導電体部13cが形成される。
【0049】
これにより、従来、Ru等の金属膜を厚く形成することによってストレージノードの高さを高くするにはRu膜の剥がれによる限界があったのに対して、本半導体装置では、Ruと密着性の高い内側導電体部13aによってストレージノード13の所望の高さが確保されて、その内側導電体部13aの側面上および上面上にRuの外側導電体部13b、13cが形成されている。
【0050】
その結果,Ru等の金属膜を厚く形成することなくストレージノード13の高さをより高く形成でき、キャパシタCの容量を確保することができる。
【0051】
また、比較的薄いRu膜が外側導電体部となる外側導電層13bbとして内側導電体部13aの表面に形成されることで、外側導電体部13bの剥がれを防止することができ、半導体装置の歩留まりが向上する。
【0052】
さらに、比較的薄いRu膜が外側導電体部13bとして形成されることで、高価なRu膜を用いることによる生産コストの上昇も抑えることができる。
【0053】
ところで、図14に示すように、開口部への埋め込みによってストレージノード44が形成される場合には、ストレージノード44の上面部分にアスペクト比の比較的高い窪み(枠Aを参照)が形成されやすくなる。
【0054】
このような窪みが形成されると、ストレージノード44上に誘電体膜14を形成する際に、十分な厚さに誘電体膜14が形成されずに、この部分において電流がリークしてしまうことになる。
【0055】
上述した製造方法では、内側導電体部13aが形成された後に内側導電体部13aの上面を覆うように外側導電体部13cが形成されることで、たとえ、内側導電体部13aに窪みが形成されたとしても、外側導電体部13cによってその窪みが覆われて電流のリークを防止することができる。
【0056】
実施の形態3
前述した製造方法では、ストレージノードの内側導電体部13aの上面を覆う外側導電体部13cが、レジストパターンを用いたパターニングによって形成される場合を例に挙げて説明した。ここでは、いわゆるダマシン法を用いて内側導電体部13aの上面を覆う外側導電体部13cが形成される場合について説明する。
【0057】
まず、前述した図5に示す工程の後、内側導電層13aaと外側導電層13bbとのエッチング選択比が比較的高い条件、たとえば塩素系ガスによるドライエッチングを施すことにより、図15に示すように、シリコン酸化膜20の上面の位置よりも低い位置に上面が位置する内側導電体部13aが形成される。
【0058】
次に、図16に示すように、開口部20a内の内側導電体部13aの上面を覆うように、Ruの外側導電層13ccが形成される。次に、図17に示すように、CMP処理を施すことによりシリコン酸化膜20の上面上に位置する外側導電層13ccの部分が除去されて、開口部20a内の内側導電体部13aの上面上に外側導電体部13cが形成される。
【0059】
その後、前述した図9〜図13に示す工程と実質的に同じ工程を経ることにより、キャパシタを備えた半導体装置が完成する。
【0060】
上述した半導体装置の製造方法では、前述した製造方法により得られる効果に加えて次のような効果が得られる。
【0061】
すなわち、外側導電体部はCMP処理を施して開口部内に位置する外側導電体部となる外側導電層の部分を残すことによって形成されて、外側導電体部13cを形成するための写真製版工程が不用になり工程の削減を図ることができる。
【0062】
実施の形態4
本発明の実施の形態4に係る半導体装置について説明する。図18に示すように、本半導体装置ではキャパシタCにおけるストレージノード13は、側面および上面を有する柱状の内側導電体部13aと、内側導電体部13aの側面上および上面上に位置し、内側導電体部13aとは材質の異なる外側導電体部13bとによって構成される。
【0063】
外側導電体部13bは膜厚約40nm〜80nmのRu等の金属膜によって形成されている、内側導電体部13aは、Ruなどの金属膜と密着性の高い膜から形成されている。Ru等と密着性の高い膜として、たとえばTiN膜、TaN膜、WN膜等が用いられる。
【0064】
なお、図18では、キャパシタCより下方の構造および上方の構造は図示されていないが、これらの部分については本半導体装置は図1に示される構造と実質的に同じ構造を有する。
【0065】
上述した半導体装置のストレージノード13では、内側導電体部13aの側面上と上面上にRu等の金属膜からなる外側導電体部13bが形成されている。
【0066】
これにより、従来、Ru等の金属膜を厚く形成することによってストレージノードの高さを高くするにはRu膜の剥がれによる限界があったのに対して、本半導体装置では、Ruと密着性の高い内側導電体部13aによってストレージノード13の所望の高さが確保されて、その内側導電体部13aの側面上および上面上にRuの外側導電体部13bが形成されている。
【0067】
その結果,Ru等の金属膜を厚く形成することなくストレージノード13の高さをより高く形成でき、キャパシタCの容量を確保することができる。
【0068】
また、比較的薄いRu膜が外側導電体部となる外側導電層13bbとして内側導電体部13aの表面に形成されていることで、外側導電体部13bの剥がれを防止することができ、半導体装置の歩留まりが向上する。
【0069】
さらに、比較的薄いRu膜が外側導電体部13bとして形成されることで、高価なRu膜を用いることによる生産コストの上昇も抑えることができる。
【0070】
また、内側導電体部13aとしてTiNを適用した場合には、TiNは外側導電体部13bをなすRuの場合より絶縁膜との密着性が高い。この場合、内側導電体部13aの底面がシリコン酸化膜9等の絶縁膜に直接接触していることで、キャパシタCは倒れにくくなって、半導体装置の歩留まり向上に寄与することができる。
【0071】
さらに、後述するように、内側導電体部13aとしてTaNを適用した場合、TaNは酸素の遮断性が高く、Taの酸化処理の際に酸素がストレージノードコンタクトホール内に拡散するのを阻止することができ、ストレージノード13とプラグ10との接触抵抗の上昇が抑制されることになる。
【0072】
また、このように内側導電体部13aが酸素の高い遮断性を有することにより、ストレージノードコンタクトホール内にバリアメタル11を形成することなく、内側導電体部13aの底面をプラグ10に直接接触させるようにしてもよい。
【0073】
実施の形態5
本発明の実施の形態5として、実施の形態4において説明した半導体装置の製造方法の一例について説明する。
【0074】
まず、図3に示す工程の後、図19に示すように、開口部20a,12aを埋めるようにシリコン酸化膜20上に膜厚約80nm〜120nmの内側導電層13aaが形成される。内側導電層13aaとしてRu膜との密着性の高い、たとえばTiN膜,TaN膜、WN膜等が形成される。
【0075】
次に、図20に示すように、たとえば塩素系ガスを用いたドライエッチングを施すことにより、シリコン酸化膜20上面上に位置する内側導電層13aaの部分が除去されて、開口部20a,12a内に内側導電体部13aが形成される。なお、ドライエッチングの他にCMP処理を施して内側導電体部13aを形成するようにしてもよい。
【0076】
次に、図21に示すように、バッファードフッ酸(BHF)によるウエットエッチングを施すことにより、シリコン酸化膜20が除去される。次に、図22に示すように、内側導電体部13aの側面および上面を覆うように、半導体基板1上に外側導電体部となる外側導電層13bbが形成される。
【0077】
次に、図23に示すように、内側導電体部13aの上面上に位置する外側導電層13bbの部分を覆うレジストパターン22が形成される。次に、図24に示すように、レジストパターン22をマスクとして、酸素系ガスを用いたドライエッチングを施すことにより、シリコン窒化膜12の上面上に位置する外側導電層13bbの部分が除去されて、内側導電体部13aの側面上および上面上に外側導電体部13bが形成される。
【0078】
このエッチング処理によって、隣合ったストレージノード間に位置する外側導電層13bbの部分が除去されたことになる。その後、図25に示すように、レジストパターン22が除去される。これにより、内側導電体部13aおよび外側導電体部13bからなるストレージノード13が形成される。
【0079】
次に、図26に示すように、ストレージノード13の表面上に膜厚約5nm〜15nmのTaなどの誘電体膜14が形成される。その後、Taの膜質を向上するためにTaに酸化処理が施される。
【0080】
次に、図27に示すように、誘電体膜14上に膜厚約40nm〜80nmのRu膜等のセルプレート15が形成される。これにより、ストレージノード13、誘電体膜14およびセルプレート15からなるキャパシタCが形成されたことになる。
【0081】
その後、前述したように、キャパシタCを覆うシリコン酸化膜、所定のアルミニウム配線17a、17b等(図1参照)が形成されて、キャパシタCを備えた半導体装置が完成する。
【0082】
上述した半導体装置の製造方法では、所定の厚さのシリコン酸化膜20に形成された開口部20a,12aを埋めるように内側導電体部13aが形成される。そして、シリコン酸化膜20の除去後に露出した内側導電体部13aの側面と上面を覆うようにRu等の外側導電体部13bが形成される。
【0083】
これにより、従来、Ru膜等の金属膜を厚く形成することによってストレージノードの高さを高くするにはRu膜の剥がれによる限界があったのに対して、本半導体装置では、Ruと密着性の高い内側導電体部13aによってストレージノード13の所望の高さが確保されて、その内側導電体部13aの側面上および上面上にRuの外側導電体部13bが形成されている。
【0084】
その結果,Ru等の金属膜を厚く形成することなくストレージノード13の高さをより高く形成でき、キャパシタCの容量を確保することができる。
【0085】
また、比較的薄いRu膜が外側導電体部13bとして形成されることで、高価なRu膜を用いることによる生産コストの上昇も抑えることができる。
【0086】
さらに、内側導電体部13aとしてTiNを適用した場合には、TiNは外側導電体部13bをなすRuの場合より絶縁膜との密着性が高い。この場合、内側導電体部13aの底面がシリコン酸化膜9等の絶縁膜に直接接触していることで、キャパシタCは倒れにくくなって、半導体装置の歩留まり向上に寄与することができる。
【0087】
また、比較的薄いRu膜が外側導電体部となる外側導電層13bbとして内側導電体部13aの表面に形成されることで、外側導電体部13bの剥がれを防止することができ、半導体装置の歩留まり向上に寄与することができる。
【0088】
ところで、誘電体膜14としてTaを適用した場合には、Taの膜質を向上させるためにTa膜の形成後にTaに酸化処理が施される。
【0089】
このとき、ストレージノード13の外側導電体部13bとしてRuが用いられていると、酸化処理の際に、酸素がストレージノードのRuの部分を拡散して、ストレージノードコンタクトホール内に形成されたプラグ10に到達し、プラグ10が酸化されてしまう。その結果、ストレージノード13とプラグ10との接触抵抗が上昇することになる。
【0090】
内側導電体部13aとしてTaNを適用した場合、TaNは酸素の拡散を遮断する性質に優れている。この半導体装置では、内側導電体部13aの底面がストレージノードコンタクトホールの開口端を直接覆うように形成される。
【0091】
これにより、酸化処理の酸素がストレージノード13の部分によって拡散するのが遮断されて、ストレージノードコンタクトホール内のプラグ10にまで酸素が到達するのが阻止されることになる。その結果、ストレージノード13とプラグ10との接触抵抗が上昇するのを阻止することができる。
【0092】
また、内側導電体部13a自身が高い酸素遮断性を有していることで、ストレージノードコンタクトホール内にバリアメタル11を形成するのを省くこともでき、工程削減を図ることができる。
【0093】
また、すでに説明したように、開口部への埋め込みによってストレージノードが形成される場合には、ストレージノードの上面部分に形成される窪みに起因する電流のリークがある。
【0094】
上述した製造方法では、内側導電体部13aが形成された後に内側導電体部13aの上面を覆うように外側導電体部13bが形成されることで、内側導電体部13aに窪みが形成されたとしても、外側導電体部13bによってその窪みが覆われて電流のリークを防止することができる。
【0095】
実施の形態6
前述した製造方法では、隣合ったストレージノード間に位置する外側導電体部となる外側導電層13bbの部分が、内側導電体部13aの上面上に位置する外側導電層13bbの部分を覆うレジストパターン22をマスクとして所定のエッチングを施すことによって除去される場合を例に挙げて説明した。
【0096】
ここでは、実施の形態4において説明した半導体装置の他の製造方法として、レジストパターンを形成することなく、内側導電体部13aそのものの段差を利用して外側導電層の膜厚に違いをもたせて当該部分を除去する場合を例に挙げて説明する。
【0097】
まず、前述した図21に示す工程の後、図28に示すように、内側導電体部13aを覆うように外側導電層13bbが形成される。
【0098】
このとき、内側導電体部13aの段差によって、内側導電体部13aの上面上の部分では比較的膜厚の厚い外側導電層13bbが形成されるのに対して、内側導電体部13a下部のシリコン窒化膜12上では、比較的膜厚の薄い外側導電層13bbが形成されることになる。
【0099】
すなわち、外側導電層13bbは、内側導電体部13aの段差によって内側導電体部13aに対する被覆性が悪くなるように形成される。
【0100】
その後、外側導電層13bbの全面にエッチングを施すことにより、シリコン窒化膜12の上面上に位置する外側導電層13bbの部分が除去された時点でエッチングが停止される。
【0101】
そのため、シリコン窒化膜12の上面上に位置する部分よりも外側導電層13bbが厚く形成された内側導電体部13aの上面上の部分では、外側導電層13bbにはエッチングが施されずに残された部分がある。
【0102】
これにより、自己整合的に隣合う内側導電体部13aの間に位置する外側導電層13bbの部分が除去されて、前述した図24に示すように、内側導電体部13aの上面上に外側導電体部13bが形成された状態と実質的に同じ状態が形成されることになる。
【0103】
その後、前述した図26、図27に示す工程と実質的に同じ工程を経ることにより、キャパシタを備えた半導体装置が完成する。
【0104】
上述した半導体装置の製造方法では、前述した製造方法により得られる効果に加えて次のような効果が得られる。
【0105】
すなわち、隣合ったストレージノード間に位置する外側導電体部となる外側導電層13bbの部分が自己整合的に除去されて、当該部分を除去するための写真製版工程が不用になり工程の削減を図ることができる。
【0106】
実施の形態7
本発明の実施の形態7に係る半導体装置について説明する。図29に示すように、本半導体装置ではキャパシタCにおけるストレージノード13は、側面および上面を有する柱状の内側導電体部33aと、内側導電体部33aの底面上(底面と半導体基板との間)、側面上および上面上に位置し、内側導電体部33aとは材質の異なる外側導電体部33b,33cとによって構成される。
【0107】
外側導電体部33bは膜厚約40nm〜80nmのRu等の金属膜によって形成されている。外側導電体部33bの表面は凹凸状になっている。
【0108】
内側導電体部33aは、Ruなどの金属膜と密着性の高い膜から形成されている。Ru等と密着性の高い膜として、たとえばTiN膜、TaN膜、WN膜等が用いられる。
【0109】
なお、図29では、キャパシタCより下方の構造および上方の構造は図示されていないが、これらの部分について本半導体装置は、図1に示される構造と実質的に同じ構造を有する。
【0110】
上述した半導体装置では、内側導電体部33aの底面上、側面上および上面上にRu等の金属膜からなる外側導電体部33b,33cが形成されている。
【0111】
これにより、従来、Ru等の金属膜を厚く形成することによってストレージノードの高さを高くするにはRu膜の剥がれによる限界があったのに対して、本半導体装置では、Ruと密着性の高い内側導電体部33aによってストレージノード13の所望の高さが確保されて、その内側導電体部33aの側面上および上面上にRuの外側導電体部33b、33cが形成されている。
【0112】
その結果,Ru等の金属膜を厚く形成することなくストレージノード13の高さをより高く形成でき、キャパシタCの容量を確保することができる。
【0113】
しかも、内側導電体部33aの側面上に形成される外側導電体部33bの表面が凹凸状になっていることによって、キャパシタCとしての表面積が増加して容量をさらに増加することができる。
【0114】
また、比較的薄いRu膜が外側導電体部33b、33cとして内側導電体部33aの表面に形成されていることで、外側導電体部33b、33cの剥がれを防止することができ、半導体装置の歩留まりが向上する。
【0115】
さらに、比較的薄いRu膜が外側導電体部33b、33cとして形成されることで、高価なRu膜を用いることによる生産コストの上昇も抑えることができる。
【0116】
実施の形態8
本発明の実施の形態8として、実施の形態7において説明した半導体装置の製造方法の一例について説明する。
【0117】
まず、前述した図2に示す工程の後、図30に示すように、開口部20aの底面上および側面上を含むシリコン酸化膜20上に、膜厚約20nm〜30nmのアモルファスシリコン膜23が形成される。
【0118】
次に、図31に示すように、アモルファスシリコン膜23の全面にエッチングを施すことにより、開口部20aの側面上に位置するアモルファスシリコン膜23の部分を残して、シリコン酸化膜20の上面上および開口部20aの底面上に位置するアモルファスシリコン膜23の部分が除去される。
【0119】
次に、図32に示すように、開口部20aの底面に露出したシリコン窒化膜12が除去される。次に、図33に示すように、アモルファスシリコン膜23に粗面化処理が施されて粗面化アモルファスシリコン膜23aが形成される。
【0120】
具体的は、Siガスを流しながら温度約500〜750℃のもとで熱処理が施され、その温度と高真空のもとで維持されることで、アモルファスシリコン膜23の表面に凹凸が生じて粗面化アモルファスシリコン膜23aが形成されることになる。
【0121】
次に、図34に示すように、粗面化アモルファスシリコン膜23aの表面上を含むシリコン酸化膜20上に、膜厚約40nm〜80nmのRuの外側導電体部となる外側導電層33bbが形成される。このとき、粗面化アモルファスシリコン膜23a表面の凹凸が反映されて外側導電層33bbの表面が凹凸状になる。
【0122】
次に、図35に示すように、開口部20a、12aを埋めるように外側導電層33bb上に内側導電体部となる内側導電層33aaが形成される。内側導電層33aaとしてRu膜との密着性の高い、たとえばTiN膜,TaN膜、WN膜等が形成される。
【0123】
次に、図36に示すように、塩素系ガスを用いたドライエッチングを施すことにより、シリコン酸化膜20上面上に位置する内側導電層33aaの部分が除去されて、開口部20a内に内側導電体部33aが形成される。なお、エッチングの他にCMP処理を施すことにより、内側導電体部33aを形成するようにしてもよい。
【0124】
次に、図37に示すように、半導体基板1上に外側導電体部となるRuの外側導電層33ccが形成される。次に、図38に示すように、その外側導電層33cc上にレジストパターン24が形成される。
【0125】
そのレジストパターン24をマスクとして、酸素系ガスを用いたドライエッチングを施すことにより、図39に示すように,シリコン酸化膜20の上面上に位置する外側導電層33cc,33bbの部分が除去される。
【0126】
次に、図40に示すように、レジストパターン24が除去される。次に、バッファードフッ酸(BHF)によるウエットエッチングを施すことにより、シリコン酸化膜20が除去される。その後、図41に示すように、アンモニア水によるウエットエッチングを施すことにより、粗面化アモルファスシリコン膜23aが除去される。
【0127】
これにより、内側導電体部33aおよび外側導電体部33b、33cからなるストレージノード13が形成される。このストレージノード13では、特に,外側導電体部33bの表面が凹凸状になっている。
【0128】
次に、図42に示すように、ストレージノード13の表面上に膜厚約5nm〜15nmのTaなどの誘電体膜14が形成される。
【0129】
次に、図43に示すように、誘電体膜14上に膜厚約40nm〜80nmのRu膜等のセルプレート15が形成される。これにより、ストレージノード13、誘電体膜14およびセルプレート15からなるキャパシタCが形成されたことになる。
【0130】
その後、前述したように、キャパシタCを覆うシリコン酸化膜、所定のアルミニウム配線17a、17b等(図1参照)が形成されて、キャパシタCを備えた半導体装置が完成する。
【0131】
上述した半導体装置の製造方法では、所定の厚さのシリコン酸化膜20に形成された開口部の側面上に粗面化アモルファスシリコン膜23aが形成され、その粗面化アモルファスシリコン膜23aの表面上に、Ru等の外側導電体部33bが形成される。
【0132】
そして、その開口部を埋めるようにRuと密着性の高い内側導電体部33aが形成される。さらに、その内側導電体部33aを覆うRu等の外側導電体部33cが形成される。
【0133】
これにより、従来、Ru等の金属膜を厚く形成することによってストレージノードの高さを高くするにはRu膜の剥がれによる限界があったのに対して、本半導体装置では、Ruと密着性の高い内側導電体部33aによってストレージノード13の所望の高さが確保されて、その内側導電体部33aの側面上および上面上にRuの外側導電体部33b、33cが形成されている。
【0134】
その結果,Ru等の金属膜を厚く形成することなくストレージノード13の高さをより高く形成でき、キャパシタCの容量を確保することができる。
【0135】
しかも、粗面化アモルファスシリコン膜23aの表面上に外側導電体部33bが形成されることで、外側導電体部33bの表面にが凹凸状になって、キャパシタとしての表面積が増加して容量をさらに増加することができる。
【0136】
また、比較的薄いRu膜が外側導電体部となる外側導電層33bb、33ccとして内側導電体部33aの表面に形成されることで、外側導電体部33b、33cの剥がれを防止することができ、半導体装置の歩留まりが向上する。
【0137】
さらに、比較的薄いRu膜が外側導電体部33b、33cとして形成されることで、高価なRu膜を用いることによる生産コストの上昇も抑えることができる。
【0138】
さらに、すでに説明したように、開口部への埋め込みによってストレージノードが形成される場合には、ストレージノードの上面部分に形成される窪みに起因する電流のリークがある。
【0139】
上述した製造方法では、内側導電体部33aが形成された後に内側導電体部33aの上面を覆うように外側導電体部33cが形成されることで、内側導電体部33aに窪みが形成されたとしても、外側導電体部33cによってその窪みが覆われて電流のリークを防止することができる。
【0140】
実施の形態9
前述した製造方法では、ストレージノードの内側導電体部33aの上面を覆う外側導電体部33cが、レジストパターンを用いたパターニングによって形成される場合を例に挙げて説明した。ここでは、いわゆるダマシン法を用いて内側導電体部33aの上面を覆う外側導電体部33cが形成される場合について説明する。
【0141】
まず、前述した図35に示す工程の後、内側導電層33aaと外側導電層33bbとのエッチング選択比が比較的高い条件、たとえば塩素系ガスによるドライエッチングを施すことにより、図44に示すように、シリコン酸化膜20の上面の位置よりも低い位置に上面が位置する内側導電体部33aが形成される。
【0142】
次に、図45に示すように、開口部20a、12a内の内側導電体部33aの上面を覆うように、Ruの外側導電層33ccが形成される。次に、図46に示すように、CMP処理を施すことによりシリコン酸化膜20の上面上に位置する外側導電層33ccの部分が除去される。
【0143】
これにより、開口部20a内の内側導電体部33aの上面に外側導電体部33cが形成される。このようにして外側導電体部33cを形成する方法はダマシン法と呼ばれる。
【0144】
その後、前述した図39〜図43に示す工程と実質的に同じ工程を経ることにより、キャパシタを備えた半導体装置が完成する。
【0145】
上述した半導体装置の製造方法では、前述した製造方法により得られる効果に加えて次のような効果が得られる。
【0146】
すなわち、ストレージノードの内側導電体部33aの上面を覆う外側導電体部33cはダマシン法によって形成されることで,外側導電体部33cを形成するための写真製版工程が不用になり工程の削減を図ることができる。
【0147】
実施の形態10
本発明の実施の形態10に係る半導体装置について説明する。図47に示すように、本半導体装置ではキャパシタCにおけるストレージノード13は、側面および上面を有する柱状の内側導電体部13aと、内側導電体部13aの側面上に位置する粗面化アモルファスシリコン膜23aと、粗面化アモルファスシリコン膜23aの表面上および内側導電体部13aの上面上に位置し、内側導電体部13aとは材質の異なる外側導電体部33bとによって構成される。
【0148】
外側導電体部33bは膜厚約40nm〜80nmのRu等の金属膜によって形成されている。外側導電体部33bのうち、内側導電体部33aの側面上に位置する部分では表面が凹凸状になっている。
【0149】
内側導電体部13aは、Ru等の金属膜と密着性の高い膜から形成されている。Ru等と密着性の高い膜として、たとえばTiN膜、TaN膜、WN膜等が用いられる。
【0150】
なお、図47では、キャパシタCより下方の構造および上方の構造は図示されていないが、これらの部分については本半導体装置は、図1に示される構造と実質的に同じ構造を有する。
【0151】
上述した半導体装置では、内側導電体部13aの側面上および上面上にRu等の金属膜からなる外側導電体部33bが形成されている。
【0152】
これにより、従来、Ru等の金属膜を厚く形成することによってストレージノードの高さを高くするにはRu膜の剥がれによる限界があったのに対して、本半導体装置では、Ruと密着性の高い内側導電体部13aによってストレージノード13の所望の高さが確保されて、その内側導電体部13aの側面上および上面上にRuの外側導電体部33bが形成されている。
【0153】
その結果,Ru等の金属膜を厚く形成することなくストレージノード13の高さをより高く形成でき、キャパシタCの容量を確保することができる。
【0154】
しかも、内側導電体部13aの側面上に位置する外側導電体部33bの部分は、粗面化アモルファスシリコン膜23aを介在させて形成されていることで、その表面が凹凸状になっている。これによって、キャパシタCとしての表面積が増加して容量をさらに増加することができる。
【0155】
また、比較的薄いRu膜が外側導電体部33bとして内側導電体部13aの表面に形成されていることで、外側導電体部33bの剥がれを防止することができ、半導体装置の歩留まりが向上する。
【0156】
さらに、比較的薄いRu膜が外側導電体部33bとして形成されることで、高価なRu膜を用いることによる生産コストの上昇も抑えることができる。
【0157】
また、内側導電体部13aとしてTiNを適用した場合には、TiNは外側導電体部13bをなすRuの場合より絶縁膜との密着性が高く、内側導電体部13aの底面がシリコン酸化膜9等の絶縁膜に直接接触していることで、キャパシタCは倒れにくくなって、半導体装置の歩留まり向上に寄与することができる。
【0158】
さらに、後述するように、内側導電体部13aとしてTaNを適用した場合、TaNは酸素の遮断性が高く、Taの酸化処理の際に酸素がストレージノードコンタクトホール内に拡散するのを阻止することができ、ストレージノード13とプラグ10との接触抵抗の上昇が抑制されることになる。
【0159】
また、このように内側導電体部13aが酸素の高い遮断性を有することにより、ストレージノードコンタクトホール内にバリアメタル11を形成することなく、内側導電体部13aの底面をプラグ10に直接接触させるようにしてもよい。
【0160】
実施の形態11
本発明の実施の形態11として、実施の形態10において説明した半導体装置の製造方法の一例について説明する。
【0161】
まず、前述した図32に示す工程の後、図48に示すように、開口部20a,12aを埋めるようにシリコン酸化膜20上に膜厚約80nm〜120nmの内側導電体部となる内側導電層13aaが形成される。内側導電層13aaとしてRu膜との密着性の高い、たとえばTiN膜,TaN膜、WN膜等が形成される。
【0162】
次に、図49に示すように、たとえば塩素系ガスを用いたドライエッチングを施すことにより、シリコン酸化膜20上面上に位置する内側導電層13aaの部分が除去されて、開口部20a,12a内に内側導電体部13aが形成される。なお、CMP処理を施すことにより、内側導電体部13aを形成するようにしてもよい。
【0163】
次に、図50に示すように、バッファードフッ酸(BHF)によるウエットエッチングを施すことにより、シリコン酸化膜20が除去されて、内側導電体部13aの側面上にアモルファスシリコン膜23が露出する。
【0164】
次に、図51に示すように、アモルファスシリコン膜23に粗面化処理が施されて粗面化アモルファスシリコン膜23aが形成される。
【0165】
具体的は、Siガスを流しながら温度約500〜750℃のもとで熱処理が施され、その温度および高真空のもとで維持することで、アモルファスシリコン膜23の表面に凹凸が生じて、粗面化アモルファスシリコン膜23aが形成されることになる。
【0166】
次に、図52に示すように、内側導電体部13aの側面および上面を覆うように、半導体基板1上に外側導電体部となる外側導電層33bbが形成される。このとき、内側導電体部13aの側面上では粗面化アモルファスシリコン膜23aを介在させて外側導電層33bbが形成されることで、この部分における外側導電層33bbの表面は凹凸状になる。
【0167】
次に、図53に示すように、内側導電体部13aの上面上に位置する外側導電層33bbの部分を覆うレジストパターン25が形成される。次に、図54に示すように、レジストパターン25をマスクとして、酸素系ガスを用いたドライエッチングを施すことにより、シリコン窒化膜12の上面上に位置する外側導電層33bbの部分が除去される。
【0168】
このエッチング処理によって、隣合ったストレージノード間に位置する外側導電層33bbの部分が除去されたことになる。その後、図55に示すように、レジストパターン25が除去される。これにより、内側導電体部13a、粗面化アモルファスシリコン膜膜23aおよび外側導電体部33bからなるストレージノード13が形成される。
【0169】
次に、図56に示すように、ストレージノード13の表面上に膜厚約5nm〜15nmのTaなどの誘電体膜14が形成される。その後、Taの膜質を向上するためにTaに酸化処理が施される。
【0170】
次に、図57に示すように、誘電体膜14上に膜厚約40nm〜80nmのRu膜等のセルプレート15が形成される。これにより、ストレージノード13、誘電体膜14およびセルプレート15からなるキャパシタCが形成されたことになる。
【0171】
その後、前述したように、キャパシタCを覆うシリコン酸化膜、所定のアルミニウム配線17a、17b等(図1参照)が形成されて、キャパシタCを備えた半導体装置が完成する。
【0172】
上述した半導体装置の製造方法では、所定の厚さのシリコン酸化膜20に形成された開口部20aを埋めるように内側導電体部13aが形成される。そして、シリコン酸化膜20の除去後に露出した内側導電体部13aの側面と上面を覆うようにRu膜等の外側導電体部33bが形成される。
【0173】
これにより、従来、Ru等の金属膜を厚く形成することによってストレージノードの高さを高くするにはRu膜の剥がれによる限界があったのに対して、本半導体装置では、Ruと密着性の高い内側導電体部13aによってストレージノード13の所望の高さが確保されて、その内側導電体部13aの側面上および上面上にRuの外側導電体部33bが形成されている。
【0174】
その結果,Ru等の金属膜を厚く形成することなくストレージノード13の高さをより高く形成でき、キャパシタCの容量を確保することができる。
【0175】
しかも、内側導電体部13aの側面上には粗面化アモルファスシリコン膜23aが形成されていることにより、この部分に形成される外側導電体部33aの表面が凹凸状になる。これにより、キャパシタとしての表面積が増加して、キャパシタの容量をさらに増加することができる。
【0176】
また、比較的薄いRu膜が外側導電体部となる外側導電層33bbとして形成されることで、高価なRu膜を用いることによる生産コストの上昇も抑えることができる。
【0177】
さらに、内側導電体部13aとしてTiNを適用した場合には、TiNは外側導電体部13bをなすRuの場合より絶縁膜との密着性が高くなり、内側導電体部13aの底面がシリコン酸化膜9等の絶縁膜に直接接触していることで、キャパシタCは倒れにくくなって、半導体装置の歩留まり向上に寄与することができる。
【0178】
また、比較的薄いRu膜が外側導電体部となる外側導電層33bbとして内側導電体部13aの表面に形成されることで、外側導電体部33bの剥がれを防止することができ、半導体装置の歩留まり向上に寄与することができる。
【0179】
さらに、すでに説明したように、酸素の拡散を遮断する性質に優れたTaNを内側導電体部13aに適用し、その内側導電体部13aの底面がストレージノードコンタクトホールの開口端を直接覆うように形成される。
【0180】
これにより、Taに施す酸化処理の酸素がストレージノード13の部分によって拡散するのが遮断されて、ストレージノードコンタクトホール内のプラグ10にまで酸素が到達するのが阻止されることになる。その結果、ストレージノード13とプラグ10との接触抵抗が上昇するのを阻止することができる。
【0181】
また、内側導電体部13a自身が高い酸素遮断性を有していることで、ストレージノードコンタクトホール内にバリアメタル11を形成するのを省くこともでき、工程削減を図ることができる。
【0182】
さらに、すでに説明したように、開口部への埋め込みによってストレージノードが形成される場合には、ストレージノードの上面部分に形成される窪みに起因する電流のリークがある。
【0183】
上述した製造方法では、内側導電体部13aが形成された後に内側導電体部13aの上面を覆うように外側導電体部33bが形成されることで、内側導電体部13aに窪みが形成されたとしても、外側導電体部33bによってその窪みが覆われて電流のリークを防止することができる。
【0184】
実施の形態12
前述した製造方法では、隣合ったストレージノード間に位置する外側導電体部となる外側導電層33bbの部分が、内側導電体部13aの上面上に位置する外側導電層33bbの部分を覆うレジストパターン25をマスクとして所定のエッチングを施すことによって除去される場合を例に挙げて説明した。
【0185】
ここでは、レジストパターンを形成することなく、内側導電体部13aそのものの段差を利用して外側導電層の膜厚に違いをもたせて当該部分を除去する場合を例に挙げて説明する。
【0186】
まず、前述した図51に示す工程の後、図58に示すように、内側導電体部13aおよび粗面化アモルファスシリコン膜23aを覆うように外側導電体部となる外側導電層33bbが形成される。
【0187】
このとき、内側導電体部13aの段差によって、内側導電体部13aの上面上の部分では比較的膜厚の厚い外側導電層33bbが形成されるのに対して、内側導電体部13a下部のシリコン窒化膜12上では、比較的薄い外側導電層33bbが形成されることになる。
【0188】
すなわち、外側導電層33bbは、内側導電体部13aの段差によって内側導電体部13aに対する被覆性が悪くなるように形成される。
【0189】
その後、外側導電層33bbの全面にエッチングを施すことにより、シリコン窒化膜12の上面上に位置する外側導電層33bbの部分が除去されて、その時点でエッチングが停止される。
【0190】
これにより、シリコン窒化膜12の上面上に位置する部分よりも外側導電層33bbが厚く形成された内側導電体部13aの上面上の部分では、外側導電層33bbにはエッチングが施されずに残された部分がある。
【0191】
つまり、前述した図55に示す状態と同様に,隣合うストレージノード間に位置する外側導電層33bbの部分が自己整合的に除去されて、内側導電体部13aの上面上に位置する外側導電層33bbの部分が残された状態になる。
【0192】
その後、前述した図56、図57に示す工程と実質的に同じ工程を経ることにより、キャパシタを備えた半導体装置が完成する。
【0193】
上述した半導体装置の製造方法では、前述した製造方法により得られる効果に加えて次のような効果が得られる。
【0194】
すなわち、隣合ったストレージノード間に位置する外側導電層33bbの部分が自己整合的に除去されて、当該部分を除去するための写真製版工程が不用になり工程の削減を図ることができる。
【0195】
実施の形態13
実施の形態4に係る半導体装置の製造方法について説明した実施の形態5,6では、シリコン酸化膜に形成された開口部内にストレージノードが形成される場合を例に挙げて説明した。
【0196】
ここでは、実施の形態4において説明した半導体装置のさらに他の製造方法として、開口部を形成することなく、ストレージノードを形成する場合を例に挙げて説明する。
【0197】
まず、図59に示すように、シリコン酸化膜9上に膜厚約1000nm〜1500nmの内側導電体部となる内側導電層13aaが形成される。内側導電層13aaとしてRu膜との密着性の高い、たとえばTiN膜,TaN膜、WN膜等が形成される。
【0198】
次に、図60に示すように、その内側導電層13aa上に、内側導電層13aaとは材質の異なる膜厚約40nm〜80nmのRuの外側導電体部となる外側導電層13ccが形成される。
【0199】
次に、図61に示すように、外側導電層13ccにおいてストレージノードが配置される所定の領域を覆うようにレジストパターン26が形成される。次に、図62に示すように、レジストパターン26をマスクとして、酸素系ガスを用いたドライエッチングを施すことにより、ストレージノードコンタクトホールの直上に位置する部分を除いて外側導電層13ccの部分が除去される。
【0200】
さらに、図63に示すように、レジストパターン26をマスクとして、塩素系ガスを用いたドライエッチングを施すことにより、ストレージノードコンタクトホールの直上に位置する部分を除いて内側導電層13aaの部分が除去される。
【0201】
これにより、内側導電体部13aとその内側導電体部13aの上面を覆う外側導電体部13cが形成されたことになる。その後、図64に示すように、レジストパターン26が除去される。
【0202】
次に、図65に示すように、内側導電体部13aおよび外側導電体部13cを覆うように半導体基板1上に、さらに外側導電体部となる外側導電層13bbが形成される。
【0203】
次に、図66に示すように、外側導電層13bbの全面にエッチングを施すことにより、シリコン酸化膜9の上面上に位置する外側導電層13bbの部分が除去されて、その時点でエッチングが停止される。
【0204】
これにより、シリコン酸化膜9の上面上に位置する外側導電層13ccの部分にはエッチングが施されずに、外側導電層13ccは外側導電体部13cとして残された状態になる。これにより、内側導電体部13a,外側導電体部13b,13cからなるストレージノード13が形成される。
【0205】
次に、図67に示すように、ストレージノード13の表面上に膜厚約5nm〜15nmのTaなどの誘電体膜14が形成される。次に、図68に示すように、誘電体膜14上に膜厚約40nm〜80nmのRu膜等のセルプレート15が形成される。これにより、ストレージノード13、誘電体膜14およびセルプレート15からなるキャパシタCが形成されたことになる。
【0206】
その後、前述したように、キャパシタCを覆うシリコン酸化膜、所定のアルミニウム配線17a、17b等(図1参照)が形成されて、キャパシタCを備えた半導体装置が完成する。
【0207】
上述した半導体装置の製造方法では、実施の形態6において説明した製造方法と同様に、実施の形態5において説明した製造方法により得られる効果に加えて次のような効果が得られる。すなわち、隣合ったストレージノード間に位置する外側導電体部となる外側導電層13bbの部分を除去するための写真製版工程が不用になり工程の削減を図ることができる。
【0208】
なお、上記各実施の形態では、内側導電体部としてTiN,TaN,WN等、外側導電体部としてRu、誘電体膜としてTaをそれぞれ例に挙げて説明した。
【0209】
外側導電体部としては、誘電体膜との関係で誘電体膜の誘電率を高めることができる性質を有してはいるものの、比較的厚く形成されると剥がれやすくなる傾向にあるものであり、内側導電体部としてはそのような外側導電体部を密着させる性質のあるものであれば、上記材質のものに限られない。
【0210】
以上説明したように、実施の形態1,4,7,10において説明した半導体装置では、ストレージノードとしての第1電極部は、内側導電体部と外側導電体部とを備えている。内側導電体部は、半導体基板の主表面上に形成され、底面、側面および上面を有する。外側導電体部は、内側導電体部の側面上および上面上にそれぞれ形成され、内側導電体部とは下地に対する剥がれ特性の異なる材質によって形成されている。
【0211】
これにより、従来、外側導電体部をなす外側導電層のみでストレージノードの高さを高くするにはその外側導電層の剥がれによる限界があったのに対して、本半導体装置では、内側導電体部によって第1電極部の所望の高さが確保されて、その内側導電体部の側面上および上面上に比較的薄い外側導電層を形成することによって外側導電体部が形成される。これにより、外側導電層を厚く形成することなく第1電極部の高さをより高く形成することができ、キャパシタCの容量を確保することができる。
【0212】
実施の形態2,3,8,9では、まず、シリコン酸化膜に形成された開口部内に外側第1導電層が形成され、次に、その開口部を埋めるように外側第1導電層上に内側導電層が形成される。その後、その内側導電層の上面上に外側第2導電層が形成される。これにより、内側導電層によって内側導電体部が形成され、その内側導電体部の側面上では外側第1導電層によって外側導電体部の部分が形成され、内側導電体部の上面上では外側第2導電層によって外側導電体部の部分が形成された状態になる。
【0213】
また、実施の形態5,6,11,12,13では、まず、内側導電体部が形成されて、その内側導電体部の側面上および上面上に外側導電層を形成することによって外側導電体部が形成される。
【0214】
これにより、いずれの場合も内側導電体部によってストレージノード(第1電極部)の所望の高さが確保されて、その内側導電体部の側面上および上面上に比較的薄い外側導電体部が形成されたことになる。その結果、外側導電体部を厚く形成することなく第1電極部の高さをより高く形成することができ、キャパシタCの容量を確保することができる。
【0215】
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明は上記の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0216】
【発明の効果】
本発明に係る半導体装置によれば、従来、外側導電体部をなす外側導電層のみで第1電極部(キャパシタ)の高さを高くするにはその外側導電層の剥がれによる限界があったのに対して、本半導体装置では、内側導電体部によって第1電極部の所望の高さが確保されて、その内側導電体部の側面上および上面上に外側導電体部が形成される。これにより、外側導電層を厚く形成することなく第1電極部の高さをより高く形成することができ、キャパシタCの容量を確保することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る半導体装置の断面図である。
【図2】本発明の実施の形態2に係る半導体装置の製造方法の一工程を示す断面図である。
【図3】同実施の形態において、図2に示す工程の後に行なわれる工程を示す断面図である。
【図4】同実施の形態において、図3に示す工程の後に行なわれる工程を示す断面図である。
【図5】同実施の形態において、図4に示す工程の後に行なわれる工程を示す断面図である。
【図6】同実施の形態において、図5に示す工程の後に行なわれる工程を示す断面図である。
【図7】同実施の形態において、図6に示す工程の後に行なわれる工程を示す断面図である。
【図8】同実施の形態において、図7に示す工程の後に行なわれる工程を示す断面図である。
【図9】同実施の形態において、図8に示す工程の後に行なわれる工程を示す断面図である。
【図10】同実施の形態において、図9に示す工程の後に行なわれる工程を示す断面図である。
【図11】同実施の形態において、図10に示す工程の後に行なわれる工程を示す断面図である。
【図12】同実施の形態において、図11に示す工程の後に行なわれる工程を示す断面図である。
【図13】同実施の形態において、図12に示す工程の後に行なわれる工程を示す断面図である。
【図14】同実施の形態において、半導体装置の効果を説明するための断面図である。
【図15】本発明の実施の形態3に係る半導体装置の製造方法の一工程を示す断面図である。
【図16】同実施の形態において、図15に示す工程の後に行なわれる工程を示す断面図である。
【図17】同実施の形態において、図16に示す工程の後に行なわれる工程を示す断面図である。
【図18】本発明の実施の形態4に係る半導体装置の断面図である。
【図19】本発明の実施の形態5に係る半導体装置の製造方法の一工程を示す断面図である。
【図20】同実施の形態において、図19に示す工程の後に行なわれる工程を示す断面図である。
【図21】同実施の形態において、図20に示す工程の後に行なわれる工程を示す断面図である。
【図22】同実施の形態において、図21に示す工程の後に行なわれる工程を示す断面図である。
【図23】同実施の形態において、図22に示す工程の後に行なわれる工程を示す断面図である。
【図24】同実施の形態において、図23に示す工程の後に行なわれる工程を示す断面図である。
【図25】同実施の形態において、図24に示す工程の後に行なわれる工程を示す断面図である。
【図26】同実施の形態において、図25に示す工程の後に行なわれる工程を示す断面図である。
【図27】同実施の形態において、図26に示す工程の後に行なわれる工程を示す断面図である。
【図28】本発明の実施の形態6に係る半導体装置の製造方法の一工程を示す断面図である。
【図29】本発明の実施の形態7に係る半導体装置の断面図である。
【図30】本発明の実施の形態8に係る半導体装置の製造方法の一工程を示す断面図である。
【図31】同実施の形態において、図30に示す工程の後に行なわれる工程を示す断面図である。
【図32】同実施の形態において、図31に示す工程の後に行なわれる工程を示す断面図である。
【図33】同実施の形態において、図32に示す工程の後に行なわれる工程を示す断面図である。
【図34】同実施の形態において、図33に示す工程の後に行なわれる工程を示す断面図である。
【図35】同実施の形態において、図34に示す工程の後に行なわれる工程を示す断面図である。
【図36】同実施の形態において、図35に示す工程の後に行なわれる工程を示す断面図である。
【図37】同実施の形態において、図36に示す工程の後に行なわれる工程を示す断面図である。
【図38】同実施の形態において、図37に示す工程の後に行なわれる工程を示す断面図である。
【図39】同実施の形態において、図38に示す工程の後に行なわれる工程を示す断面図である。
【図40】同実施の形態において、図39に示す工程の後に行なわれる工程を示す断面図である。
【図41】同実施の形態において、図40に示す工程の後に行なわれる工程を示す断面図である。
【図42】同実施の形態において、図41に示す工程の後に行なわれる工程を示す断面図である。
【図43】同実施の形態において、図42に示す工程の後に行なわれる工程を示す断面図である。
【図44】本発明の実施の形態9に係る半導体装置の製造方法の一工程を示す断面図である。
【図45】同実施の形態において、図44に示す工程の後に行なわれる工程を示す断面図である。
【図46】同実施の形態において、図45に示す工程の後に行なわれる工程を示す断面図である。
【図47】本発明の実施の形態10に係る半導体装置の断面図である。
【図48】本発明の実施の形態11に係る半導体装置の製造方法の一工程を示す断面図である。
【図49】同実施の形態において、図48に示す工程の後に行なわれる工程を示す断面図である。
【図50】同実施の形態において、図49に示す工程の後に行なわれる工程を示す断面図である。
【図51】同実施の形態において、図50に示す工程の後に行なわれる工程を示す断面図である。
【図52】同実施の形態において、図51に示す工程の後に行なわれる工程を示す断面図である。
【図53】同実施の形態において、図52に示す工程の後に行なわれる工程を示す断面図である。
【図54】同実施の形態において、図53に示す工程の後に行なわれる工程を示す断面図である。
【図55】同実施の形態において、図54に示す工程の後に行なわれる工程を示す断面図である。
【図56】同実施の形態において、図55に示す工程の後に行なわれる工程を示す断面図である。
【図57】同実施の形態において、図56に示す工程の後に行なわれる工程を示す断面図である。
【図58】本発明の実施の形態12に係る半導体装置の製造方法の一工程を示す断面図である。
【図59】本発明の実施の形態13に係る半導体装置の製造方法の一工程を示す断面図である。
【図60】同実施の形態において、図59に示す工程の後に行なわれる工程を示す断面図である。
【図61】同実施の形態において、図60に示す工程の後に行なわれる工程を示す断面図である。
【図62】同実施の形態において、図61に示す工程の後に行なわれる工程を示す断面図である。
【図63】同実施の形態において、図62に示す工程の後に行なわれる工程を示す断面図である。
【図64】同実施の形態において、図63に示す工程の後に行なわれる工程を示す断面図である。
【図65】同実施の形態において、図64に示す工程の後に行なわれる工程を示す断面図である。
【図66】同実施の形態において、図65に示す工程の後に行なわれる工程を示す断面図である。
【図67】同実施の形態において、図66に示す工程の後に行なわれる工程を示す断面図である。
【図68】同実施の形態において、図67に示す工程の後に行なわれる工程を示す断面図である。
【符号の説明】
1 半導体基板、2 素子分離絶縁膜、3a,3b ソース・ドレイン領域、4 ゲート電極、5,7,9,16,19,20 シリコン酸化膜、6 パッド、8 ビットライン、9a コンタクトホール、10 プラグ、11 バリアメタル、12 シリコン窒化膜、13aa,33aa 内側導電層、13bb,13cc,33bb、33cc 外側導電層、13a,33a 内側導電体部、13b,13c,33b、33c 外側導電体部、13 ストレージノード、14誘電体膜、15 セルプレート、17a,17b アルミニウム配線、18 パッシベーションコート膜、21〜26 レジストパターン、23 アモルファスシリコン膜、23a 粗面化アモルファスシリコン膜、C キャパシタ。

Claims (13)

  1. 第1電極部と第2電極部との間に誘電体膜を介在させたキャパシタを含む半導体装置であって、
    前記第1電極部は、
    半導体基板の主表面上に形成され、底面、側面および上面を有する内側導電体部と、
    前記内側導電体部の前記側面上および前記上面上にそれぞれ形成され、前記内側導電体部とは材質の異なる外側導電体部と
    を備えた、半導体装置。
  2. 前記外側導電体部は、前記半導体基板と前記内側導電体部の底面との間に位置する部分に形成された、請求項1記載の半導体装置。
  3. 前記外側導電体部のうち前記内側導電体部の側面上に形成された部分の表面は凹凸状である、請求項1または2に記載の半導体装置。
  4. 内側導電体部および外側導電体部を含む第1電極部を形成する工程と、
    前記第1電極部上に誘電体膜を介在させて第2電極部を形成する工程と
    を含み、
    前記第1電極部を形成する工程は、
    半導体基板上に絶縁膜を形成する工程と、
    前記絶縁膜に所定の深さを有する開口部を形成する工程と、
    前記開口部の底面および側面を覆うように前記外側導電体部となる外側第1導電層を形成する工程と、
    前記開口部内の前記外側第1導電層上に、前記外側第1導電層とは材質が異なり前記内側導電体部となる内側導電層を形成する工程と、
    前記内側導電層の上面を、前記外側第1導電層と実質的に同じ材質の前記外側導電体部となる外側第2導電層によって覆う工程と、
    前記絶縁膜を除去して、前記外側第1導電層および前記外側第2導電層の表面を露出する工程と
    を備えた、半導体装置の製造方法。
  5. 前記内側導電層の上面を前記外側第2導電層によって覆う工程は、
    前記内側導電層を覆うように、前記絶縁膜上に前記外側第2導電層を形成する工程と、
    前記外側第2導電層上に所定のレジストパターンを形成し、前記レジストパターンをマスクとして、前記外側第2導電層にエッチングを施すことにより、前記絶縁膜の上面上に位置する前記外側第2導電層の部分を除去して、前記内側導電層の上面上に位置する前記外側第2導電層の部分を残す工程と
    を含む、請求項4記載の半導体装置の製造方法。
  6. 前記内側導電層を形成する工程は、前記開口部内の前記内側導電層の上面が前記絶縁膜の上面よりも低くなるように前記内側導電層を形成する工程を含み、
    前記内側導電層の上面を前記外側第2導電層によって覆う工程は、
    前記開口部内の前記内側導電層を埋めるように前記絶縁膜上に前記外側第2導電層を形成する工程と、
    前記絶縁膜上に位置する前記外側第2導電層の部分を除去して、前記開口部内の前記内側導電層の上面上に位置する前記外側第2導電層の部分を残す工程と
    を含む、請求項4記載の半導体装置の製造方法。
  7. 前記開口部を形成した後前記外側第1導電層を形成する前に、前記開口部の側面上に凹凸を有する所定の膜を被覆する工程を備え、
    前記外側第1導電層を形成する工程では、前記外側第1導電層は前記所定の膜を覆うように形成され、
    前記絶縁膜を除去した後前記誘電体膜を形成する前に、前記所定の膜を除去する工程を備えた、請求項5または6に記載の半導体装置の製造方法。
  8. 内側導電体部および外側導電体部を含む第1電極部を形成する工程と、
    前記第1電極部上に誘電体膜を介在させて第2電極部を形成する工程と
    を含み、
    前記第1電極部を形成する工程は、
    半導体基板上に側面および上面を有する内側導電層からなる前記内側導電体部を形成する工程と、
    前記内側導電体部を覆うように、前記内側導電層とは材質が異なり前記外側導電体部となる外側導電層を形成する工程と
    を備えた、半導体装置の製造方法。
  9. 前記内側導電体部を形成する工程は、
    前記半導体基板上に絶縁膜を形成する工程と、
    前記絶縁膜に開口部を形成する工程と、
    前記開口部内に前記内側導電層を形成する工程と、
    前記絶縁膜を除去することにより、前記内側導電層の側面および上面を露出する工程と
    を含む、請求項8記載の半導体装置の製造方法。
  10. 前記外側導電層を形成する工程は、
    前記内側導電体部を覆うように、前記外側導電層を形成する工程と、
    前記内側導電体部の上面上に位置する前記外側導電層の部分を覆うレジストパターンを形成する工程と、
    前記レジストパターンをマスクとして前記外側導電層にエッチングを施すことにより、前記外側導電層のうち、前記内側導電体部の上面上および側面上に位置する前記外側導電層の部分を残して他の部分を除去する工程と
    を含む、請求項9記載の半導体装置の製造方法。
  11. 前記外側導電層を形成する工程は、
    前記内側導電体部そのものの段差を利用することにより、前記内側導電体部の上面上に形成される部分の膜厚が前記内側導電体部の上面よりも下方に形成される部分の膜厚よりも厚くなるように、前記内側導電体部を覆う前記外側導電層を形成する工程と、
    前記外側導電層に加工を施すことにより、前記内側導電体部の上面上に位置する前記外側導電層の部分を残して他の部分を除去する工程と
    を含む、請求項9記載の半導体装置の製造方法。
  12. 前記内側導電体部を形成した後前記外側導電層を形成する前に、前記内側導電体部の表面に凹凸を有する所定の導電性膜を形成する工程を備え、
    前記外側導電層を形成する工程では、前記外側導電層は前記所定の導電性膜上に形成される、請求項10または11に記載の半導体装置の製造方法。
  13. 前記内側導電体部を形成する工程は、
    前記半導体基板上に前記内側導電層を形成する工程と、
    前記内側導電層に所定の加工を施すことにより、前記第1電極部が配置される所定の領域に位置する部分を残し他の領域に位置する部分を除去して、前記内側導電層の側面および上面を露出する工程と
    を含む、請求項8記載の半導体装置の製造方法。
JP2002352527A 2002-12-04 2002-12-04 半導体装置およびその製造方法 Withdrawn JP2004186487A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002352527A JP2004186487A (ja) 2002-12-04 2002-12-04 半導体装置およびその製造方法
US10/455,325 US20040108534A1 (en) 2002-12-04 2003-06-06 Semiconductor device and manufacturing method for the same
TW092116058A TW200410395A (en) 2002-12-04 2003-06-13 Semiconductor device and method for preparing the same
KR1020030054324A KR20040048802A (ko) 2002-12-04 2003-08-06 반도체장치 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352527A JP2004186487A (ja) 2002-12-04 2002-12-04 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2004186487A true JP2004186487A (ja) 2004-07-02

Family

ID=32463232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352527A Withdrawn JP2004186487A (ja) 2002-12-04 2002-12-04 半導体装置およびその製造方法

Country Status (4)

Country Link
US (1) US20040108534A1 (ja)
JP (1) JP2004186487A (ja)
KR (1) KR20040048802A (ja)
TW (1) TW200410395A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760632B1 (ko) * 2006-03-03 2007-09-20 삼성전자주식회사 커패시터 형성 방법
KR20110012348A (ko) * 2009-07-30 2011-02-09 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348708B1 (en) * 1995-04-10 2002-02-19 Lg Semicon Co., Ltd. Semiconductor device utilizing a rugged tungsten film
JP3749776B2 (ja) * 1997-02-28 2006-03-01 株式会社東芝 半導体装置
TW372365B (en) * 1998-04-20 1999-10-21 United Microelectronics Corp Manufacturing method for capacitors of dynamic random access memory
KR100282484B1 (ko) * 1998-12-16 2001-02-15 윤종용 디램 셀 커패시터 및 그의 제조방법
US6291848B1 (en) * 1999-01-13 2001-09-18 Agere Systems Guardian Corp. Integrated circuit capacitor including anchored plugs
KR100385951B1 (ko) * 2001-01-17 2003-06-02 삼성전자주식회사 다중층의 스토리지 노드 콘택 플러그를 갖는 반도체메모리 소자 및 그 제조방법
KR100408742B1 (ko) * 2001-05-10 2003-12-11 삼성전자주식회사 집적회로소자의 캐패시터 및 그 제조방법
US6815753B2 (en) * 2002-08-29 2004-11-09 Micron Technology, Inc. Semiconductor capacitor structure and method to form same

Also Published As

Publication number Publication date
US20040108534A1 (en) 2004-06-10
TW200410395A (en) 2004-06-16
KR20040048802A (ko) 2004-06-10

Similar Documents

Publication Publication Date Title
JP2920119B2 (ja) 半導体素子のキャパシタ製造方法
US20120025385A1 (en) Low Resistance Peripheral Local Interconnect Contacts with Selective Wet Strip of Titanium
US9263452B2 (en) Reservoir capacitor of semiconductor device
JP2004111626A (ja) 半導体装置
JP2004111624A (ja) 半導体装置
JP2004104012A (ja) 半導体装置
KR100533971B1 (ko) 반도체 소자의 캐패시터 제조방법
US7910480B2 (en) Method for insulating wires of semiconductor device
JP3605493B2 (ja) 半導体装置の製造方法
US20040089891A1 (en) Semiconductor device including electrode or the like having opening closed and method of manufacturing the same
JP2004186487A (ja) 半導体装置およびその製造方法
JP2000243836A (ja) 半導体素子の配線形成方法
JP4001707B2 (ja) 半導体装置の製造方法
JP3257625B2 (ja) 半導体装置およびその製造方法
US20090124079A1 (en) Method for fabricating a conductive plug
JP3080073B2 (ja) 半導体装置の製造方法
KR100798270B1 (ko) 반도체 소자 및 그 제조 방법
JP2002141472A (ja) 半導体装置及びその製造方法
JP2812286B2 (ja) 半導体装置及びその製造方法
JPH10321624A (ja) 半導体装置の製造方法
US6368971B2 (en) Method of manufacturing bottom electrode of capacitor
TW418499B (en) Manufacturing method of landing pad
JP2001244429A (ja) 半導体装置およびその製造方法
JPH07118477B2 (ja) 高集積半導体接続装置の製造方法
JP2004247441A (ja) 半導体装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207