JP2004101255A - 圧電体振動ジャイロセンサ - Google Patents
圧電体振動ジャイロセンサ Download PDFInfo
- Publication number
- JP2004101255A JP2004101255A JP2002260777A JP2002260777A JP2004101255A JP 2004101255 A JP2004101255 A JP 2004101255A JP 2002260777 A JP2002260777 A JP 2002260777A JP 2002260777 A JP2002260777 A JP 2002260777A JP 2004101255 A JP2004101255 A JP 2004101255A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- prismatic
- arm parts
- electrodes
- arm portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000010897 surface acoustic wave method Methods 0.000 claims description 20
- 239000013078 crystal Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 238000001514 detection method Methods 0.000 abstract description 34
- 230000035945 sensitivity Effects 0.000 abstract description 8
- 230000010355 oscillation Effects 0.000 description 33
- 238000005452 bending Methods 0.000 description 9
- 230000001360 synchronised effect Effects 0.000 description 9
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000010287 polarization Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000035559 beat frequency Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/5607—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
【課題】コリオリ力を利用した振動ジャイロセンサにおいて、加工が容易でかつ検出感度にすぐれた一次、二次電極配置構造を備えた振動ジャイロセンサを提供することを目的とする。
【解決手段】二つの角柱状アーム部と前記アーム部の下端を支持する基底部とが一体となった音叉型振動体と、前記角柱状アーム部に形成した一次電極と、前記アーム部に形成した弾性表面波素子用IDT(二次電極)とを備える圧電体振動ジャイロセンサにおいて、前記角柱状アーム部の対向する二つの表面それぞれに一次電極を前記長軸方向に沿って所定間隔離して並列配置し、該弾性表面波素子用IDTを該角柱状アーム部下端の前記一次電極の間に配置したことを特徴とする圧電体振動ジャイロセンサ。
【選択図】 図1
【解決手段】二つの角柱状アーム部と前記アーム部の下端を支持する基底部とが一体となった音叉型振動体と、前記角柱状アーム部に形成した一次電極と、前記アーム部に形成した弾性表面波素子用IDT(二次電極)とを備える圧電体振動ジャイロセンサにおいて、前記角柱状アーム部の対向する二つの表面それぞれに一次電極を前記長軸方向に沿って所定間隔離して並列配置し、該弾性表面波素子用IDTを該角柱状アーム部下端の前記一次電極の間に配置したことを特徴とする圧電体振動ジャイロセンサ。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、コリオリ力を利用した振動ジャイロセンサに関する。
【0002】
【従来の技術】
物体の回転を検出するセンサーとして、コリオリ力を応用した音叉型振動ジャイロセンサーが良く使われている。音叉型振動ジャイロセンサは構造が簡単で小型化しやすいため、カメラの手振防止やカーナビゲーションシステム用としても利用価値が大変高い。
【0003】
特開平11−37761号公報においては、音叉型振動ジャイロセンサについて4つの実施例が開示されている。
図4は特開平11―37761号公報にて提案された音叉型振動ジャイロセンサの第1の従来例の外観図を示したものである。図4に示した従来の音叉型振動ジャイロセンサは、アームにエネルギー閉じこめ型共振子を配置したものであって、回転速度の変化を該共振子の出力電圧振幅の変化として検出するタイプである。
【0004】
図4に示した従来の音叉型ジャイロは、アーム部1と基底部2とが一体になった音叉振動体3に屈曲振動駆動用の駆動電極4(一次電極)を形成し、さらに二つのアーム部1それぞれの表裏面に対向するように電極5(二次電極)を配置して、エネルギー閉じこめ型共振子を形成した構造であり、駆動電極4に第1の駆動信号を加えてアーム部1を屈曲振動させ、さらにそれぞれの二次電極5a、5c間に共通に第2の駆動信号を与え、二次電極5b、5c間のそれぞれから、屈曲振動に応じて振幅変調された信号を出力するようになっている。
【0005】
ここで、二次電極5b、5cの出力信号はアーム部1の屈曲振動によって振幅変調を与えられるが、回転時にアーム部1にコリオリ力が働くと、二つの出力信号には振幅差が生じる。従って、二つの出力信号の差動信号を取り出すと、該差動信号に振幅のビート成分が発生する。前記振幅のビート成分を駆動電極4に印加した駆動信号で同期検波すると、図4におけるY軸周りの回転速度に比例した直流電圧を生成することができる。
【0006】
また、特開平11―37761号公報の図7において例示された第2の従来例はエネルギー閉じこめ型共振器を使用し回転速度の変化を出力周波数の変化として検出したものである。構造は図4に示したものとほぼ同じであるが、二次電極を含む二つの共振子はそれぞれ二つの独立した発振回路の発振素子として機能し、それぞれ異なる発振信号を二次電極から出力するようにしている。
【0007】
この第2の従来例において、二つの発振信号はそれぞれアーム部の屈曲振動によって周波数変調を与えられるが、回転時に働くコリオリ力によって、二つの発振信号に周波数差が生じる。従って、二つの発振信号の周波数差(周波数ビート成分)を検出し、一次電極に印加した駆動信号で同期検波すると、回転速度に比例した直流電圧を生成することができる。
【0008】
また、特開平11―37761号公報の図8に図示された第3の従来例は、図4に示したエネルギー閉じこめ型共振子を弾性表面波素子で置き換えたものである。
この従来例の回転検出の原理は第1の従来例と同様、振幅のビート成分を利用したものである。また、第4の従来例として、図4に示したエネルギー閉じこめ型共振子を弾性表面波素子で置き換えたものが開示されている。この従来例は弾性表面波素子を発振回路の共振素子として利用したものであって、検出原理は前述した第2の従来例と同様に、二つの共振信号の周波数差(ビート周波数成分)の変化を検出したものである。このように、コリオリ力を応用した振動ジャイロセンサは振動体の材料や構造、一次、二次電極の配置、或いは回転の検出方法等含めて様々なタイプが存在する。
【0009】
【発明が解決しようとする課題】
しかしながら、前述した従来例を含め、コリオリ力を応用した一般の振動ジャイロセンサには、以下のような問題があった。
振動体の素材には通常、圧電セラミックスや水晶等といったものが使われる。圧電セラミックスは加工が容易であり、加工後に分極処理を施すことにより振動体として利用することができる。圧電セラミックスは外部から強い電界を加えると電界を加えた部位にのみ局部的に分極が形成されるという性質を持っているので、一次電極を形成した後に所定の一次電極間に強い電界を加えれば所定の部位に分極を自由に形成できる。従って、一次電極の形成位置に比較的制限が少ないという利点がある。しかしながら、水晶に比べると一般的に検出感度に劣るという欠点がある。
【0010】
一方、水晶のような単結晶素材は圧電セラミックに比べて一般的にQ値が高いので、これを音叉振動体の素材にすると検出感度を高くでき、信号対雑音比にすぐれた検出信号を取り出せるといった利点がある。しかしながら、圧電セラミックスのように後処理で局部的に分極を形成するといったことが物性的に不可能であり、予め所定の結晶軸方向に合わせて加工を施し、さらに所定の結晶軸方向に合わせて一次電極を配置しなければならない。また、特定の結晶軸方向(Z方向)にはほとんど化学的にエッチングを施すことができないので、加工方法にも制限がある。従って、圧電セラミック素材のものと比較して一次電極の形成位置に制限があり、また検出感度が適正となる位置に二次電極を前記一次電極と重複しないように形成することは非常に困難であった。
【0011】
本発明は、上記問題点を解決するためになされたものであって、優れた検出感度を有する一次、二次電極配置構造を持ち、加工方法にも制限が少ない、水晶を音叉振動体の素材とする振動ジャイロセンサを提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を解決する為に本発明に係わる請求項1記載の発明は、二つの角柱状アーム部と前記アーム部の下端を支持する基底部とが一体となった音叉型振動体と、前記二つの角柱状アーム部に形成した駆動電極(一次電極)と、前記二つのアーム部に形成した弾性表面波素子用IDT電極(二次電極)とを備える圧電体振動ジャイロセンサにおいて、前記角柱状アーム部の対向する二つの表面それぞれに前記駆動電極を前記長軸方向に沿って所定間隔離して並列配置し、前記角柱状アーム部の一方の表面に前記駆動用電極と共に前記弾性表面波素子用IDT電極を形成したものであって、前記弾性表面波素子用IDT電極を該角柱状アーム部下端の前記駆動電極の間に配置したものである。
【0013】
本発明に係わる請求項2記載の発明は、請求項1において前記音叉型振動体の素材をXカットの水晶とし、前記角柱状アーム部の長軸方向を水晶結晶軸のY方向としたものである。
【0014】
【発明の実施の形態】
以下、図示した実施例に基づいて本発明を詳細に説明する。
図1は、本発明に係わる圧電体振動ジャイロセンサの外観図を示したものである。
図1において、振動ジャイロセンサは二本のアーム部1と基底部2とが一体になった水晶を用いた音叉型振動体3と、前記アーム部1の表裏面に対向するように平行に配置された長方形状の駆動電極6(一次電極)と、前記アーム部1の片面下端に前記駆動電極6の間に配置された弾性表面波素子用IDT電極7(二次電極)とを備えている。ここで、アーム部1の長軸方向は水晶結晶軸のY方向に一致している。なお、二次電極としては一対のIDT電極のみを配置してもよいし、IDT電極の両側に反射器を配置したもの、或いは複数のIDT電極を有するものであってもよい。また、アーム部1の下端に弾性表面波素子用IDT電極7を配置する理由は、上端に配置する場合よりも検出感度を高くすることができるからである。
つまり、アーム部1の屈曲振動において歪みが最大となるのはアーム部1の付け根近傍となるからである。
【0015】
図2は振動ジャイロセンサとその周辺回路全体を示したものである。
図2において、音叉振動体3のアーム部1の対向する表裏面それぞれに2本ずつ、合計8本の駆動電極6が配置されている。このうち各4本ずつが互いに図1に図示されない配線パターンによって接続されており、4本ずつペアになった駆動電極6間には駆動信号源8が接続され駆動信号が与えられている。またアーム部1の一方の面に形成した二つの弾性表面波素子用IDT電極7が、それぞれ発振回路9、10に接続され、前記発振回路9、10の発振素子として機能している。
ここで、前記発振回路9、10の発振周波数が異なる周波数となるように、それぞれの発振周波数に応じて弾性表面波用IDT電極7が形成されている。
【0016】
さらに、前記発振回路9、10の出力する発振信号A、Bは、前記駆動信号と共に検出部11に供給される。また、前記検出部11は周波数混合部12と周波数検波部13と同期検波部14とを備え、ここで回転速度に比例した直流電圧を生成し検出信号として出力するようになっている。
【0017】
図2に示した振動ジャイロセンサは以下のように動作する。
まず、Y軸周りの回転がない状態を考える。駆動電極6に駆動信号を印加すると、アーム部1はそれぞれZ軸方向に屈曲振動を起こす。
このとき、二つのアーム部1の屈曲状態に対応して、弾性表面波素子用IDT電極7の電極間隔が微妙に変化するので、発振信号A、Bの発振周波数が変化する。
このとき、発振信号A、Bは屈曲状態に応じて、周波数が高い状態から低い状態へと変化する周波数変調を受ける。ところが、二つのアーム部1は互いに同期してZ軸方向に屈曲振動し瞬時の屈曲状態がほぼ同じになるので、発振信号A、Bそれぞれには駆動信号に同期した周波数変調がかかっているものの、発振信号A、Bの周波数差はほぼ一定となっている。
【0018】
従って、この状態(非回転時)で、検出回路11にて発振信号1と発振信号2とをミキサ部12で混合し両者の周波数差成分を取り出すと、ほぼ一定周波数の成分が得られる。そこで、前記周波数差成分を周波数検波部13で復調するとその復調出力にはほとんど出力信号(駆動信号と同じ周波数成分)は現れない。従って、前記復調出力を前記駆動信号で同期検波しても、検出出力にはほとんど出力信号(直流成分)が現れない。
【0019】
ここで、振動ジャイロセンサにY軸周りの回転が加わると、アーム部1にはX軸方向に回転速度に比例したコリオリ力が働き、アーム部1はX軸方向にも屈曲振動を起こす。各アームに働くコリオリ力は互いに逆向きに働き、弾性表面波素子用IDT電極7の電極間隔が大きく変化する。
このとき、各アームは同期して動くが、一方のアームがX軸+方向に動くとき他方はX軸−方向に動くので、二つの弾性表面波素子用IDT電極7の電極間隔の変化は逆向きとなる。
【0020】
従って、発振信号A、Bには周波数変調がかかりその最大周波数偏移は回転速度に比例する。また、一方の周波数が高い方向に変化するとき他方は低い方向に変化するため、発振信号A、Bの瞬時周波数には差が生じる。従って、発振信号A、Bを周波数混合部12にて混合し、二つの信号の周波数差成分をとりだすと周波数変調信号が得られる。そして、これを周波数検波部13で復調すると駆動信号と同期した復調信号が出力される。さらに同期検波部14において、前記復調信号を駆動信号にて同期検波すると、復調信号の振幅に比例した検出電圧(直流電圧)が出力される。
【0021】
ここで、前記復調信号の振幅は回転速度に比例するが、回転が加わらないときには、発振信号A、Bの周波数差成分には周波数変調成分がほとんど現れず、前記復調信号の振幅はほとんどゼロとなる。従って、Y軸周りの回転が生じたときにのみ角速度に比例した直流電圧を検出電圧として出力することができる。また、回転方向が逆になった場合はそれぞれのアームに働くコリオリ力が反転し、駆動信号に対して復調信号の極性が反転するので、検出電圧(直流電圧)がそれに応じて正(或いは負)から負(或いは正)へ反転する。従って、回転方向を含めて回転速度に比例した直流電圧を出力することができる。
【0022】
なお、検出部11については、周波数混合部12と周波数検波部13と同期検波部14とを備えた構成としたが、図3に示すように、二つの周波数検波部13、及び差動増幅部15とを備えた構成としてもよい。
この場合、発振信号A、Bの出力は直接周波数検波部13で検波され、それぞれの復調信号は差動増幅部15で差動増幅される。すると、回転が加わったときのみ、差動増幅部15には差動出力が現れるので、これを同期検波部14で同期検波すると回転速度に比例した直流電圧を発生することができる。この実施例では周波数混合部12を不要とし周波数差の成分を取り出す必要がないため、発振信号A、Bの出力周波数が同一周波数となるように弾性表面波用IDT電極7を形成してもよい。
このときは、前記弾性表面波用IDT電極7の電極パターンを同一のものとすることができる。勿論異なった周波数としてもよい。
【0023】
あるいは、検出部11において発振信号A、B及び駆動信号をデジタル処理し、検出出力(直流電圧)に対応したデジタル信号を検出出力としてもよい。いずれにせよ、回転時に生じる発振信号A、Bの周波数差の変化を回転方向を含め検出できるものであれば、発振周波数A、B及び検出部11はどのようなものであってもよい。このように、駆動電極を所定間隔離して並列配置し、アーム部下端に表面弾性波素子用IDT電極を配置する構造としたので、検出感度に優れた振動ジャイロセンサとすることができる。
【0024】
【発明の効果】
本発明により、Xカット水晶を素材としたアーム部の対向する表裏面それぞれに駆動電極を並列配置し、アーム部下端において前記並列配列した駆動電極の間に弾性表面波素子用IDT電極を配置するように構成したので、前記弾性表面波素子用IDTを発振素子として利用することで、加工が容易な検出感度にすぐれた振動ジャイロセンサを提供するのに著効を奏す。
【図面の簡単な説明】
【図1】本発明に係る圧電体振動ジャイロセンサの外観図。
【図2】本発明に係る圧電体振動ジャイロセンサの検出部のブロック図。
【図3】本発明に係る圧電体振動ジャイロセンサの検出部の変形例。
【図4】従来の圧電体振動ジャイロセンサの外観図。
【符号の説明】
1…アーム部
2…基底部
3…音叉振動体
4、6…駆動電極(一次電極)
5…二次電極
7…弾性表面波素子用IDT電極(二次電極)
8…駆動信号源
9、10…発振回路
11…検出部
12…周波数混合部
13…周波数検波部
14…同期検波部
15…差動増幅部
【発明の属する技術分野】
本発明は、コリオリ力を利用した振動ジャイロセンサに関する。
【0002】
【従来の技術】
物体の回転を検出するセンサーとして、コリオリ力を応用した音叉型振動ジャイロセンサーが良く使われている。音叉型振動ジャイロセンサは構造が簡単で小型化しやすいため、カメラの手振防止やカーナビゲーションシステム用としても利用価値が大変高い。
【0003】
特開平11−37761号公報においては、音叉型振動ジャイロセンサについて4つの実施例が開示されている。
図4は特開平11―37761号公報にて提案された音叉型振動ジャイロセンサの第1の従来例の外観図を示したものである。図4に示した従来の音叉型振動ジャイロセンサは、アームにエネルギー閉じこめ型共振子を配置したものであって、回転速度の変化を該共振子の出力電圧振幅の変化として検出するタイプである。
【0004】
図4に示した従来の音叉型ジャイロは、アーム部1と基底部2とが一体になった音叉振動体3に屈曲振動駆動用の駆動電極4(一次電極)を形成し、さらに二つのアーム部1それぞれの表裏面に対向するように電極5(二次電極)を配置して、エネルギー閉じこめ型共振子を形成した構造であり、駆動電極4に第1の駆動信号を加えてアーム部1を屈曲振動させ、さらにそれぞれの二次電極5a、5c間に共通に第2の駆動信号を与え、二次電極5b、5c間のそれぞれから、屈曲振動に応じて振幅変調された信号を出力するようになっている。
【0005】
ここで、二次電極5b、5cの出力信号はアーム部1の屈曲振動によって振幅変調を与えられるが、回転時にアーム部1にコリオリ力が働くと、二つの出力信号には振幅差が生じる。従って、二つの出力信号の差動信号を取り出すと、該差動信号に振幅のビート成分が発生する。前記振幅のビート成分を駆動電極4に印加した駆動信号で同期検波すると、図4におけるY軸周りの回転速度に比例した直流電圧を生成することができる。
【0006】
また、特開平11―37761号公報の図7において例示された第2の従来例はエネルギー閉じこめ型共振器を使用し回転速度の変化を出力周波数の変化として検出したものである。構造は図4に示したものとほぼ同じであるが、二次電極を含む二つの共振子はそれぞれ二つの独立した発振回路の発振素子として機能し、それぞれ異なる発振信号を二次電極から出力するようにしている。
【0007】
この第2の従来例において、二つの発振信号はそれぞれアーム部の屈曲振動によって周波数変調を与えられるが、回転時に働くコリオリ力によって、二つの発振信号に周波数差が生じる。従って、二つの発振信号の周波数差(周波数ビート成分)を検出し、一次電極に印加した駆動信号で同期検波すると、回転速度に比例した直流電圧を生成することができる。
【0008】
また、特開平11―37761号公報の図8に図示された第3の従来例は、図4に示したエネルギー閉じこめ型共振子を弾性表面波素子で置き換えたものである。
この従来例の回転検出の原理は第1の従来例と同様、振幅のビート成分を利用したものである。また、第4の従来例として、図4に示したエネルギー閉じこめ型共振子を弾性表面波素子で置き換えたものが開示されている。この従来例は弾性表面波素子を発振回路の共振素子として利用したものであって、検出原理は前述した第2の従来例と同様に、二つの共振信号の周波数差(ビート周波数成分)の変化を検出したものである。このように、コリオリ力を応用した振動ジャイロセンサは振動体の材料や構造、一次、二次電極の配置、或いは回転の検出方法等含めて様々なタイプが存在する。
【0009】
【発明が解決しようとする課題】
しかしながら、前述した従来例を含め、コリオリ力を応用した一般の振動ジャイロセンサには、以下のような問題があった。
振動体の素材には通常、圧電セラミックスや水晶等といったものが使われる。圧電セラミックスは加工が容易であり、加工後に分極処理を施すことにより振動体として利用することができる。圧電セラミックスは外部から強い電界を加えると電界を加えた部位にのみ局部的に分極が形成されるという性質を持っているので、一次電極を形成した後に所定の一次電極間に強い電界を加えれば所定の部位に分極を自由に形成できる。従って、一次電極の形成位置に比較的制限が少ないという利点がある。しかしながら、水晶に比べると一般的に検出感度に劣るという欠点がある。
【0010】
一方、水晶のような単結晶素材は圧電セラミックに比べて一般的にQ値が高いので、これを音叉振動体の素材にすると検出感度を高くでき、信号対雑音比にすぐれた検出信号を取り出せるといった利点がある。しかしながら、圧電セラミックスのように後処理で局部的に分極を形成するといったことが物性的に不可能であり、予め所定の結晶軸方向に合わせて加工を施し、さらに所定の結晶軸方向に合わせて一次電極を配置しなければならない。また、特定の結晶軸方向(Z方向)にはほとんど化学的にエッチングを施すことができないので、加工方法にも制限がある。従って、圧電セラミック素材のものと比較して一次電極の形成位置に制限があり、また検出感度が適正となる位置に二次電極を前記一次電極と重複しないように形成することは非常に困難であった。
【0011】
本発明は、上記問題点を解決するためになされたものであって、優れた検出感度を有する一次、二次電極配置構造を持ち、加工方法にも制限が少ない、水晶を音叉振動体の素材とする振動ジャイロセンサを提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を解決する為に本発明に係わる請求項1記載の発明は、二つの角柱状アーム部と前記アーム部の下端を支持する基底部とが一体となった音叉型振動体と、前記二つの角柱状アーム部に形成した駆動電極(一次電極)と、前記二つのアーム部に形成した弾性表面波素子用IDT電極(二次電極)とを備える圧電体振動ジャイロセンサにおいて、前記角柱状アーム部の対向する二つの表面それぞれに前記駆動電極を前記長軸方向に沿って所定間隔離して並列配置し、前記角柱状アーム部の一方の表面に前記駆動用電極と共に前記弾性表面波素子用IDT電極を形成したものであって、前記弾性表面波素子用IDT電極を該角柱状アーム部下端の前記駆動電極の間に配置したものである。
【0013】
本発明に係わる請求項2記載の発明は、請求項1において前記音叉型振動体の素材をXカットの水晶とし、前記角柱状アーム部の長軸方向を水晶結晶軸のY方向としたものである。
【0014】
【発明の実施の形態】
以下、図示した実施例に基づいて本発明を詳細に説明する。
図1は、本発明に係わる圧電体振動ジャイロセンサの外観図を示したものである。
図1において、振動ジャイロセンサは二本のアーム部1と基底部2とが一体になった水晶を用いた音叉型振動体3と、前記アーム部1の表裏面に対向するように平行に配置された長方形状の駆動電極6(一次電極)と、前記アーム部1の片面下端に前記駆動電極6の間に配置された弾性表面波素子用IDT電極7(二次電極)とを備えている。ここで、アーム部1の長軸方向は水晶結晶軸のY方向に一致している。なお、二次電極としては一対のIDT電極のみを配置してもよいし、IDT電極の両側に反射器を配置したもの、或いは複数のIDT電極を有するものであってもよい。また、アーム部1の下端に弾性表面波素子用IDT電極7を配置する理由は、上端に配置する場合よりも検出感度を高くすることができるからである。
つまり、アーム部1の屈曲振動において歪みが最大となるのはアーム部1の付け根近傍となるからである。
【0015】
図2は振動ジャイロセンサとその周辺回路全体を示したものである。
図2において、音叉振動体3のアーム部1の対向する表裏面それぞれに2本ずつ、合計8本の駆動電極6が配置されている。このうち各4本ずつが互いに図1に図示されない配線パターンによって接続されており、4本ずつペアになった駆動電極6間には駆動信号源8が接続され駆動信号が与えられている。またアーム部1の一方の面に形成した二つの弾性表面波素子用IDT電極7が、それぞれ発振回路9、10に接続され、前記発振回路9、10の発振素子として機能している。
ここで、前記発振回路9、10の発振周波数が異なる周波数となるように、それぞれの発振周波数に応じて弾性表面波用IDT電極7が形成されている。
【0016】
さらに、前記発振回路9、10の出力する発振信号A、Bは、前記駆動信号と共に検出部11に供給される。また、前記検出部11は周波数混合部12と周波数検波部13と同期検波部14とを備え、ここで回転速度に比例した直流電圧を生成し検出信号として出力するようになっている。
【0017】
図2に示した振動ジャイロセンサは以下のように動作する。
まず、Y軸周りの回転がない状態を考える。駆動電極6に駆動信号を印加すると、アーム部1はそれぞれZ軸方向に屈曲振動を起こす。
このとき、二つのアーム部1の屈曲状態に対応して、弾性表面波素子用IDT電極7の電極間隔が微妙に変化するので、発振信号A、Bの発振周波数が変化する。
このとき、発振信号A、Bは屈曲状態に応じて、周波数が高い状態から低い状態へと変化する周波数変調を受ける。ところが、二つのアーム部1は互いに同期してZ軸方向に屈曲振動し瞬時の屈曲状態がほぼ同じになるので、発振信号A、Bそれぞれには駆動信号に同期した周波数変調がかかっているものの、発振信号A、Bの周波数差はほぼ一定となっている。
【0018】
従って、この状態(非回転時)で、検出回路11にて発振信号1と発振信号2とをミキサ部12で混合し両者の周波数差成分を取り出すと、ほぼ一定周波数の成分が得られる。そこで、前記周波数差成分を周波数検波部13で復調するとその復調出力にはほとんど出力信号(駆動信号と同じ周波数成分)は現れない。従って、前記復調出力を前記駆動信号で同期検波しても、検出出力にはほとんど出力信号(直流成分)が現れない。
【0019】
ここで、振動ジャイロセンサにY軸周りの回転が加わると、アーム部1にはX軸方向に回転速度に比例したコリオリ力が働き、アーム部1はX軸方向にも屈曲振動を起こす。各アームに働くコリオリ力は互いに逆向きに働き、弾性表面波素子用IDT電極7の電極間隔が大きく変化する。
このとき、各アームは同期して動くが、一方のアームがX軸+方向に動くとき他方はX軸−方向に動くので、二つの弾性表面波素子用IDT電極7の電極間隔の変化は逆向きとなる。
【0020】
従って、発振信号A、Bには周波数変調がかかりその最大周波数偏移は回転速度に比例する。また、一方の周波数が高い方向に変化するとき他方は低い方向に変化するため、発振信号A、Bの瞬時周波数には差が生じる。従って、発振信号A、Bを周波数混合部12にて混合し、二つの信号の周波数差成分をとりだすと周波数変調信号が得られる。そして、これを周波数検波部13で復調すると駆動信号と同期した復調信号が出力される。さらに同期検波部14において、前記復調信号を駆動信号にて同期検波すると、復調信号の振幅に比例した検出電圧(直流電圧)が出力される。
【0021】
ここで、前記復調信号の振幅は回転速度に比例するが、回転が加わらないときには、発振信号A、Bの周波数差成分には周波数変調成分がほとんど現れず、前記復調信号の振幅はほとんどゼロとなる。従って、Y軸周りの回転が生じたときにのみ角速度に比例した直流電圧を検出電圧として出力することができる。また、回転方向が逆になった場合はそれぞれのアームに働くコリオリ力が反転し、駆動信号に対して復調信号の極性が反転するので、検出電圧(直流電圧)がそれに応じて正(或いは負)から負(或いは正)へ反転する。従って、回転方向を含めて回転速度に比例した直流電圧を出力することができる。
【0022】
なお、検出部11については、周波数混合部12と周波数検波部13と同期検波部14とを備えた構成としたが、図3に示すように、二つの周波数検波部13、及び差動増幅部15とを備えた構成としてもよい。
この場合、発振信号A、Bの出力は直接周波数検波部13で検波され、それぞれの復調信号は差動増幅部15で差動増幅される。すると、回転が加わったときのみ、差動増幅部15には差動出力が現れるので、これを同期検波部14で同期検波すると回転速度に比例した直流電圧を発生することができる。この実施例では周波数混合部12を不要とし周波数差の成分を取り出す必要がないため、発振信号A、Bの出力周波数が同一周波数となるように弾性表面波用IDT電極7を形成してもよい。
このときは、前記弾性表面波用IDT電極7の電極パターンを同一のものとすることができる。勿論異なった周波数としてもよい。
【0023】
あるいは、検出部11において発振信号A、B及び駆動信号をデジタル処理し、検出出力(直流電圧)に対応したデジタル信号を検出出力としてもよい。いずれにせよ、回転時に生じる発振信号A、Bの周波数差の変化を回転方向を含め検出できるものであれば、発振周波数A、B及び検出部11はどのようなものであってもよい。このように、駆動電極を所定間隔離して並列配置し、アーム部下端に表面弾性波素子用IDT電極を配置する構造としたので、検出感度に優れた振動ジャイロセンサとすることができる。
【0024】
【発明の効果】
本発明により、Xカット水晶を素材としたアーム部の対向する表裏面それぞれに駆動電極を並列配置し、アーム部下端において前記並列配列した駆動電極の間に弾性表面波素子用IDT電極を配置するように構成したので、前記弾性表面波素子用IDTを発振素子として利用することで、加工が容易な検出感度にすぐれた振動ジャイロセンサを提供するのに著効を奏す。
【図面の簡単な説明】
【図1】本発明に係る圧電体振動ジャイロセンサの外観図。
【図2】本発明に係る圧電体振動ジャイロセンサの検出部のブロック図。
【図3】本発明に係る圧電体振動ジャイロセンサの検出部の変形例。
【図4】従来の圧電体振動ジャイロセンサの外観図。
【符号の説明】
1…アーム部
2…基底部
3…音叉振動体
4、6…駆動電極(一次電極)
5…二次電極
7…弾性表面波素子用IDT電極(二次電極)
8…駆動信号源
9、10…発振回路
11…検出部
12…周波数混合部
13…周波数検波部
14…同期検波部
15…差動増幅部
Claims (2)
- 二つの角柱状アーム部と前記アーム部の下端を支持する基底部とが一体となった音叉型振動体と、前記二つの角柱状アーム部に形成した駆動電極(一次電極)と、前記二つのアーム部に形成した弾性表面波素子用IDT電極(二次電極)とを備える圧電体振動ジャイロセンサにおいて、
前記角柱状アーム部の対向する二つの表面それぞれに前記駆動電極を前記長軸方向に沿って所定間隔離して並列配置し、前記角柱状アーム部の一方の表面に前記駆動用電極と共に前記弾性表面波素子用IDT電極を形成したものであって、前記弾性表面波素子用IDT電極を該角柱状アーム部下端の前記駆動電極の間に配置したことを特徴とする圧電体振動ジャイロセンサ。 - 前記音叉型振動体の素材をXカットの水晶とし、前記角柱状アーム部の長軸方向を水晶結晶軸のY方向としたことを特徴とする請求項1記載の圧電体振動ジャイロセンサ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002260777A JP2004101255A (ja) | 2002-09-06 | 2002-09-06 | 圧電体振動ジャイロセンサ |
US10/654,802 US7053534B2 (en) | 2002-09-06 | 2003-09-03 | Piezoelectric vibration gyro-sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002260777A JP2004101255A (ja) | 2002-09-06 | 2002-09-06 | 圧電体振動ジャイロセンサ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004101255A true JP2004101255A (ja) | 2004-04-02 |
Family
ID=31986365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002260777A Withdrawn JP2004101255A (ja) | 2002-09-06 | 2002-09-06 | 圧電体振動ジャイロセンサ |
Country Status (2)
Country | Link |
---|---|
US (1) | US7053534B2 (ja) |
JP (1) | JP2004101255A (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4123171B2 (ja) * | 2004-03-08 | 2008-07-23 | ソニー株式会社 | 振動型ジャイロセンサ素子の製造方法、振動型ジャイロセンサ素子及び振動方向調整方法 |
US20060238078A1 (en) * | 2005-04-21 | 2006-10-26 | Honeywell International, Inc. | Wireless and passive acoustic wave rotation rate sensor |
US8004165B2 (en) * | 2007-09-05 | 2011-08-23 | Seiko Epson Corporation | Tuning fork oscillating piece, tuning fork oscillator, and acceleration sensor |
US20110221312A1 (en) * | 2010-03-12 | 2011-09-15 | Seiko Epson Corporation | Vibrator element, vibrator, sensor, and electronic apparatus |
US9404810B2 (en) * | 2014-04-16 | 2016-08-02 | Mnemonics, Inc. | Wireless surface acoustic wave temperature sensor and interrogation system apparatus capable of generating a self synchronizing shaft position indicator for moving platforms |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3369033B2 (ja) * | 1995-08-31 | 2003-01-20 | アルプス電気株式会社 | 振動型ジャイロスコープ |
JP3682664B2 (ja) * | 1995-10-27 | 2005-08-10 | Necトーキン株式会社 | 圧電振動ジャイロ |
JP3356013B2 (ja) | 1997-07-17 | 2002-12-09 | 株式会社村田製作所 | 振動ジャイロ |
JP2000337881A (ja) * | 1999-05-28 | 2000-12-08 | Alps Electric Co Ltd | ジャイロスコープの駆動検出装置 |
JP2001255152A (ja) * | 2000-03-07 | 2001-09-21 | Nec Corp | 圧電振動ジャイロスコープおよびその周波数調整方法 |
EP1314962A4 (en) * | 2000-08-30 | 2006-06-21 | Matsushita Electric Ind Co Ltd | ANGLE SPEED SENSOR |
-
2002
- 2002-09-06 JP JP2002260777A patent/JP2004101255A/ja not_active Withdrawn
-
2003
- 2003-09-03 US US10/654,802 patent/US7053534B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20040046485A1 (en) | 2004-03-11 |
US7053534B2 (en) | 2006-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3421720B2 (ja) | 角速度検出回路 | |
JPH11316125A (ja) | 角速度センサ及びその製造方法 | |
JP2005249646A (ja) | 角速度センサ用音叉型振動子、この振動子を用いた角速度センサ及びこの角速度センサを用いた自動車 | |
JP2000337881A (ja) | ジャイロスコープの駆動検出装置 | |
US6201341B1 (en) | Vibrator for detecting angular velocities about two axes and vibrating gyroscope having the same | |
JP2004260249A (ja) | 音叉型水晶振動子 | |
JP2004101255A (ja) | 圧電体振動ジャイロセンサ | |
JPH02218914A (ja) | 振動ジャイロ | |
JP2996157B2 (ja) | 振動ジャイロ | |
JPH10206166A (ja) | 振動型ジャイロスコープ | |
JPH08184443A (ja) | 振動ジャイロ | |
JPH07139952A (ja) | 振動ジャイロ | |
JP3698787B2 (ja) | 圧電振動ジャイロ | |
JP3356012B2 (ja) | 振動ジャイロ | |
JP2005055255A (ja) | ジャイロ出力検出方法及びジャイロ出力検出装置 | |
JP4345130B2 (ja) | 振動ジャイロ | |
JPH09113279A (ja) | 振動ジャイロ | |
JP3356013B2 (ja) | 振動ジャイロ | |
JP3732602B2 (ja) | エネルギー閉じ込め型圧電振動ジャイロスコープ | |
JP2000193458A (ja) | 振動ジャイロおよびその製造方法 | |
JP2005077249A (ja) | 圧電体振動ジャイロセンサ | |
JP2000088580A (ja) | シリコンジャイロ | |
JPH10170271A (ja) | 角速度検出装置 | |
JP2002162231A (ja) | 振動型ジャイロスコープ | |
JPH07167662A (ja) | 検出回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050905 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070402 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20070802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070810 |