JP2004095902A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2004095902A
JP2004095902A JP2002255774A JP2002255774A JP2004095902A JP 2004095902 A JP2004095902 A JP 2004095902A JP 2002255774 A JP2002255774 A JP 2002255774A JP 2002255774 A JP2002255774 A JP 2002255774A JP 2004095902 A JP2004095902 A JP 2004095902A
Authority
JP
Japan
Prior art keywords
hard mask
film
mask
etching
connection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002255774A
Other languages
English (en)
Other versions
JP3988592B2 (ja
Inventor
Koji Miyata
宮田 幸児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002255774A priority Critical patent/JP3988592B2/ja
Publication of JP2004095902A publication Critical patent/JP2004095902A/ja
Application granted granted Critical
Publication of JP3988592B2 publication Critical patent/JP3988592B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】レジスト剥離の際に有機系低誘電率膜がダメージを受けず、かつ配線溝と接続孔の合わせ精度が向上する半導体装置の製造方法を提供する。
【解決手段】Cuデュアルダマシン配線の形成において、配線溝と接続孔の形成に第1〜第4のハードマスク5〜8を用い、第2〜第4のハードマスク6〜8に接続孔パターンを形成してから、接続孔パターンをアライメントに用いて第4のハードマスク8に配線溝パターンを形成し、接続孔パターンが転写された第1のハードマスク5を用いて接続孔を形成し、配線溝パターンをより下層のハードマスクに転写して、第1のハードマスク5を用いて配線溝を形成する半導体装置の製造方法。
【選択図】図2

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関し、特に、低誘電率(Low−k)膜に配線溝と接続孔を形成し、デュアルダマシン配線を形成する工程を有する半導体装置の製造方法に関する。
【0002】
【従来の技術】
半導体装置の配線を微細化すると、配線間容量の増加が顕著となり、配線遅延が問題となる。配線遅延を改善し、半導体装置を高速化する目的で、層間絶縁膜にLow−k 膜と呼ばれる低誘電率膜が採用されるようになってきている。低誘電率膜を、従来のAl配線よりも低抵抗のCu配線と組み合わせたCuデュアルダマシン配線によれば、配線間容量の低減が可能である。
低誘電率膜としては、溶液の塗布によって形成される有機系または無機系のものや、化学気相成長(CVD)によって形成されるSiOF系、SiOC系、CF系のもの等、多様なものが開発・検討されている。
【0003】
塗布型の有機系低誘電率膜は、レジストに比較的近い組成をもつため、レジストとのエッチング選択比が不足したり、レジストの除去時にダメージを受けたりする。したがって、塗布型の有機系低誘電率膜を用いてCuデュアルダマシン配線を形成する場合は、通常、レジストの他に無機系材料からなるハードマスクを用いて、配線溝や接続孔を形成する。
【0004】
また、Cuデュアルダマシン配線は、予め層間絶縁膜に形成された配線溝と接続孔に、Cuを同時に埋め込んで形成されるため、配線溝と接続孔の形成工程で、両方のパターンがウェハに転写される。配線溝と接続孔の合わせずれが生じると、コンタクト不良による抵抗の上昇や、ショート等が起こる可能性がある。そこで、配線溝と接続孔の合わせ精度を高めるため、2層のハードマスクを用いたデュアルハードマスク法が開発されている。
【0005】
以下、従来のデュアルハードマスク法によるCuデュアルダマシン配線の形成方法について、図20〜図22を参照して説明する。まず、図20(a)に示すように、下層配線101上にバリア絶縁膜としてシリコン窒化膜102を、例えば厚さ50nmで形成する。シリコン窒化膜102はCuの拡散を防止する。
【0006】
シリコン窒化膜102上に接続層絶縁膜としてシリコン酸化膜103を、例えば厚さ500nmで形成する。シリコン酸化膜103には、配線間を接続する接続孔が形成される。シリコン酸化膜103としては、比誘電率4.0程度のNSG(non−doped silicate glass)、PSG(phospho silicate glass)、BPSG(boro−phospho silicate glass)や、比誘電率3.5程度のFSG(fluoro silicate glass)等が用いられる。
【0007】
シリコン酸化膜103上に配線層絶縁膜として有機膜104を、例えば厚さ400nmで形成する。有機膜104に配線溝が形成され、配線溝内にCu配線が埋め込まれる。有機膜104としては、比誘電率2.7程度のポリアリルエーテル(PAE;poly arylene ether)系材料であるSiLK(商品名、米ダウケミカル製)やFLARE(商品名、米アライドシグナル)等が用いられる。これらの有機膜は、一般にSiO に比較して誘電率が低いため、配線の寄生容量を低減できる。有機膜104の材料は、例えば回転塗布法により塗布する。
【0008】
有機膜104上に第1のハードマスクとしてシリコン酸化膜105を、例えば厚さ200nmで形成する。シリコン酸化膜105は、例えばシランガスを原料とする平行平板プラズマCVD法によって形成できる。
シリコン酸化膜105上に第2のハードマスクとしてシリコン窒化膜106を、例えば厚さ100nmで形成する。シリコン窒化膜106は、例えばシランガスを原料とする平行平板プラズマCVD法によって形成できる。ハードマスク材料の組み合わせは、デュアルハードマスク法に適用可能であれば、他の例に変更してもよい。
【0009】
次に、図20(b)に示すように、配線溝パターンのレジスト107をリソグラフィーにより形成する。このとき、下層配線101をアライメントに用いる。リソグラフィーは、例えばKrFレーザーを用いたフォトリソグラフィーとし、開口数NAは例えば0.60とする。
【0010】
次に、図20(c)に示すように、レジスト107をマスクとしてシリコン窒化膜106にエッチングを行い、第2のハードマスクに配線溝パターンを転写した後、レジスト107を除去する。シリコン窒化膜106のエッチングは、例えばCHF /O /Arガスをエッチングガスに用いた平行平板プラズマエッチングにより行う。
【0011】
次に、図21(d)に示すように、接続孔パターンのレジスト108をリソグラフィーにより形成する。このとき、下層配線101をアライメントに用いる。このリソグラフィーも、レジスト107と同様のフォトリソグラフィーとしてよい。
【0012】
次に、図21(e)に示すように、レジスト108をマスクとして、シリコン窒化膜106の厚さ分(100nm)のエッチングに相当する処理と、シリコン酸化膜105のエッチングを行う。これにより、第1のハードマスクに接続孔パターンが転写される。その後、レジスト108を除去する。
【0013】
ここで、シリコン窒化膜106の厚さ分(100nm)のエッチングを行うのは、リソグラフィー工程での合わせずれによって、接続孔パターンが配線溝パターンからはみ出した場合を考慮しているためである。シリコン酸化膜105のエッチングのみを行うと、接続孔パターンが配線溝パターンからはみ出した部分では、シリコン窒化膜106がマスクとなり、シリコン酸化膜105がエッチングされない。この場合、接続孔を正常な形状で形成できない。
【0014】
シリコン窒化膜106のエッチングも行った場合には、接続孔パターンが配線溝パターンからはみ出した部分で、第1のハードマスクと第2のハードマスクの両方に接続孔パターンが転写される。したがって、接続孔を正常な形状で形成できる。シリコン窒化膜106のエッチングは、図21(d)に示す工程と同様に行う。シリコン酸化膜105のエッチングは、例えばC F /CO/Arガスをエッチングガスに用いた平行平板プラズマエッチングにより行う。
【0015】
次に、図21(f)に示すように、配線層絶縁膜である有機膜104にエッチングを行い、第1のハードマスク(シリコン酸化膜105)に形成された接続孔パターンを転写する。このエッチングでレジスト108も除去される。
次に、図22(g)に示すように、シリコン酸化膜103、105にエッチングを行う。これにより、接続層絶縁膜であるシリコン酸化膜103には接続孔109が形成される。また、第1のハードマスク(シリコン酸化膜105)には、第2のハードマスク(シリコン窒化膜106)に形成されている配線溝パターンが転写される。
【0016】
次に、図22(h)に示すように、第1のハードマスク(シリコン酸化膜105)および第2のハードマスク(シリコン窒化膜106)をマスクとして有機膜104にエッチングを行い、有機膜104に配線溝110を形成する。
次に、図22(i)に示すように、シリコン窒化膜102、106にエッチングを行う。これにより、バリア絶縁膜(シリコン窒化膜102)に接続孔が形成され、第2のハードマスク(シリコン窒化膜106)が除去される。
【0017】
以上の工程により、配線溝110および接続孔109が形成される。その後、配線溝110および接続孔109内を埋め込むようにCu層を形成してから、例えば化学機械研磨(CMP;chemical mechanical polishing)を行って、絶縁膜上の余分なCu層を除去し、表面を平坦化することにより、Cuデュアルダマシン配線が形成される。
【0018】
【発明が解決しようとする課題】
しかしながら、上記の従来のデュアルハードマスク法によれば、図21(d)に示すフォトリソグラフィー工程において、接続孔パターンの開口部を有するレジスト108を形成する際、下層配線101をアライメントに用いる。接続孔パターンが配線溝パターンの内側にあることから、第2のハードマスク(シリコン窒化膜106)に転写されている配線溝パターンをアライメントに用いることができない。すなわち、接続孔パターンのアライメントは、配線溝パターンに対する直接合わせとならない。
【0019】
図20(b)に示す工程では、配線溝パターンの開口部を有するレジスト107を形成する際、下層配線101を用いてアライメントが行われる。したがって、上記の従来の方法によれば、配線溝パターンと接続孔パターンのアライメントが、下層配線101を介した2重間接合わせとなっている。
【0020】
一般に、ミスアライメント量は直接合わせに対して2重間接合わせで約1.4倍となる。したがって、上記の従来の方法で微細な配線パターンを形成しようとした場合、配線ショート不良が避けられない。例えば、KrFフォトリソグラフィーにおいて、直接合わせで約100nmがミスアライメント量の3シグマ値であるが、間接合わせでは約140nmとなる。
【0021】
ここで、配線間隔200nmの微細な配線パターンを形成する場合を例として説明する。ゲート長0.13μm世代の半導体集積回路では、配線間隔200nmが標準的に必要と考えられている。図23(a)に示すように、配線111が間隔200nmで形成され、配線111の幅方向における端部に合わせ余裕なしで接続孔112を形成すると想定する。
【0022】
図23(b)に示すように、配線パターンと接続孔パターンのずれ量が140nmになると、接続孔112と近接する配線111との間の分離幅が60nmとなる。この場合、エッチング加工のばらつきも考慮すると、ショート不良が発生する可能性が高い。
【0023】
したがって、このような非常に微細な配線パターンには、上記の従来のデュアルハードマスク法を適用するのが難しい。従来のデュアルハードマスク法を用いて微細配線を形成すると、ミスアライメント量のばらつきによって製品歩留りが落ち、生産コストが高くなる問題が起こる。
【0024】
あるいは、リソグラフィー工程のやり直しを数回行うことで、通常100nmのミスアライメント量を抑えることも可能である。しかしながら、この場合にはスループットの低下や、レジスト材料の消費量の増大から、生産コストが高くなる。
【0025】
デュアルハードマスク法は、レジスト剥離の際にダメージを受ける有機系材料を配線層絶縁膜に用いるために開発された方法である。デュアルハードマスク法によれば、リソグラフィー工程で配線層絶縁膜が露出しないため、配線層絶縁膜のダメージは防止されるが、配線溝パターンのリソグラフィーを行ってから、接続孔パターンのリソグラフィーを行うため、間接合わせが避けられない。
【0026】
本発明は上記の問題点に鑑みてなされたものであり、したがって本発明は、レジスト剥離の際に有機系低誘電率膜がダメージを受けず、かつ配線溝と接続孔の合わせ精度が向上する半導体装置の製造方法を提供することを目的とする。
【0027】
【課題を解決するための手段】
上記の目的を達成するため、本発明の半導体装置の製造方法は、下層配線上に絶縁膜、有機系低誘電率膜、第1のハードマスク、第2のハードマスク、第3のハードマスクおよび第4のハードマスクを順に積層する工程と、前記第4のハードマスク上に、接続孔パターンで開口部を有する第1のレジストを形成する工程と、前記第1のレジストをマスクとして前記第4、第3および第2のハードマスクに順にそれぞれ厚さ分のエッチングを行い、前記第2〜第4のハードマスクに接続孔パターンを転写する工程と、前記第1のレジストを除去する工程と、前記第4のハードマスク上に、前記接続孔パターンが含まれる配線溝パターンで開口部を有する第2のレジストを形成する工程と、前記第2のレジストをマスクとして前記第4のハードマスクに厚さ分のエッチングを行い、前記第4のハードマスクに前記配線溝パターンを転写する工程と、前記第2のレジストを除去する工程と、前記第4のハードマスクをマスクとして前記第3のハードマスクに厚さ分のエッチングを行い、前記第3のハードマスクに前記配線溝パターンを転写するとともに、前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分のエッチングを行い、前記第1のハードマスクに前記接続孔パターンを転写する工程と、前記第1および第2のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分のエッチングを行い、前記有機系低誘電率膜に前記接続孔パターンを転写する工程と、前記第4のハードマスクをエッチングにより除去するとともに、前記第3のハードマスクをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、前記第2のハードマスクに前記配線溝パターンを転写する工程と、前記第3のハードマスクをエッチングにより除去するとともに、前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分のエッチングを行い、前記第1のハードマスクに前記配線溝パターンを転写し、かつ前記有機系低誘電率膜をマスクとして前記絶縁膜に厚さ分のエッチングを行い、前記絶縁膜に接続孔を形成する工程と、前記第1および第2のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分のエッチングを行い、前記有機系低誘電率膜に配線溝を形成する工程と、前記第2のハードマスクをエッチングにより除去する工程と、前記配線溝および前記接続孔に導電体を埋め込む工程とを有することを特徴とする。
【0028】
あるいは、本発明の半導体装置の製造方法は、下層配線上に絶縁膜、有機系低誘電率膜、第1のハードマスクおよび第2のハードマスクを順に積層する工程と、前記第2のハードマスク上に、接続孔パターンで開口部を有する第1のレジストを形成する工程と、前記第1のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、さらに前記第1のハードマスクに途中までエッチングを行い、前記第1のハードマスクの上面側と前記第2のハードマスクに接続孔パターンを転写する工程と、前記第1のレジストを除去する工程と、前記第2のハードマスク上に、前記接続孔パターンが含まれる配線溝パターンで開口部を有する第2のレジストを形成する工程と、前記第2のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、前記第2のハードマスクに前記配線溝パターンを転写する工程と、前記第2のレジストを除去する工程と、前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分より少ないエッチングを行い、前記第1のハードマスクの上面側に前記配線溝パターンを転写し、かつ前記接続孔パターンが転写された部分の前記第1のハードマスクを除去する工程と、前記第1のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分のエッチングを行い、前記有機系低誘電率膜に前記接続孔パターンを転写する工程と、前記第2のハードマスクをマスクとして前記第1のハードマスクにエッチングを行い、前記第1のハードマスクに厚さ分の前記配線溝パターンを転写するとともに、前記有機系低誘電率膜をマスクとして前記絶縁膜に厚さ分のエッチングを行い、前記絶縁膜に接続孔を形成する工程と、前記第1および第2のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分のエッチングを行い、前記有機系低誘電率膜に配線溝を形成する工程と、前記第2のハードマスクをエッチングにより除去する工程と、前記配線溝および前記接続孔に導電体を埋め込む工程とを有することを特徴とする。
【0029】
あるいは、本発明の半導体装置の製造方法は、下層配線上に有機系低誘電率膜、第1のハードマスクおよび第2のハードマスクを順に積層する工程と、前記第2のハードマスク上に、接続孔パターンで開口部を有する第1のレジストを形成する工程と、前記第1のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、さらに前記第1のハードマスクに途中までエッチングを行い、前記第1のハードマスクの上面側と前記第2のハードマスクに接続孔パターンを転写する工程と、前記第1のレジストを除去する工程と、前記第2のハードマスク上に、前記接続孔パターンが含まれる配線溝パターンで開口部を有する第2のレジストを形成する工程と、前記第2のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、前記第2のハードマスクに前記配線溝パターンを転写する工程と、前記第2のレジストを除去する工程と、前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分より少ないエッチングを行い、前記第1のハードマスクの上面側に前記配線溝パターンを転写し、かつ前記接続孔パターンが転写された部分の前記第1のハードマスクを除去する工程と、前記第1のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分より少ないエッチングを行い、前記有機系低誘電率膜の上面側に前記接続孔パターンを転写する工程と、前記第2のハードマスクをマスクとして前記第1のハードマスクにエッチングを行い、前記第1のハードマスクに厚さ分の前記配線溝パターンを転写する工程と、前記第1および第2のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分より少ないエッチングを行い、前記有機系低誘電率膜の上面側に配線溝を形成するとともに、前記接続孔パターンが転写された部分の前記有機系低誘電率膜を除去し、前記有機系低誘電率膜の底部側に接続孔を形成する工程と、前記第2のハードマスクをエッチングにより除去する工程と、前記配線溝および前記接続孔に導電体を埋め込む工程とを有することを特徴とする。
【0030】
あるいは、本発明の半導体装置の製造方法は、下層配線上に第1の有機系低誘電率膜、絶縁膜、第2の有機系低誘電率膜、第1のハードマスクおよび第2のハードマスクを順に積層する工程と、前記第2のハードマスク上に、接続孔パターンで開口部を有する第1のレジストを形成する工程と、前記第1のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、さらに前記第1のハードマスクに途中までエッチングを行い、前記第1のハードマスクの上面側と前記第2のハードマスクに接続孔パターンを転写する工程と、前記第1のレジストを除去する工程と、前記第2のハードマスク上に、前記接続孔パターンが含まれる配線溝パターンで開口部を有する第2のレジストを形成する工程と、前記第2のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、前記第2のハードマスクに前記配線溝パターンを転写する工程と、前記第2のレジストを除去する工程と、前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分より少ないエッチングを行い、前記第1のハードマスクの上面側に前記配線溝パターンを転写し、かつ前記接続孔パターンが転写された部分の前記第1のハードマスクを除去する工程と、前記第1のハードマスクをマスクとして前記第2の有機系低誘電率膜に厚さ分のエッチングを行い、前記第2の有機系低誘電率膜に前記接続孔パターンを転写する工程と、前記第2のハードマスクをマスクとして前記第1のハードマスクにエッチングを行い、前記第1のハードマスクに厚さ分の前記配線溝パターンを転写するとともに、前記第2の有機系低誘電率膜をマスクとして前記絶縁膜に厚さ分のエッチングを行い、前記絶縁膜に前記接続孔パターンを転写する工程と、前記第1および第2のハードマスクをマスクとして前記第2の有機系低誘電率膜に厚さ分のエッチングを行い、前記第2の有機系低誘電率膜に配線溝を形成するとともに、前記絶縁膜をマスクとして前記第1の有機系低誘電率膜に厚さ分のエッチングを行い、前記第1の有機系低誘電率膜に接続孔を形成する工程と、前記第2のハードマスクをエッチングにより除去する工程と、前記配線溝および前記接続孔に導電体を埋め込む工程とを有することを特徴とする。
【0031】
これにより、デュアルダマシン配線の形成において、接続孔パターンのアライメントを、配線溝パターンに対する直接合わせで行うことが可能となる。したがって、下層配線をアライメントに用いて、配線溝パターンと接続孔パターンが2重間接合わせとなる従来の方法に比較して、ミスアライメント量を低減できる。これにより、製品歩留りが高くなり、生産コストを抑えることが可能となる。また、半導体装置をさらに高集積化することも可能となる。
【0032】
【発明の実施の形態】
以下に、本発明の半導体装置の製造方法の実施の形態について、図面を参照して説明する。
(実施形態1)
本実施形態のCuデュアルダマシン配線の形成方法について、図1〜図7を参照して説明する。まず、図1(a)に示すように、下層配線1上にバリア絶縁膜としてシリコン窒化膜2を、例えば厚さ50nmで形成する。シリコン窒化膜2はCuの拡散を防止する。
【0033】
シリコン窒化膜2上に接続層絶縁膜としてシリコン酸化膜3を、例えば厚さ500nmで形成する。シリコン酸化膜3には、配線間を接続する接続孔が形成される。シリコン酸化膜3としては、比誘電率4.0程度のNSG、PSG、BPSGや、比誘電率3.5程度のFSG等が用いられる。
【0034】
シリコン酸化膜3上に配線層絶縁膜として有機膜4を、例えば厚さ400nmで形成する。有機膜4に配線溝が形成され、配線溝内にCu配線が埋め込まれる。有機膜4としては、比誘電率2.7程度のPAE系材料であるSiLK(商品名、米ダウケミカル製)やFLARE(商品名、米アライドシグナル製)等が用いられる。これらの有機膜は、一般にSiO に比較して誘電率が低いため、配線の寄生容量を低減できる。
【0035】
なお、本発明の実施形態における有機膜は、レジスト剥離の際に酸素プラズマや有機系レジスト剥離液等によって浸食される有機材料全般からなる膜をさす。したがって、有機ポリマーを主体とする膜だけでなく、フッ素樹脂、有機成分を含むシリカ系材料やポーラスシリカ等も有機膜に含まれるものとする。
有機膜4の材料は、例えば回転塗布法により塗布する。
【0036】
有機膜4上に第1のハードマスクとしてシリコン酸化膜5を、例えば厚さ200nmで形成する。シリコン酸化膜5は、例えばシランガスを原料とする平行平板プラズマCVD法によって形成できる。
シリコン酸化膜5上に第2のハードマスクとしてシリコン窒化膜6を、例えば厚さ100nmで形成する。シリコン窒化膜6は、例えばシランガスを原料とする平行平板プラズマCVD法によって形成できる。
【0037】
シリコン窒化膜6上に第3のハードマスクとしてシリコン酸化膜7を、例えば厚さ200nmで形成する。シリコン酸化膜7はシリコン酸化膜5と同様に形成できる。
シリコン酸化膜7上に第4のハードマスクとしてシリコン窒化膜8を、例えば厚さ100nmで形成する。シリコン窒化膜8はシリコン窒化膜6と同様に形成できる。ハードマスク材料の組み合わせは、他の例に変更してもよい。
【0038】
次に、図1(b)に示すように、接続孔パターンのレジスト9をリソグラフィーにより形成する。このとき、下層配線1をアライメントに用いる。リソグラフィーは、例えばKrFレーザーを用いたフォトリソグラフィーとし、開口数NAは例えば0.60とする。
【0039】
次に、図2(c)に示すように、レジスト9をマスクとしてシリコン窒化膜8、シリコン酸化膜7およびシリコン窒化膜6に順にエッチングを行い、第2〜第4のハードマスクに接続孔パターンを転写する。その後、レジスト9を除去する。
【0040】
シリコン窒化膜6、8のエッチングは、例えばCHF /O /Arガスをエッチングガスに用いた平行平板プラズマエッチングにより行う。シリコン酸化膜7のエッチングは、例えばC F /CO/Arガスをエッチングガスに用いた平行平板プラズマエッチングにより行う。また、レジスト9の除去工程では、第1〜第4のハードマスクによって有機膜4が保護される。
【0041】
次に、図2(d)に示すように、配線溝パターンのレジスト10をリソグラフィーにより形成する。このとき、第2〜第4のハードマスクに転写された接続孔パターンをアライメントに用いる。このアライメントは直接合わせであるため、従来の方法による間接合わせに比較すると、ミスアライメント量を大幅に低減できる。
【0042】
次に、図3(e)に示すように、レジスト10をマスクとしてシリコン窒化膜8にエッチングを行い、第4のハードマスクに配線溝パターンを転写する。その後、レジスト10を除去する。シリコン窒化膜8のエッチングは、図2(c)に示す工程で接続孔パターンを形成する場合と同様に行うことができる。また、レジスト10の除去工程では、第1〜第4のハードマスクによって有機膜4が保護される。
【0043】
次に、図3(f)に示すように、シリコン酸化膜5、7にそれぞれの厚さ分(200nm)のエッチングを行う。これにより、第1のハードマスクであるシリコン酸化膜5には接続孔パターンが転写される。また、第3のハードマスクであるシリコン酸化膜7には、第4のハードマスク(シリコン窒化膜8)に形成されている配線溝パターンが転写される。
【0044】
次に、図4(g)に示すように、配線層絶縁膜である有機膜4にエッチングを行い、第1のハードマスク(シリコン酸化膜5)および第2のハードマスク(シリコン窒化膜6)に形成された接続孔パターンを転写する。有機膜4のエッチングは、例えばアンモニアガスをエッチングガスに用いたECR(electron cyclotron resonance)プラズマエッチングにより行う。
【0045】
次に、図4(h)に示すように、第4のハードマスクであるシリコン窒化膜8をエッチングにより除去する。同時に、第3のハードマスク(シリコン酸化膜7)をマスクとして第2のハードマスクであるシリコン窒化膜6にエッチングを行い、第2のハードマスクに配線溝パターンを転写する。
【0046】
図4(g)に示す工程で、有機膜4の厚さ分のみエッチングを行うかわりに、図5(g’)に示すように、接続層絶縁膜であるシリコン酸化膜3の途中までエッチングを行って接続孔の一部11aを形成しておいてもよい。この場合も、次に、図5(h’)に示すように、シリコン窒化膜6、8にエッチングを行い、シリコン窒化膜8を除去するのと同時に、シリコン窒化膜6に配線溝パターンを転写する。
【0047】
あるいは、図4(g)に示す有機膜4のエッチング工程と、図4(h)に示すシリコン窒化膜6、8のエッチング工程の順序を入れ替えてもよい。この場合は、まず、図6(g”)に示すように、シリコン窒化膜6、8にエッチングを行い、シリコン窒化膜8を除去するのと同時に、シリコン窒化膜6に配線溝パターンを転写する。その後、図6(h”)に示すように、第1のハードマスクであるシリコン酸化膜5をマスクとして有機膜4にエッチングを行い、有機膜4に接続孔パターンを転写する。
【0048】
図4(h)、図5(h’)または図6(h”)のいずれかの工程の後、図7(i)に示すように、シリコン酸化膜3、5、7にエッチングを行う。これにより、第3のハードマスクであるシリコン酸化膜7は除去される。第1のハードマスク(シリコン酸化膜5)は第2のハードマスク(シリコン窒化膜6)をマスクとしてエッチングされる。これにより、シリコン酸化膜5に配線溝パターンが転写される。また、接続層絶縁膜であるシリコン酸化膜3は有機膜4をマスクとしてエッチングされる。これにより、シリコン酸化膜3に接続孔11が形成される。
【0049】
次に、図7(j)に示すように、第1および第2のハードマスク(シリコン酸化膜5およびシリコン窒化膜6)をマスクとして、有機膜4にエッチングを行う。これにより、有機膜に配線溝12が形成される。
次に、図7(k)に示すように、シリコン窒化膜2、6にエッチングを行う。これにより、シリコン窒化膜6が除去され、同時に、バリア絶縁膜であるシリコン窒化膜2に接続孔が形成される。
【0050】
以上の工程により、配線溝12および接続孔11が形成される。その後、配線溝12および接続孔11内を埋め込むようにCu層を形成してから、例えばCMPを行って、絶縁膜上の余分なCu層を除去し、表面を平坦化することにより、Cuデュアルダマシン配線が形成される。
【0051】
上記の本実施形態の半導体装置の製造方法によれば、接続孔パターンを転写した後、配線溝パターンを転写するため、配線溝パターンのアライメントを、接続孔パターンに対する直接合わせで行うことが可能である。したがって、下層配線を用いた間接合わせによってアライメントを行う従来の方法に比較して、ミスアライメント量を低減できる。これにより、配線間隔の狭い微細配線に接続孔を形成する場合にも、ショート不良が防止され、製品歩留りが向上する。
【0052】
また、リソグラフィー工程のやり直しを行わなくてもミスアライメント量を抑えることができるため、生産コストを低減できる。
本実施形態の半導体装置の製造方法によれば、ショートマージンを削減せずに、さらに微細な配線を形成することも可能である。したがって、半導体装置をより高集積化することも可能である。
【0053】
(実施形態2)
本実施形態のCuデュアルダマシン配線の形成方法について、図8〜図11を参照して説明する。まず、図8(a)に示すように、下層配線1上にバリア絶縁膜としてシリコン窒化膜2を、例えば厚さ50nmで形成する。シリコン窒化膜2はCuの拡散を防止する。
【0054】
シリコン窒化膜2上に接続層絶縁膜としてシリコン酸化膜3を、例えば厚さ500nmで形成する。シリコン酸化膜3上に配線層絶縁膜として有機膜4を、例えば厚さ400nmで形成する。シリコン酸化膜3および有機膜4は、実施形態1と同様の材料を用いて、実施形態1と同様の方法により形成できる。
【0055】
有機膜4上に第1のハードマスクとしてシリコン酸化膜5を、例えば厚さ200nmで形成する。シリコン酸化膜5上に第2のハードマスクとしてシリコン窒化膜6を、例えば厚さ100nmで形成する。シリコン酸化膜5およびシリコン窒化膜6は、実施形態1と同様の方法により形成できる。
【0056】
次に、図8(b)に示すように、接続孔パターンのレジスト9をリソグラフィーにより形成する。このとき、下層配線1をアライメントに用いる。リソグラフィーは、実施形態1と同様に行うことができる。
【0057】
次に、図9(c)に示すように、レジスト9をマスクとしてシリコン窒化膜6に厚さ分(100nm)のエッチングを行う。さらに、第1のハードマスクであるシリコン酸化膜5の途中まで(有機膜4に達しないように)、例えば厚さ100nm分のエッチングを行い、接続孔パターンをシリコン酸化膜5に転写する。シリコン窒化膜6およびシリコン酸化膜5のエッチングは、実施形態1と同様の方法により行うことができる。その後、レジスト9を除去する。レジスト9の除去工程では、第1および第2のハードマスクによって有機膜4が保護される。
【0058】
次に、図9(d)に示すように、配線溝パターンのレジスト10をリソグラフィーにより形成する。このとき、第1および第2のハードマスクに転写された接続孔パターンをアライメントに用いる。このアライメントは直接合わせであるため、従来の方法による間接合わせに比較すると、ミスアライメント量を大幅に低減できる。
【0059】
次に、図9(e)に示すように、レジスト10をマスクとしてシリコン窒化膜6にエッチングを行い、第2のハードマスクに配線溝パターンを転写する。その後、レジスト10を除去する。シリコン窒化膜6のエッチングは、図9(c)に示す工程で接続孔パターンを形成する場合と同様に行うことができる。また、レジスト10の除去工程では、第1および第2のハードマスクによって有機膜4が保護される。
【0060】
次に、図10(f)に示すように、シリコン酸化膜5に形成されている接続孔パターンが有機膜4に達するまで、シリコン酸化膜5にエッチングを行う。図9(c)に示す工程で、シリコン酸化膜5に厚さ100nm分のエッチングを行った場合、図10(f)に示す工程で厚さ100nm分のエッチングを行うことにより、接続孔パターンが有機膜4に達する。
【0061】
このとき、シリコン酸化膜5には第2のハードマスクであるシリコン窒化膜6をマスクとしてエッチングが行われ、配線溝パターンが転写される。接続孔パターンに含まれる部分を除き、配線溝パターンの部分には厚さ100nmのシリコン酸化膜5が残される。図10(f)に示す工程でのシリコン酸化膜5のエッチング量は、図9(c)に示す工程でのシリコン酸化膜5のエッチング量に応じて調節し、配線溝パターンが有機膜4に達しないようにする。
【0062】
次に、図10(g)に示すように、配線層絶縁膜である有機膜4にエッチングを行い、第1のハードマスク(シリコン酸化膜5)および第2のハードマスク(シリコン窒化膜6)に形成された接続孔パターンを転写する。有機膜4のエッチングは、実施形態1と同様に行うことができる。
【0063】
次に、図10(h)に示すように、有機膜4をマスクとして、接続層絶縁膜であるシリコン酸化膜3に厚さ分(500nm)のエッチングを行い、シリコン酸化膜3に接続孔11を形成する。このとき、シリコン窒化膜6をマスクとして、シリコン酸化膜5がエッチングされ、第1のハードマスクに配線溝パターンが転写される。
【0064】
次に、図11(i)に示すように、第1および第2のハードマスク(シリコン酸化膜5およびシリコン窒化膜6)をマスクとして、有機膜4にエッチングを行う。これにより、有機膜4に配線溝12が形成される。
【0065】
次に、図11(j)に示すように、シリコン窒化膜2、6にエッチングを行う。これにより、シリコン窒化膜6が除去され、同時に、バリア絶縁膜であるシリコン窒化膜2に接続孔が形成される。その後、実施形態1と同様に配線溝12および接続孔11内にCuを埋め込み、Cuデュアルダマシン配線が形成される。
【0066】
上記の本実施形態の半導体装置の製造方法によれば、実施形態1と同様に、配線溝パターンのアライメントを、接続孔パターンに対する直接合わせで行うことが可能である。したがって、ミスアライメント量が低減される。これにより、製品歩留りの向上や、生産コストの低減が可能となる。また、半導体装置をより高集積化することも可能となる。
【0067】
(実施形態3)
上記の実施形態1および2においては、シリコン酸化膜3をエッチングストッパー層として配線溝12が形成される。それに対し、本実施形態においては、配線溝のエッチングストッパーとなる層を設けずに、エッチング量を調節することにより、単層の低誘電率膜に配線溝と接続孔の両方を形成する。
【0068】
以下、本実施形態のCuデュアルダマシン配線の形成方法について、図12〜図15を参照して説明する。まず、図12(a)に示すように、下層配線1上にバリア絶縁膜としてシリコン窒化膜2を、例えば厚さ50nmで形成する。シリコン窒化膜2はCuの拡散を防止する。
【0069】
シリコン窒化膜2上に有機膜13を、例えば厚さ900nmで形成する。有機膜13は、実施形態1の有機膜4と同様の材料を用いて、実施形態1と同様の方法により形成できる。
【0070】
有機膜13上に第1のハードマスクとしてシリコン酸化膜5を、例えば厚さ200nmで形成する。シリコン酸化膜5上に第2のハードマスクとしてシリコン窒化膜6を、例えば厚さ100nmで形成する。シリコン酸化膜5およびシリコン窒化膜6は、実施形態1と同様の方法により形成できる。
【0071】
次に、図12(b)に示すように、接続孔パターンのレジスト9をリソグラフィーにより形成する。このとき、下層配線1をアライメントに用いる。リソグラフィーは、実施形態1と同様に行うことができる。
【0072】
次に、図13(c)に示すように、レジスト9をマスクとしてシリコン窒化膜6に厚さ分(100nm)のエッチングを行う。さらに、第1のハードマスクであるシリコン酸化膜5の途中まで(有機膜13に達しないように)、例えば厚さ100nm分のエッチングを行い、接続孔パターンをシリコン酸化膜5に転写する。シリコン窒化膜6およびシリコン酸化膜5のエッチングは、実施形態1と同様の方法により行うことができる。その後、レジスト9を除去する。レジスト9の除去工程では、第1および第2のハードマスクによって有機膜13が保護される。
【0073】
次に、図13(d)に示すように、配線溝パターンのレジスト10をリソグラフィーにより形成する。このとき、第1および第2のハードマスクに転写された接続孔パターンをアライメントに用いる。このアライメントは直接合わせであるため、従来の方法による間接合わせに比較すると、ミスアライメント量を大幅に低減できる。
【0074】
次に、図13(e)に示すように、レジスト10をマスクとしてシリコン窒化膜6にエッチングを行い、第2のハードマスクに配線溝パターンを転写する。その後、レジスト10を除去する。レジスト10の除去工程では、第1および第2のハードマスクによって有機膜13が保護される。
【0075】
次に、図14(f)に示すように、シリコン酸化膜5に形成されている接続孔パターンが有機膜13に達するまで、シリコン酸化膜5にエッチングを行う。図13(c)に示す工程で、シリコン酸化膜5に厚さ100nm分のエッチングを行った場合、図14(f)に示す工程で厚さ100nm分のエッチングを行うことにより、接続孔パターンが有機膜13に達する。
【0076】
このとき、シリコン酸化膜5には第2のハードマスクであるシリコン窒化膜6をマスクとしてエッチングが行われ、配線溝パターンが転写される。接続孔パターンに含まれる部分を除き、配線溝パターンの部分には厚さ100nmのシリコン酸化膜5が残される。図14(f)に示す工程では、実施形態2と同様に、シリコン酸化膜5のエッチング量を調節し、配線溝パターンが有機膜13に達しないようにする。
【0077】
次に、図14(g)に示すように、有機膜13にエッチングを行い、第1のハードマスク(シリコン酸化膜5)に形成された接続孔パターンを転写する。ここで、有機膜13の厚さ分(900nm)のエッチングは行わず、バリア絶縁膜(シリコン窒化膜2)上に、ある程度の厚さの有機膜13を残しておく。接続孔部分に残す有機膜13の厚さは、続く工程で有機膜13に形成される配線溝の深さよりも小さくする。有機膜13のエッチングは、実施形態1における有機膜4のエッチングと同様に行うことができる。
【0078】
次に、図14(h)に示すように、第2のハードマスク(シリコン窒化膜6)をマスクとして第1のハードマスク(シリコン酸化膜5)にエッチングを行い、第1のハードマスクに配線溝パターンを転写する。
【0079】
次に、図15(i)に示すように、第1および第2のハードマスク(シリコン酸化膜5およびシリコン窒化膜6)をマスクとして、有機膜13にエッチングを行う。これにより、有機膜13に配線溝14が形成される。また、接続孔パターン部分の有機膜13は、シリコン窒化膜2をエッチングストッパー層として、さらにエッチングされる。これにより、有機膜13に接続孔15が形成される。
【0080】
次に、図15(j)に示すように、シリコン窒化膜2、6にエッチングを行う。これにより、シリコン窒化膜6が除去され、同時に、バリア絶縁膜であるシリコン窒化膜2に接続孔が形成される。その後、実施形態1と同様に配線溝14および接続孔15内にCuを埋め込み、Cuデュアルダマシン配線が形成される。
【0081】
上記の本実施形態の半導体装置の製造方法によれば、実施形態1と同様に、配線溝パターンのアライメントを、接続孔パターンに対する直接合わせで行うことが可能である。したがって、ミスアライメント量が低減される。これにより、製品歩留りの向上や、生産コストの低減が可能となる。また、半導体装置をより高集積化することも可能となる。
【0082】
(実施形態4)
上記の実施形態3においては、エッチング量を調節することにより、単層の低誘電率膜に配線溝と接続孔が形成される。それに対し、本実施形態においては、2層の低誘電率膜の層間にエッチングストッパー層を設け、エッチングストッパー層上の低誘電率膜に配線溝を形成し、下層の低誘電率膜に接続孔を形成する。
【0083】
以下、本実施形態のCuデュアルダマシン配線の形成方法について、図16〜図19を参照して説明する。まず、図16(a)に示すように、下層配線1上にバリア絶縁膜としてシリコン窒化膜2を、例えば厚さ50nmで形成する。シリコン窒化膜2はCuの拡散を防止する。シリコン窒化膜2上に下層有機膜16を、例えば厚さ400nmで形成する。
【0084】
下層有機膜16上にエッチングストッパー層としてシリコン酸化膜17を、例えば厚さ100nmで形成する。シリコン酸化膜17上に上層有機膜18を、例えば厚さ400nmで形成する。下層有機膜16および上層有機膜18は、実施形態1の有機膜4と同様の材料を用いて、実施形態1と同様の方法により形成できる。
【0085】
上層有機膜18上に第1のハードマスクとしてシリコン酸化膜5を、例えば厚さ200nmで形成する。シリコン酸化膜5上に第2のハードマスクとしてシリコン窒化膜6を、例えば厚さ100nmで形成する。シリコン酸化膜5およびシリコン窒化膜6は、実施形態1と同様の方法により形成できる。
【0086】
次に、図16(b)に示すように、接続孔パターンのレジスト9をリソグラフィーにより形成する。このとき、下層配線1をアライメントに用いる。リソグラフィーは、実施形態1と同様に行うことができる。
【0087】
次に、図17(c)に示すように、レジスト9をマスクとしてシリコン窒化膜6に厚さ分(100nm)のエッチングを行う。さらに、第1のハードマスクであるシリコン酸化膜5の途中まで(上層有機膜18に達しないように)、例えば厚さ100nm分のエッチングを行い、接続孔パターンをシリコン酸化膜5に転写する。
【0088】
シリコン窒化膜6およびシリコン酸化膜5のエッチングは、実施形態1と同様の方法により行うことができる。その後、レジスト9を除去する。レジスト9の除去工程では、第1および第2のハードマスクによって上層有機膜18が保護される。
【0089】
次に、図17(d)に示すように、配線溝パターンのレジスト10をリソグラフィーにより形成する。このとき、第1および第2のハードマスクに転写された接続孔パターンをアライメントに用いる。このアライメントは直接合わせであるため、従来の方法による間接合わせに比較すると、ミスアライメント量を大幅に低減できる。
【0090】
次に、図17(e)に示すように、レジスト10をマスクとしてシリコン窒化膜6にエッチングを行い、第2のハードマスクに配線溝パターンを転写する。その後、レジスト10を除去する。レジスト10の除去工程では、第1および第2のハードマスクによって上層有機膜18が保護される。
【0091】
次に、図18(f)に示すように、シリコン酸化膜5に形成されている接続孔パターンが上層有機膜18に達するまで、シリコン酸化膜5にエッチングを行う。図17(c)に示す工程で、シリコン酸化膜5に厚さ100nm分のエッチングを行った場合、図18(f)に示す工程で厚さ100nm分のエッチングを行うことにより、接続孔パターンが上層有機膜18に達する。
【0092】
このとき、シリコン酸化膜5には第2のハードマスクであるシリコン窒化膜6をマスクとしてエッチングが行われ、配線溝パターンが転写される。接続孔パターンに含まれる部分を除き、配線溝パターンの部分には厚さ100nmのシリコン酸化膜5が残される。図18(f)に示す工程では、実施形態2と同様に、シリコン酸化膜5のエッチング量を調節し、配線溝パターンが上層有機膜18に達しないようにする。
【0093】
次に、図18(g)に示すように、上層有機膜18にエッチングを行い、第1のハードマスク(シリコン酸化膜5)に形成された接続孔パターンを転写する。このとき、シリコン酸化膜17をエッチングストッパー層として用いる。上層有機膜18のエッチングは、実施形態1における有機膜4のエッチングと同様に行うことができる。
【0094】
次に、図18(h)に示すように、第2のハードマスク(シリコン窒化膜6)をマスクとして第1のハードマスク(シリコン酸化膜5)にエッチングを行い、第1のハードマスクに配線溝パターンを転写する。このとき、上層有機膜18をマスクとしてシリコン酸化膜17がエッチングされ、シリコン酸化膜17に接続孔の一部19aが形成される。
【0095】
次に、図19(i)に示すように、第1および第2のハードマスク(シリコン酸化膜5およびシリコン窒化膜6)をマスクとして、上層有機膜18にエッチングを行う。これにより、上層有機膜18に配線溝20が形成される。このとき、下層有機膜16はシリコン酸化膜17をマスクとしてエッチングされる。これにより、下層有機膜16に接続孔19が形成される。
【0096】
次に、図19(j)に示すように、シリコン窒化膜2、6にエッチングを行う。これにより、シリコン窒化膜6が除去され、同時に、バリア絶縁膜であるシリコン窒化膜2に接続孔が形成される。その後、実施形態1と同様に配線溝20および接続孔19内にCuを埋め込み、Cuデュアルダマシン配線が形成される。
【0097】
上記の本実施形態の半導体装置の製造方法によれば、実施形態1と同様に、配線溝パターンのアライメントを、接続孔パターンに対する直接合わせで行うことが可能である。したがって、ミスアライメント量が低減される。これにより、製品歩留りの向上や、生産コストの低減が可能となる。また、半導体装置をより高集積化することも可能となる。
【0098】
本発明の半導体装置の製造方法の実施形態は、上記の説明に限定されない。例えば、上記のプロセスを適用できる材料であれば、絶縁膜材料を変更することも可能である。その他、本発明の要旨を逸脱しない範囲で、種々の変更が可能である。
【0099】
【発明の効果】
本発明の半導体装置の製造方法によれば、レジスト剥離の際に有機系低誘電率膜がダメージを受けず、かつ配線溝と接続孔の合わせ精度が向上する。
【図面の簡単な説明】
【図1】図1(a)および(b)は本発明の実施形態1に係る半導体装置の製造方法の製造工程を示す断面図である。
【図2】図2(c)および(d)は本発明の実施形態1に係る半導体装置の製造方法の製造工程を示す断面図であり、図1(b)に続く工程を示す。
【図3】図3(e)および(f)は本発明の実施形態1に係る半導体装置の製造方法の製造工程を示す断面図であり、図2(d)に続く工程を示す。
【図4】図4(g)および(h)は本発明の実施形態1に係る半導体装置の製造方法の製造工程を示す断面図であり、図3(f)に続く工程を示す。
【図5】図5(g’)および(h’)は本発明の実施形態1に係る半導体装置の製造方法の製造工程を示す断面図であり、図4(g)および(h)の変更例である。
【図6】図6(g”)および(h”)は本発明の実施形態1に係る半導体装置の製造方法の製造工程を示す断面図であり、図4(g)および(h)の変更例である。
【図7】図7(i)〜(k)は本発明の実施形態1に係る半導体装置の製造方法の製造工程を示す断面図であり、図4(h)、図5(h’)または図6(h”)のいずれかに続く工程を示す。
【図8】図8(a)および(b)は本発明の実施形態2に係る半導体装置の製造方法の製造工程を示す断面図である。
【図9】図9(c)〜(e)は本発明の実施形態2に係る半導体装置の製造方法の製造工程を示す断面図であり、図8(b)に続く工程を示す。
【図10】図10(f)〜(h)は本発明の実施形態2に係る半導体装置の製造方法の製造工程を示す断面図であり、図9(e)に続く工程を示す。
【図11】図11(i)および(j)は本発明の実施形態2に係る半導体装置の製造方法の製造工程を示す断面図であり、図10(h)に続く工程を示す。
【図12】図12(a)および(b)は本発明の実施形態3に係る半導体装置の製造方法の製造工程を示す断面図である。
【図13】図13(c)〜(e)は本発明の実施形態3に係る半導体装置の製造方法の製造工程を示す断面図であり、図12(b)に続く工程を示す。
【図14】図14(f)〜(h)は本発明の実施形態3に係る半導体装置の製造方法の製造工程を示す断面図であり、図13(e)に続く工程を示す。
【図15】図15(i)および(j)は本発明の実施形態3に係る半導体装置の製造方法の製造工程を示す断面図であり、図14(h)に続く工程を示す。
【図16】図16(a)および(b)は本発明の実施形態4に係る半導体装置の製造方法の製造工程を示す断面図である。
【図17】図17(c)〜(e)は本発明の実施形態4に係る半導体装置の製造方法の製造工程を示す断面図であり、図16(b)に続く工程を示す。
【図18】図18(f)〜(h)は本発明の実施形態4に係る半導体装置の製造方法の製造工程を示す断面図であり、図17(e)に続く工程を示す。
【図19】図19(i)および(j)は本発明の実施形態4に係る半導体装置の製造方法の製造工程を示す断面図であり、図18(h)に続く工程を示す。
【図20】図20(a)〜(c)は従来の半導体装置の製造方法の製造工程を示す断面図である。
【図21】図21(d)〜(f)は従来の半導体装置の製造方法の製造工程を示す断面図であり、図20(c)に続く工程を示す。
【図22】図22(g)〜(i)は従来の半導体装置の製造方法の製造工程を示す断面図であり、図21(f)に続く工程を示す。
【図23】図23(a)および(b)はミスアライメント量と配線間ショートマージンとの関係を説明する図である。
【符号の説明】
1…下層配線、2…シリコン窒化膜、3…シリコン酸化膜、4…有機膜、5…シリコン酸化膜、6…シリコン窒化膜、7…シリコン酸化膜、8…シリコン窒化膜、9、10…レジスト、11…接続孔、12…配線溝、13…有機膜、14…配線溝、15…接続孔、16…下層有機膜、17…シリコン酸化膜、18…上層有機膜、19…接続孔、20…配線溝、101…下層配線、102…シリコン窒化膜、103…シリコン酸化膜、104…有機膜、105…シリコン酸化膜、106…シリコン窒化膜、107、108…レジスト、109…接続孔、110…配線溝、111…配線、112…接続孔。

Claims (10)

  1. 下層配線上に絶縁膜を形成する工程と、
    前記絶縁膜上に、前記絶縁膜とエッチング速度が異なる有機系低誘電率膜を形成する工程と、
    前記有機系低誘電率膜上に、前記有機系低誘電率膜とエッチング速度が異なり、前記絶縁膜と同じ条件でエッチングされる第1のハードマスクを形成する工程と、
    前記第1のハードマスク上に、前記絶縁膜、有機系低誘電率膜および第1のハードマスクのいずれともエッチング速度が異なる第2のハードマスクを形成する工程と、
    前記第2のハードマスク上に、前記有機系低誘電率膜および第2のハードマスクとエッチング速度が異なり、前記絶縁膜および第1のハードマスクと同じ条件でエッチングされる第3のハードマスクを形成する工程と、
    前記第3のハードマスク上に、前記絶縁膜、有機系低誘電率膜、第1および第3のハードマスクのいずれともエッチング速度が異なり、前記第2のハードマスクと同じ条件でエッチングされる第4のハードマスクを形成する工程と、
    前記第4のハードマスク上に、接続孔パターンで開口部を有する第1のレジストを形成する工程と、
    前記第1のレジストをマスクとして前記第4、第3および第2のハードマスクに順にそれぞれ厚さ分のエッチングを行い、前記第2〜第4のハードマスクに接続孔パターンを転写する工程と、
    前記第1のレジストを除去する工程と、
    前記第4のハードマスク上に、前記接続孔パターンが含まれる配線溝パターンで開口部を有する第2のレジストを形成する工程と、
    前記第2のレジストをマスクとして前記第4のハードマスクに厚さ分のエッチングを行い、前記第4のハードマスクに前記配線溝パターンを転写する工程と、前記第2のレジストを除去する工程と、
    前記第4のハードマスクをマスクとして前記第3のハードマスクに厚さ分のエッチングを行い、前記第3のハードマスクに前記配線溝パターンを転写するとともに、前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分のエッチングを行い、前記第1のハードマスクに前記接続孔パターンを転写する工程と、
    前記第1および第2のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分のエッチングを行い、前記有機系低誘電率膜に前記接続孔パターンを転写する工程と、
    前記第4のハードマスクをエッチングにより除去するとともに、前記第3のハードマスクをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、前記第2のハードマスクに前記配線溝パターンを転写する工程と、
    前記第3のハードマスクをエッチングにより除去するとともに、前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分のエッチングを行い、前記第1のハードマスクに前記配線溝パターンを転写し、かつ前記有機系低誘電率膜をマスクとして前記絶縁膜に厚さ分のエッチングを行い、前記絶縁膜に接続孔を形成する工程と、
    前記第1および第2のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分のエッチングを行い、前記有機系低誘電率膜に配線溝を形成する工程と、
    前記第2のハードマスクをエッチングにより除去する工程と、
    前記配線溝および前記接続孔に導電体を埋め込む工程とを有する
    半導体装置の製造方法。
  2. 前記有機系低誘電率膜に前記接続孔パターンを転写した後、前記第2および第4のハードマスクにエッチングを行う前に、前記第1および第2のハードマスクと前記有機系低誘電率膜をマスクとして、前記絶縁膜に途中までエッチングを行う工程をさらに有する
    請求項1記載の半導体装置の製造方法。
  3. 前記有機系低誘電率膜に前記接続孔パターンを転写する前に、前記第4のハードマスクをエッチングにより除去するとともに、前記第3のハードマスクをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、前記第2のハードマスクに前記配線溝パターンを転写する
    請求項1記載の半導体装置の製造方法。
  4. 前記下層配線上に前記絶縁膜を形成する前に、前記下層配線上に前記絶縁膜とエッチング速度が異なり、前記第2のハードマスクと同じ条件でエッチングされるバリア絶縁膜であって、前記下層配線の材料の拡散を防止する前記バリア絶縁膜を形成する工程をさらに有し、
    前記配線溝の形成後、前記第2のハードマスクをエッチングにより除去するとともに、前記絶縁膜をマスクとして前記バリア絶縁膜に厚さ分のエッチングを行い、前記接続孔底部の前記バリア絶縁膜を除去する
    請求項1記載の半導体装置の製造方法。
  5. 下層配線上に絶縁膜を形成する工程と、
    前記絶縁膜上に、前記絶縁膜とエッチング速度が異なる有機系低誘電率膜を形成する工程と、
    前記有機系低誘電率膜上に、前記有機系低誘電率膜とエッチング速度が異なり、前記絶縁膜と同じ条件でエッチングされる第1のハードマスクを形成する工程と、
    前記第1のハードマスク上に、前記絶縁膜、有機系低誘電率膜および第1のハードマスクのいずれともエッチング速度が異なる第2のハードマスクを形成する工程と、
    前記第2のハードマスク上に、接続孔パターンで開口部を有する第1のレジストを形成する工程と、
    前記第1のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、さらに前記第1のハードマスクに途中までエッチングを行い、前記第1のハードマスクの上面側と前記第2のハードマスクに接続孔パターンを転写する工程と、
    前記第1のレジストを除去する工程と、
    前記第2のハードマスク上に、前記接続孔パターンが含まれる配線溝パターンで開口部を有する第2のレジストを形成する工程と、
    前記第2のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、前記第2のハードマスクに前記配線溝パターンを転写する工程と、
    前記第2のレジストを除去する工程と、
    前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分より少ないエッチングを行い、前記第1のハードマスクの上面側に前記配線溝パターンを転写し、かつ前記接続孔パターンが転写された部分の前記第1のハードマスクを除去する工程と、
    前記第1のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分のエッチングを行い、前記有機系低誘電率膜に前記接続孔パターンを転写する工程と、前記第2のハードマスクをマスクとして前記第1のハードマスクにエッチングを行い、前記第1のハードマスクに厚さ分の前記配線溝パターンを転写するとともに、前記有機系低誘電率膜をマスクとして前記絶縁膜に厚さ分のエッチングを行い、前記絶縁膜に接続孔を形成する工程と、
    前記第1および第2のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分のエッチングを行い、前記有機系低誘電率膜に配線溝を形成する工程と、
    前記第2のハードマスクをエッチングにより除去する工程と、
    前記配線溝および前記接続孔に導電体を埋め込む工程とを有する
    半導体装置の製造方法。
  6. 前記下層配線上に前記絶縁膜を形成する前に、前記下層配線上に前記絶縁膜とエッチング速度が異なり、前記第2のハードマスクと同じ条件でエッチングされるバリア絶縁膜であって、前記下層配線の材料の拡散を防止する前記バリア絶縁膜を形成する工程をさらに有し、
    前記配線溝の形成後、前記第2のハードマスクをエッチングにより除去するとともに、前記絶縁膜をマスクとして前記バリア絶縁膜に厚さ分のエッチングを行い、前記接続孔底部の前記バリア絶縁膜を除去する
    請求項5記載の半導体装置の製造方法。
  7. 下層配線上に有機系低誘電率膜を形成する工程と、
    前記有機系低誘電率膜上に、前記有機系低誘電率膜とエッチング速度が異なる第1のハードマスクを形成する工程と、
    前記第1のハードマスク上に、前記有機系低誘電率膜および第1のハードマスクのいずれともエッチング速度が異なる第2のハードマスクを形成する工程と、前記第2のハードマスク上に、接続孔パターンで開口部を有する第1のレジストを形成する工程と、
    前記第1のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、さらに前記第1のハードマスクに途中までエッチングを行い、前記第1のハードマスクの上面側と前記第2のハードマスクに接続孔パターンを転写する工程と、
    前記第1のレジストを除去する工程と、
    前記第2のハードマスク上に、前記接続孔パターンが含まれる配線溝パターンで開口部を有する第2のレジストを形成する工程と、
    前記第2のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、前記第2のハードマスクに前記配線溝パターンを転写する工程と、
    前記第2のレジストを除去する工程と、
    前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分より少ないエッチングを行い、前記第1のハードマスクの上面側に前記配線溝パターンを転写し、かつ前記接続孔パターンが転写された部分の前記第1のハードマスクを除去する工程と、
    前記第1のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分より少ないエッチングを行い、前記有機系低誘電率膜の上面側に前記接続孔パターンを転写する工程と、
    前記第2のハードマスクをマスクとして前記第1のハードマスクにエッチングを行い、前記第1のハードマスクに厚さ分の前記配線溝パターンを転写する工程と、
    前記第1および第2のハードマスクをマスクとして前記有機系低誘電率膜に厚さ分より少ないエッチングを行い、前記有機系低誘電率膜の上面側に配線溝を形成するとともに、前記接続孔パターンが転写された部分の前記有機系低誘電率膜を除去し、前記有機系低誘電率膜の底部側に接続孔を形成する工程と、
    前記第2のハードマスクをエッチングにより除去する工程と、
    前記配線溝および前記接続孔に導電体を埋め込む工程とを有する
    半導体装置の製造方法。
  8. 前記下層配線上に前記有機系低誘電率膜を形成する前に、前記下層配線上に前記第1のハードマスクとエッチング速度が異なり、前記第2のハードマスクと同じ条件でエッチングされるバリア絶縁膜であって、前記下層配線の材料の拡散を防止する前記バリア絶縁膜を形成する工程をさらに有し、
    前記配線溝の形成後、前記第2のハードマスクをエッチングにより除去するとともに、前記有機系低誘電率膜をマスクとして前記バリア絶縁膜に厚さ分のエッチングを行い、前記接続孔底部の前記バリア絶縁膜を除去する
    請求項7記載の半導体装置の製造方法。
  9. 下層配線上に第1の有機系低誘電率膜を形成する工程と、
    前記第1の有機系低誘電率膜上に、前記第1の有機系低誘電率膜とエッチング速度が異なる絶縁膜を形成する工程と、
    前記絶縁膜上に、前記絶縁膜とエッチング速度が異なり、前記第1の有機系低誘電率膜と同じ条件でエッチングされる第2の有機系低誘電率膜を形成する工程と、
    前記第2の有機系低誘電率膜上に、前記第1および第2の有機系低誘電率膜とエッチング速度が異なり、前記絶縁膜と同じ条件でエッチングされる第1のハードマスクを形成する工程と、
    前記第1のハードマスク上に、前記第1および第2の有機系低誘電率膜、絶縁膜および第1のハードマスクのいずれともエッチング速度が異なる第2のハードマスクを形成する工程と、
    前記第2のハードマスク上に、接続孔パターンで開口部を有する第1のレジストを形成する工程と、
    前記第1のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、さらに前記第1のハードマスクに途中までエッチングを行い、前記第1のハードマスクの上面側と前記第2のハードマスクに接続孔パターンを転写する工程と、
    前記第1のレジストを除去する工程と、
    前記第2のハードマスク上に、前記接続孔パターンが含まれる配線溝パターンで開口部を有する第2のレジストを形成する工程と、
    前記第2のレジストをマスクとして前記第2のハードマスクに厚さ分のエッチングを行い、前記第2のハードマスクに前記配線溝パターンを転写する工程と、
    前記第2のレジストを除去する工程と、
    前記第2のハードマスクをマスクとして前記第1のハードマスクに厚さ分より少ないエッチングを行い、前記第1のハードマスクの上面側に前記配線溝パターンを転写し、かつ前記接続孔パターンが転写された部分の前記第1のハードマスクを除去する工程と、
    前記第1のハードマスクをマスクとして前記第2の有機系低誘電率膜に厚さ分のエッチングを行い、前記第2の有機系低誘電率膜に前記接続孔パターンを転写する工程と、
    前記第2のハードマスクをマスクとして前記第1のハードマスクにエッチングを行い、前記第1のハードマスクに厚さ分の前記配線溝パターンを転写するとともに、前記第2の有機系低誘電率膜をマスクとして前記絶縁膜に厚さ分のエッチングを行い、前記絶縁膜に前記接続孔パターンを転写する工程と、
    前記第1および第2のハードマスクをマスクとして前記第2の有機系低誘電率膜に厚さ分のエッチングを行い、前記第2の有機系低誘電率膜に配線溝を形成するとともに、前記絶縁膜をマスクとして前記第1の有機系低誘電率膜に厚さ分のエッチングを行い、前記第1の有機系低誘電率膜に接続孔を形成する工程と、
    前記第2のハードマスクをエッチングにより除去する工程と、
    前記配線溝および前記接続孔に導電体を埋め込む工程とを有する
    半導体装置の製造方法。
  10. 前記下層配線上に前記第1の有機系低誘電率膜を形成する前に、前記下層配線上に前記第1のハードマスクとエッチング速度が異なり、前記第2のハードマスクと同じ条件でエッチングされるバリア絶縁膜であって、前記下層配線の材料の拡散を防止する前記バリア絶縁膜を形成する工程をさらに有し、
    前記配線溝の形成後、前記第2のハードマスクをエッチングにより除去するとともに、前記第1の有機系低誘電率膜をマスクとして前記バリア絶縁膜に厚さ分のエッチングを行い、前記接続孔底部の前記バリア絶縁膜を除去する
    請求項9記載の半導体装置の製造方法。
JP2002255774A 2002-08-30 2002-08-30 半導体装置の製造方法 Expired - Fee Related JP3988592B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255774A JP3988592B2 (ja) 2002-08-30 2002-08-30 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255774A JP3988592B2 (ja) 2002-08-30 2002-08-30 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004095902A true JP2004095902A (ja) 2004-03-25
JP3988592B2 JP3988592B2 (ja) 2007-10-10

Family

ID=32061207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255774A Expired - Fee Related JP3988592B2 (ja) 2002-08-30 2002-08-30 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP3988592B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179515A (ja) * 2004-12-20 2006-07-06 Oki Electric Ind Co Ltd 半導体素子の製造方法、及びエッチング方法
JP2006245236A (ja) * 2005-03-02 2006-09-14 Nec Electronics Corp 半導体装置の製造方法
WO2006095915A1 (ja) * 2005-03-09 2006-09-14 Nec Corporation 多層配線構造、半導体装置、パターン転写マスク、及び多層配線構造の製造方法
WO2007043634A1 (ja) * 2005-10-06 2007-04-19 Nec Corporation 多層配線の製造方法
JP2007318065A (ja) * 2006-05-26 2007-12-06 Hynix Semiconductor Inc フラッシュメモリ素子の製造方法
JP2010161166A (ja) * 2009-01-07 2010-07-22 Fujitsu Semiconductor Ltd 配線の形成方法
JP2014127479A (ja) * 2012-12-25 2014-07-07 Renesas Electronics Corp 半導体装置の製造方法
JP2016510515A (ja) * 2013-02-08 2016-04-07 日本テキサス・インスツルメンツ株式会社 金属コンタクト開口を形成する方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179515A (ja) * 2004-12-20 2006-07-06 Oki Electric Ind Co Ltd 半導体素子の製造方法、及びエッチング方法
JP2006245236A (ja) * 2005-03-02 2006-09-14 Nec Electronics Corp 半導体装置の製造方法
JP4516450B2 (ja) * 2005-03-02 2010-08-04 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
WO2006095915A1 (ja) * 2005-03-09 2006-09-14 Nec Corporation 多層配線構造、半導体装置、パターン転写マスク、及び多層配線構造の製造方法
JPWO2006095915A1 (ja) * 2005-03-09 2008-08-21 日本電気株式会社 多層配線構造、半導体装置、パターン転写マスク、及び多層配線構造の製造方法
US7999392B2 (en) 2005-03-09 2011-08-16 Renesas Electronics Corporation Multilayer wiring structure, semiconductor device, pattern transfer mask and method for manufacturing multilayer wiring structure
WO2007043634A1 (ja) * 2005-10-06 2007-04-19 Nec Corporation 多層配線の製造方法
JP5201326B2 (ja) * 2005-10-06 2013-06-05 日本電気株式会社 多層配線の製造方法
JP2007318065A (ja) * 2006-05-26 2007-12-06 Hynix Semiconductor Inc フラッシュメモリ素子の製造方法
JP2010161166A (ja) * 2009-01-07 2010-07-22 Fujitsu Semiconductor Ltd 配線の形成方法
JP2014127479A (ja) * 2012-12-25 2014-07-07 Renesas Electronics Corp 半導体装置の製造方法
JP2016510515A (ja) * 2013-02-08 2016-04-07 日本テキサス・インスツルメンツ株式会社 金属コンタクト開口を形成する方法

Also Published As

Publication number Publication date
JP3988592B2 (ja) 2007-10-10

Similar Documents

Publication Publication Date Title
US9543193B2 (en) Non-hierarchical metal layers for integrated circuits
US7304386B2 (en) Semiconductor device having a multilayer wiring structure
US8404581B2 (en) Method of forming an interconnect of a semiconductor device
US10269632B2 (en) Semiconductor device and method
US6599830B2 (en) Semiconductor device and manufacturing method thereof
JP2002043419A (ja) 半導体装置の製造方法及び半導体装置
JPH10189716A (ja) 半導体装置およびその製造方法
JP5331443B2 (ja) 半導体装置の製造方法および半導体装置
US20210118688A1 (en) Reduction of Line Wiggling
JP4104426B2 (ja) 半導体装置の製造方法
JP2004063859A (ja) 半導体装置の製造方法
JP2000294628A (ja) 半導体装置およびその製造方法
US20010034137A1 (en) Semiconductor device and manufacturing method of the device
JP4516450B2 (ja) 半導体装置の製造方法
JP2000188330A (ja) デュアルダマシン配線の形成方法
US6821896B1 (en) Method to eliminate via poison effect
JP3988592B2 (ja) 半導体装置の製造方法
JP4278497B2 (ja) 半導体装置の製造方法
JP5047504B2 (ja) ビアキャッピング保護膜を使用する半導体素子のデュアルダマシン配線の製造方法
JP2000223490A (ja) 半導体装置の製造方法
KR20030077455A (ko) 이중상감법을 사용한 반도체장치 제조방법
KR100439111B1 (ko) 반도체소자의 금속배선 형성방법
JP2000357743A (ja) 半導体装置およびその製造方法
JP2008041783A (ja) 半導体装置の製造方法
JP2004072080A (ja) 半導体装置の製造方法および半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees