JP2004072954A - モーター制御装置および方法 - Google Patents

モーター制御装置および方法 Download PDF

Info

Publication number
JP2004072954A
JP2004072954A JP2002231789A JP2002231789A JP2004072954A JP 2004072954 A JP2004072954 A JP 2004072954A JP 2002231789 A JP2002231789 A JP 2002231789A JP 2002231789 A JP2002231789 A JP 2002231789A JP 2004072954 A JP2004072954 A JP 2004072954A
Authority
JP
Japan
Prior art keywords
wave voltage
motor
pwm
voltage drive
rectangular wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002231789A
Other languages
English (en)
Other versions
JP4082127B2 (ja
Inventor
Yasuro Matsunaga
松永 康郎
Kazutoshi Nagayama
永山 和俊
Ryozo Masaki
正木 良三
Satoru Kaneko
金子 悟
Takefumi Sawada
澤田 建文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nissan Motor Co Ltd
Original Assignee
Hitachi Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nissan Motor Co Ltd filed Critical Hitachi Ltd
Priority to JP2002231789A priority Critical patent/JP4082127B2/ja
Publication of JP2004072954A publication Critical patent/JP2004072954A/ja
Application granted granted Critical
Publication of JP4082127B2 publication Critical patent/JP4082127B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】モーターの運転効率を向上させる。
【解決手段】交流モーターに矩形波電圧を印加して駆動する矩形波電圧駆動と、交流モーターにPWM(パルス幅変調)波電圧を印加して駆動するPWM波電圧駆動とを可能とし、トルクと速度とにより交流モーターの運転領域を、高速応答を得るためにPWM波電圧駆動を行う領域Aと、高出力を得るために矩形波電圧駆動を行う領域Cと、PWM波電圧駆動と矩形波電圧駆動のいずれでも駆動可能な中間領域Bとに区分し、トルク指令τrとモーター速度ωmに応じて矩形波電圧駆動とPWM電圧駆動とを切り換える際に、矩形波電圧駆動の場合とPWM波電圧駆動の場合のモーター制御系の損失マップを有し、中間領域Bにおいて交流モーターを運転する場合には、矩形波電圧駆動とPWM波電圧駆動の内の損失が少ない方を選択する。
【選択図】 図6

Description

【0001】
【発明の属する技術分野】
本発明はモーター制御装置および方法に関し、特に、モーターの運転性能を改善するものである。
【0002】
【従来の技術】
インバーターによりバッテリーの直流電力を交流電力に変換して3相交流モーターに印加し、モーターを駆動するモーター制御装置が知られている(例えば特開2000−358393号公報参照)。この装置では、モーターに矩形波の駆動電圧を印加して駆動する矩形波制御と、モーターにPWM波形の駆動電圧を印加して駆動するPWM制御とを可能とし、モーターのトルク指令値に応じた3相交流電圧の指令値を算出し、その交流電圧指令値がPWM波形を生成する搬送波の振幅の1/2より大きいときは矩形波制御を行い、交流電圧指令値が搬送波の振幅の1/2以下のときはPWM制御を行っている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のモーター制御装置では、モーターに印加する電圧指令値を所定値(PWM波生成用搬送波の振幅の1/2)と比較し、その大小関係のみにより矩形波制御とPWM制御を切り換えているので、モーターの運転効率が良好なものではなかった。
【0004】
本発明の目的は、モーターの運転効率が向上するように矩形波電圧駆動とPWM波電圧駆動とを切り換えるモーター制御装置および方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、交流モーターに矩形波電圧を印加して駆動する矩形波電圧駆動と、交流モーターにPWM(パルス幅変調)波電圧を印加して駆動するPWM波電圧駆動とを可能とし、トルクと速度とにより交流モーターの運転領域を、高速応答を得るためにPWM波電圧駆動を行う領域Aと、高出力を得るために矩形波電圧駆動を行う領域Cと、PWM波電圧駆動と矩形波電圧駆動のいずれでも駆動可能な中間領域Bとに区分し、トルク指令値とモーター速度検出値に応じて矩形波電圧駆動とPWM電圧駆動とを切り換える際に、矩形波電圧駆動の場合とPWM波電圧駆動の場合のモーター制御系の損失マップを有し、中間領域Bにおいて交流モーターを運転する場合には、矩形波電圧駆動とPWM波電圧駆動の内の損失が少ない方を選択する。
【0006】
【発明の効果】
本発明によれば、モーターの運転効率を向上させることができる。
【0007】
【発明の実施の形態】
図1は一実施の形態の構成を示す。一実施の形態の電気自動車の駆動制御装置は、バッテリー1の直流電力を交流電力に変換してモーター2へ供給するインバーター3と、トルク指令τrとモーター2の電流iu、iv、iwおよび回転信号に基づいてインバーター3を制御するモーターコントローラー4とを備えている。なお、この一実施の形態ではモーター2に3相同期モーターを用いた例を示すが、モーター2は3相同期モーターに限定されず、例えば3相誘導モーターなどを用いることができる。インバーター3は、モーターコントローラー4からのスイッチング信号Pu、Pv、PwにしたがってIGBTなどの電力変換素子によりスイッチングを行い、バッテリー1の直流電力を交流電力に変換する。
【0008】
モーターコントローラー4は、マイクロコンピューターとA/Dコンバーターやメモリなどの周辺部品を備え、マイクロコンピューターのソフトウエア形態やハードウエアデバイスにより後述する複数の制御ブロックを構成する。モーターコントローラー4は、電気角180度通電の矩形波電圧をモーター2へ印加して駆動制御する矩形波制御系と、パルス幅変調(PWM)波形電圧をモーター2へ印加して駆動制御するPWM制御系とを備え、トルク指令τrとモーター2の電流iu、iv、iwおよび速度ωmに基づいて矩形波制御とPWM制御とを切り換える。
【0009】
矩形波制御系は、電圧位相演算部5、スイッチ選択部6および磁極位置/モーター速度検出部8を備えている。電圧位相演算部5は、トルク指令値τrとモーター速度ωmに対して予め設定されたdq軸電流指令値id、iqのテーブルを記憶しており、このdq軸電流指令値テーブルから現在のトルク指令値τrとモーター速度ωmに対応するdq軸電流指令値id、iqを表引き演算する。そして、このdq軸電流指令値id、iqに基づいて次の方法により電圧位相γを算出する。
【0010】
モーター2の磁極位置θの方向であるd軸に対して電気的に直交するq軸方向に、逆起電力ωmφ(φは磁石の磁束)が発生する。この逆起電力ωmφを補償する電圧と、d軸電流idによる電圧成分ωmLdid(Ldはd軸インダクダンス)との和が、q軸方向に印加する電圧となる。一方、d軸方向についてはq軸電流iqによる電圧成分ωmLqiq(Lqはq軸インダクダンス)が印加電圧になる。したがって、図2に示すように、それらのベクトル和が電圧指令ベクトルVrであり、d軸から見たVrの位相がγである。電圧位相演算部5は図2に示すベクトル演算を行って電圧位相γを算出する。
【0011】
スイッチ選択部6は、電圧位相γとモーター磁極位置θとに基づいてU、V、W相のスイッチング信号Pu、Pv、Pwを決定する。インバーター3はこれらのスイッチング信号Pu、Pv、Pwに応じた電圧を生成し、3相同期モーター2へ印加する。
【0012】
スイッチ選択部6によるスイッチング信号Pu、Pv、Pwの生成方法を図2〜図5により説明する。図2において、電圧指令ベクトルVrの位相はα軸を基準とする静止座標系から見ると、モーター2の磁極位置θと電圧位相γとの和であるθvである。180度通電の矩形波制御を行うためには、図3に示すように、電気角60度ごとに異なるスイッチングパターンを有する6つの区間、つまり区間1〜区間6に分ける。
【0013】
図4に各区間ごとのスイッチングパターンを示す。例えば、電圧指令ベクトルVrの位相θvが−30度〜30度の範囲であれば区間1となり、U相が正電圧に、V相、W相が負電圧になるようにスイッチング信号Pu、Pv、Pwを与える。図2に示す電圧指令ベクトルVrは、図3に示す区間分けから明らかなように区間3の範囲に入っている。したがって、図4に示す区間3のスイッチングパターン、すなわちV相が正電圧に、U相、W相が負電圧になるようにスイッチング信号Pu、Pv、Pwを出力する。
【0014】
図5はスイッチ選択部6の処理を示すフローチャートである。ステップ101において、モーター2の磁極位置θと電圧位相γとの和により電圧指令ベクトルVrの位相θvを求める。続くステップ102では、電圧指令ベクトルVrの位相θvが図4に示す6区間の内のどの区間に入るかを判定する。更にステップ103で、図4に示すテーブルから電圧指令ベクトルVrの位相θvが含まれる区間のスイッチングパターンを選択し、このスイッチングパターンのスイッチング信号Pu、Pv、Pwを生成してインバーター2へ出力する。
【0015】
磁極位置/モーター速度検出部8は、モーター2の出力軸に連結したレゾルバー9の出力信号に基づいてモーター2の磁極位置θと速度ωmを検出する。なお、この一実施の形態ではモーター2の回転を検出するセンサーとしてレゾルバーを用いた例を示すが、モーター回転センサーはレゾルバーに限定されず、例えばエンコーダーやパルス発生器を用いてもよい。また、この磁極位置/モーター速度検出部8は矩形波制御系とPWM制御系とで共用とする。
【0016】
次に、PWM制御系について説明する。PWM制御系は、高効率電流テーブル10、電流制御部11、2相3相変換部12、3相2相変換部13、PWM変換部17および磁極位置モーター速度検出部8を備えている。
【0017】
高効率電流テーブル10は、トルク指令τrとモーター速度ωmに対して予め設定された高効率電流テーブルを備えており、この高効率電流テーブルから現在のトルク指令値τrとモーター速度ωmに対応するdq軸電流指令値id、iqを算出する。電流制御部11は、dq軸実電流id、iqをdq軸電流指令値id、iqに一致させるためのdq軸の電圧指令値vd、vqを、次式に示すPI制御により演算する。
【数1】
vd=Kpd(id−id)+Kid∫(id−id)dt,
vq=Kpq(iq−iq)+Kiq∫(iq−iq)dt
数式1において、Kpd、Kpqはdq軸電流制御の比例ゲイン、Kid、Kiqはdq軸電流制御の積分ゲインである。
【0018】
2相3相変換部12は、モーター2の磁極位置θに基づいてdq軸電圧指令値vd、vqを3相交流電圧指令vu、vv、vwに変換する。3相2相変換部13は、モーター2の磁極位置θに基づいて、電流センサー14、15、16により検出した3相交流電流iu、iv、iwをdq軸実電流id、iqに変換する。PWM変換部17は、3相交流電圧指令vu、vv、vwを10kHz程度の搬送波(一般に三角波)と比較し、スイッチング信号Pu、Pv、Pwを生成する。
【0019】
次に、矩形波制御とPWM制御との切り換え動作を説明する。制御切換部18は、矩形波制御系の入力部に設置したスイッチSW1および出力部に設置したスイッチSW2と、PWM制御系の入力部に設置したスイッチSW3および出力部に設置したスイッチSW4とを制御して、矩形波制御とPWM制御とを切り換える。
【0020】
図6は、トルク指令τrとモーター速度ωmの二次元平面上における矩形波制御領域とPWM制御領域とを示す。領域AはPWM制御のみを行う領域であり、領域Cは矩形波制御のみを行う領域である。
【0021】
一般に、矩形波電圧による制御は、PWM波電圧による制御に比べて電圧利用率の点で優れており、高出力が得られるが、トルク指令τrやモーター速度ωmが急変する過渡変化時には、PWM波電圧による制御に比べて応答性が悪い。領域Aは、トルク指令τrとモーター速度ωmが領域Cにおけるそれらよりも小さく、モーター出力P(∝τr・ωm)は最高出力Pmaxよりも低い状態で運転されるから、高出力を得るための矩形波制御よりも応答性が良いPWM制御を行う方が望ましい。逆に、領域Cは、トルク指令τrとモーター速度ωmが領域Aにおけるそれらよりも大きく、モーター出力P(∝τr・ωm)は最高出力Pmaxに近い状態で運転されるから、応答性が良いPWM制御よりも高出力を得るための矩形波制御を行う方が望ましい。したがって、トルク指令τrとモーター速度ωmに基づいて現在のモーター2の運転領域を判断し、制御の切り換えを行う。
【0022】
一方、領域Bは、矩形波制御とPWM制御のどちらも実行可能な領域であり、どちらかを選択する。この領域Bでは、損失の少ない、すなわち運転効率の高い制御方式を選択する。これにより、電気自動車の1充電当たりの走行距離を伸ばすことができる。しかし、上述したように、矩形波制御におけるモータートルクやモーター電流の応答はPWM制御の応答に比べて遅いため、急な外乱トルクやトルク指令の変化があった場合など、制御の速い応答が求められる場合には、たとえ運転効率が低くなったとしても速い応答性を示すPWM制御を選択し、制御の安定化を図る。
【0023】
図7は、一実施の形態の制御切換部18における制御切換動作を示すフローチャートである。ステップ201において、現在のトルク指令τr(n)とモーター速度ωm(n)に基づいて図6に示す運転領域A、B、Cの中からいずれかを選択する。ステップ202で、現在のトルク指令τr(n)とモーター速度ωm(n)が運転領域C内にあるか否かを確認し、運転領域C内にある場合はステップ210へ進み、そうでなければステップ203へ進む。
【0024】
運転領域C内にない場合には、ステップ203で現在のトルク指令τr(n)とモーター速度ωmが運転領域A内にあるか否かを確認し、運転領域A内にある場合はステップ214へ進み、そうでなければステップ204へ進む。現在のトルク指令τr(n)とモーター速度ωmが運転領域A内にある場合は、ステップ214でPWM制御を選択する。このPWM制御の選択動作については後述する。
【0025】
現在のトルク指令値τr(n)とモーター速度ωmとで決まるモーター2の運転点が領域A内になく、かつまた領域C内にもない場合には、ステップ204で、トルク指令τr(n)とモーター速度ωm(n)に基づいて矩形波制御を行った場合の損失LkとPWM制御を行った場合の損失Lpを演算する。
【0026】
ここで、矩形波制御による損失LkとPWM制御による損失Lpについて考察する。インバーター3の電力変換素子がスイッチング動作するときの損失は、スイッチング回数、すなわちオンとオフを繰り返す回数が多いPWM制御による損失Lpの方が、矩形波制御による損失Lkよりも大きい。ところが、電力変換素子のオン抵抗損失、すなわち電力変換素子が導通状態にあるときの損失は、導通している期間が長い矩形波制御による損失Lkの方がPWM制御による損失Lpよりも大きい。一方、モーター損失を考えると、PWM制御ではモーター2に正弦波に近い駆動電圧が印加されるのに対し、矩形波制御ではモーター2に矩形波が印加されので、矩形波制御によるモーター損失はPWM制御によるモーター損失よりも大きい。
【0027】
これらを総合的に判断すると、矩形波制御による損失Lkの方がPWM制御による損失Lpよりも小さくなる傾向を示すが、使用する電力変換素子やモーターの種類によって損失が変化するため、領域Cにおいては一概にどちらがよいということはできない。したがって、この一実施の形態では机上の演算や実験により種々の条件に応じた矩形波制御とPWM制御による損失を求め、マップ化してモーターコントローラー4に内蔵されるメモリ(不図示)に記憶しておき、必要に応じてこのマップテーブルを参照する。
【0028】
図8はPWM制御と矩形波制御による損失マップの一例を示す。この損失マップ例では、縦列にトルク指令τr(τ0〜τmax)を、横行にモーター回転速度ωm(ω0〜ωmax)をそれぞれ配列し、各欄に損失データを記録したPWM制御による損失マップと矩形波制御による損失マップを示す。これらのマップデータから、現在のトルク指令τr(n)とモーター速度ωm(n)に対応する損失を直線補間演算により求める。
【0029】
例えば、現在のトルク指令τr(n)がτ7とτ8の間にあり、モーター速度ωm(n)がω6とω7の間にある場合には、まずPWM制御による損失マップから、現在のトルク指令τr(n)とモーター速度ωm(n)の運転点を囲む4個のデータLp11、Lp12、Lp21、Lp22を読み出す。そして、トルク指令τrによる直線補間演算を行ってトルク指令τr(n)に対応する損失Lp1、Lp2を求める。
【数2】
Lp1=Lp11+(Lp12−Lp11)/(τ8−τ7)・(τr(n)−τ7),
Lp2=Lp21+(Lp22−Lp21)/(τ8−τ7)・(τr(n)−τ7),
さらに、モーター速度ωmによる直線補間を行ってトルク指令τr(n)とモーター速度ωm(n)に対応するPWM制御による損失Lpを求める。
【数3】
Lp=Lp1+(Lp2−Lp1)/(ω7−ω6)・(ωm(n)−ω6)
【0030】
次に、矩形波制御による損失マップから、現在のトルク指令τr(n)とモーター速度ωm(n)の運転点を囲む4個のデータLk11、Lk12、Lk21、Lk22を読み出す。そして、トルク指令τrによる直線補間演算を行ってトルク指令τr(n)に対応する損失Lk1、Lk2を求める。
【数4】
Lk1=Lk11+(Lk12−Lk11)/(τ8−τ7)・(τr(n)−τ7),
Lk2=Lk21+(Lk22−Lk21)/(τ8−τ7)・(τr(n)−τ7),
さらに、モーター速度ωmによる直線補間を行ってトルク指令τr(n)とモーター速度ωm(n)に対応する矩形波制御による損失Lkを求める。
【数5】
Lk=Lk1+(Lk2−Lk1)/(ω7−ω6)・(ωm(n)−ω6)
【0031】
図7のステップ204で、トルク指令τr(n)とモーター速度ωm(n)に対応する矩形波制御の損失LkとPWM制御の損失Lpを演算した後、ステップ205へ進む。ステップ205では矩形波制御による損失LkとPWM制御による損失Lpとを比較し、矩形波制御損失LkがPWM制御損失Lpより小さい場合は矩形波制御を選択すべくステップ206へ進み、逆にPWM制御損失Lpが矩形波制御損失Lkより小さい場合はPWM制御を選択すべくステップ214へ進む。PWM制御の選択動作については後述する。
【0032】
矩形波制御損失LkがPWM制御損失Lpより小さい場合は、ステップ206で、トルク指令τrの変化分絶対値Δτr(=|τr(n)−τr(n−1)|)を所定値Aと比較する。ここで、所定値Aは、前回サンプリング時のトルク指令τr(n−1)から今回サンプリング時のトルク指令τr(n)への変化時に、矩形波制御で充分に速く応答できる限界の変化量である。トルク指令変化量絶対値Δτrが所定値Aより大きい場合は矩形波制御では応答が遅いと判断し、応答性を重視してPWM制御を選択すべくステップ214へ進む。一方、トルク指令τrの変化量絶対値Δτrが所定値A以下の場合は、矩形波制御で充分に速く応答できるとして矩形波制御を選択すべくステップ207へ進む。
【0033】
ステップ207では、dq軸電流の変化分Δid(=|id(n)−id(n−1)|)、Δiq=(|iq(n)−iq(n−1)|)を検出し、これらの変化分Δid、Δiqをそれぞれ所定値B、Cと比較する。ここで、所定値BとCには、d軸電流変化分Δidが所定値Bだけ変化したとき、またはq軸電流変化分Δiqが所定値Cだけ変化したときに、モータートルクの変化量が上述した所定値Aより大きくなる値を設定する。d軸電流変化分Δidが所定値Bより大きいか、またはq軸電流変化分Δiqが所定値Cより大きい場合は、外乱が入ったと判断してステップ214へ進み、外乱混入時に素早く応答して対応するためにPWM制御を選択する。一方、d軸電流変化分Δidが所定値B以下で、かつq軸電流変化分Δiqが所定値C以下の場合は、外乱の混入がないからPWM制御を選択する必要はなく、矩形波制御を選択すべくステップ208へ進む。
【0034】
ステップ208では、モータートルク指令τrに基づいてモーター速度ωmの変化量Δωm1を予測し、このモーター速度変化量予測値Δωm1と実際のモーター速度ωmの変化量Δωm2とを比較し、比較結果に基づいて外乱の有無を判定する。モーター速度変化量予測値Δωm1と実際のモーター速度ωmの変化量Δωm2との速度差ΔΔωmを次式により演算する。
【数6】
ΔΔωm=|Δωm1−Δωm2|,
Δωm1=τr(n−1)・Δt/J (Δt:サンプリング時間、J:イナーシャ)
Δωm2=ωm(n)−ωm(n−1)
予測値と実際値とのモーター速度差ΔΔωmが所定値Dより大きい場合は、外乱侵入有りと判定してステップ214へ進み、外乱混入時に素早く応答して対応するためにPWM制御を選択する。一方、予測値と実際値とのモーター速度差ΔΔωmが所定値D以下の場合は、外乱混入はないと判定し、応答性の良いPWM制御を選択する必要はないから矩形波制御を選択すべくステップ209へ進む。ここで、所定値Dには、矩形波制御で応答できる上記トルク変化量Aに対して次の関係を満たす値を設定する。
【数7】
D≧|(A・Δt/J)|
【0035】
PWM制御から矩形波制御へ切り換える場合は、トルクショックを防止してスムーズな切り換えを行うために、PWM制御が安定した状態で矩形波制御へ切り換える。逆に、矩形波制御からPWM制御へ切り換える場合は、PWM制御による速応性を損なわないために、瞬時にPWM制御へ切り換える。
【0036】
ステップ209では、矩形波制御に移行するのに先だってPWM制御が所定時間以上行われたかどうかを確認する。具体的には、矩形波制御カウンターCNTkが0、すなわち前回が矩形波制御ではなく、かつPWM制御カウンターCNTpが所定値Eより小さい場合は、まだPWM制御が所定時間以上行われていないからそのままPWM制御を続けるためにステップ214へ進む。一方、矩形波制御カウンターCNTkが0でないか、またはPWM制御カウンターCNTpが所定値E以上の場合は、すぐに矩形波制御へ切り換えてもよいと判断してステップ213へ進む。ここで、所定値Eには、PWM制御のトルク制御または電流制御の応答時間以上の時間を設定する。
【0037】
現在のトルク指令τr(n)とモーター速度ωm(n)で決まる運転点が領域C内にある場合は、基本的には矩形波制御を行うが、外乱の有無を確認する。ステップ210で、dq軸電流の変化分Δid(=|id(n)−id(n−1)|)、Δiq=(|iq(n)−iq(n−1)|)を検出し、これらの変化分Δid、Δiqをそれぞれ上述した所定値B、Cと比較する。d軸電流変化分Δidが所定値Bより大きいか、またはq軸電流変化分Δiqが所定値Cより大きい場合は、外乱が入ったと判断してステップ212へ進み、外乱による過電流を防止するためにトルク指令τrをモーター速度ωm(n)におけるPWM制御の最大値に制限する。
【数8】
τr(n)=τpmax〔ωm(n)〕
その後、ステップ214へ進み、外乱混入時に素早く応答して対応するためにPWM制御を行う。
【0038】
一方、d軸電流変化分Δidが所定値B以下で、かつq軸電流変化分Δiqが所定値C以下の場合はステップ211へ進み、上記数式6により予測値と実際値とのモーター速度差ΔΔωmを演算し、モーター速度から予測した外乱の有無を判定する。予測値と実際値とのモーター速度差ΔΔωmが所定値Dより大きい場合は、外乱侵入有りと判定してステップ212へ進み、上記数式8に示すように、外乱による過電流を防止するためにトルク指令τrをモーター速度ωm(n)におけるPWM制御の最大値に制限する。その後、ステップ214へ進み、外乱混入時に素早く応答して対応するためにPWM制御を行う。
【0039】
予測値と実際値とのモーター速度差ΔΔωmが所定値D以下の場合は外乱混入なしと判定し、応答性の良いPWM制御を選択する必要はないから矩形波制御を選択すべくステップ213へ進む。
【0040】
ステップ213では、図1に示すスイッチSW1、SW2を閉路し、スイッチSW3、SW4を開路して矩形波制御を選択し、実施する。そして、PWM制御カウンターCNTpを0にリセットし、矩形波制御カウンターCNTkに1を設定する。
【0041】
一方、ステップ214では、図1に示すスイッチSW1、SW2を開路し、スイッチSW3、SW4を閉路してPWM制御を選択し、実施する。そして、PWM制御カウンターCNTpをインクリメントし、矩形波制御カウンターCNTkを0にリセットする。
【0042】
上述した一実施の形態によれば、損失の少ないモーター駆動制御方式を選択することによって運転効率が向上し、電気自動車に適用した場合にはその後続距離が長くなる。
【0043】
また、一実施の形態によれば、中間の運転領域Bでは矩形波制御(矩形波電圧駆動)とPWM制御(PWM波電圧駆動)の両方を実行可能とし、トルク指令の変化量が大きいとき、あるいは外乱が侵入したときなど、速応性(高速応答)が求められるときはPWM制御を選択、実行することによって、トルク応答を低下させることがなく、運転者の違和感を防止できる上に、PWM制御により制御の追従性が良くなるので、電流制御の応答遅れによる過電流を防止することができる。中間の運転領域Bにおいて速応性が求められない場合には矩形波制御を選択、実行するので、電圧利用率が高くなって高出力が得られる。
【0044】
また、PWM制御から矩形波制御へ切り換える際に、PWM制御が安定したことを確認してから切り換えるようにしたので、トルクショックを防止することができ、運転者が違和感を感じるようなことがない。
【0045】
さらに、矩形波制御の運転領域Cにおいて外乱が侵入したときは、トルク指令をモーター速度に応じた値に制限し、トルク指令を低減してPWM制御へ切り換えるようにしたので、制御の追従性が良くなり、電流制御の応答遅れによる過電流を防止することができる。
【0046】
特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。すなわち、電圧位相演算部5、スイッチ選択部6、磁極位置/モーター速度検出部8およびインバーター3が矩形波電圧駆動回路を、高効率電流テーブル10、電流制御部11、2相3相変換部12、PWM変換部17、3相2相変換部13、磁極位置/モーター速度検出部8およびインバーター3がPWM駆動電圧回路を、レゾルバー9および磁極位置/モーター速度検出部8が速度検出回路を、制御切換部18およびスイッチSW1〜SW4が切換回路を、電圧位相演算部5、スイッチ選択部6および磁極位置/モーター速度検出部8が矩形波電圧指令生成回路を、高効率電流テーブル10、電流制御部11、2相3相変換部12、PWM変換部17および3相2相変換部13がPWM波電圧指令生成回路を、インバーター3が電力変換回路を、制御切換部18が外乱判定回路を、電流センサー14〜16および3相2相変換部13が電流検出回路をそれぞれ構成する。なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。
【図面の簡単な説明】
【図1】一実施の形態の構成を示す図である。
【図2】電圧・電流ベクトル図である。
【図3】電圧ベクトルとスイッチングパターン区間の関係を示す図である。
【図4】各電圧位相区間のスイッチングパターンを示す図である。
【図5】モーターの運転領域とPWM制御および矩形波制御の関係を示す図である。
【図6】トルク指令とモーター速度の二次元平面上における矩形波制御領域とPWM制御領域とを示す図である。
【図7】一実施の形態の制御切換動作を示すフローチャートである。
【図8】PWM制御と矩形波制御による損失マップ例を示す図である。
【符号の説明】
1 バッテリー
2 モーター
3 インバーター
4 モーターコントローラー
5 電圧位相演算部
6 スイッチ選択部
8 磁極位置/モーター速度検出部
9 レゾルバー
10 高効率電流テーブル
11 電流制御部
12 2相3相変換部
13 3相2相変換部
14〜16 電流センサー
17 PWM変換部
18 制御切換部

Claims (9)

  1. 交流モーターに矩形波電圧を印加して駆動する矩形波電圧駆動回路と、
    前記交流モーターにPWM(パルス幅変調)波電圧を印加して駆動するPWM波電圧駆動回路と、
    前記交流モーターの速度を検出する速度検出回路と、
    トルクと速度とにより前記交流モーターの運転領域を、高速応答を得るために前記PWM波電圧駆動を行う領域Aと、高出力を得るために前記矩形波電圧駆動を行う領域Cと、前記PWM波電圧駆動と前記矩形波電圧駆動のいずれでも駆動可能な中間領域Bとに区分し、トルク指令値と前記モーター速度検出値に応じて前記矩形波電圧駆動回路と前記PWM波電圧駆動回路とを切り換える切換回路とを備えたモーター制御装置であって、
    前記切換回路は、前記矩形波電圧駆動の場合と前記PWM波電圧駆動の場合のモーター制御系の損失マップを有し、前記中間領域Bにおいて前記交流モーターを運転する場合には、前記矩形波電圧駆動と前記PWM波電圧駆動の内の損失が少ない方を選択することを特徴とするモーター制御装置。
  2. 交流モーターに矩形波電圧を印加して駆動するための矩形波電圧指令を生成する矩形波電圧指令生成回路と、
    前記交流モーターにPWM(パルス幅変調)波電圧を印加して駆動するためのPWM波電圧指令を生成するPWM波電圧指令生成回路と、
    前記矩形波電圧指令または前記PWM波電圧指令にしたがって直流電力を交流電力に変換し、前記交流モーターに駆動電圧を印加する電力変換回路と、
    前記交流モーターの速度を検出する速度検出回路と、
    トルクと速度とにより前記交流モーターの運転領域を、高速応答を得るために前記PWM波電圧駆動を行う領域Aと、高出力を得るために前記矩形波電圧駆動を行う領域Cと、前記PWM波電圧駆動と前記矩形波電圧駆動のいずれでも駆動可能な中間領域Bとに区分し、トルク指令値と前記モーター速度検出値に応じて前記矩形波電圧指令と前記PWM電圧指令とを切り換える切換回路とを備えたモーター制御装置であって、
    前記切換回路は、前記矩形波電圧駆動の場合と前記PWM波電圧駆動の場合の前記交流モーターと前記電力変換回路を含むモーター制御系の損失マップを有し、前記中間領域Bにおいて前記交流モーターを運転する場合には、前記矩形波電圧駆動と前記PWM波電圧駆動の内の損失が少ない方の電圧指令を選択することを特徴とするモーター制御装置。
  3. 請求項1または請求項2に記載のモーター制御装置において、
    前記切換回路は、前記中間領域Bにおいてトルク指令値の変化が所定量を超える場合には前記PWM波電圧駆動を選択することを特徴とするモーター制御装置。
  4. 請求項1または請求項2に記載のモーター制御装置において、
    前記モーター制御系への外乱侵入の有無を判定する外乱判定回路を備え、
    前記切換回路は、前記中間領域Bおよび前記領域Cにおいてモーター制御系への外乱侵入有りと判定された場合には前記PWM波電圧駆動を選択することを特徴とするモーター制御装置。
  5. 請求項4に記載のモーター制御装置において、
    前記交流モーターの電流を検出する電流検出回路を備え、
    前記外乱判定回路は、前記モーター電流検出値の変化が所定量を超えた場合には外乱侵入有りと判定することを特徴とするモーター制御装置。
  6. 請求項4に記載のモーター制御装置において、
    前記外乱判定回路は、トルク指令値に基づいてモーター速度の変化量を予測し、このモーター速度変化量予測値と実際の前記モーター速度検出値の変化量との差が所定値を超えた場合に外乱侵入有りと判定することを特徴とするモーター制御装置。
  7. 請求項4〜6のいずれかの項に記載のモーター制御装置において、
    前記切換回路は、前記領域Cにおいて外乱侵入有りと判定された場合には、トルク指令値をモーター速度に応じた値に制限することを特徴とするモーター制御装置。
  8. 請求項1〜7のいずれかの項に記載のモーター制御装置において、
    前記切換回路は、前記PWM波電圧駆動から前記矩形波電圧駆動へ切り換える場合には、前記PWM波電圧駆動が所定時間以上行われた後に前記矩形波電圧駆動へ切り換えることを特徴とするモーター制御装置。
  9. 交流モーターに矩形波電圧を印加して駆動する矩形波電圧駆動と、前記交流モーターにPWM(パルス幅変調)波電圧を印加して駆動するPWM波電圧駆動とを可能とし、
    トルクと速度とにより前記交流モーターの運転領域を、高速応答を得るために前記PWM波電圧駆動を行う領域Aと、高出力を得るために前記矩形波電圧駆動を行う領域Cと、前記PWM波電圧駆動と前記矩形波電圧駆動のいずれでも駆動可能な中間領域Bとに区分し、トルク指令値と前記モーター速度検出値に応じて前記矩形波電圧駆動と前記PWM電圧駆動とを切り換えるモーター制御方法であって、
    前記矩形波電圧駆動の場合と前記PWM波電圧駆動の場合のモーター制御系の損失マップを有し、前記中間領域Bにおいて前記交流モーターを運転する場合には、前記矩形波電圧駆動と前記PWM波電圧駆動の内の損失が少ない方を選択することを特徴とするモーター制御方法。
JP2002231789A 2002-08-08 2002-08-08 モーター制御装置および方法 Expired - Fee Related JP4082127B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231789A JP4082127B2 (ja) 2002-08-08 2002-08-08 モーター制御装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231789A JP4082127B2 (ja) 2002-08-08 2002-08-08 モーター制御装置および方法

Publications (2)

Publication Number Publication Date
JP2004072954A true JP2004072954A (ja) 2004-03-04
JP4082127B2 JP4082127B2 (ja) 2008-04-30

Family

ID=32017450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231789A Expired - Fee Related JP4082127B2 (ja) 2002-08-08 2002-08-08 モーター制御装置および方法

Country Status (1)

Country Link
JP (1) JP4082127B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197791A (ja) * 2004-12-15 2006-07-27 Nissan Motor Co Ltd モータ制御装置
WO2006121093A1 (ja) * 2005-05-10 2006-11-16 Toyota Jidosha Kabushiki Kaisha モータ駆動システムの制御装置およびそれを備える電動車両
JP2008154431A (ja) * 2006-12-20 2008-07-03 Toshiba Corp モータ制御装置
JP2009213336A (ja) * 2008-03-06 2009-09-17 Nissan Motor Co Ltd モータ制御装置
JP2010081658A (ja) * 2008-09-24 2010-04-08 Toyota Motor Corp 回転電機制御システム
JP2010110098A (ja) * 2008-10-30 2010-05-13 Hitachi Automotive Systems Ltd 回転電機装置及びその制御装置
JP2010279113A (ja) * 2009-05-27 2010-12-09 Aisin Aw Co Ltd 電動機駆動装置の制御装置
JP2011041433A (ja) * 2009-08-18 2011-02-24 Toyota Central R&D Labs Inc 回転電機駆動システム
JP2016073147A (ja) * 2014-10-01 2016-05-09 日産自動車株式会社 電動機の制御装置
JP2016171732A (ja) * 2015-03-16 2016-09-23 株式会社豊田自動織機 インバータ装置
JP2016192900A (ja) * 2010-08-02 2016-11-10 アルストム トランスポート テクノロジーズ 輸送車両用、具体的にはレール車両用のパワートレイン、および同パワートレインを制御する方法
WO2017047106A1 (ja) * 2015-09-18 2017-03-23 シンフォニアテクノロジー株式会社 インバータ制御装置
JP2020061940A (ja) * 2016-03-23 2020-04-16 株式会社Soken 電力変換装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531974B2 (en) 2004-12-15 2009-05-12 Nissan Motor Co., Ltd. Apparatus and method for controlling a motor
JP2006197791A (ja) * 2004-12-15 2006-07-27 Nissan Motor Co Ltd モータ制御装置
JP4591320B2 (ja) * 2004-12-15 2010-12-01 日産自動車株式会社 モータ制御装置
US7723945B2 (en) 2005-05-10 2010-05-25 Toyota Jidosha Kabushiki Kaisha Control device for motor drive system and electric vehicle including the same
WO2006121093A1 (ja) * 2005-05-10 2006-11-16 Toyota Jidosha Kabushiki Kaisha モータ駆動システムの制御装置およびそれを備える電動車両
JP2008154431A (ja) * 2006-12-20 2008-07-03 Toshiba Corp モータ制御装置
JP2009213336A (ja) * 2008-03-06 2009-09-17 Nissan Motor Co Ltd モータ制御装置
JP2010081658A (ja) * 2008-09-24 2010-04-08 Toyota Motor Corp 回転電機制御システム
JP2010110098A (ja) * 2008-10-30 2010-05-13 Hitachi Automotive Systems Ltd 回転電機装置及びその制御装置
JP2010279113A (ja) * 2009-05-27 2010-12-09 Aisin Aw Co Ltd 電動機駆動装置の制御装置
JP2011041433A (ja) * 2009-08-18 2011-02-24 Toyota Central R&D Labs Inc 回転電機駆動システム
JP2016192900A (ja) * 2010-08-02 2016-11-10 アルストム トランスポート テクノロジーズ 輸送車両用、具体的にはレール車両用のパワートレイン、および同パワートレインを制御する方法
JP2016073147A (ja) * 2014-10-01 2016-05-09 日産自動車株式会社 電動機の制御装置
JP2016171732A (ja) * 2015-03-16 2016-09-23 株式会社豊田自動織機 インバータ装置
WO2017047106A1 (ja) * 2015-09-18 2017-03-23 シンフォニアテクノロジー株式会社 インバータ制御装置
CN108028622A (zh) * 2015-09-18 2018-05-11 昕芙旎雅有限公司 逆变器控制装置
JP2020061940A (ja) * 2016-03-23 2020-04-16 株式会社Soken 電力変換装置

Also Published As

Publication number Publication date
JP4082127B2 (ja) 2008-04-30

Similar Documents

Publication Publication Date Title
JP3755424B2 (ja) 交流電動機の駆動制御装置
JP5549384B2 (ja) 電動機の制御装置および電動機制御システム
US8373380B2 (en) Device and method for controlling alternating-current motor
JP5757304B2 (ja) 交流電動機の制御装置
JP2009232531A (ja) 回転機の制御装置、及び回転機の制御システム
JP5781875B2 (ja) 回転電機制御システム
JP2009232530A (ja) 回転機の制御装置、及び回転機の制御システム
JP3236983B2 (ja) 電力変換装置
JP6173520B1 (ja) 回転電機の制御装置
JP4082127B2 (ja) モーター制御装置および方法
JP5391698B2 (ja) 回転機の制御装置及び制御システム
JP5910583B2 (ja) 交流電動機の制御装置
JP2004166415A (ja) モーター駆動制御装置
JP5316551B2 (ja) 回転機の制御装置
JP2013172595A (ja) 交流電動機の制御装置
JP6678739B2 (ja) モータ制御装置
JP6635059B2 (ja) 交流電動機の制御装置
JP5812021B2 (ja) 交流電動機の制御装置
JP3939481B2 (ja) 交流モータの制御装置
JP4007309B2 (ja) モータ制御装置及びモータ制御方法
JP5888148B2 (ja) 回転機の制御装置
JP5326444B2 (ja) 回転機の制御装置
JP2008017577A (ja) 同期モータ制御装置
JP7073799B2 (ja) モータ制御方法、及び、モータ制御装置
JP5910582B2 (ja) 交流電動機の制御装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Ref document number: 4082127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees