JP6678739B2 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP6678739B2
JP6678739B2 JP2018520705A JP2018520705A JP6678739B2 JP 6678739 B2 JP6678739 B2 JP 6678739B2 JP 2018520705 A JP2018520705 A JP 2018520705A JP 2018520705 A JP2018520705 A JP 2018520705A JP 6678739 B2 JP6678739 B2 JP 6678739B2
Authority
JP
Japan
Prior art keywords
phase
control device
motor control
command value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018520705A
Other languages
English (en)
Other versions
JPWO2017208652A1 (ja
Inventor
崇文 原
崇文 原
安島 俊幸
俊幸 安島
浩晃 柳沢
浩晃 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2017208652A1 publication Critical patent/JPWO2017208652A1/ja
Application granted granted Critical
Publication of JP6678739B2 publication Critical patent/JP6678739B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、直流母線電流を検出して、交流側の電流情報を得るモータ制御装置に関する。
産業、家電、自動車等の様々な分野において、小型・高効率の三相モータが幅広く用いられている。この三相モータは、ステータ内部に通電される三相電流を検出する電流検出器が必要である。電流検出器としては、通常、三相モータの三相電流を検出する相電流検出器が一般的である。一方、電動制御型ブレーキシステム、電動パワーステアリングや電動オイルポンプなどの自動車補機システムにおいては、電流検出手段として、短絡保護用に設けられた直流抵抗を流れる直流母線電流から、電力変換器の相間におけるスイッチングタイミングの差異が生じる時点で直流母線電流値をサンプリングして、三相電流を再現する直流母線電流検出方式が用いられている。この電流検出方式の採用により、通常三個設けられる相電流検出器を省略できるので、モータ制御装置のコストを低減できる。
直流母線電流検出方式は、出力電圧が低くなるほど、相間においてスイッチングタイミングの差異が少なくなるので電流サンプリングの精度が低下する。すなわち、本方式は、出力電圧が低くなるほど電流検出が難しくなる。
これに対し、特許文献1に記載の技術が知られている。本技術においては、PWM信号を生成する三角波キャリア信号の1周期を前半の期間と後半の期間とに分割し、前半の期間で交流出力電圧指令値に補正電圧値を加算し、出力電圧指令値自体を大きくして直流母線電流を検出するようにしている。また、後半の期間にて、前半の期間で加算した補正電圧値を減算し、平均出力電圧が変動しないようにしている。このように、特許文献1に記載の技術においては、補正電圧値の加減算により、相間において電圧指令値の差異を大きくすることにより、スイッチングタイミングの差異を大きくしている。すなわち、本技術においては、相電圧パルスの位相をシフトするように、電圧指令値を補正している。
特許文献1に記載の技術によれば、直流母線電流検出方式により確実に電流検出することができるが、電圧指令値の補正すなわち相電圧パルスの位相シフトに伴い、スイッチング周波数に応じた高周波電流が発生するため、高周波騒音が発生する。特に、三相モータの出力が小さい場合には、モータ動作音に対して騒音が相対的に大きく聞こえてしまう。
このような騒音の問題に対し、特許文献2に記載の技術が知られている。本技術においては、電力変換器の交流出力電圧が低い領域では、電力変換器のスイッチング周波数を可聴域から外すために高くし、電力変換器の出力電圧が高い領域では、電力変換器のスイッチング周波数を電力変換器の発熱を抑制するために低くする。
特開2001−327173号公報 特開2014−168332号公報
特許文献2に記載の技術では、電力変換器の出力電圧が低い領域で、スイッチング周波数を高くするため、電力変換器の電力損失が増加したり、電力変換器に用いられる半導体素子が発熱によって故障したりする恐れがある。
そこで、本発明は、スイッチング周波数を変化させることなく、直流母線電流検出に伴う高周波騒音を低減できるモータ制御装置を提供する。
上記課題を解決するために、本発明によるモータ制御装置は、電力変換器と、電力変換器によって駆動される三相モータと、直流母線電流に基づいて三相モータに流れる三相電流を検出し、検出される三相電流を用いて相電圧指令値を作成し、相電圧指令値を用いて電力変換器を制御する制御手段と、を備えるものであって、制御手段は、直流母線電流を検出する時に、回転子位相に基づいて、相電圧指令値のd軸電圧の大小関係を判定し、該d軸電圧が最大または最小の相電圧指令値の相電圧パルスの位相をシフトする。

本発明によれば、直流母線電流検出する際の電流検出幅が確保され電流検出精度が向上すると共に、電流検出幅を確保するための相電圧パルスの位相シフトに伴って発生するモータ騒音を低減することができる。
上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施形態であるモータ制御装置の構成を示すブロック図である。 図1における制御手段の構成を示す機能ブロック図である。 パルス幅調整部における動作を示すパルス幅変調信号の波形例である。 比較例におけるパルス幅調整手段を示すベクトル図である。 比較例における電圧指令値およびPWM搬送波を示す波形図である。 第1の実施形態におけるパルス幅調整手段を示すベクトル図である。 第1の実施形態における電圧指令値およびPWM搬送波を示す波形図である。 図1におけるパルス幅調整部の構成を示す。 本発明の第2の実施形態におけるパルス幅調整手段を示すベクトル図である。 第2の実施形態における電圧指令値およびPWM搬送波を示す波形図である。 第2の実施形態のモータ制御装置の構成を示すブロック図である。 本発明の第3の実施形態におけるパルス幅調整手段を示すベクトル図である。 本発明の第4の実施形態である電動制御型ブレーキの構成を示す。 本発明の第5の実施形態である電動パワーステアリングの構成を示す。 本発明の第6の実施形態であるポンプ駆動システムの構成を示す。
以下、本発明の実施形態について、図面を用いて説明する。
各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
(第1の実施形態)
図1から図3を用いて、本発明の第1の実施形態について説明する。
図1は、本発明の第1の実施形態であるモータ制御装置の構成を示すブロック図である。
図1に示すように、モータ制御装置3は、三相モータ2と、三相モータ2に三相交流電力を与えて三相モータ2を駆動する制御器1を含む。制御器1は、直流電源11と、直流電源11の直流電力を三相交流電力に変換して三相モータ2へ出力する電力変換器14を有する。ここで、本実施形態においては、三相モータ2として、永久磁石同期モータが適用される。
電力変換器14は、6個の半導体スイッチング素子(図1ではMOSFET)からなる三相インバータ回路を構成する。これら6個の半導体スイッチング素子が、制御手段13が出力するパルス幅変調信号Sup,Svp,Swp,Sun,Svn,Swnによってオン・オフ制御されることにより、直流電力が三相交流電力に変換される。なお、制御手段13は、直流母線電流検出器12、例えばシャント抵抗によって検出される直流母線電流Idcに基づいて、電力変換器14から出力される三相交流電流を検出する。検出された三相交流電流に基づいて、制御手段13は、パルス幅変調信号Sup,Svp,Swp,Sun,Svn,Swnを作成する。
図2は、図1における制御手段13の構成を示す機能ブロック図である。
図2に示すように、制御手段13は、三相電流再現部131、dq軸電流変換部132、電圧指令演算部133、座標変換部134、パルス幅調整部135、駆動信号生成部136から構成される。なお、本実施形態においては、いわゆるベクトル制御技術が適用される。
三相電流再現部131は、電流検出器12(図1)によって検出される直流母線電流Idcを、パルス幅変調信号Sup,Svp,Swp,Sun,Svn,Swnを用いて三相電流検出値Iuc,Ivc,Iwcに変換する。後述するように、本実施形態において、パルス幅変調信号は、三相電流を確実に検出するために、位相がシフトされている。なお、三相電流検出値を得る手段としては、パルス幅変調信号の位相シフト手段を除いて、公知の技術(例えば、先述の特許文献1参照)が適用される。
dq軸電流変換部132は、三相電流再現部131の出力である三相電流Iuc,Ivc,Iwcを、三相モータ2(図1)の回転子位相θdcを用いて、回転座標におけるdq軸電流検出値Idc,Iqc(直流量)に変換して、これら検出値を出力する。回転子位相θdcは、レゾルバなどの位置検出器によって検出したり、位置検出器を用いることなく、すなわち公知のセンサレス技術を用いて、三相モータ2の三相電流や三相電圧から推定したりする。また、三相モータの中性点電位に基づいて回転子位相を推定する公知技術を適用して、三相モータ2の回転子位相θdcを推定してもよい。
電圧指令演算部133は、d軸電流指令値Id*と、dq軸電流変換部132が出力するd軸電流検出値Idcとの差分、およびq軸電流指令値Iq*と、dq軸電流変換部132が出力するq軸電流検出値Iqcとの差分に応じて、これらの差分を零に近づけるようなd軸電圧指令値Vd*およびq軸電圧指令値Vq*を作成する。電圧指令演算部133においては、例えば、比例・積分(PI)制御によりd軸電流差分を零に近づけるようなd軸電圧指令値と、q軸電流差分を零に近づけるようなq軸電圧指令値が作成される。なお、d軸電流指令値Id*およびq軸電流指令値Iq*は、図示されない電流指令演算部、例えば、所望のモータ速度あるいはモータトルクを得るための電流指令を作成する速度制御部あるいはトルク制御部によって作成される。
座標変換部134は、三相モータ2の回転子位相θdcを用いて、電圧指令演算部133が出力するd軸電圧指令値Vdおよびq軸電圧指令値Vqを、U相電圧指令値Vu’、V相電圧指令値Vv’およびW相電圧指令値Vw’に変換して、これらVu’,Vv’およびVw’を出力する。
パルス幅調整部135は、相電圧指令値Vu’,Vv’およびVw’を入力し、後述するパルス幅調整手段により、電流検出幅が確保できるようにVu’,Vv’およびVw’を補正して、それぞれ、補正されたU相電圧指令値Vu、補正されたV相電圧指令値Vvおよび補正されたW相電圧指令値Vwとして出力する。なお、パルス幅調整部135は、相電圧指令値Vu’,Vv’およびVw’に基づいてパルス幅変調信号を作成すると電流検出幅が短くなり直流母線電流の検出が難しくなるような直流母線電流検出タイミングにおいて、後述するようにd軸電圧に基づいて位相シフトを行うために、相電圧指令値Vu’,Vv’およびVw’を補正する。ここで、パルス幅調整部135は、回転子位相θdcに基づいて、直流母線電流検出時点、およびその時点における相電圧指令値Vu’,Vv’およびVw’のd軸電圧の大小関係を判定し、d軸電圧が最大である相電圧指令値とd軸電圧が最小である相電圧指令値を補正する。なお、d軸電圧が中間の大きさである相電圧指令値は、実質、補正されない。
駆動信号生成部136は、パルス幅調整部135が出力する補正された相電圧指令値Vu,VvおよびVwに基づき、六個のパルス幅変調信号Sup,Svp,Swp,Sun,Svn,Swnを作成する。ここでは、相電圧指令値Vu,VvおよびVw(変調波信号)と、搬送波信号(例えば、三角波信号)を比較してパルス幅変調信号を作成する、いわゆるPWM(Pulse Width Modulation)制御技術が適用される。
図3は、パルス幅調整部135におけるパルス幅調整の動作を示すパルス幅変調信号の波形例である。
図3に示すように、補正前の相電圧指令値Vu’,Vv’およびVw’を用いたPWM制御により得られる各相上アームのパルス幅変調信号Sup’,Svp’,Swp’の場合、電力変換器14(図1)の上アームの各相が同時にスイッチング(ON)するため、直流母線電流Idcは0となり、直流母線電流から三相電流を検出することが困難である。
これに対し、補正後のU相電圧指令値Vuを用いたPWM制御により得られるパルス幅変調信号Supは、補正前のU相電圧指令値Vu’を用いて得られるU相上アームのパルス変調信号Sup’に対して、位相が図中右側すなわち遅れ方向にシフトされる。また、補正後のW相電圧指令値Vwを用いたPWM制御により得られるパルス幅変調信号Swpは、補正前のW相電圧指令値Vw’を用いて得られるW相上アームのパルス変調信号Swp’に対して位相が図中左側すなわち進み方向にシフトされる。なお、補正後のV相電圧指令値Vvを用いたPWM制御により得られるパルス幅変調信号Svpの位相は、補正前のV相電圧指令値Vv’を用いて得られるV相上アームのパルス変調信号Svp’の位相と同じであり、シフトされない。このような位相シフトにより、図3に示すように直流母線電流Idcが流れるので、直流母線電流から三相電流を検出することができる。
本実施形態におけるパルス幅調整部135は、位相をシフトするために相電圧指令値に与える所定量の補正電圧パルスを、三相モータのトルクに対する影響が少ないか、あるいは影響しないd軸方向の電圧(d軸電圧)とする。これにより、直流母線電流に基づき確実に三相電流が検出できると共に、位相シフトに伴う高周波騒音を低減できる。このようなパルス幅調整部135について、以下、図4〜7を用いて説明する。なお、まず、比較例のパルス幅調整について説明し、次に、本実施形態のパルス幅調整について説明する。
図4は、比較例におけるパルス幅調整手段を示すベクトル図である。図4においては、三相(U相、V相、W相)の各相電圧ベクトルU,V,Wの方向、出力電圧ベクトル、補正電圧ベクトル(破線矢印)、並びに回転座標系におけるd軸(モータ回転子の磁石(S,N)の磁束軸)およびd軸と角度90°をなすq軸(トルク軸)を示す。
図4に示すように、比較例における補正電圧ベクトル(破線矢印)は、d軸成分とq軸成分を有する。このため、相電圧指令値の補正が三相モータ2のトルクに影響し、騒音が発生する。
図5は、比較例における補正前後の相電圧指令値およびPWM搬送波(三角波)を示す波形図である。図5においては、補正前のU相電圧指令値Vu’、V相電圧指令値Vv’およびW相電圧指令値Vw’、並びに、補正後のU相電圧指令値Vu、V相電圧指令値VvおよびW相電圧指令値Vwを示す。
図5に示すように、比較例においては、三相の内、大きさが最大であるW相電圧指令値Vw’(最大相)および大きさが最小であるU相電圧指令値Vu’(最小相)に、それぞれ所定量の補正相電圧を加算あるいは減算して、パルス幅補正後のU相電圧指令値VuおよびW相電圧指令値Vwとする。なお、中間の大きさを有するV相電圧指令値Vv’(中間相)は、補正せずにそのままパルス幅補正後のV相電圧指令値Vvとする。本補正により、最大相(W相)と中間相(V相)との電圧差の大きさ、および中間相(V相)と最小相(U相)との電圧差の大きさが拡大される。なお、補正前後のいずれにおいても、最大相、中間相および最小相は、それぞれW相、V相およびU相である。
上記の補正によれば、図示してはいないが、PWM搬送波(三角波)と、W相電圧指令値VwおよびV相電圧指令値Vvとを比較して得られるW相(最大相)電圧パルスおよびV相(中間相)電圧パルスのスイッチングタイミングの差異が、PWM搬送波(三角波)と、W相(最大相)電圧指令Vw’およびV相(中間相)電圧指令Vv’とを比較して得られるW相電圧パルスおよびV相(中間相)電圧パルスのスイッチングタイミングの差異よりも拡大されるように、電圧補正後のW相電圧パルスの位相がシフトされる。同様に、U相(最小相)電圧パルスの位相もシフトされる。これにより、電流検出幅が確保され直流母線電流のサンプリング精度が向上するので、直流母線電流に基づいて確実に三相電流を検出できる。しかし、上述したように、比較例においては、補正電圧指令がq軸成分を有するため、モータ騒音が発生する。
図6は、本実施形態におけるパルス幅調整手段を示すベクトル図である。図4と同様に、三相の各相電圧ベクトルU,V,Wの方向、出力電圧ベクトル、補正電圧ベクトル(実線矢印)、並びに回転座標系におけるd軸およびq軸を示す。
図6に示すように、本実施形態における補正電圧ベクトル(実線矢印)は、d軸成分とq軸成分の内、d軸成分のみを有する。ここで、モータ出力が小さく三相モータの回転が低速であるほど、すなわち電力変換器14(図1)の出力電圧あるいはモータ速度が定格よりも低く、零近傍であると、d軸電圧のトルクへの影響は少ない。このため、d軸電圧を補正することにより、モータの回転が低速であるほど顕著になるモータ騒音を低減することができる。
図7は、本実施形態におけるパルス幅調整前後の相電圧指令値およびPWM搬送波(三角波)を示す波形図である。図7においては、図5と同様に、補正前のU相電圧指令値Vu’、V相電圧指令値Vv’およびW相電圧指令値Vw’、並びに、補正後のU相電圧指令値Vu、V相電圧指令値VvおよびW相電圧指令値Vwを示す。
図7に示すように、三相の内、d軸方向成分の大きさが最大であるU相電圧指令値Vu’およびd軸方向成分の大きさが最小であるV相電圧指令値Vv’に、それぞれ所定量の補正d軸電圧を加算あるいは減算して、補正後のU相電圧指令値VuおよびV相電圧指令値Vvとする。なお、d軸方向成分が中間の大きさを有するW相電圧指令値Vw’は、補正せずにそのまま補正後のW相電圧指令値Vwとする。
図7において、補正前の最大相、中間相および最小相は、それぞれW相、U相およびV相であるが、補正後の最大相、中間相および最小相は、それぞれU相、W相およびV相である。このように、比較例とは異なり、最大相、中間相および最小相は、補正前後において必ずしも一致しない。但し、最大相(補正前:W相、補正後:U相)と中間相(補正前:U相、補正後:W相)との電圧差の大きさ、および中間相(補正前:U相、補正後:W相)と最小相(補正前:V相、補正後:V相)との電圧差の大きさは、比較例と同様に拡大される。
上記の補正によれば、図示してはいないが、比較例と同様に、PWM搬送波(三角波)と、補正後における最大相のU相電圧指令値Vuおよび中間相のW相電圧指令値Vwとを比較して得られるU相電圧パルスおよびW相電圧パルスのスイッチングタイミングの差異が、PWM搬送波(三角波)と、最大相の相電圧指令値Vw’および中間相のU相電圧指令値Vu’とを比較して得られるW相電圧パルスおよびU相電圧パルスのスイッチングタイミングの差異よりも拡大されるように、電圧補正後のU相電圧パルスの位相がシフトされる。同様に、V相電圧パルスの位相もシフトされる。これにより、直流母線電流の電流検出幅が確保され直流母線電流のサンプリング精度が向上するので、直流母線電流に基づいて確実に三相電流を検出できる。さらに、上述したように、本実施形態においては、補正電圧がd軸成分のみであるため、モータ騒音が低減できる。
図8は、上述したパルス幅調整手段が用いられる、図1におけるパルス幅調整部135の構成を示す。d軸方向補正相電圧判定部1352は、回転子位相θdcに基づいて、直流母線電流検出時点において、U相、V相、W相の内、d軸電圧が最大の相とd軸電圧が最小の相を選択する。パルスシフト相調整部1351は、座標変換部134(図2)が作成する電圧指令値Vu’,Vv’およびVw’を入力して、これらの相電圧指令値の内、d軸方向補正相電圧判定部1352によって選択されるd軸電圧が最大の相と最小の相の相電圧指令値を補正して、補正されない電圧指令値も含めて補正後の電圧指令値Vu,VvおよびVwとして出力する。ここで、補正電圧は補正d軸電圧設定部1353によってパルスシフト調整部1351に設定される。補正d軸電圧設定部1353は、d軸電圧が最大の相と最小の相の各相電圧指令値に対するd軸電圧の補正電圧を予め記憶し、パルスシフト調整部1351に対してd軸電圧の補正量を設定する。
なお、補正d軸電圧設定部1353は、補正前の相電圧指令値Vu’,Vv’およびVw’の大きさや相間の電圧差に応じて補正d軸電圧を作成しても良い。これにより、Vu’,Vv’およびVw’を補正しなくても電流検出幅を確保できる場合には、補正量を零に設定することができる。
上述したように、本実施形態によれば、直流母線電流検出方式において電流検出幅が確保され電流検出精度が向上すると共に、電流検出幅を確保するための相電圧パルスの位相シフトに伴って発生するモータ騒音を低減することができる。
なお、相電圧指令値を補正するタイミング、すなわち直流母線電流を検出するためのサンプリングのタイミングや、補正電圧の大きさは、相電圧指令値の平均値が補正前後で実質同等となるように、適宜設定される。
また、上述したように、モータ出力が小さくモータの回転が低速であるほど、d軸方向電圧のトルクへの影響は少ない。従って、本実施形態によれば、出力電圧が零である場合のみならず、出力電圧が零よりも大きい場合でも、q軸電流が零の近傍であれば、q軸方向の補正電圧を最小限にすることができるので、モータ騒音を低減することができる。
(第2の実施の形態)
次に、本発明の第2の実施の形態であるモータ制御装置について説明する。なお、本実施形態の装置構成は、前述の第1の実施形態(図1,2)と同様である。
図9は、第2の実施形態におけるパルス幅調整手段を示すベクトル図である。図6と同様に、三相の各相電圧ベクトルU,V,Wの方向、出力電圧ベクトル、補正電圧ベクトル(実線矢印)、並びに回転座標系におけるd軸およびq軸を示す。また、図10は、本実施形態における補正前後の電圧指令値およびPWM搬送波(三角波)を示す波形図である。図10においては、図7と同様に、補正前のU相電圧指令値Vu’、V相電圧指令値Vv’およびW相電圧指令値Vw’、並びに、補正後のU相電圧指令値Vu、V相電圧指令値VvおよびW相電圧指令値Vwを示す。
図9,10に示すように、本実施形態においては、前述の第1の実施形態と異なり、U,VおよびW相の内、d軸電圧が最大の相もしくは最小の相のどちらか一方のみに対して、相電圧指令値を補正し、その補正電圧の方向をd軸方向とする。なお、第1の実施形態(図7)ではU相およびV相の相電圧指令値が補正されているのに対し、第2の実施形態では、図9,10に示すように、U相のみについて相電圧指令値が補正されている。
なお、第2の実施形態において、前述したようなd軸方向補正相電圧判定部(図8における符号1352)は、d軸電圧が最大の相もしくは最小の相のどちらか一方のみを選択するように構成される。例えば、d軸方向補正相電圧判定部1352は、d軸電圧が最大の相および最小の相の内、d軸電圧が中間の相との電圧差が最も大きい相を選択する。
図11は、第2の実施形態であるモータ制御装置の構成を示すブロック図である。本構成において、回転子位相θdcを検出する位置検出器4の他は、第1の実施形態(図1)と同様である。
第2の実施形態では、d軸電圧が最小であるU相の電流については、他の相電流に比べて直流母線電流からは検出しにくいが、位置検出器4によって検出される回転子位相θdcに基づいて、dq軸電流指令値(図1におけるId,Iq)を三相電流指令値に座標変換することにより、d軸電圧が最小であるU相の電流を求めることができる。
本実施形態によれば、第1の実施形態と同様に、直流母線電流検出方式において電流検出幅が確保され電流検出精度が向上すると共に、電流検出幅を確保するための相電圧パルスの位相シフトに伴って発生するモータ騒音を低減することができる。
(第3の実施形態)
図12は、本発明の第3の実施形態であるモータ制御装置におけるパルス幅調整手段を示すベクトル図である。図6と同様に、三相の各相電圧ベクトルU,V,Wの方向、出力電圧ベクトル、補正電圧ベクトル(実線矢印)、並びに回転座標系におけるd軸およびq軸を示す。なお、本実施形態の装置構成は、前述の第1の実施形態(図1,2)と同様である。
本実施形態における補正電圧の方向は、第1の実施形態(図6)と異なり、d軸に平行な方向からやや傾いている。すなわち、前述の補正電圧設定部1353(図8)によって設定される補正電圧は、d軸成分のみならず、d軸成分よりは小さいが、q軸成分も有する。
本実施形態によれば、補正電圧がq軸成分を有するけれども、その大きさはd軸成分よりも小さいので、第1の実施形態と同様に、直流母線電流検出方式において電流検出幅が確保され電流検出精度が向上すると共に、電流検出幅を確保するための相電圧パルスの位相シフトに伴って発生するモータ騒音を低減することができる。
(第4の実施の形態)
図13は、本発明の第4の実施形態である電動ブレーキ装置の構成を示す。
図13に示すように、電動ブレーキ装置41においては、ブレーキペダル42の操作量を検出する操作量検出器42Aの検出値に基づき三相モータ2が駆動されるようになっている。三相モータ2は、上述の第1〜3の実施形態におけるいずれかのモータ制御装置3により制御される。これにより、三相モータ2のモータトルクが伝達機構46に出力されることで、ピストン45が推進される。このピストン45の移動によってマスタシリンダ43の内部に液圧が発生し、ホイールシリンダ44a〜44dに液圧が供給される。そして、ホイールシリンダ44a〜44dに設けられる制動部材が、車輪とともに回転する非制動部材に押圧されることにより、ブレーキペダル42の操作に応じた制動力が車両に付与される。
このような電動ブレーキ装置41においては、従来、モータ制御装置3における三相モータ2が発生する騒音や振動が、ブレーキペダル42を介して運転者に伝わってしまう。特に、ブレーキペダル42を軽く踏んだときのように、三相モータ2のモータトルクが低トルクの領域での操作時に、上記騒音や振動をより強く感じる傾向にある。これに対して、本実施形態では、モータ制御装置3に対して、上述した第1〜3の実施形態のいずれかを適用するので、車両の停止状態や低トルク状態で高周波騒音が低減され、電動制御型ブレーキの発生する振動あるいは騒音を低減できる。
(第5の実施形態)
図14は、本発明の第5の実施形態である電動パワーステアリングの構成を示す。
図14に示すように、電動パワーステアリング51において、ステアリングホイール52の回転トルクをトルクセンサ53によって検知し、検知された回転トルクに応じてモータ制御装置3における制御器1が三相モータ2を駆動制御する。これによって、三相モータ2が発生するモータトルクは、ステアリングアシスト機構54を介してステアリング機構55へ出力される。これにより、ステアリンクホイール52が操作されると、電動パワーステアリング51がステアリングホイール52の入力に応じて操舵力をアシストしながら、ステアリング機構55によってタイヤ56が転舵される。
この電動パワーステアリング51においては、三相モータ2が発生する騒音や振動が、ステアリングホイール52を介して運転者に伝わる。特に、ステアリングホイール52をゆっくり回している状態や、ハンドルを固定している状態において、運転者は三相モータ2の振動や騒音をより強く感じる。これに対し、本実施形態では、モータ制御装置3に対して、上述した第1〜3の実施形態のいずれかが適用されるので、電動パワーステアリングの発生する振動あるいは騒音を低減できる。
(第6の実施形態)
図15は、本発明の第6の実施形態である電動オイルポンプシステムの構成を示す。本実施形態の電動オイルポンプシステムは、自動車内部のトランスミッション油圧や、ブレーキ油圧などに用いられる。
図15に示すように、ポンプ駆動装置4においては、モータ制御装置3の三相モータ2にオイルポンプ61が取り付けられている。オイルポンプ61によって、油圧回路62の油圧を制御する。油圧回路62は、油を貯蔵するタンク63、油圧を設定値以下に保つリリーフバルブ64、油圧回路62における油圧の伝達経路を切り替えるソレノイドバルブ65、油圧アクチュエータとして作動するシリンダ66で構成される。
オイルポンプ61は、モータ制御装置3によって駆動されることにより油圧を発生して、油圧アクチュエータであるシリンダ66を駆動する。油圧回路62では、ソレノイドバルブ65により油圧の伝達経路が切り替わることで、オイルポンプ61の負荷が変化し、モータ制御装置3に負荷外乱が発生する。このため、三相モータ2が振動し、騒音が発生する。
これに対し、本実施形態では、モータ制御装置3に対して、上述した第1〜3の実施形態のいずれかが適用されるので、停止状態や低トルク状態において振動を低減し、騒音を低減できる。
なお、本発明は前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施形態の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
例えば、三相モータとして、ベクトル制御が可能な各種のモータを適用することができる。また、電力変換器を構成する半導体スイッチング素子としてIGBT(Insulated Gate Bipolar Transistor)などを適用しても良い。
1 制御器
2 三相モータ
3 モータ制御装置
4 位置検出器
11 直流電源
12 電流検出器
13 制御手段
14 電力変換器
41 電動ブレーキ装置
42 ブレーキペダル
42A 操作量検出器
43 マスタシリンダ、
44a,44b,44c,44d ブレーキキャリパ
45 ピストン、46 伝達機構
51 電動パワーステアリング
52 ステアリングホイール
53 トルクセンサ
54 ステアリングアシスト機構
55 ステアリング機構
56 タイヤ
1G 指令発生器
61 オイルポンプ
62 油圧回路
63 タンク
64 リリーフバルブ
65 ソレノイドバルブ
66 シリンダ
131 三相電流検出部
132 dq軸電流変換部
133 電圧指令演算部
134 座標変換部
135 パルス幅調整部
136 駆動信号生成部
1351 パルスシフト調整部
1352 d軸方向補正相電圧判定部
1353 補正電圧設定部

Claims (17)

  1. 電力変換器と、
    前記電力変換器によって駆動される三相モータと、
    直流母線電流に基づいて前記三相モータに流れる三相電流を検出し、検出される前記三相電流を用いて相電圧指令値を作成し、前記相電圧指令値を用いて前記電力変換器を制御する制御手段と、
    を備えるモータ制御装置において、
    前記制御手段は、前記直流母線電流を検出する時に、回転子位相に基づいて、相電圧指令値のd軸電圧の大小関係を判定し、該d軸電圧が最大または最小の相電圧指令値の相電圧パルスの位相をシフトすることを特徴とするモータ制御装置。
  2. 請求項1に記載のモータ制御装置において、
    前記制御手段は、
    前記d軸電圧が最大または最小の前記相電圧指令値相を選択し、選択される相の前記相電圧指令値を所定量補正することを特徴とするモータ制御装置。
  3. 請求項2に記載のモータ制御装置において、
    前記制御手段は、前記d軸電圧が最大および最小の相電圧指令値の相を選択することを特徴とするモータ制御装置。
  4. 請求項2に記載のモータ制御装置において、
    前記制御手段は、前記d軸電圧が最大の相および最小の相のいずれか一方のみを選択することを特徴とするモータ制御装置。
  5. 請求項4に記載のモータ制御装置において、
    前記制御手段は、前記d軸電圧が最大の相および最小の相の内、前記d軸電圧が中間の相との電圧差が最も大きい相を選択することを特徴とするモータ制御装置。
  6. 請求項2に記載のモータ制御装置において、
    前記所定量は前記d軸電圧の補正量であることを特徴とするモータ制御装置。
  7. 請求項2に記載のモータ制御装置において、
    前記所定量は、d軸成分およびq軸成分を含む電圧補正量であることを特徴とするモータ制御装置。
  8. 請求項7に記載のモータ制御装置において、
    前記q軸成分は前記d軸成分よりも小さいことを特徴とするモータ制御装置。
  9. 請求項1に記載のモータ制御装置において、
    前記三相電流のq軸成分が零近傍であることを特徴とするモータ制御装置。
  10. 請求項1に記載のモータ制御装置において、
    前記電力変換器の出力電圧が零近傍であることを特徴とするモータ制御装置。
  11. 請求項1に記載のモータ制御装置において、
    前記三相モータの速度が零近傍であることを特徴とするモータ制御装置。
  12. 請求項1に記載のモータ制御装置において、
    前記相電圧指令値を変調波信号とするパルス幅変調によって前記相電圧パルス
    が作成されることを特徴とするモータ制御装置。
  13. 請求項4に記載のモータ制御装置において、
    前記制御手段は、
    前記三相電流のd軸成分およびq軸成分と、d軸電流指令値およびq軸電流指令値とに基づいて、前記相電圧指令値を作成し、
    前記d軸電圧が最小の相の相電流を、前記d軸電流指令値および前記q軸電流指令値を用いて演算することによって検出することを特徴とするモータ制御装置。
  14. 電力変換器と、
    前記電力変換器によって駆動される三相モータと、
    直流母線電流に基づいて前記三相モータに流れる三相電流を検出し、検出される前記三相電流を用いて相電圧指令値を作成し、前記相電圧指令値を用いて前記電力変換器を制御する制御手段と、
    を備えるモータ制御装置において、
    前記制御手段は、
    回転子位相に基づいて、相電圧指令値の軸電の大小関係を判定し、該d軸電圧が最大または最小の前記相電圧指令値相を選択する判定部と、
    相電圧パルスの位相をシフトするために、前記判定部によって選択される相の前記相電圧指令値を所定量補正する調整部と、
    前記所定量を前記調整部に設定する設定部と、
    を有することを特徴とするモータ制御装置。
  15. モータ制御装置の電力変換器によって駆動される三相モータのモータトルクが出力される伝達機構と、
    前記伝達機構により移動するピストンと、
    前記ピストンの移動によってホイールシリンダに供給する液圧を発生するマスタシリンダと、を備え、
    前記モータ制御装置がブレーキペダルの操作量に基づいて前記電力変換器を制御する電動ブレーキ装置において、
    前記モータ制御装置は、請求項1に記載されるモータ制御装置であることを特徴とする電動ブレーキ装置。
  16. ステアリングホイールと、
    前記ステアリングホイールの操作に応じてタイヤを転舵するステアリング機構と、
    前記ステアリングホイールの回転トルクに応じてモータトルクを発生するモータ制御装置と、
    前記モータトルクを前記ステアリング機構に伝達するステアリングアシスト機構を備える電動パワーステアリングにおいて、
    前記モータ制御装置は、請求項1に記載されるモータ制御装置であることを特徴とする電動パワーステアリング。
  17. 油圧回路と、
    前記油圧回路内において、油圧の経路を切り替えるソレノイドバルブと、
    前記油圧回路の油圧を制御するオイルポンプと、
    前記オイルポンプを駆動するモータ制御装置と、
    を備える電動オイルポンプシステムにおいて、
    前記モータ制御装置は、請求項1に記載されるモータ制御装置であることを特徴とする電動オイルポンプシステム。
JP2018520705A 2016-06-03 2017-04-18 モータ制御装置 Active JP6678739B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016111733 2016-06-03
JP2016111733 2016-06-03
PCT/JP2017/015607 WO2017208652A1 (ja) 2016-06-03 2017-04-18 モータ制御装置

Publications (2)

Publication Number Publication Date
JPWO2017208652A1 JPWO2017208652A1 (ja) 2019-03-28
JP6678739B2 true JP6678739B2 (ja) 2020-04-08

Family

ID=60478282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018520705A Active JP6678739B2 (ja) 2016-06-03 2017-04-18 モータ制御装置

Country Status (2)

Country Link
JP (1) JP6678739B2 (ja)
WO (1) WO2017208652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465672B2 (en) * 2020-04-21 2022-10-11 Nsk Ltd. Steering device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046751B2 (ja) * 2018-07-27 2022-04-04 日立Astemo株式会社 電動ブレーキ装置
JP7188265B2 (ja) * 2019-04-24 2022-12-13 株式会社デンソー 回転電機の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643404B2 (ja) * 2005-09-15 2011-03-02 三菱電機株式会社 インバータ制御装置
JP2010068653A (ja) * 2008-09-11 2010-03-25 Sanyo Electric Co Ltd インバータ制御装置及びモータ駆動システム
JP2012178927A (ja) * 2011-02-25 2012-09-13 Sanyo Electric Co Ltd インバータ制御装置
JP5968805B2 (ja) * 2013-02-28 2016-08-10 日立オートモティブシステムズ株式会社 モータ装置およびモータ駆動装置
WO2015025622A1 (ja) * 2013-08-22 2015-02-26 日立オートモティブシステムズ株式会社 交流電動機の制御装置、交流電動機駆動システム、流体圧制御システム、位置決めシステム
JP6298390B2 (ja) * 2014-09-29 2018-03-20 日立オートモティブシステムズ株式会社 電動機駆動制御装置、電動パワーステアリング装置、電動ブレーキ装置、電動ポンプ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11465672B2 (en) * 2020-04-21 2022-10-11 Nsk Ltd. Steering device

Also Published As

Publication number Publication date
WO2017208652A1 (ja) 2017-12-07
JPWO2017208652A1 (ja) 2019-03-28

Similar Documents

Publication Publication Date Title
JP7102407B2 (ja) インバータ装置、及び、電動パワーステアリング装置
JP4604820B2 (ja) モータ駆動システムの制御装置
EP2194643B1 (en) Controller for electric motor
KR100986712B1 (ko) 모터구동시스템의 제어장치 및 방법
JP4635703B2 (ja) モータ駆動システムの制御装置
WO2010116787A1 (ja) 回転電機制御装置
JP5502126B2 (ja) 多重巻線回転機の駆動装置
WO2010038727A1 (ja) 交流電動機の制御装置および制御方法
WO2012137300A1 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
JP2001245498A (ja) 同期モータ制御装置及びそれを用いた車両
JP5485232B2 (ja) スイッチング回路の制御装置
JP6678739B2 (ja) モータ制御装置
JP2017017962A (ja) インバータの制御装置
US10910974B2 (en) Control device for AC motor
JP7075318B2 (ja) ステアリング装置
JP2004072954A (ja) モーター制御装置および方法
US8129935B2 (en) Motor control device
US11451179B2 (en) Motor control device and brake control device
JP4007309B2 (ja) モータ制御装置及びモータ制御方法
JP2001197778A (ja) 交流モータの制御装置
JP2007312462A (ja) モータ制御装置
WO2024069745A1 (ja) インバータ制御装置
WO2023073823A1 (ja) 回転機の制御装置及び電動パワーステアリング装置
JP7046751B2 (ja) 電動ブレーキ装置
JP2021022965A (ja) 誘導電動機の駆動装置、駆動方法、および電気車

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200317

R150 Certificate of patent or registration of utility model

Ref document number: 6678739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250