JP2004068607A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2004068607A
JP2004068607A JP2002224658A JP2002224658A JP2004068607A JP 2004068607 A JP2004068607 A JP 2004068607A JP 2002224658 A JP2002224658 A JP 2002224658A JP 2002224658 A JP2002224658 A JP 2002224658A JP 2004068607 A JP2004068607 A JP 2004068607A
Authority
JP
Japan
Prior art keywords
nox storage
storage capacity
nox
exhaust gas
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002224658A
Other languages
English (en)
Inventor
Nobuyuki Shibagaki
柴垣 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002224658A priority Critical patent/JP2004068607A/ja
Publication of JP2004068607A publication Critical patent/JP2004068607A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】NOx吸蔵還元触媒のNOx吸蔵容量を正確に捉えることができる内燃機関の排気浄化装置を提供することにある。
【解決手段】NOx吸蔵容量算出処理が開始されてNOxセンサの出力が飽和したと判定されると、排気空燃比がストイキ空燃比よりも若干リッチ側となるように燃料噴射量のリッチ増量係数が調整され、燃焼モードはリッチ制御に切り替えられる。次に第1酸素センサによってリッチ空燃比が検出された時点から第2酸素センサによってリッチ空燃比が検出された時点までの期間が算出され、この期間に基づいてNOx吸蔵容量が算出される。次に、触媒床温に基づいて各床温領域のNOx吸蔵容量を用いた補間計算により、NOx吸蔵容量が算出される。そして、算出されたNOx吸蔵容量に排気ガス流量に応じたNOx吸蔵割合を乗ずることにより、NOx吸蔵容量が補正される。
【選択図】   図4

Description

【0001】
【発明の属する技術分野】
本発明は、排気系に排気浄化触媒としてNOx吸蔵還元触媒を備えた内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
成層燃焼あるいは均質であるが理論空燃比よりも希薄なリーン燃焼が可能な内燃機関において排気通路にNOx吸蔵還元触媒を用いた排気浄化システムが知られている(特開平11−200853号、特開2000−18062号、特開2000−274229号、特許第2745985号)。この排気浄化システムでは、成層燃焼あるいはリーン燃焼の実行中には排気中のNOx(窒素酸化物)を吸蔵し、理論空燃比あるいは更に高燃料濃度(リッチ)の燃焼が開始されて排気中の酸素濃度が低下すると吸蔵したNOxを放出するようになっている。このようなシステムでは、成層燃焼あるいはリーン燃焼の継続によりNOx吸蔵量が吸蔵限界であるNOx吸蔵容量に達した時には、NOx吸蔵還元触媒はそれ以上のNOxを吸蔵できなくなる。従って、内燃機関を短時間リッチ空燃比で運転するリッチスパイク処理を行うことにより、HCやCOといった燃料の未燃成分を還元剤としてNOx吸蔵還元触媒に導入し、NOx吸蔵還元触媒からNOxを放出させてそのNOx吸蔵能力を回復させるとともに放出されたNOxを還元浄化している。
【0003】
このNOx吸蔵還元触媒におけるNOx吸蔵容量は一定でなく、触媒の熱劣化や排気中の硫黄酸化物による被毒劣化(以下、イオウ被毒と称する)が生じるため、NOx吸蔵容量は減少する。なお、イオウ被毒した分については、内燃機関の運転状態によっては硫黄酸化物が離脱してNOx吸蔵容量が回復する場合もある。
【0004】
このようなNOx吸蔵容量の変化を捉えていないと、例えば、既にNOx吸蔵容量分をNOx吸蔵量が満たしているにもかかわらず、NOx吸蔵容量に余裕があると誤判断してしまう場合がある。このような場合には、成層燃焼あるいはリーン燃焼を継続することによりNOxが吸蔵されきらず、NOxが排出されてしまうおそれがある。更にNOx吸蔵還元触媒を還元する場合も過剰な燃料を噴射してしまい、燃費やエミッションを悪化させるおそれもある。
【0005】
又、NOx吸蔵量がNOx吸蔵容量に達するまでには十分に余裕があるにもかかわらず余裕がないと誤判断した場合には、NOx吸蔵還元触媒に吸蔵されたNOxの還元のために高頻度に燃料濃度を高める状況となり、空燃比や燃焼形態が頻繁に切り替わって内燃機関運転上のショックを生じる可能性がある。
【0006】
したがってNOx吸蔵容量を正確に捉えて、NOx吸蔵還元触媒による内燃機関の排気浄化処理を実行することが重要である。
このため経時によりNOx吸蔵還元触媒の熱劣化やイオウ被毒が進むことを考慮して、内燃機関の運転継続時間に応じてNOx吸蔵還元触媒のNOx吸蔵容量を減少させる手法が考えられる(特許第2745985号)。
【0007】
【発明が解決しようとする課題】
しかし、このようにNOx吸蔵還元触媒に対して一律に設定されたNOx吸蔵容量では、内燃機関毎のNOx吸蔵還元触媒の実際のNOx吸蔵容量に十分に対応できず、NOx吸蔵還元触媒による内燃機関の排気浄化を好適に行うことができない。
【0008】
本発明は、上記の実情に鑑みてなされたものであって、その目的は、NOx吸蔵還元触媒のNOx吸蔵容量を正確に捉えることができる内燃機関の排気浄化装置を提供することにある。
【0009】
【課題を解決するための手段】
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明は、内燃機関の排気通路に排気ガス中のNOxを吸蔵するNOx吸蔵還元触媒を備え、前記NOx吸蔵還元触媒に吸蔵されたNOxの量がNOx吸蔵容量に達したことに基づいて排気空燃比を一時的にリッチにするリッチスパイク制御を実行することにより、前記NOx吸蔵還元触媒に吸蔵されたNOxを還元してそのNOx吸蔵能力を回復させる内燃機関の排気浄化装置において、前記NOx吸蔵還元触媒の下流において前記排気ガス中の酸素濃度を検出する下流側酸素センサと、前記NOx吸蔵還元触媒に吸蔵されたNOx吸蔵量が飽和したことを検出する飽和検出手段と、前記NOx吸蔵量の飽和状態の検出に基づいて排気空燃比をストイキ空燃比よりも若干リッチ側となるように制御して還元剤を供給する還元制御手段と、前記還元剤の供給開始時点から前記下流側酸素センサによってリッチ空燃比が検出された時点までの期間に基づいて前記NOx吸蔵還元触媒のNOx吸蔵容量を算出する吸蔵容量算出手段と、を備えることを特徴とする。
【0010】
この構成によれば、NOx吸蔵量の飽和状態の検出に基づいて排気空燃比がストイキ空燃比よりも若干リッチ側となるように制御されて還元剤が供給され、還元剤の供給開始時点から下流側酸素センサによってリッチ空燃比が検出されるまでの期間に基づいてNOx吸蔵還元触媒のNOx吸蔵容量が算出される。そのため、NOx吸蔵還元触媒のNOx吸蔵容量が正確に捉えられ、このNOx吸蔵容量に基づいて適切な時期にリッチスパイク制御を実行してNOx吸蔵還元触媒のNOx吸蔵能力を回復させることができ、好適に排気浄化を行うことができる。
【0011】
請求項2に記載の発明は、請求項1に記載の内燃機関の排気浄化装置において、前記排気通路には前記NOx吸蔵還元触媒の上流に酸素吸蔵能力を有する排気浄化触媒と、前記排気浄化触媒と前記NOx吸蔵還元触媒との間に設けられ、かつ、排気ガス中の酸素濃度を検出する上流側酸素センサとが備えられ、前記吸蔵容量算出手段は、前記還元制御手段による還元剤の供給開始後において前記上流側酸素センサによってリッチ空燃比が検出された時点から前記下流側酸素センサによってリッチ空燃比が検出された時点までの期間に基づいて前記NOx吸蔵容量を算出することを特徴とする。
【0012】
この構成によれば、排気浄化触媒に吸蔵された酸素によって還元剤が消費されるため、上流側酸素センサによってリッチ空燃比が検出された時点から下流側酸素センサによってリッチ空燃比が検出された時点までの期間に基づいてNOx吸蔵還元触媒のNOx吸蔵容量を算出することができる。
【0013】
請求項3に記載の発明は、請求項1又は2に記載の内燃機関の排気浄化装置において、更に前記NOx吸蔵還元触媒の床温を複数の領域に分け、各領域毎にNOx吸蔵容量のデータを保持する容量データ保持手段と、前記NOx吸蔵還元触媒の床温を検出する床温検出手段と、前記容量データ保持手段が保持している床温領域毎のNOx吸蔵容量に基づいて、前記床温検出手段にて検出された床温に対応するNOx吸蔵容量を床温対応NOx吸蔵容量として設定する吸蔵容量設定手段と、を備えることを特徴とする。
【0014】
NOx吸蔵容量はNOx吸蔵還元触媒の床温領域毎に異なることが判明した。このため従来のごとく全床温領域に一つのNOx吸蔵容量を設定していたのでは、排気浄化を好適に行うためには不十分であり、床温領域毎に個々に管理する必要がある。したがって床温領域が異なればNOx吸蔵容量を床温に応じて切り替えることにより、適切なNOx吸蔵容量を得ることができ、NOx吸蔵還元触媒の床温条件の違いに対応した内燃機関の排気浄化を行うことが可能となる。
【0015】
請求項4に記載の発明は、請求項3に記載の内燃機関の排気浄化装置において、前記吸蔵容量設定手段は、前記排気通路における排気ガス流量に応じて前記床温対応NOx吸蔵容量を補正することを特徴とする。
【0016】
NOx吸蔵還元触媒が単位時間当たりに吸蔵することができるNOxの量は決まっており、排気ガス量が多くなればNOx吸蔵還元触媒に吸蔵されずに大気放出されるNOxも出てくる。この構成によれば、排気ガス流量に応じて床温対応NOx吸蔵容量が補正されるので、NOxの大気放出を抑制しつつ排気浄化を好適に行うことができる。
【0017】
請求項5に記載の発明のように、前記内燃機関が、それぞれNOx吸蔵還元触媒を有する複数バンクを備えるとともに、該複数バンクにおいてNOx吸蔵還元触媒の下流において排気ガス中の酸素濃度を検出する下流側酸素センサを共用するものに採用することができる。
【0018】
【発明の実施の形態】
以下、本発明を具体化した一実施形態を図面に従って説明する。
図1は、車両に搭載されたV型6気筒の筒内噴射型ガソリンエンジン(以下「エンジン」と略す)2及びその電子制御ユニット(以下、「ECU」と称す)4の概略構成を示している。ただし、図1では1つの気筒の構成を中心として示している。
【0019】
図2の排気系概略図に示すように、エンジン2は2つのバンク2a,2bからなり、バンク2aには第1気筒♯1、第3気筒♯3、第5気筒♯5が設けられ、バンク2bには第2気筒♯2、第4気筒♯4、第6気筒♯6が設けられている。なお、各気筒の番号♯1〜♯6はエンジン2における点火順序を示している。
【0020】
各バンク2a,2bからそれぞれ異なる排気通路32a,32bに沿って、空燃比センサ44a,44b、排気浄化触媒としてのスタートキャタリスト38a,38b及び上流側酸素センサとしての第1酸素センサ46a,46bが配列されている。そして、第1酸素センサ46a,46bの下流では2本の排気通路32a,32bは1本に集合して合流排気通路32に接続され、合流排気通路32にNOx吸蔵還元触媒40が設けられるとともに、2つのバンク2a,2bに共用されている下流側酸素センサとしての第2酸素センサ48が1つ設けられている。そして、第2酸素センサ48の下流では排気通路32a,32bは再び2本に分かれて、排気は各マフラー50a,50bを介して外部に排出されている。
【0021】
図1に示すように、エンジン2の出力は変速機(図示略)を介して最終的に車輪に走行駆動力として伝達される。エンジン2には各気筒の燃焼室10内に燃料を直接噴射する燃料噴射バルブ12と、この噴射された燃料に点火する点火プラグ14とがそれぞれ設けられている。燃焼室10に接続している吸気ポート16は吸気バルブ18の駆動により開閉される。吸気ポート16に接続された吸気通路20の途中にはサージタンク22が設けられ、サージタンク22の上流側にはスロットルモータ24によって開度が調節されるスロットルバルブ26が設けられている。このスロットルバルブ26の開度(スロットル開度TA)により吸入空気量が調整される。スロットル開度TAはスロットル開度センサ28により検出され、サージタンク22内への吸入空気量gaは吸入空気量センサ30により検出されて、ECU4に読み込まれている。
【0022】
各燃焼室10に接続している排気通路32a,32bは排気バルブ34の駆動により開閉される。排気通路32a,32bの途中にはエンジン始動時に多量に放出される炭化水素(HC)や一酸化炭素(CO)成分を除去するための酸素貯蔵能力を有する三元触媒であるスタートキャタリスト38a,38bが設けられ、下流には排気浄化触媒であるNOx吸蔵還元触媒40が設けられている。NOx吸蔵還元触媒40は混合気が理論空燃比よりもリーンな状態で燃焼したとき、排気中の窒素酸化物(NOx)を吸蔵する。そして、NOx吸蔵還元触媒40に吸蔵されたNOxは、混合気を理論空燃比よりもリッチな状態で燃焼させたとき、排気中の炭化水素(HC)によって窒素(N2 )に還元される。
【0023】
スタートキャタリスト38a,38bの上流側に設けられた空燃比センサ44a,44bは排気成分から空燃比(A/F)を検出する。スタートキャタリスト38a,38bとNOx吸蔵還元触媒40との間に設けられた第1酸素センサ46a,46bは排気成分中の酸素濃度を検出して電気信号を出力する。NOx吸蔵還元触媒40の下流に設けられた第2酸素センサ48は排気成分中の酸素濃度を検出して電気信号を出力するとともに、NOx吸蔵還元触媒40に吸蔵されたNOxの濃度を検出して電気信号を出力する。また、NOx吸蔵還元触媒40には触媒の温度(床温)を検出する温度センサ60が設けられている。
【0024】
ECU4はデジタルコンピュータを中心として構成されているエンジン制御回路である。このECU4は、スロットル開度センサ28及び吸入空気量センサ30以外に、アクセルペダル51の踏み込み量(アクセル開度ACCP)を検出するアクセル開度センサ52からの信号を入力している。更に、ECU4は、クランク軸54の回転からエンジン回転速度NEを検出するエンジン回転数センサ58、空燃比センサ44a,44b、第1酸素センサ46a,46b及び第2酸素センサ48、温度センサ60からそれぞれ信号を入力している。尚、このようなセンサ以外にも、図示省略しているが、車速センサなどのエンジン制御に必要なセンサが設けられている。
【0025】
ECU4は、上述した各種センサからの検出内容に基づいて、エンジン2の燃料噴射時期、燃料噴射量、点火時期及びスロットル開度TAを適宜制御する。そして、ECU4は、エンジン2における混合気の燃焼形態を、機関運転状態に応じて混合気を理論空燃比で燃焼させるストイキ燃焼と、同混合気を理論空燃比よりもリーンな状態で燃焼させるリーン燃焼との間で切り換える。例えば、エンジン2の運転状態が高回転高負荷領域(ストイキ燃焼領域)にあるときには、ストイキ燃焼運転を実行して必要な機関出力が得られるようにする。また、エンジン2の運転状態が低回転低負荷領域(リーン燃焼領域)にあるときには、リーン燃焼運転を実行してエンジン2の燃費改善を図るようにする。なお、エンジン2の燃焼形態は、必ずしも上記のようにエンジン2の運転領域に応じて決定されるとは限らない。例えば、エンジン2の始動直後など通常と異なる機関運転状態にあるときには、エンジン2の運転状態が低回転低負荷領域(リーン燃焼領域)にあっても、リーン燃焼運転ではなくストイキ燃焼運転が実行されることとなる。
【0026】
例えば、リーン燃焼運転においては、燃料噴射時期は圧縮行程後期に設定される。従って、点火時において点火プラグ14近傍の混合気のみが部分的に点火可能な可燃混合気状態となる。また、この場合の混合気の平均的な空燃比(A/F)は各気筒♯1〜♯6とも一律にストイキ空燃比(A/F=14.5)よりもリーン(例えばA/F=25〜50)に設定される。
【0027】
また、ストイキ燃焼運転においては、燃料噴射時期は吸気行程中に設定される。従って、点火時での燃焼室10内における空燃比は略均一になり、その混合気の空燃比は各気筒♯1〜♯6とも一律にストイキ空燃比近傍に設定される。
【0028】
ところで、エンジン2のリーン燃焼運転中には、排気中のNOxがNOx吸蔵還元触媒40に吸蔵されるため、同触媒40に吸蔵されるNOxの量(NOx吸蔵量)が徐々に多くなる。ECU4は、機関運転状態に基づき現在のNOx吸蔵量を推定し、この推定されるNOx吸蔵量がNOx吸蔵容量に達すると、混合気の空燃比を一時的に理論空燃比よりもリッチな状態(例えば「12」)にするリッチスパイク制御を実行する。このリッチスパイク制御に伴う混合気のリッチ燃焼により、NOx吸蔵還元触媒40に吸蔵されたNOxが排気中のHC,CO等によってN2 に還元され、NOx吸蔵還元触媒40でのNOx吸蔵能力が回復する。
【0029】
次に本実施の形態において、ECU4により実行される制御のうち、NOx吸蔵還元触媒40におけるNOx吸蔵容量算出処理について説明する。図4はNOx吸蔵容量算出の処理手順を示すフローチャートである。この処理は短時間周期で繰り返し実行される。
【0030】
尚、図3はECU4内のスタンバイRAM内に記憶されている床温領域毎のNOx吸蔵容量を表すマップfnoxmxを表している。このNOx吸蔵容量マップfnoxmxは、床温領域を複数(図3の例では7つ)に分けて、各床温領域毎にNOx吸蔵容量mx(1)〜mx(7)を備えている。
【0031】
NOx吸蔵容量算出処理(図4)が開始されると、まずステップ110においてNOx吸蔵還元触媒40の床温tmpが、温度センサ60の検出結果に基づいて算出される。
【0032】
次に、ステップ120においてエンジン2がアイドル運転状態かどうか又は定常運転状態かどうかが判定される。エンジン2がアイドル運転状態である場合、又は定常運転状態である場合には燃料噴射量に変化がなく、排気温度の変化もないと考えられるためである。エンジン2がアイドル運転状態でない又は定常運転状態でないと判定されると(ステップ120:NO)、本処理を一旦終了する。エンジン2がアイドル運転状態である又は定常運転状態であると判定されると(ステップ120:YES)、ステップ130に進む。すなわち、図5の時刻t0においてエンジン2が定常運転状態であると判定されると、燃焼モードは成層燃焼に切り替えられ、リッチスパイク制御は禁止される。燃焼モードが成層燃焼に切り替えられることにより、排気空燃比がリーンになり、NOx吸蔵還元触媒40にNOxが吸蔵される。
【0033】
ステップ130ではNOxセンサ(第2酸素センサ48)の出力が飽和したかどうかが判定される。このNOxセンサ出力の飽和の検出は、図5の時刻t1にてNOxセンサの出力が所定値に達した後、ECU4に内蔵された飽和検出カウンタが所定時間の経過を計測した時刻t2に飽和したと判定される。NOxセンサの出力が飽和していないと判定されると(ステップ130:NO)、本処理を一旦終了する。一方、NOxセンサの出力が飽和したと判定されると(ステップ130:YES)、処理はステップ140に進む。
【0034】
ステップ140では、空燃比センサ44a,44bの検出信号に基づいて排気空燃比がストイキ空燃比(理論空燃比)よりも若干リッチ側となるように燃料噴射量のリッチ増量係数が調整される。すなわち、図5の時刻t2において燃焼モードはリッチ制御に切り替えられ、これにより、排気空燃比がリッチになり、NOx吸蔵還元触媒40に還元剤HCが吸蔵される。
【0035】
次に、ステップ150において、第1酸素センサ46a,46bによってリッチ空燃比が検出された時点t3から第2酸素センサ48によってリッチ空燃比が検出された時点t4までの期間βを算出する。なお、この期間の算出において、スタートキャタリスト38a,38bまでの排気ガスの遅れ時間a及びNOx吸蔵還元触媒40までの遅れ時間bを考慮する必要があるとともに、スタートキャタリスト38a,38bに吸蔵された酸素が消費される時間αを考慮する必要がある。図5に示すように、遅れ時間aはリッチ制御が開始された時刻t2から第1酸素センサ46a,46bによってリッチ空燃比が検出された時点t3までの時間から時間αを減ずることにより求めることができる。図5に示すように、遅れ時間bは一旦リッチ制御を止め、時刻t5において再度前記と同様のリッチ制御を開始して第2酸素センサ48によってリッチ空燃比を検出しておく。この後、時点t6においてリッチ制御を停止し、第2酸素センサ48によってリーン空燃比が検出された時点t7までの時間を計測することにより求めることができる。従って、NOx吸蔵還元触媒40に吸蔵されたNOxを還元するための正確な期間は(β−b+a)となり、この期間に基づいて現在の床温に対応する床温領域のNOx吸蔵容量を算出することができる。このように算出されたNOx吸蔵容量は図3において該当する床温領域のNOx吸蔵容量として更新される。
【0036】
次のステップ160においてそのときの排気ガス流量、すなわち吸入空気量gaに基づいて図6に示されるマップを参照してNOx吸蔵還元触媒40のNOx吸蔵割合ekgaが算出される。
【0037】
そして、ステップ170において、現在の触媒床温tmpを用いて、図3に示したNOx吸蔵容量マップfnoxmxから該当床温でのNOx吸蔵容量enoxmxが算出される。ステップ170では、床温tmpが各床温領域の代表温度tmp(1)〜tmp(7)に対していずれの位置関係にあるかを求め、この位置関係からNOx吸蔵容量mx(1)〜mx(7)を用いた補間計算により、NOx吸蔵容量enoxmxを求めている。例えば図3に示したごとく床温tmpが「tmpx」であった場合には、NOx吸蔵容量mx(4)とNOx吸蔵容量mx(5)とを用いて補間計算し、NOx吸蔵容量enoxmxとして「mxy」を求める。そして、このように算出されたmxyに前のステップ160にて算出されたNOx吸蔵割合ekgaを乗ずることにより、NOx吸蔵容量enoxmxが算出される。
【0038】
以上説明した本実施の形態によれば、以下の効果が得られる。
・ 本実施形態では、第1酸素センサ46a,46bによってリッチ空燃比が検出された時点から第2酸素センサ48によってリッチ空燃比が検出された時点までの期間に基づいてNOx吸蔵容量を算出するようにしている。そのため、NOx吸蔵還元触媒40のNOx吸蔵容量を正確に捉えることができ、このNOx吸蔵容量に基づいて適切な時期にリッチスパイク制御を実行してNOx吸蔵還元触媒40のNOx吸蔵能力を回復させることができ、好適に排気浄化を行うことができる。
【0039】
・ また、本実施形態では、実行してNOx吸蔵還元触媒40のNOx吸蔵容量の算出に際してストイキ空燃比よりも若干リッチ側となるようなリッチ制御を行うようにしているので、このときにエミッションの悪化を抑制することができる。
【0040】
・ さらに、本実施形態では、NOx吸蔵還元触媒の床温領域毎に床温対応NOx吸蔵容量を設定するようにしているので、床温領域が異なればNOx吸蔵容量を床温に応じて切り替えることにより、適切なNOx吸蔵容量を得ることができ、NOx吸蔵還元触媒の床温に対応した排気浄化を行うことができる。
【0041】
・ また、本実施形態では、排気ガス流量に応じて床温対応NOx吸蔵容量を補正するので、適切な時期にリッチスパイク制御を行うことができ、NOxの大気放出を抑制しつつ、排気浄化を好適に行うことができる。
【0042】
なお、実施の形態は上記に限定されるものではなく、次のように変更してもよい。
・ 前記実施形態においては、NOx吸蔵還元触媒40の上流において、排気通路32a,32bにスタートキャタリスト38a,38bを設けた構成としたが、スタートキャタリスト38a,38bを省略した構成の内燃機関に具体化してもよい。この場合には、還元剤の供給開始時点から第2酸素センサ48によってリッチ空燃比が検出されるまでの期間に基づいてNOx吸蔵還元触媒のNOx吸蔵容量を算出するようにすればよい。
【0043】
・ 前記実施形態においては、筒内噴射型エンジンを使用したが吸気ポートに燃料を噴射するポート噴射型エンジンにも適用できる。この構成の場合には成層燃焼の代わりにリーン燃焼が行われ、このリーン燃焼時にNOx吸蔵還元触媒に対してNOxが吸蔵される。
【図面の簡単な説明】
【図1】実施形態のエンジンの概略構成図。
【図2】実施形態のエンジン排気系の概略構成図。
【図3】ECUが記憶するNOx吸蔵容量マップfnoxmxの構成説明図。
【図4】同じくNOx吸蔵容量の算出処理のフローチャート。
【図5】実施形態の処理の一例を示すタイミングチャート。
【図6】吸入空気量とNOx吸蔵割合との関係を示すマップ。
【符号の説明】
2…エンジン、4…還元制御手段、吸蔵容量算出手段、容量データ保持手段及び吸蔵容量設定手段としてのECU、10…燃焼室、11…(特開平、12…燃料噴射バルブ、14…点火プラグ、16…吸気ポート、18…吸気バルブ、20…吸気通路、22…サージタンク、24…スロットルモータ、26…スロットルバルブ、28…スロットル開度センサ、30…吸入空気量センサ、32…合流排気通路、32a,32b…排気通路、34…排気バルブ、38a,38b…スタートキャタリスト、40…NOx吸蔵還元触媒、44a,44b…空燃比センサ、46a,46b…第1酸素センサ、48…飽和検出手段及び下流側酸素センサとしての第2酸素センサ、50…アクセルペダル、52…アクセル開度センサ、54…クランク軸、58…エンジン回転数センサ、60…床温検出手段としての温度センサ。

Claims (5)

  1. 内燃機関の排気通路に排気ガス中のNOxを吸蔵するNOx吸蔵還元触媒を備え、前記NOx吸蔵還元触媒に吸蔵されたNOxの量がNOx吸蔵容量に達したことに基づいて排気空燃比を一時的にリッチにするリッチスパイク制御を実行することにより、前記NOx吸蔵還元触媒に吸蔵されたNOxを還元してそのNOx吸蔵能力を回復させる内燃機関の排気浄化装置において、
    前記NOx吸蔵還元触媒の下流において前記排気ガス中の酸素濃度を検出する下流側酸素センサと、
    前記NOx吸蔵還元触媒に吸蔵されたNOx吸蔵量が飽和したことを検出する飽和検出手段と、
    前記NOx吸蔵量の飽和状態の検出に基づいて排気空燃比をストイキ空燃比よりも若干リッチ側となるように制御して還元剤を供給する還元制御手段と、
    前記還元剤の供給開始時点から前記下流側酸素センサによってリッチ空燃比が検出された時点までの期間に基づいて前記NOx吸蔵還元触媒のNOx吸蔵容量を算出する吸蔵容量算出手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  2. 請求項1に記載の内燃機関の排気浄化装置において、
    前記排気通路には前記NOx吸蔵還元触媒の上流に酸素吸蔵能力を有する排気浄化触媒と、
    前記排気浄化触媒と前記NOx吸蔵還元触媒との間に設けられ、かつ、排気ガス中の酸素濃度を検出する上流側酸素センサとが備えられ、
    前記吸蔵容量算出手段は、前記還元制御手段による還元剤の供給開始後において前記上流側酸素センサによってリッチ空燃比が検出された時点から前記下流側酸素センサによってリッチ空燃比が検出された時点までの期間に基づいて前記NOx吸蔵容量を算出する
    ことを特徴とする内燃機関の排気浄化装置。
  3. 請求項1又は2に記載の内燃機関の排気浄化装置において、
    更に、前記NOx吸蔵還元触媒の床温を複数の領域に分け、各領域毎にNOx吸蔵容量のデータを保持する容量データ保持手段と、
    前記NOx吸蔵還元触媒の床温を検出する床温検出手段と、
    前記容量データ保持手段が保持している床温領域毎のNOx吸蔵容量に基づいて、前記床温検出手段にて検出された床温に対応するNOx吸蔵容量を床温対応NOx吸蔵容量として設定する吸蔵容量設定手段と、
    を備えることを特徴とする内燃機関の排気浄化装置。
  4. 請求項3に記載の内燃機関の排気浄化装置において、
    前記吸蔵容量設定手段は、前記排気通路における排気ガス流量に応じて前記床温対応NOx吸蔵容量を補正する
    ことを特徴とする内燃機関の排気浄化装置。
  5. 請求項1〜4のいずれかに記載の内燃機関の排気浄化装置において、
    前記内燃機関が、それぞれNOx吸蔵還元触媒を有する複数バンクを備えるとともに、該複数バンクにおいてNOx吸蔵還元触媒の下流において排気ガス中の酸素濃度を検出する下流側酸素センサを共用する
    ことを特徴とする内燃機関の排気浄化装置。
JP2002224658A 2002-08-01 2002-08-01 内燃機関の排気浄化装置 Pending JP2004068607A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224658A JP2004068607A (ja) 2002-08-01 2002-08-01 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224658A JP2004068607A (ja) 2002-08-01 2002-08-01 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
JP2004068607A true JP2004068607A (ja) 2004-03-04

Family

ID=32012551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224658A Pending JP2004068607A (ja) 2002-08-01 2002-08-01 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP2004068607A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112291A (ja) * 2004-10-14 2006-04-27 Toyota Motor Corp 内燃機関の制御装置
WO2010095274A1 (ja) * 2009-02-20 2010-08-26 トヨタ自動車株式会社 火花点火式内燃機関

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112291A (ja) * 2004-10-14 2006-04-27 Toyota Motor Corp 内燃機関の制御装置
JP4552590B2 (ja) * 2004-10-14 2010-09-29 トヨタ自動車株式会社 内燃機関の制御装置
WO2010095274A1 (ja) * 2009-02-20 2010-08-26 トヨタ自動車株式会社 火花点火式内燃機関
JP5126410B2 (ja) * 2009-02-20 2013-01-23 トヨタ自動車株式会社 火花点火式内燃機関
US10202909B2 (en) 2009-02-20 2019-02-12 Toyota Jidosha Kabushiki Kaisha Spark ignition type internal combustion engine

Similar Documents

Publication Publication Date Title
JP3033449B2 (ja) 火花点火式内燃エンジンの燃焼制御装置
JP4099272B2 (ja) 内燃機関の排気系の窒素酸化物用トラップの再生方法
JP3607984B2 (ja) 車載用内燃機関の排気浄化装置
JP4089201B2 (ja) 内燃機関の排気浄化管理方法及び装置
JP3854013B2 (ja) 内燃機関の排出ガス浄化装置
JP6230005B1 (ja) エンジンの排気浄化装置
JP2001234772A (ja) 内燃機関の排気浄化装置
JP2004068607A (ja) 内燃機関の排気浄化装置
JP4492776B2 (ja) 内燃機関の排気浄化装置
JP4092940B2 (ja) 内燃機関制御装置
JP2001020781A (ja) 内燃機関の排気浄化装置
JP3427881B2 (ja) 内燃機関
JP2017115632A (ja) 内燃機関の燃料噴射制御装置
JP3867612B2 (ja) 内燃機関の空燃比制御装置
JP3642194B2 (ja) 筒内噴射型内燃機関
JP2001065338A (ja) 内燃機関の排気浄化装置
JP2008157244A (ja) エンジンシステム、及び、同システム内の排気ガス処理装置の再生方法
JP2004044421A (ja) 内燃機関の排気浄化装置
JP3671647B2 (ja) 内燃機関の排気浄化装置
JP3551057B2 (ja) 希薄燃焼内燃機関の燃焼制御装置
JPH11107828A (ja) 内燃機関の空燃比制御装置
JP4154589B2 (ja) 内燃機関の燃焼制御装置
JP2004044420A (ja) 内燃機関の排気浄化装置
JP2004232477A (ja) 内燃機関の制御装置
JP4443835B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106