JP2004031770A - 窒化物半導体発光素子 - Google Patents

窒化物半導体発光素子 Download PDF

Info

Publication number
JP2004031770A
JP2004031770A JP2002187786A JP2002187786A JP2004031770A JP 2004031770 A JP2004031770 A JP 2004031770A JP 2002187786 A JP2002187786 A JP 2002187786A JP 2002187786 A JP2002187786 A JP 2002187786A JP 2004031770 A JP2004031770 A JP 2004031770A
Authority
JP
Japan
Prior art keywords
layer
well
nitride semiconductor
doped
proximity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002187786A
Other languages
English (en)
Other versions
JP4285949B2 (ja
JP2004031770A5 (ja
Inventor
Takeshi Kamikawa
神川 剛
Yuzo Tsuda
津田 有三
Shinya Ishida
石田 真也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002187786A priority Critical patent/JP4285949B2/ja
Publication of JP2004031770A publication Critical patent/JP2004031770A/ja
Publication of JP2004031770A5 publication Critical patent/JP2004031770A5/ja
Application granted granted Critical
Publication of JP4285949B2 publication Critical patent/JP4285949B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】Si等の不純物をドープする量を抑えるとともに、効率よくキャリアの発生を促すことができるバンドギャップ構造を有する窒化物半導体発光素子を提案することを目的とする。
【解決手段】障壁層201a〜201cが、井戸層202と接するSi等のn型不純物がドープされたGaN層である井戸近接層203yと、井戸近接層203yの間にn型不純物のドープされていないアンドープのGaN層である中間層204とを備える。
【選択図】   図3

Description

【0001】
【発明の属する技術分野】
本発明は、発光ダイオード素子、レーザダイオード素子等の発光素子に関するもので、特に、窒化物半導体よりなる窒化物半導体発光素子に関する。尚、本明細書で説明する窒化物半導体とは、AlxGayInzN(0≦x≦1、0≦y≦1、0≦z≦1、x+y+z=1)で構成される。又、この窒化物半導体において、その結晶構造が六方晶系であれば、約10%以下のAs、P、Sbのいずれかの元素が置換されていても構わない。
【0002】
【従来の技術】
窒化物半導体は、高輝度青色LED(Light Emitting Diode)、純緑色LEDの材料として用いられ、フルカラーLEDディスプレイ、交通信号灯、イメージスキャナー光源等の各種光源に実用化されている。又、青紫色半導体レーザ素子の材料としても用いられ、光ディスクの情報読み出しおよび書き込み用光源等への応用も期待されている。
【0003】
このような窒化物半導体を用いた窒化物半導体発光素子の基本的な構成が、例えば、特開平6−177423号公報に開示されている。この特開平6−177423号公報で開示されている窒化物半導体発光素子は、図12に示すように、サファイア等の基板901上に、GaNよりなるバッファ層902と、n型GaN層903と、n型InGaN層904と、p型GaN層905とが順に積層された構造となる。
【0004】
図12のような窒化物半導体発光素子において、n型InGaN層904は、InとGaの組成比の異なる2つのn型InGaN層膜が交互に積層された多層膜で形成されている多重量子井戸構造とされ、発光層として用いられる。このn型InGaN層904は、バンドギャップエネルギーの小さいInGaNの井戸層と、バンドギャップエネルギーの大きいInGaN障壁層とが積層された構成の活性層となる。
【0005】
この活性層となるn型InGaN層904には、井戸層にキャリアを効率よく注入し閾値電流密度を低減させるために、Si等のn型不純物がドープされている。このような構成の活性層を備えることによって、発光素子の光出力を向上させることができ、半導体レーザ素子を構成した場合、駆動時の閾値電流を低下させることができる。
【0006】
【発明が解決しようとする課題】
しかしながら、発光層となる活性層にSi等の不純物をドープすることによって、活性層内でのフリーキャリア散乱の増加や結晶性の悪化を招くため、半導体レーザ素子などにおいては、発生する光出力の低下の原因となる。このようなSi等の不純物の活性層へドープする量を抑えた窒化物半導体発光素子が、特許第3217004号公報において開示されている。
【0007】
特許第3217004号公報において、n型不純物がドープされていないInGaN層である井戸層と、n型不純物がドープされたInGaN層とn型不純物がドープされていないInGaN層とから構成される障壁層とが積層されて、体重量子井戸構造の活性層が構成される。このような活性層の障壁層において、n型不純物がドープされたInGaN層は、n型不純物がドープされていないInGaN層に挟まれた状態となるため、井戸層と接していない。
【0008】
このように障壁層を構成するとき、障壁層の膜厚を8nmで一定とし、障壁層を構成するn型不純物がドープされていないInGaN層の膜厚を変化させて、駆動時の閾値電流密度を測定した。この測定結果を、図13のグラフに示す。図13より、n型不純物がドープされていないInGaN層の膜厚が1nmより薄くなると閾値電流密度が増加することがわかる。これは、n型不純物がドープされたInGaN層の膜厚が厚くなり光が散乱されるフリーキャリア散乱領域が増加し内部損失が大きくなったためと考えられる。
【0009】
又、n型不純物がドープされていないInGaN層の膜厚が3nmより厚くなると閾値電流密度が増加することがわかる。これは、n型不純物がドープされたInGaN層で生成されたキャリアが井戸層に達するまでに、n型不純物がドープされていないInGaN層で消費され、効率よく井戸層に注入されないためであると考えられる。又、n型不純物がドープされていないInGaN層の膜厚が1〜3nmであっても、このn型不純物がドープされていないInGaN層があるために、効率よく井戸層にキャリアを注入できないため、閾値電流密度が高くなる。
【0010】
本発明は、Si等の不純物をドープする量を抑えるとともに、効率よくキャリアの発生を促すことができるバンドギャップ構造を有する窒化物半導体発光素子を提案することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の窒化物半導体発光素子は、n型不純物がドープされたn型窒化物半導体層と、キャリアをトラップする複数の井戸層と該井戸層よりもバンドギャップエネルギーの高い複数の障壁層とが積層されて成る多重量子井戸構造である活性層と、p型不純物がドープされたp型窒化物半導体層とから成り、前記n型窒化物半導体層と前記活性層と前記p型窒化物半導体層とが順に積層された窒化物半導体発光素子において、前記障壁層が、n型不純物がドープされたドープ層と、n型不純物がドープされていないアンドープ層とを有し、前記障壁層の前記ドープ層が前記井戸層と接することを特徴とする。
【0012】
この構成によると、n型不純物がドープされたドープ層が井戸層と接しているため、ドープ層で発生したキャリアが効率よく井戸層に供給される。障壁層にn型不純物がドープされていないアンドープ層を備えるため、障壁層内のn型不純物の濃度を抑えることができ、フリーキャリア散乱による内部損失を抑制することができる。
【0013】
このような窒化物半導体発光素子において、前記障壁層を構成する前記ドープ層及び前記アンドープ層の総数を3層以上とするとともに、前記井戸層と接していない前記アンドープ層を設けるようにしても構わない。このとき、前記ドープ層の膜厚daを、0.3nm≦da≦3nmとする。
【0014】
又、前記障壁層を、1つの前記ドープ層と1つの前記アンドープ層の2層で構成しても構わない。このとき、前記ドープ層の膜厚daを、0.3nm≦da≦4nmとする。
【0015】
更に、前記障壁層の膜厚dbを、7nm≦db≦12nmとする。又、前記ドープ層にドープされたn型不純物の濃度Xを、5×1015cm−3≦X≦1×1020cm−3とする。又、前記井戸層の膜厚dcを、2nm≦dc≦7nmとする。
【0016】
又、前記障壁層をGaN層とする。このとき、ドープ層及びアンドープ層いずれもGaN層としても構わないし、ドープ層のみにInがその組成に含まれるようにしても構わないし、アンドープ層のみにInがその組成に含まれるようにしても構わないし、ドープ層及びアンドープ層いずれにもInがその組成に含まれるようにしても構わない。更に、井戸層がInGaN層であるとともに、n型不純物がドープされていない。
【0017】
【発明の実施の形態】
<窒化物半導体発光素子の構成>
以下の各実施形態において共通となる窒化物半導体発光素子の構成について、図面を参照して説明する。図1は、本発明の窒化物半導体発光素子の構成を示す概略断面図である。
【0018】
図1の窒化物半導体発光素子は、n型GaN基板100の表面上に、n型GaN層1、n型In0.07Ga0.93Nクラック防止層2、n型Al0.1Ga0.9Nクラッド層3、n型GaN光ガイド層4、活性層5、p型Al0.2Ga0.8Nキャリアブロック層6、p型GaN光ガイド層7、p型Al0.1Ga0.9Nクラッド層8、p型GaNコンタクト層9が順に積層されて構成される。
【0019】
更に、このように各窒化物半導体層が積層されて構成された窒化物半導体発光素子は、p型AlGaN層8の上側部分及びp型GaNコンタクト層9がストライプ状のリッジ構造とされ、このリッジ構造の両側にSiO誘電体膜11が設けられる。そして、n型GaN基板100の裏面にp型電極12が設けられるとともに、p型GaNコンタクト層9及びSiO誘電体膜11の表面にn型電極10が設けられる。
【0020】
このような構成の窒化物半導体発光素子は、MOCVD法(有機金属気相成長法)によって、窒化物半導体からなる積層構造をGaN基板100表面上に形成することで製作する。
【0021】
このとき、MOCVD装置を用いて、n型GaN基板100の表面に、Siドープのn型GaN層1を3μm、Siドープのn型InGaNクラック防止層2を40nm、Siドープのn型AlGaNクラッド層3を1μm、Siドープのn型GaN光ガイド層4を0.1μm、活性層5、 Mgドープのp型AlGaNキャリアブロック層6を20nm、Mgドープのp型GaN光ガイド層7を0.1μm、Mgドープのp型AlGaNクラッド層8を0.4μm、Mgドープのp型GaNコンタクト層9を0.1μm、それぞれ順に成長させた。
【0022】
このようにして、n型GaN基板100上に窒化物半導体積層構造を作製した後、熱処理などによりMgドープ層を低抵抗p型にした上で、AlGaNクラッド層8と、GaNコンタクト層9には、共振器方向に延伸したストライプ状のリッジを設けるとともに、このリッジ部分の両側及びAlGaNクラッド層8の表面にSiO誘電体膜11を設ける。その後、Au/Mo/Pdからなるp型電極12、Al/Hfからなるn型電極10を形成して、窒化物半導体発光素子を作製する。
【0023】
又、活性層5は、井戸層と障壁層とを順次積層した多層膜構造の多重量子井戸構造である。このとき、多重量子井戸構造の積層構造を最小としたとき、活性層5は、障壁層を1層とするとともにこの障壁層の両側に設けられた2層の井戸層を設けた3層構造、又は、井戸層を1層とするとともにこの井戸層の両側に設けられた2層の障壁層を設けた3層構造となる。
【0024】
この多重量子井戸構造となる活性層5において、n型GaN光ガイド層4及びp型AlGaNキャリアブロック層6に接する両側の2つの最外層を、いずれも井戸層としても構わないし、逆に、いずれも障壁層としても構わない。又、一方の最外層を井戸層とするとともに、他方の最外層を障壁層としても構わない。このような各構成の多重量子井戸構造となる活性層において、更に、p型AlGaNキャリアブロック層6に接した最外層を障壁層及び井戸層のいずれで構成しても構わない。
【0025】
このような多重量子井戸構造の活性層5において、井戸層及び障壁層は、ともに、窒化物半導体で形成される。即ち、井戸層は、InGa1−xN(0<x<1)や、GaN1−xAs(0<x<1)、InGa1−xAs1−y(0<x<1,0<y<1)、GaN1−x(0<x<1)、InGa1−x1−y(0<x<1,0<y<1)又はこれらの化合物で構成される。又、障壁層については、井戸層を構成するこれらの窒化物半導体のいずれか又はこれらの化合物で構成され、更に、井戸層よりもバンドギャップエネルギーが大きい窒化物半導体によって構成される。
【0026】
更に、この活性層5において構成される井戸層は全て、意図的に不純物がドープされない状態であるアンドープとされる。これは、井戸層に不純物をドープした場合、窒化物半導体発光素子の劣化が早く、その寿命に影響を与えるため、アンドープとした方がよいためである。 又、p型不純物としてp型窒化物半導体層にMgをドープしているが、その添加濃度は、5×1019〜2×1020cm−3の濃度で添加している。
【0027】
このような共通の構成の窒化物半導体発光素子において、以下の各実施形態では、活性層5内部の積層構造が異なる。よって、以下の各実施形態では、活性層5内部の積層構造を中心に説明する。又、以下の各実施形態における窒化物半導体発光素子として、窒化物半導体レーザ素子を例に挙げて説明する。
【0028】
<第1の実施形態>
本発明の第1の実施形態について、図面を参照して説明する。図2は、窒化物半導体レーザ素子の活性層5の積層構造を示すための断面図である。
【0029】
図2に示すように、活性層5は、障壁層201a,201b,201cと井戸層202とによる多重量子井戸構造で構成される。本実施形態では、障壁層201a/井戸層202/障壁層201b/井戸層202/障壁層201b/井戸層202/障壁層201cの順序で成長させて構成し、井戸層202の層数を3層とした。
【0030】
このように活性層5を構成する際、本実施形態において、井戸層202をアンドープのIn0.15Ga0.85N層とする。又、井戸層202の厚さを2〜7nmの範囲とする。これは、井戸層202の厚さが2nmより薄いと、界面散乱が増加し、又、移動層202の厚さが7nmより厚くなると、井戸層202内で電子と正孔の空間的な分離が起こって再結合確率を下げる。よって、井戸層202の厚さを2〜7nmの範囲外とした場合、駆動時の閾値電流を上昇させてしまう。尚、本実施形態では、この井戸層202の厚さを4nmとする。
【0031】
又、障壁層201a,201b,201cはそれぞれ、3層構造とする。そして、n型GaN光ガイド層4と井戸層202とに挟まれた障壁層201aは、n型GaN光ガイド層4と接するn側近接層203xと、井戸層202と接する井戸近接層203yと、3層の中間に位置する中間層204とによって構成される。又、井戸層202に挟まれた障壁層201bは、2層の井戸近接層203yと、中間層204とによって構成される。又、p型AlGaNキャリアブロック層6と井戸層202とに挟まれた障壁層201cは、井戸近接層203yと、p型AlGaNキャリアブロック層6と接するp側近接層203zと、中間層204とによって構成される。
【0032】
このようにして、障壁層201a,201b,201cそれぞれを構成するとき、n側近接層203x及び井戸近接層203y及びp側近接層203zの厚さをそれぞれ3nmとするとともに、中間層204の厚さを2nmとし、障壁層201a,201b,201cの厚さをそれぞれ8nmとする。又、井戸近接層203yにのみ、Si等のn型不純物をドープする。
【0033】
このとき、ドープされたSi濃度を、5×1015cm−3〜1×1020cm−3とする方がよい。これは、Si濃度を1×1020cm−3以上としたとき、Siの過剰ドープが活性層の結晶性を悪化させてしまい、又、Si濃度を5×1015cm−3以下としたとき、キャリアの生成が起こらなくなり、それぞれ、閾値電流密度の増加を引き起こしてしまうためである。このドープされたSi濃度は、SIMS(2次イオン質量分析)などの測定方法を用いて測定される。
【0034】
尚、本実施形態においては、Si濃度を、1×1018cm−3とする。又、n側近接層203x及びp側近接層203zを、アンドープとしたが、Si等のn型不純物をドープしても構わない。又、上記範囲以内であれば、井戸近接層203yにおいて、n側GaN光ガイド層4側の井戸層202と近接している層と、p側AlGaNキャリアブロック層6側の井戸層202と近接している層との間で、Si濃度は異なっていても構わない。
【0035】
このように構成された活性層5のバンドダイヤグラムを、図3に示す。図3より明らかなように、障壁層201a,201b,201cのバンドギャップエネルギーより小さいバンドギャップエネルギーとなる井戸層202に、井戸近接層203yが接していることがわかる。
【0036】
この井戸近接層203yは、n型不純物がドープされているため、キャリアが発生しやすい状態となる。この発生したキャリアが、井戸層202にトラップされるため、井戸層202にトラップされるキャリアの量が多くなり、光出力を高めることができる。又、井戸近接層203yが井戸層202と接しているので、発生したキャリアが井戸層202に達する確率が高い。そして、上述の条件で作成した窒化物半導体レーザ素子の閾値電流密度は、2.3kA/cmとなった。
【0037】
又、図4に、障壁層201(障壁層201a〜201cに相当する)全体の膜厚を8nmで一定として、井戸近接層203yの膜厚を変化させたときの閾値電流密度を表したグラフを示す。尚、n側GaN光ガイド層4側の井戸層202と近接している井戸近接層203yの膜厚と、p側AlGaNキャリアブロック層6側の井戸層202と近接している井戸近接層203yの膜厚とが等しいものとする。即ち、井戸近接層203yが1nmの時は、中間層204は6nmとなり、井戸近接層203yが2nmの時は、中間層204は4nmとなり、井戸近接層203yが3nmの時は、中間層204は2nmとなる。
【0038】
この図4の結果より、井戸近接層203yが3nm以下となるとき、閾値電流密度が低減することがわかる。尚、井戸近接層203yが3nmより厚い場合、閾値電流密度が増加するのは、n型不純物がドープされる井戸近接層203yをこれ以上厚くしても、井戸層202に注入されるキャリアの量が増加せず、障壁層201にドープされるn型不純物の割合が多くなるためである。即ち、このn型不純物の割合が多くなると、活性層5内のフリーキャリア散乱が増加し内部損失が大きくなるため、閾値電流密度が増加する。
【0039】
そこで、井戸近接層203yの層厚を3nm以下とすることで、n型不純物のドープ量が抑えられるため、フリーキャリア散乱による内部損失の増加を抑えることができる。又、井戸層202と接する井戸近接層203yにn型不純物をドープするので、井戸層202に効率よくキャリアが供給することができるものと考えられる。但し、井戸近接層203yの膜厚が0.3nm以下になると、n型不純物のドープ量が十分でなく、十分なキャリア数が井戸層202に注入できなくなるため、再び閾値電流密度が増大する。
【0040】
この図4のような井戸近接層203yの膜厚と閾値電流密度との関係を、井戸層202の膜厚を2nm〜7nmの範囲で変化させるとともに、又、障壁層201の膜厚を7nm〜12nmの範囲で変化させて、調べたが、その結果は、図4に示した結果と一致した。又、障壁層201の膜厚を7nm未満とした場合、閾値電流密度が増加する。これは、活性層5全体の膜厚が薄くなり、光閉じ込めが弱くなったためと考えられる。更に、障壁層201の厚さを12nm以上とした場合、各井戸層202が離れすぎて、移動度の小さいホールが各井戸層202に均一に注入されなくなり、ゲインの低下を引き起こすため、閾値電流密度が上昇する。
【0041】
上述の結果より、窒化物半導体レーザ素子の活性層5において、障壁層201の層厚を7〜12nmの範囲とし、井戸層202の膜厚を2〜7nmの範囲とするとともに、ドーピングされる井戸近接層203yの膜厚を0.3nm〜3nm以下とすることで、フリーキャリア散乱による内部損失の増加を抑え、効率よく井戸層202にキャリアを注入できるため、閾値電流密度を低減することができる。
【0042】
<第2の実施形態>
本発明の第2の実施形態について、図面を参照して説明する。図5は、窒化物半導体レーザ素子の活性層5を構成する各層のバンドギャップエネルギーの関係を示すバンドダイヤグラムである。尚、本実施形態において、活性層5の構成については、第1の実施形態と同様、図2のような構成となる。
【0043】
本実施形態では、第1の実施形態と異なり、障壁層201a〜201cにおいて、中間層204をInGaN層とし、n側近接層203x及び井戸近接層203y及びp側近接層203zをGaN層としている。このとき、n側近接層203x及び井戸近接層203y及びp側近接層203zに対して、Siなどのn型不純物をドープする。
【0044】
又、中間層204は、フリーキャリア散乱による内部損失の増加を防ぐために、アンドープとなっている。この中間層204の組成を、In0.05Ga0.95Nで形成する。このように、Inが中間層204の組成に含まれるため、GaN層で構成されるn側近接層203x及び井戸近接層203y及びp側近接層203zに対して、そのバンドギャップエネルギーが低くなる。このバンドギャップエネルギーは、Inの含有率によって決定し、その含有率が多くなるほど低くなる。よって、中間層204において、井戸層202におけるInの含有率よりも低くなるように設定される。
【0045】
このように活性層5が構成された窒化物半導体レーザ素子においても、第1の実施形態とほぼ同様の結果が得られた。よって、障壁層201の層厚を7nm〜12nmの範囲とし、井戸層202の膜厚を2〜7nmの範囲とするとともに、ドープされる井戸近接層203yの膜厚を0.3nm〜3nm以下とすることで、フリーキャリア散乱による内部損失の増加を抑え、効率よく井戸層202にキャリアを注入できるため、閾値電流密度を低減することができる。
【0046】
本実施形態のように、障壁層201の一部をInGaN層とした場合、活性層5は熱によるダメージに弱くなり、活性層5を成長させた後、1000℃以上でp層を成長させる際に、熱ダメージを受けてしまう。しかし、本実施形態のように、InGaN層とされる中間層204を、GaN層とされるn側近接層203x及び井戸近接層203y及びp側近接層203zで挟みこむため、熱ダメージを受けにくくすることができ、閾値電流密度が2kA/cm程度の良好な特性の窒化物半導体レーザ素子を得ることができる。尚、障壁層201に含まれるInGaN層におけるInの組成は0.1以下に抑える方が好ましい。又、n側近接層203x及びp側近接層203zに対して、n型不純物をドープするものとしたが、中間層204と同様、アンドープとしても構わない。
【0047】
<第3の実施形態>
本発明の第3の実施形態について、図面を参照して説明する。図6は、窒化物半導体レーザ素子の活性層5を構成する各層のバンドギャップエネルギーの関係を示すバンドダイヤグラムである。尚、本実施形態において、活性層5の構成については、第1の実施形態と同様、図2のような構成となる。
【0048】
本実施形態では、第1の実施形態と異なり、障壁層201a〜201cにおいて、井戸近接層203yをInGaN層とし、n側近接層203x及びp側近接層203z及び中間層204をGaN層としている。このとき、井戸近接層203yに対して、Si等のn型不純物をドープする。この井戸近接層203yの組成を、In0.05Ga0.95Nで形成する。又、n側近接層203x及びp側近接層203z及び中間層204は、フリーキャリア散乱による内部損失の増加を防ぐために、アンドープとなっている。
【0049】
このように、Inが井戸近接層203yの組成に含まれるため、GaNで構成されるn側近接層203x及びp側近接層203z及び中間層204に対して、そのバンドギャップエネルギーが低くなる。尚、井戸近接層203zにおけるInの含有率は、井戸層202よりも低くなるように設定される。又、n型GaN光ガイド層4側の井戸近接層203yとp型AlGaNキャリアブロック層6側の井戸近接層203yそれぞれにおいて、Inの組成が異なっていても構わない。
【0050】
本実施形態のように構成された窒化物半導体レーザ素子においても、第1の実施形態とほぼ同様の結果が得られた。即ち、障壁層201の層厚を7nm〜12nmの範囲とし、井戸層202の膜厚を2〜7nmの範囲とするとともに、ドープされる井戸近接層203yの膜厚を0.3nm〜3nm以下とすることで、閾値電流密度を低減することができる。
【0051】
尚、n側近接層203x及びp側近接層203zをGaNとしたが、井戸近接層203yと同様、その組成にInを含むようにしても構わない。又、このn側近接層203x及びp側近接層203zに、n型不純物をドープするようにしても構わない。
【0052】
<第4の実施形態>
本発明の第4の実施形態について、図面を参照して説明する。図7は、窒化物半導体レーザ素子の活性層5を構成する各層のバンドギャップエネルギーの関係を示すバンドダイヤグラムである。尚、本実施形態において、活性層5の構成については、第1の実施形態と同様、図2のような構成となる。
【0053】
本実施形態では、第1の実施形態と異なり、障壁層201a〜201cを、InGaN層とする。即ち、n側近接層203x及び井戸近接層203y及びp側近接層203z及び中間層204それぞれの組成を、In0.05Ga0.95Nで形成する。このとき、井戸層202はアンドープで、障壁層201a〜201cに関しては、n側近接層203x及び井戸近接層203y及びp側近接層203zに、Si等のn型不純物をドープする。このとき、n側近接層203x及びp側近接層203zについては、アンドープでも構わない。
【0054】
本実施形態のように構成された窒化物半導体レーザ素子においても、第1の実施形態とほぼ同様の結果が得られた。即ち、障壁層201の層厚を7nm〜12nmの範囲とし、井戸層202の膜厚を2〜7nmの範囲とするとともに、ドープされる井戸近接層203yの膜厚を0.3nm〜3nm以下とすることで、閾値電流密度を低減することができる。
【0055】
しかし、第3の実施形態及び第4の実施形態のように、井戸近接層203yをInGaN層とした場合、活性層5が熱によるダメージに弱くなり、活性層5を成長させた後、1000℃以上でp層を成長させる際に、熱ダメージを受ける。よって、障壁層201a〜201cと井戸層202との界面の急峻性が崩れることがあり、活性層5からの発光スペクトルがブロード化して、窒化物半導体レーザ素子の出力特性を悪化させてしまう。このため、井戸近接層203yをGaN層とする方が好ましい。
【0056】
<第5の実施形態>
本発明の第5の実施形態について、図面を参照して説明する。図8は、窒化物半導体レーザ素子の活性層5の積層構造を示すための断面図である。尚、図2に示すと同一部分については、同一の符号を付してその詳細な説明は省略する。
【0057】
図8に示すように、活性層5において、障壁層201a〜201cが2層となっている。この障壁層201a〜201c及び第1の実施形態と同様アンドープのIn0.15Ga0.85N層である井戸層202が、障壁層201a/井戸層202/障壁層201b/井戸層202/障壁層201b/井戸層202/障壁層201cの順序で成長されて、多重量子井戸構造が構成される。本実施形態においても、井戸層202の層数が3層とした。
【0058】
本実施形態に置いても、駆動時の閾値電流を抑制するために、井戸層202の膜厚を2〜7nmの範囲であることが好ましく、本実施形態では、4nmとする。又、障壁層201aは、n型GaN光ガイド層4と接するn側近接層203xと、井戸層202と接するp側井戸近接層203bとによって構成される。又、障壁層201bは、n側GaN光ガイド層4側の井戸層202と接するn側井戸近接層203aと、p側AlGaNキャリアブロック層6側の井戸層202と接するp側井戸近接層203bとによって構成される。又、障壁層201cは、n側井戸近接層203aと、p型AlGaNキャリアブロック層6と接するp側近接層203zとによって構成される。
【0059】
そして、n側近接層203x及びn側井戸近接層203aをGaN層とし、p側近接層203z及びp側井戸近接層203bをInGaN層とする。このとき、p側近接層203z及びp側井戸近接層203bの組成が、In0.15Ga0.95Nで形成されるとともに、アンドープとされる。又、n側近接層203x及びn側井戸近接層203aには、Si等のn型不純物がドープされる。そして、n側近接層203x及びp側近接層203z及びn側井戸近接層203a及びp側井戸近接層203bそれぞれの膜厚を4nmとし、障壁層201a〜201cそれぞれの膜厚を8nmとする。
【0060】
n側近接層203x及びn側井戸近接層203aにドープされるSi濃度は、第1の実施形態と同様の理由から、5×1015cm−3〜1×1020cm−3とした方がよい。尚、本実施形態では、1×1018cm−3とする。又、上記範囲以内であれば、n側近接層203x及びn側井戸近接層203aにドープされるSi濃度が異なっていても構わない。
【0061】
このように構成された活性層5のバンドダイヤグラムを、図9に示す。p側井戸近接層203b及びp側近接層203zはInを組成に含むため、n側井戸近接層203a及びn側近接層203xよりもバンドギャップエネルギーが低くなる。又、n型不純物がドープされたn側井戸近接層203aが井戸層202と接しているので、n側井戸近接層203aで発生したキャリアが効率よく井戸層202にトラップされる。そして、上述の条件で作成した窒化物半導体レーザ素子の閾値電流密度は、2.5kA/cmとなった。
【0062】
又、図10に、障壁層201(障壁層201a〜201cに相当する)全体の膜厚を8nmで一定として、n側井戸近接層203a(n側近接層203xを含む)の膜厚を変化させたときの閾値電流密度を表したグラフを示す。つまり、n側井戸近接層203aが1nmの時は、p側井戸近接層203bは7nmで、n側井戸近接層203aが2nmの時は、p側井戸近接層203bは6nmで、n側井戸近接層203aが4nmの時は、p側井戸近接層203bは4nmとなり、障壁層201の全体厚さが8nmになるように、p側井戸近接層203bの膜厚が決定される。
【0063】
この図10の結果より、n側井戸近接層203aが4nm以下となるとき、閾値電流密度が低減することがわかる。尚、n側井戸近接層203aが4nmより厚い場合、閾値電流密度が増加するのは、n型不純物がドープされるn側井戸近接層203aをこれ以上厚くしても、井戸層に注入されるキャリアの量が増加せず、井戸層202に注入されるキャリアの量が増加せず、障壁層201にドープされるn型不純物の割合が多くなるためである。
【0064】
しかし、n側井戸近接層203a及びn側近接層203xの膜厚を4nm以下にすることで、フリーキャリア散乱による内部損失の増加を抑え、更に、Siドープされることで、井戸層202に効率よくキャリアが供給されて低閾値電流密度の素子が実現できたと考えられる。但し、n側井戸近接層203a及びn側近接層203xの膜厚が0.3nm以下になると十分なキャリア数が井戸層202に注入できなくなるため、再び閾値電流密度の増大を引き起こす。また、n側近接層203xに関して、本実施形態では、Siドープを行ったが、アンドープとしても、図10の結果と同じであった。
【0065】
この図10のようなn側井戸近接層203aの膜厚と閾値電流密度との関係を、井戸層202の膜厚を2nm〜7nmの範囲で変化させるとともに、又、障壁層201の膜厚を7nm〜12nmの範囲で変化させて、調べたが、第1の実施形態と同様、その結果は、図10に示した結果と一致した。
【0066】
上述の結果より、窒化物半導体レーザ素子の活性層5において、障壁層201の層厚を7〜12nmの範囲とし、井戸層202の膜厚を2〜7nmの範囲とするとともに、n型不純物のドープを、n側井戸近接層203a及びn側近接層203xに行うことで、最も効率よくキャリアを井戸層202に注入できる。又、n側井戸近接層203a及びn側近接層203xの層厚を0.3〜4nmとすることで、フリーキャリア散乱による内部損失の増加を抑え、効率よく井戸層202にキャリアを注入できるため閾値電流密度を低減することができる。
【0067】
このように構成された窒化物半導体レーザ素子を、ハンダ等を用いてステムにマウントし、ワイヤーボンディングにより電気的な接続を行って、半導体レーザ装置を組んだとき、その特性歩留まりを良好なものとすることができる。尚、本実施形態において、p側井戸近接層203b及びp側近接層203zをInGaN層としたが、GaN層としても、ほぼ同じ結果が得られる。
【0068】
<第6の実施形態>
本発明の第6の実施形態について、図面を参照して説明する。図11は、窒化物半導体レーザ素子の活性層5を構成する各層のバンドギャップエネルギーの関係を示すバンドダイヤグラムである。尚、本実施形態において、活性層5の構成については、第5の実施形態と同様、図8のような構成となる。
【0069】
本実施形態では、第1の実施形態と異なり、障壁層201a〜201cにおいて、n側井戸近接層203a及びn側近接層203xをIn0.15Ga0.95N層とするとともにアンドープとし、p側井戸近接層203b及びp側近接層203zをGaN層とするとともにSi等のn型不純物をドープする。そして、障壁層201a〜201cの膜厚を一定として、p側井戸近接層203b及びp側近接層203zの膜厚を変化させた場合、図10と同様の傾向を示した。
【0070】
このように活性層5が構成された窒化物半導体レーザ素子においても、第5の実施形態とほぼ同様の結果が得られた。よって、障壁層201の層厚を7nm〜12nmの範囲とし、井戸層202の膜厚を2〜7nmの範囲とするとともに、ドープされるp側井戸近接層203b及びp側近接層203zの膜厚を0.3nm〜4nm以下とすることで、フリーキャリア散乱による内部損失の増加を抑え、効率よく井戸層202にキャリアを注入できるため、閾値電流密度を低減することができる。
【0071】
尚、本実施形態において、n側井戸近接層203a及びn側近接層203xをInGaN層としたが、GaN層としても、ほぼ同じ結果が得られる。又、p側近接層203zをノンドープとしても、ほぼ同じ結果が得られる。
【0072】
上述の各実施形態で構成された窒化物半導体レーザ素子を、ハンダ等を用いてステムにマウントし、ワイヤーボンディングにより電気的な接続を行って、半導体レーザ装置を組んだとき、その特性歩留まりを良好なものとすることができる。
【0073】
【発明の効果】
本発明によると、n型不純物がドープされたドープ層が井戸層と接しているため、ドープ層で発生したキャリアが効率よく井戸層に供給される。障壁層にn型不純物がドープされていないアンドープ層を備えるため、障壁層内のn型不純物の濃度を抑えることができ、フリーキャリア散乱による内部損失を抑制することができる。よって、駆動時の閾値電流密度の低い窒化物半導体発光素子を提供することができる。
【図面の簡単な説明】
【図1】窒化物半導体発光素子の構成を示す概略断面図。
【図2】図1の窒化物半導体発光素子の活性層の構成を示す断面図の一例。
【図3】第1の実施形態の窒化物半導体素子の活性層のバンドダイヤグラム。
【図4】井戸近接層の膜厚を変化させたときの閾値電流密度を表したグラフ。
【図5】第2の実施形態の窒化物半導体素子の活性層のバンドダイヤグラム。
【図6】第3の実施形態の窒化物半導体素子の活性層のバンドダイヤグラム。
【図7】第4の実施形態の窒化物半導体素子の活性層のバンドダイヤグラム。
【図8】図1の窒化物半導体発光素子の活性層の構成を示す断面図の一例。
【図9】第5の実施形態の窒化物半導体素子の活性層のバンドダイヤグラム。
【図10】n側井戸近接層の膜厚を変化させたときの閾値電流密度を表したグラフ。
【図11】第6の実施形態の窒化物半導体素子の活性層のバンドダイヤグラム。
【図12】従来の窒化物半導体発光素子の構成を示す概略断面図。
【図13】n型不純物がドープされていないInGaN層の膜厚を変化させたときの閾値電流密度を表したグラフ。
【符号の説明】
1 n型GaN層
2 n型InGaNクラック防止層
3 n型AlGaNクラッド層
4 n型GaN光ガイド層
5 活性層
6 p型AlGaNキャリアブロック層
7 p型GaN光ガイド層
8 p型AlGaNクラッド層
9 p型GaNコンタクト層
10 n型電極
11 SiO誘電体膜
12 p型電極

Claims (12)

  1. n型不純物がドープされたn型窒化物半導体層と、キャリアをトラップする複数の井戸層と該井戸層よりもバンドギャップエネルギーの高い複数の障壁層とが積層されて成る多重量子井戸構造である活性層と、p型不純物がドープされたp型窒化物半導体層とから成り、前記n型窒化物半導体層と前記活性層と前記p型窒化物半導体層とが順に積層された窒化物半導体発光素子において、
    前記障壁層が、n型不純物がドープされたドープ層と、n型不純物がドープされていないアンドープ層とを有し、
    前記障壁層の前記ドープ層が前記井戸層と接することを特徴とする窒化物半導体発光素子。
  2. 前記障壁層を構成する前記ドープ層及び前記アンドープ層の総数が3層以上であるとともに、前記アンドープ層が前記井戸層と接していないことを特徴とする請求項1に記載の窒化物半導体発光素子。
  3. 前記ドープ層の膜厚daが、0.3nm≦da≦3nmであることを特徴とする請求項2に記載の窒化物半導体発光素子。
  4. 前記障壁層が、1つの前記ドープ層と1つの前記アンドープ層の2層で構成されることを特徴とする請求項1に記載の窒化物半導体発光素子。
  5. 前記ドープ層の膜厚daが、0.3nm≦da≦4nmであることを特徴とする請求項4に記載の窒化物半導体発光素子。
  6. 前記障壁層の膜厚dbが、7nm≦db≦12nmであることを特徴とする請求項1〜請求項5のいずれかに記載の窒化物半導体発光素子。
  7. 前記ドープ層にドープされたn型不純物の濃度Xが、5×1015cm−3≦X≦1×1020cm−3であることを特徴とする請求項1〜請求項6のいずれかに記載の窒化物半導体発光素子。
  8. 前記井戸層の膜厚dcが、2nm≦dc≦7nmであることを特徴とする請求項1〜請求項7のいずれかに記載の窒化物半導体発光素子。
  9. 前記障壁層がGaN層であることを特徴とする請求項1〜請求項8のいずれかに記載の窒化物半導体発光素子。
  10. 前記アンドープ層の組成にInが含まれることを特徴とする請求項9に記載の窒化物半導体発光素子。
  11. 前記ドープ層の組成にInが含まれることを特徴とする請求項9又は請求項10に記載の窒化物半導体発光素子。
  12. 前記井戸層がInGaN層であるとともに、n型不純物がドープされていないことを特徴とする請求項1〜請求項11のいずれかに記載の窒化物半導体発光素子。
JP2002187786A 2002-06-27 2002-06-27 窒化物半導体発光素子 Expired - Lifetime JP4285949B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187786A JP4285949B2 (ja) 2002-06-27 2002-06-27 窒化物半導体発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187786A JP4285949B2 (ja) 2002-06-27 2002-06-27 窒化物半導体発光素子

Publications (3)

Publication Number Publication Date
JP2004031770A true JP2004031770A (ja) 2004-01-29
JP2004031770A5 JP2004031770A5 (ja) 2005-10-20
JP4285949B2 JP4285949B2 (ja) 2009-06-24

Family

ID=31182713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187786A Expired - Lifetime JP4285949B2 (ja) 2002-06-27 2002-06-27 窒化物半導体発光素子

Country Status (1)

Country Link
JP (1) JP4285949B2 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156891A (ja) * 2004-12-01 2006-06-15 Sharp Corp 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
JP2007184585A (ja) * 2005-12-29 2007-07-19 Shogen Koden Kofun Yugenkoshi 半導体発光素子及びその製造方法
US7515621B2 (en) 2006-02-08 2009-04-07 Sharp Kabushiki Kaisha Nitride semiconductor laser element
JP2010067709A (ja) * 2008-09-09 2010-03-25 Toshiba Corp 半導体発光素子及びウェーハ
JP2010080619A (ja) * 2008-09-25 2010-04-08 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子及びその製造方法
US20110037049A1 (en) * 2009-08-17 2011-02-17 Koichi Tachibana Nitride semiconductor light-emitting device
CN102104095A (zh) * 2009-12-22 2011-06-22 Lg伊诺特有限公司 发光器件、发光器件封装、制造发光器件的方法和照明系统
JP2011151275A (ja) * 2010-01-22 2011-08-04 Nec Corp 窒化物半導体発光素子および電子装置
JP2011159771A (ja) * 2010-01-29 2011-08-18 Nec Corp 窒化物半導体発光素子、窒化物半導体発光素子の製造方法、および電子装置
JP2012069982A (ja) * 2011-11-18 2012-04-05 Toshiba Corp 窒化物半導体発光素子
JP2013084818A (ja) * 2011-10-11 2013-05-09 Toshiba Corp 半導体発光素子
JP2014033185A (ja) * 2012-08-06 2014-02-20 Lg Innotek Co Ltd 発光素子及び発光素子パッケージ
KR20140026891A (ko) * 2012-08-23 2014-03-06 엘지이노텍 주식회사 발광소자, 발광 소자 패키지 및 조명 시스템
KR20140055303A (ko) * 2012-10-31 2014-05-09 엘지이노텍 주식회사 발광소자
JP2015053531A (ja) * 2014-12-17 2015-03-19 株式会社東芝 半導体発光素子
JP2016092162A (ja) * 2014-11-03 2016-05-23 豊田合成株式会社 発光素子の製造方法、iii族窒化物半導体の製造方法
EP2535952A3 (en) * 2011-06-14 2016-12-21 LG Innotek Co., Ltd. Light emitting device
KR20170082738A (ko) * 2016-01-07 2017-07-17 엘지이노텍 주식회사 발광소자
CN107240627A (zh) * 2017-05-16 2017-10-10 东南大学 一种具有双掺杂多量子阱结构的紫外发光二极管
US9865770B2 (en) 2013-07-17 2018-01-09 Kabushiki Kaisha Toshiba Semiconductor light emitting element and method for manufacturing the same
JP2018500762A (ja) * 2015-01-05 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス部品
KR20180082872A (ko) * 2017-01-11 2018-07-19 엘지이노텍 주식회사 반도체 소자 및 이를 갖는 반도체 소자 패키지
KR101919109B1 (ko) 2012-09-13 2018-11-16 엘지이노텍 주식회사 자외선 발광 소자 및 자외선 발광 소자 패키지
CN109075223A (zh) * 2016-04-27 2018-12-21 原子能和替代能源委员会 包括位于发光区的至少一个势垒层内的至少一个较宽带隙中间层的发光二极管
US10305257B2 (en) 2015-05-26 2019-05-28 Nichia Corporation Semiconductor laser device
EP3637567A1 (en) * 2018-08-31 2020-04-15 Nichia Corporation Semiconductor laser element
WO2021107032A1 (ja) * 2019-11-27 2021-06-03 ヌヴォトンテクノロジージャパン株式会社 半導体発光素子、及び、半導体発光素子の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084132A (ja) * 1996-09-08 1998-03-31 Toyoda Gosei Co Ltd 半導体発光素子
JP2000332364A (ja) * 1999-05-17 2000-11-30 Matsushita Electric Ind Co Ltd 窒化物半導体素子
JP2003229645A (ja) * 2002-01-31 2003-08-15 Nec Corp 量子井戸構造およびそれを用いた半導体素子ならびに半導体素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084132A (ja) * 1996-09-08 1998-03-31 Toyoda Gosei Co Ltd 半導体発光素子
JP2000332364A (ja) * 1999-05-17 2000-11-30 Matsushita Electric Ind Co Ltd 窒化物半導体素子
JP2003229645A (ja) * 2002-01-31 2003-08-15 Nec Corp 量子井戸構造およびそれを用いた半導体素子ならびに半導体素子の製造方法

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156891A (ja) * 2004-12-01 2006-06-15 Sharp Corp 窒化物半導体発光素子および窒化物半導体発光素子の製造方法
JP2007184585A (ja) * 2005-12-29 2007-07-19 Shogen Koden Kofun Yugenkoshi 半導体発光素子及びその製造方法
US7515621B2 (en) 2006-02-08 2009-04-07 Sharp Kabushiki Kaisha Nitride semiconductor laser element
US8692228B2 (en) 2008-09-09 2014-04-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device and wafer
US8324611B2 (en) 2008-09-09 2012-12-04 Kabushiki Kaisha Toshiba Semiconductor light emitting device and wafer
JP2010067709A (ja) * 2008-09-09 2010-03-25 Toshiba Corp 半導体発光素子及びウェーハ
US9064996B2 (en) 2008-09-25 2015-06-23 Toyoda Gosei Co., Ltd. Group III nitride-based compound semiconductor light-emitting device and production method therefor
JP2010080619A (ja) * 2008-09-25 2010-04-08 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子及びその製造方法
US20110037049A1 (en) * 2009-08-17 2011-02-17 Koichi Tachibana Nitride semiconductor light-emitting device
WO2011021264A1 (ja) * 2009-08-17 2011-02-24 株式会社 東芝 窒化物半導体発光素子
JPWO2011021264A1 (ja) * 2009-08-17 2013-01-17 株式会社東芝 窒化物半導体発光素子
JP5044692B2 (ja) * 2009-08-17 2012-10-10 株式会社東芝 窒化物半導体発光素子
CN102104095A (zh) * 2009-12-22 2011-06-22 Lg伊诺特有限公司 发光器件、发光器件封装、制造发光器件的方法和照明系统
US8558215B2 (en) 2009-12-22 2013-10-15 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, method of manufacturing light emitting device and lighting system
JP2011151275A (ja) * 2010-01-22 2011-08-04 Nec Corp 窒化物半導体発光素子および電子装置
JP2011159771A (ja) * 2010-01-29 2011-08-18 Nec Corp 窒化物半導体発光素子、窒化物半導体発光素子の製造方法、および電子装置
EP2535952A3 (en) * 2011-06-14 2016-12-21 LG Innotek Co., Ltd. Light emitting device
JP2013084818A (ja) * 2011-10-11 2013-05-09 Toshiba Corp 半導体発光素子
JP2012069982A (ja) * 2011-11-18 2012-04-05 Toshiba Corp 窒化物半導体発光素子
JP2014033185A (ja) * 2012-08-06 2014-02-20 Lg Innotek Co Ltd 発光素子及び発光素子パッケージ
KR20140026891A (ko) * 2012-08-23 2014-03-06 엘지이노텍 주식회사 발광소자, 발광 소자 패키지 및 조명 시스템
KR101953716B1 (ko) 2012-08-23 2019-03-05 엘지이노텍 주식회사 발광소자, 발광 소자 패키지 및 조명 시스템
KR101919109B1 (ko) 2012-09-13 2018-11-16 엘지이노텍 주식회사 자외선 발광 소자 및 자외선 발광 소자 패키지
KR20140055303A (ko) * 2012-10-31 2014-05-09 엘지이노텍 주식회사 발광소자
KR101963222B1 (ko) * 2012-10-31 2019-03-28 엘지이노텍 주식회사 발광소자
US9865770B2 (en) 2013-07-17 2018-01-09 Kabushiki Kaisha Toshiba Semiconductor light emitting element and method for manufacturing the same
JP2016092162A (ja) * 2014-11-03 2016-05-23 豊田合成株式会社 発光素子の製造方法、iii族窒化物半導体の製造方法
JP2015053531A (ja) * 2014-12-17 2015-03-19 株式会社東芝 半導体発光素子
JP2018500762A (ja) * 2015-01-05 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH オプトエレクトロニクス部品
US10305257B2 (en) 2015-05-26 2019-05-28 Nichia Corporation Semiconductor laser device
US10686298B2 (en) 2015-05-26 2020-06-16 Nichia Corporation Method of manufacturing semiconductor laser device
KR102486331B1 (ko) * 2016-01-07 2023-01-10 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자
KR20170082738A (ko) * 2016-01-07 2017-07-17 엘지이노텍 주식회사 발광소자
CN109075223A (zh) * 2016-04-27 2018-12-21 原子能和替代能源委员会 包括位于发光区的至少一个势垒层内的至少一个较宽带隙中间层的发光二极管
JP2019517133A (ja) * 2016-04-27 2019-06-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 発光領域の少なくとも1つの障壁層に配置された少なくとも1つの広いバンドギャップの中間層を含む発光ダイオード
KR20180082872A (ko) * 2017-01-11 2018-07-19 엘지이노텍 주식회사 반도체 소자 및 이를 갖는 반도체 소자 패키지
KR102648675B1 (ko) 2017-01-11 2024-03-19 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자 및 이를 갖는 반도체 소자 패키지
CN107240627A (zh) * 2017-05-16 2017-10-10 东南大学 一种具有双掺杂多量子阱结构的紫外发光二极管
US10903624B2 (en) 2018-08-31 2021-01-26 Nichia Corporation Semiconductor laser element
US11594861B2 (en) 2018-08-31 2023-02-28 Nichia Corporation Semiconductor laser element
US11848540B2 (en) 2018-08-31 2023-12-19 Nichia Corporation Semiconductor laser element
EP3637567A1 (en) * 2018-08-31 2020-04-15 Nichia Corporation Semiconductor laser element
WO2021107032A1 (ja) * 2019-11-27 2021-06-03 ヌヴォトンテクノロジージャパン株式会社 半導体発光素子、及び、半導体発光素子の製造方法

Also Published As

Publication number Publication date
JP4285949B2 (ja) 2009-06-24

Similar Documents

Publication Publication Date Title
JP4285949B2 (ja) 窒化物半導体発光素子
JP4328366B2 (ja) 半導体素子
JP4954536B2 (ja) 窒化物半導体発光素子
JP4441563B2 (ja) 窒化物半導体レーザ素子
JP2001085737A (ja) 窒化物半導体発光素子
JPH11298090A (ja) 窒化物半導体素子
US11322654B2 (en) Nitride semiconductor light-emitting element
KR101199677B1 (ko) 반도체 발광 소자 및 그 제조 방법
JPH0823124A (ja) 窒化ガリウム系化合物半導体発光素子
JP2000228536A (ja) 発光ダイオード
WO2014061692A1 (ja) 窒化物半導体発光素子
JP4284946B2 (ja) 窒化物系半導体発光素子
JP2003204122A (ja) 窒化物半導体素子
JP2006310488A (ja) Iii族窒化物系化合物半導体発光素子及びその製造方法
JPWO2008153068A1 (ja) 窒化物系半導体装置およびその製造方法
JP3620292B2 (ja) 窒化物半導体素子
JPH1174622A (ja) 窒化物系半導体発光素子
JP4884826B2 (ja) 半導体発光素子
JP2002344015A (ja) 窒化物半導体発光素子
JP4342134B2 (ja) 窒化物半導体レーザ素子
JP3484997B2 (ja) 窒化ガリウム系化合物半導体発光素子
KR100511530B1 (ko) 질화물반도체소자
JP3216596B2 (ja) 窒化ガリウム系化合物半導体発光素子
JP4284103B2 (ja) 酸化物半導体発光素子
JPWO2008153065A1 (ja) 半導体発光素子及びその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term