JP2004007150A - 自動分散補償装置および補償方法 - Google Patents

自動分散補償装置および補償方法 Download PDF

Info

Publication number
JP2004007150A
JP2004007150A JP2002159062A JP2002159062A JP2004007150A JP 2004007150 A JP2004007150 A JP 2004007150A JP 2002159062 A JP2002159062 A JP 2002159062A JP 2002159062 A JP2002159062 A JP 2002159062A JP 2004007150 A JP2004007150 A JP 2004007150A
Authority
JP
Japan
Prior art keywords
dispersion
chromatic dispersion
transmission quality
compensation
compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002159062A
Other languages
English (en)
Other versions
JP3923373B2 (ja
Inventor
Tomoo Takahara
高原 智夫
Hiromi Ooi
大井 寛己
Joji Ishikawa
石川 丈二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002159062A priority Critical patent/JP3923373B2/ja
Priority to EP03011116A priority patent/EP1367744A3/en
Priority to US10/446,694 priority patent/US7433599B2/en
Priority to CNA031385710A priority patent/CN1467935A/zh
Publication of JP2004007150A publication Critical patent/JP2004007150A/ja
Application granted granted Critical
Publication of JP3923373B2 publication Critical patent/JP3923373B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2572Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to forms of polarisation-dependent distortion other than PMD

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】専用の波長分散モニタの代わりに一般的な伝送品質モニタを用いながら、波長分散による伝送品質の劣化を改善する。
【解決手段】伝送路から入力される1つ以上のチャネルに対する光受信信号の伝送品質を測定する手段2と、手段2の測定結果から伝送路における波長分散による伝送品質の劣化を他の原因による劣化と切り分けて検出し、その劣化を改善するように可変波長分散補償器(VDC)を制御する手段3とを備える。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は光通信システムに係わり、更に詳しくは現在進展しつつある光通信システムの大容量化、高速化、および長距離化を実現するために不可欠な技術としての波長分散補償技術、特に伝送路における波長分散および偏波モード分散を最適に補償するための自動分散補償装置、および補償方法に関する。
【0002】
【従来の技術】
近年のネットワーク容量の急激な増加に伴い、ネットワークの更なる大容量化の要求が高まっている。現在、1チャネルあたりの伝送容量10Gb/sをベース技術とした波長分割多重(ウエーブレングス・ディビージョン・マルチプレクシング:WDM)光伝送方式が実用化されているが、今後更なる大容量化が必要であり、周波数利用効率と、装置コストの問題より、1チャネルあたり40Gb/s以上の超高速光伝送システムの実現が期待されている。
【0003】
しかしながら、このような超高速光伝送システムでは、波長分散及び偏波モード分散に起因する伝送波形劣化の伝送品質への影響が増大する為、光信号の伝送距離が制限されるという問題がある。その為、超高速光システム実現の上で、波長分散及び偏波モード分散を高精度に補償するシステムが必要となる。この波長分散及び偏波モード分散について次に説明する。
【0004】
ア)波長分散について
伝送速度10Gb/sを超える光通信システムでは、波長分散に対するトレランスが著しく小さくなる。例えば40Gb/sNRZ(ノン・リターン・ツー・ゼロ)方式の波長分散トレランスは、100ps/nm以下となる。
【0005】
また一般に、光通信システムの中継間隔は一定ではない。その為、例えば、17ps/nm/kmの波長分散値を持つ1.3μm零分散シングル・モード・ファイバ(SMF)を用いた場合、数km異なっただけで、波長分散トレランスを逸脱することになる。
【0006】
一方で、通信キャリアが所有する光ファイバ伝送路は、中継区間ごとの距離、波長分散値について正確に把握されておらず、分散補償(ディスパーション・コンペンセーション)ファイバ:DCF等を用いた固定波長分散補償法で高精度な波長分散補償を実現することは困難なケースが多い。
【0007】
更に、波長分散値はファイバ温度や応力等により経時的に変化する為、システム運用開始時だけではなく、システム運用中も波長分散を厳密に測定しながら、中継区間毎の波長分散量を最適に調整する必要がある。例えば、光ファイバの種類としてDCF、伝送路の長さを500km、温度変動を100℃とすると、
Figure 2004007150
となり、この値は40Gb/sNRZ信号の波長分散トレランスとほぼ同等となってしまう。従って、常時伝送路の波長分散値をモニタし、波長分散補償量の最適制御を行う自動波長分散補償システムはSMF伝送路だけではなく、1.55μm零分散シフトファイバ(DSF)やNZ(ノンゼロ)−DSFを伝送路として用いたシステムでも不可欠となる。
【0008】
イ)偏波モード分散について
次に、偏波モード分散(PMD:Polarization Mode Dispersion)について述べる。
【0009】
PMDは、光信号における偏光成分(例えばTEモード及びTMモードのような2つのモード光)の伝播遅延時間が異なることによって生じる分散であり、あらゆる光ファイバにおいて発生しうるものである。
【0010】
一般的に偏波モード分散の影響は、光信号が大きくなるほど、また、光信号の伝送距離が長くなるほど大きくなり、無視できない物となる。また主に日本国以外に敷設された古い光伝送路を構成する光ファイバには、単位長あたり1ps/km1/2 (ピコ秒/km1/2 :ピコは10の−12乗を示す)を越えるるような大きなPMD値を持つと言われている物もあり、そのような光ファイバを用いて短距離伝送(例えば50km伝送)を行った場合でも光遅延差(Δτ)は、40Gb/sNRZ信号の1タイムスロット25psに対して、7ps以上となる。このため前述の波長分散と同様に偏波モード分散の影響も無視できない物となる。実際には、光通信システムには光増幅器や波長分散補償器等の偏波モード分散を生じる部材を伝送路中に設ける必要があるため、光信号の伝送距離が更に制限される恐れがある。更に、偏波モード分散は光ファイバに加わる応力や温度変化によって経時変化を示す為、敷設時だけだなく、運用中も伝送路の偏波モード分散の状態をモニタし、動的に補償する必要がある。
【0011】
上記のように、波長分散と偏波モード分散は光通信システムの性能を制限する大きな要因であり、光通信システムの性能を改善する為には、波長分散、偏波モード分散の双方を個別に動的に補償する、つまり、自動分散補償システムを用意する必要がある。
【0012】
自動分散補償器を実現する為の要素技術は、下記の(a)〜(c)の三つにまとめられる。
(a)可変分散補償器の実現
(b)伝送路の波長分散モニタの実現
(c)可変分散補償器のフィードバック最適化制御方法の実現
(a)のうち。波長分散補償器としては、これまでに一例として、下記のようなものが提案されている。
【0013】
▲1▼ VIPA(仮想的階段型回析格子)
“VIRIABLE DISPERSION COMPENSATOR USING THE VIRTUALLY IMAGED PHASED ARRAY (VIPA) FOR 40−GBIT/S WDM TRANSMISSION SYSTEM”ECOC2000, PD Topic2,2.3
▲2▼TUNABLE RING RESONATOR(可変リング共振器)
“TUNABLE RING RESONATOR DISPERSION COMPENSATORS REALIZED IN HIGH REFRACTIVE−INDEX CONTRAST TECHNOLOGY” ECOC2000, PD Topic2,2.2
▲3▼FBG(Fiber Bragg Grating)
“TWIN FIBER GRATING ADJUSTABLE DISPERSION COMPENSATOR FOR 40GBIT/S” ECOC2000, PD Topic2,2.4
また、偏波モード分散補償器としても、これまでに一例として、下記のようなものが提案されている。
【0014】
▲1▼光信号の送信端に偏波制御器(PC:Polarization Controller)を設け、伝送特性を受信端からフィードバックして、2つの偏波モードへの光強度の分岐比γを0または1となるように制御する方法。
“Optical Equalization of Polarization Dispersion”,SPIE Vol.1.1787 Multigigabit Fiber Communications, 1992, pp.346−357
▲2▼光信号の受信端に偏波制御器と偏波保持ファイバ(PMF:Polarization Maintaining Fiber)とを設け、偏波制御器を制御することにより、光伝送路とは逆符号な2つの偏波モード間の遅延差を与える方法。
“Automatic compensation technique for timewise fluctuating polarization mode dispersion in in−line amplifier systems”,Electro, Lett., Vol.30, No.4, 1994, pp348−349
▲3▼光信号の受信端に、偏波制御器と偏波ビームスプリッタ(PBS:Polarization Beam Splitter)と、この偏波ビームスプリッタにより2つに分岐された光信号成分をそれぞれ受光する受光器と、これら受光器により得られた2つの電気信号間に遅延差を与える可変遅延素子を設けて、偏波制御器及び可変遅延素子を制御する方法。
“Polarization Control Method for Suppressing Polarization Mode Dispersion Influence in Optical Transmission Systems”,J.of Lightwave Technol., Vol.12, No.5, 1994, pp891−898
次に、フィードバック制御に不可欠な(b)伝送路の波長分散モニタについてもいくつかの提案がなされている。
【0015】
まず、波長分散値の測定方法としては、複数の異なる波長の光を光ファイバに入力し、出力光間の群遅延や位相差を測定するパルス法や位相法が、従来から、提案されている。しかし、これらの方法を用いて、システム運用中に通信の品質を落とすことなく常時波長分散測定を行うためには、▲1▼中継区間毎に一組の波長分散測定器が必要となる。▲2▼データ信号とは異なる波長の測定光を波長多重する必要がある。といった課題があり、実現することは、経済性及び装置サイズの面から見て現実的ではない。
【0016】
このような問題を解決する波長分散モニタの一例として、いくつかの手法が提案されている。以下に波長分散モニタの一例を示す。
▲1▼波形歪みにより、特定の周波数成分強度が変化する性質を利用し、受信ベースバンド信号中の特定周波数成分強度を用いる方法(“Automatic Despersion Equalization in 40 Gbit/s Transmission by Seamless−switching between Multiple Signal Wavelengths”,ECOC’99, pp.I−150−151)。
【0017】
▲2▼エラーレート等を用いた方法
受信機でエラーレートをモニタし、エラーレートが最良になるように波長分散補償器をフィードバック制御する方法(“温度に起因する分散の変動を補償するための自動分散補償モジュールを組み込む光ファイバ通信システム”,日本国公開特許公報,特開2001−77756 (P2001−77756A)及び“自動等化システム”,日本国公開特許公報、特開平9−326755)。
【0018】
また、偏波モード分散の測定方法としては、
▲1▼消光法(セナルモン法)
▲2▼回転検光子法
▲3▼回転移相子法
▲4▼位相変調法
等が提案されており、偏光状態の表示(表現)方法としては、
▲1▼ポアンカレ球
▲2▼ジョーンズベクトル
▲3▼ストークスベクトル
が提案されている(「偏光状態の表示法と測定法」,OPTRONICS,(1997),No.5 pp.109−117)。
【0019】
ジョーンズベクトルを用いた偏波モード分散の測定方法およびその装置は、一例として特開平9−72827に提案されている。また。波長分散が存在する環境下での適用は困難であるが、受信信号中の特定周波数成分をモニタすることによる偏波分散モニタも提案されている。
【0020】
実用的な波長分散モニタはいずれの場合も分散に起因する波形歪みを直接又は間接に用いる。この為、波長分散と偏波モード分散が同時に生じているようなケースでは、波形歪みが波長分散に起因するものか、偏波モード分散に起因するものか区別できない為、波長分散と偏波モード分散双方を同時に補償する自動分散補償器の実現は困難である。
【0021】
さらに、これまでに提案されている、誤り率等の伝送品質を表すパラメータを利用し、波長分散モニタの代用とする構成の場合、伝送品質劣化の原因が波長分散によるものか、それ以外によるものかの切り分けが困難であった。そのため、伝送品質劣化の要因を切り分けずに、波長分散補償器が全ての伝送品質劣化要因を補償するかのように制御される。しかし、伝送品質劣化の要因は多岐にわたるため、波長分散補償器のみの制御で伝送品質改善が補償されるわけではなく、常に最適制御が行われる保証は無く、更には制御が発散する場合も考えられる。
【0022】
【発明が解決しようとする課題】
このように伝送品質劣化の要因を切り分けずに波長分散補償器の動作が行われると、最適制御が保証されず、制御が発散してしまう例について図50〜図52を用いて説明する。
【0023】
図50はその問題点を説明するための検討に用いた光通信システムの全体構成ブロック図である。同図においては、チャネル1(196THz)〜チャネル40(192.1THz)までの各チャネル(チャネル間は100GHz間隔)に対応する送信機TX100の出力が合波器101によって合波され、例えば90kmの伝送路102を介して受信側に送られる。伝送路の分散はチャネル1に対して5.0ps/nm/km、分散スロープは0.06ps/nm /kmとする。
【0024】
受信側では分波器103によって各チャネル毎の信号が分離され、各チャネル毎の信号は可変波長分散補償器(バリアブル・ディスパーション・コンペンセーター,VDC)104によって波長分散の補償が行われた後に、受信機RX105に与えられ、その受信結果に対してモニタおよび制御器106によって伝送品質のモニタが行われ、VDC104の制御が行われる。ここでは説明の簡単化のためにファイバの非線形効果は無視し、また伝送品質モニタ106のモニタ値としての誤りの数を用いた。
【0025】
図51は、受信機における識別閾値と識別位相を最適化した場合の、1秒あたりの平均誤り数と残留波長分散量との関係である。波長分散により発生する誤りの許容数、すなわちペナルティを1とすると、分散トレランスは約98ps/nmとなる。
【0026】
波長分散以外に伝送品質を劣化させる原因として、受信機の識別閾値のずれがある場合を考える。誤り許容数1となる誤りが発生する識別閾値における、誤り数と残留波長分散量との関係を図52に示す。
【0027】
図51と比較すると、制御が発散した状態となっており、波長分散最適値の探索も困難である。すなわち、このような状況では分散補償器のみの制御では誤り許容数を満足する伝送を実現できないことが分かる。
【0028】
このように波長分散以外の原因によって伝送品質の劣化が発生した場合には、波長分散補償器をむしろ動作させないことが必要である。従って伝送品質モニタを用いて波長分散補償器を制御する場合には、伝送品質劣化の要因を切り分けなければならないという問題点があった。
【0029】
本発明の課題は、上述の問題点に鑑み、波長分散モニタの代わりに伝送品質モニタを用いながら、伝送品質劣化の要因を切り分けることによって、波長分散による伝送品質の劣化を改善することができる自動分散補償装置、および補償方法を提供することである。
【0030】
【課題を解決するための手段】
図1は本発明の自動分散補償装置の原理構成ブロック図である。同図は、1つ以上のチャネルに対する光信号を送信する光送信機から伝送路を介して入力される光信号に対する可変波長分散補償器を有する、自動分散補償装置の原理構成ブロック図である。
【0031】
図1において自動分散補償装置1は伝送品質測定手段2と、波長分散補償量制御手段3とを備える。伝送品質測定手段2は1つ以上のチャネルに対する光受信信号の伝送品質を測定するものであり、例えば受信信号の誤り率や、Q値などを測定する伝送品質モニタである。
【0032】
波長分散補償量制御手段3は、伝送品質測定手段2の測定結果から、伝送路における波長分散による伝送品質の劣化を他の要因による伝送品質の劣化と切り分けて検出し、その劣化を改善する方向に可変波長分散補償器5を制御するものである。
【0033】
発明の実施の形態においては、自動分散補償装置1は可変波長分散補償器5による補償結果としての残留波長分散量に対して、更に光信号の波長に依存してチャネル間での分散補償量の差を増減させる残留波長分散量増減手段と、可変波長分散補償器と残留波長分散量増減手段とによる補償後の伝送品質測定手段による測定結果をチャネル間で比較し、伝送路による波長分散量の増加、または減少を判定する波長分散量増減判定手段とを更に備えることもできる。
【0034】
この場合、残留波長分散量増減手段が、前述のチャネル間での差としての波長分散補償量を全てのチャネルの範囲に渡って、例えば波長の増加に対応してスロープ状、またはステップ状に変化するように増減させることも、あるいは特定のチャネル範囲に対してスロープ状、またはステップ状に変化させるように増減させることもできる。
【0035】
次に発明の実施の形態においては、伝送路を介して送信される光信号を受信する受信機の各部の状態、例えば電圧や温度を検出する受信機状態検出手段を更に備え、受信機状態の検出結果と伝送品質測定手段2の測定結果とに対応して、波長分散補償量制御手段3が可変波長分散補償器に対する制御を停止することもできる。
【0036】
更に実施の形態においては、自動分散補償装置1が可変波長分散補償器に加えて、伝送路から入力される各チャネルの信号にそれぞれ対応する偏波モード分散補償器と、その偏波モード分散補償器による補償後の偏波モード分散を検出するモニタとを備え、波長分散補償量制御手段3が伝送品質測定手段の測定結果の時間的変化傾向とモニタによる検出結果とに対応して、可変波長分散補償器と偏波モード分散補償器との制御を行うこともできる。
【0037】
次に本発明の自動分散補償方法においては、1つ以上のチャネルに対する光受信信号の伝送品質を測定し、その測定結果から伝送路における波長分散による伝送品質の劣化を他の要因と切り分けて検出し、その劣化を改善するように可変波長分散補償器を制御する方法が用いられる。
【0038】
発明の実施の形態においては、可変波長分散補償を制御する計算機によって使用されるプログラムとして、複数の各チャネルに対する光受信信号の伝送品質の測定結果を受け取る手順と、伝送品質の測定結果から、伝送路における波長分散による伝送品質の劣化を、他の劣化原因による劣化と切り分けて検出する手順と、その劣化を改善するように可変波長分散補償の制御を行う手順とを計算機に実行させるプログラムが用いられる。
【0039】
以上のように、本発明によれば専用の分散モニタを用いることなく、一般的な既存機能としての伝送品質モニタを利用して伝送路の波長分散変動の補償が行われる。
【0040】
【発明の実施の形態】
図2は本発明における波長分散補償方式の原理的な説明図である。同図において送信端局10から伝送路11を介して受信端局12に光信号が伝送されるが、受信側で受信端局12の前段に分散補償器が設けられ、波長分散補償が行われる。例えば信号の波長を1,550nmとし、100kmのシングルモードファイバ(SMF)の波長分散値を17ps/nm/kmとすると、分散補償器13によって−1700ps/nmの分散値を与えることによって伝送路における分散の補償が行われる。
【0041】
本実施形態においては、専用の分散モニタを用いることなく、一般的に用いられている伝送品質モニタを用いて波長分散に対する補償などが行われる。本実施形態においては、伝送品質としては誤り率やQ値を用いることとするが、このような伝送品質のモニタについて図3、および図4を用いて説明する。
【0042】
図3はSONET/SDH(シンクロナス・オプティカル・ネットワーク/シンクロナス・ディジタル・ハイアラーキ)システムの場合に、オーバヘッドに含まれる運用保守に関する情報としてのB1バイトと呼ばれる8ビットの値を利用する例である。
【0043】
図3において、送信機15からの信号は、電気/光変換器(E/O)16によって光信号に変換され、伝送路17を介して受信側で光/電気変換器(O/E)18によって電気信号に変換され、受信機19に与えられる。前述のB1バイトは、BIP−8(ビット・インターリーブド・パリティー8)と呼ばれる監視方式が採用されている中継装置相互間、あるいは中間の中継装置と端局の多重中継装置の間の符号誤り監視に用いられるバイトであり、該当区間の伝送信号の品質を表すための品質モニタのために利用することができる。
【0044】
また、BIP−24×Nと呼ばれる監視方式が採用されている端局多重中継装置相互間において、符号誤り監視に用いられるB2バイトも伝送品質を表すバイトとして用いられ、全情報が24ビットに分割して監視されることから、BIP−8に比べてより詳細な誤り情報が抽出される。
【0045】
図4は誤り訂正符号、すなわちフォワード・エラー・コレクション(FEC)を用いて伝送品質のモニタを行う例である。同図においては、送信機15の内部に信号源20とFECエンコーダ21が備えられ、受信側では受信機内のエラー訂正部19としてFECデコーダ23と誤り訂正数などを求めるパフォーマンスモニタ24が備えられ、誤り情報が制御ファームウエア25に与えられて、受信側における可変分散補償器22に対する制御信号が出力される。このように本実施形態では、特別の波長分散モニタを用いる代わりに、受信機側で一般的に用いられる符号誤り監視や訂正のための構成をそのまま利用することができる。
【0046】
図5は本発明の第1の実施形態における光通信システムの構成例(その1)である。この第1の実施形態においては、伝送品質モニタのモニタ結果をそのまま用いて分散補償器の制御が行われる。
【0047】
図5においては、各チャネルに対応する送信機(TX1〜TXN)30の出力は合波器31によって合波され、伝送線路32を介して受信側に伝送される。
受信側では分波器33によって各チャネルの受信信号RX1,RX2,・・・、RXNが分離され、各チャネル毎の信号は、分散補償器34によって伝送路の分散などが補償され、光電気変換部35によって電気信号に変換され、増幅器36によって増幅され、クロック抽出回路37と識別回路38によって受信信号として出力される。図5では各チャネル毎の受信信号に対して伝送品質モニタ39によるモニタが行われ、その結果に対応して、制御回路40によって各チャネル毎の分散補償器34の制御が行われる。
【0048】
図6は第1の実施形態における光通信システムの構成例(その2)である。同図においては、受信側において任意のチャネル、例えば1つのチャネルに対する識別回路38の出力としての受信信号に対して伝送品質モニタ39によるモニタが行われ、制御回路40によって、伝送線路32と分波器33との間に設けられ、全てのチャネルに対して共通に備えられる分散補償器34の制御が行われる点が異なっている。
【0049】
図6では分散補償器34が伝送線路32の直後に1つだけ備えられ、波長分散の一括補償が行われている。後述するように、伝送路の波長分散の変動による伝送品質の劣化は波長、すなわちチャネルに基本的に依存せず、どのチャネルでも同程度の劣化が生じることから、このような一括補償が可能である。一括補償方式では、図5のように各チャネル毎の個別補償方式に比べて、コストや装置のサイズなどの面でメリットが大きいが、一括補償が困難な場合もある。
【0050】
一括補償が困難となる理由の第1は、可変波長分散補償器(VDC)のデバイス特性として、1個の補償器では広い帯域に対応できないことである。VIPAなどの一部のデバイスでは、周期的に広い帯域に対応させることも可能であるが、一般的に1つの補償器で広い帯域全体をカバーする特性をもつことは困難である。
【0051】
第2の理由は、伝送距離が大きい場合に一括補償が困難となることである。群遅延の波長依存性を波長分散スロープと言うが、光ファイバがその分散スロープを持つことにより、伝送距離が長い場合にはそのスロープまで補償する必要があり、一括補償は困難となる。
【0052】
図7は第1の実施形態における光通信システムの構成例(その3)のブロック図である。同図においては、受信側で各チャネル毎に設けられる伝送品質モニタ39の出力を全て用いて、1つの制御回路40によって、各チャネル毎に設けられる分散補償器34の制御が行われる点が異なっている。
【0053】
図8は第1の実施形態における光通信システムの構成例(その4)のブロック図である。同図においては、受信側において各チャネル毎に設けられる伝送品質モニタ39のモニタ結果の全てを用いて、1つの制御回路40によって、各チャネルに対して共通的に設けられる分散補償器34の制御が行われる点が異なっている。
【0054】
図9は、例えば図7における分散補償制御の処理フローチャートである。同図において処理が開始されると、まずステップS1でチャネル番号が1とされ、ステップS2で最適分散補償量設定の処理が行われる。この処理は図2で説明した方法による処理である。
【0055】
一般に伝送線路の波長分散の値はファイバの特性、長さ、使用する波長などによって異なり、また陸上の光通信システムの場合には中継間隔も一様ではなく、特に波長分散トレランスが小さい超高速光通信システムにおいては、例えば各波長分散補償器毎に波長分散補償量の最適化が必要となる。ステップS2の処理はこの各波長分散補償器毎の処理を示している。
【0056】
なお、この最適化では前述のように、ファイバの波長分散のマニュアル値を用いてもよく、あるいは補償量を変化させて最適値を決定してもよい。
続いてステップS3で、チャネル番号がN、すなわち最後のチャネルに達したか否かが判定され、まだ達していない場合にはステップS4でチャネル番号がインクリメントされた後に、ステップS2以降の処理が繰り返され、Nに達したときにはステップS5の処理に移行する。なおこのステップS1〜S4の処理は、例えばシステムの初期設定時に行われる。
【0057】
ステップS5以降の処理は通常監視時の処理である。まずステップS5でチャネル番号が1とされ、ステップS6でそのチャネルに対する伝送品質の測定が行われ、ステップS7でチャネル番号が最終のNに達したか否かが判定され、まだ達していない場合にはステップS8でチャネル番号がインクリメントされた後に、ステップS6以降の処理が繰り返される。
【0058】
ステップS7で全てのチャネルに対する伝送品質の測定が終了したと判定されると、ステップS9で全てのチャネルのうち1つのチャネルでも伝送品質の劣化が発生したか否かが判定され、発生していない場合にはステップS5以降の処理が繰り返される。1つのチャネルであっても伝送品質の劣化が発生した場合には、ステップS10でチャネル間の依存性があるか否かが判定される。
【0059】
このチャネル間の依存性とは、伝送品質の劣化の程度、例えば誤りの数が各チャネルに対して、例えばほぼ同数となっていることを意味する。後述するように伝送路の分散の値の変化は例えば温度の変動によっておこるが、その変化量は波長に無関係であり、全てのチャネルに対して同じ値の分散値の変化が生ずるため、その分散値の変化による伝送品質の劣化についてはチャネル間の依存性(どのチャネルでも同程度の劣化が起こること)が発生することになる。
【0060】
ステップS10でこのチャネル間の依存性がないと判定されると、その伝送品質の劣化は伝送路の波長分散によるものではないと判定され、それに対する波長分散補償を実行することなく、ステップS5以降の処理が繰り返される。この点に本発明の基本的な特徴がある。
【0061】
ステップS10でチャネル間の依存性があると判定されると、波長分散補償が行われる。まずステップS11でチャネル番号が1とされ、ステップS12で分散値の最適化、すなわち補償が行われ、ステップS13でチャネル番号が最後のNに達したか否かが判定され、まだ達していない場合にはステップS14でチャネル番号がインクリメントされて、ステップS12以降の処理が繰り返され、ステップS13でチャネル番号がNに達したと判定されると、1サイクルの処理が終了する。
【0062】
図9のステップS10で説明したように、本発明においては伝送品質の劣化傾向にチャネル間の依存性がある場合、すなわち伝送品質がチャネル間で同一の傾向で変動する場合に波長分散補償が行われる。その理由について図10〜図12を用いて更に説明する。
【0063】
光通信システムの稼動中に自動波長分散補償器の果たすべき主要な役割は、伝送路としての光ファイバの温度変化に伴う波長分散変動の補償である。この温度変化による伝送路分散の変動を図10に示す。同図に示すように、温度の変化に伴って波長分散値は全波長範囲にわたってほぼ均一に変動する。このため、伝送路の波長分散値の変動が原因となる伝送品質の劣化は各チャネル個別におこるものではなく、チャネル間で同一の傾向を持って発生する。
【0064】
図11、および図12は伝送路分散の変動に伴う1秒あたりの平均誤り数の変化のシミュレーション結果である。まずシステム運用の初期設定時に、各チャネルの残留分散量が伝送品質が最良となるように設定される。この設定値が最適分散値である。
【0065】
図11においては温度変動などの理由により、残留分散値がα増加した場合の誤り数の変化を示し、全チャネルの伝送品質がそろって劣化していることが分かる。またその状態で残留分散値を1だけ改善、すなわち最適値に近づけた場合には、全てのチャネルの伝送品質がそろって改善されていることが分かる。
【0066】
図12においては、残留分散値がαだけ減少した場合と、その状態から残留分散値が1だけ改善された状態における誤り数を示し、図11と同様の傾向があることが分かる。
【0067】
一方、波長分散値の変動以外の伝送品質の劣化要因、例えば受信機の識別閾値や識別位相の変化、送信光源の波長変動、部材の劣化や故障のような要因による伝送品質の劣化は、波長分散補償器の制御時間間隔、例えば分単位においては各チャネル個別に発生するため、伝送品質の劣化要因の切り分けが可能である。
【0068】
このように複数のチャネルの伝送品質をモニタし、伝送品質変化特性のチャネル間依存性の有無を利用して、各チャネル毎に波長分散補償器が配置されている場合にもそれらを連動させて動作させることによって、波長分散補償器が波長分散以外の伝送品質の劣化に対して動作し、制御の発散のような問題点を発生することを防止することができる。
【0069】
しかしながら伝送品質をモニタして波長分散モニタの代用とする場合には、伝送路の波長分散の値が増加、または減少のいずれの変化によって伝送品質の劣化が発生したかを区別することができない。このため、例えば波長分散値が増加したにもかかわらず、波長分散最適化の補償において波長分散値を更に増加させて伝送品質の更なる悪化を招くという可能性が生ずる。本発明の第2の実施形態においては、この可能性を防止するような波長分散補償が行われる。
【0070】
図13は第2の実施形態における光伝送システムの構成例(その1)のブロック図である。同図において、伝送システムの構成は第1の実施形態における図7と類似しているが、各チャネルに対応する分散補償器34のうちで、例えばチャネル1に対応する分散補償器に対しては、制御回路40から図9のステップS12で説明した最適値に加えてα が加算されて分散補償が行われ、チャネル2に対応する分散補償器に対しては最適値にα が加算されて分散補償が行われる。以下、それぞれのチャネルに対応する分散補償器に対して、一般的に異なる値が最適値に加算されて分散補償が行われる。
【0071】
このように最適値にある分散値が加算されて分散補償が行われる場合の追加分α の値は、例えばチャネル番号に対応してある傾きのスロープをつけたり、あるいはステップ的に変化させることによってその値を決定することができる。
【0072】
図14はチャネル番号の増加に対応して正、あるいは負の傾きを持たせて、追加分を決定する場合の説明図である。このように正、または負の傾きを持たせる場合において、例えば残留分散量の最大の値は、伝送品質への影響を最小限におさえ、波長分散補償器に許容される誤り数、すなわち許容ペナルティの範囲内に抑えられる必要がある。
【0073】
この場合、伝送品質への影響については波長分散トレランスの値と比較する必要がある。例えば40Gbit/sのNRZ信号を用いる場合には波長分散トレランスは60〜100ps/nmであり、この値と比較して、図14におけるdDの値を小さくとる必要がある。波長分散トレランスの大きさは、受信機や送信機などの特性と、波長分散補償器に許容されるペナルティの値によって変わり、システム毎に検討する必要がある。
【0074】
また追加分の最小値については、波長分散モニタ、あるいは伝送品質モニタの感度によって影響される。例えば伝送品質モニタが1ps/nmの波長分散変動の影響を検出できる感度を持っていれば、dDの値は1ps/nm以上であればよいことになる。伝送品質モニタの検出感度が100ps/nmであるような場合には、その感度は波長分散トレランスに比較して無視することができず、システムが破綻してしまうことになる。誤り率を伝送品質モニタのモニタ結果としてシミュレーションを行った場合に、1ps/nm程度の感度を持たせることが実用的に可能であるという結果が得られている。
【0075】
図15は第2の実施形態における光通信システムの構成例(その2)のブロック図である。同図においては、図13で各チャネルに対応する分散補償器に対して最適値へのチャネル毎の追加分を加算して分散補償が行われたのに対して、分散補償器34による補償は各チャネルに対して共通に行い、その補償結果に対して図14で示したようなチャネル、すなわち波長に対して残留分散量に傾きを持たせる分散スロープ付加器50によってチャネル毎の追加分に相当するスロープを付加して、その結果を分波器33に入力させる点が異なっている。ここで分散補償器34と分散スロープ付加器50との配置の順序は逆でもよい。
【0076】
この分散スロープ補償について、図16を用いて説明する。同図において白丸は伝送路の波長分散特性であり、波長分散補償においては、黒丸の波長分散補償量を分散補償器によって与えることにより、菱型で示されるチャネルに依存しない分散値を得るような補償が行われる。この際、各チャネルの白丸に相当する黒丸の値を決定して分散補償器に与える方法が図13における個別追加分の指定に相当し、特定のチャネルに対応する白丸の値とスロープの値を与えることによって、全チャネルに対応する補償を行うのが分散スロープ補償である。この分散スロープの値は温度などには依存しないため、あらかじめ伝送路の分散スロープ情報が分かっている場合には、その値に基づいてスロープの値を設定することが可能である。
【0077】
図17は第2の実施形態における光通信システムの構成例(その3)のブロック図である。同図においては、図15においては分散スロープ付加器50によって一定スロープの分散が分散補償器34による補償結果に対して付加されるのに対して、更にその分散スロープを可変分散スロープ補償器51において変化させることによって、波長分散補償が行われる。
【0078】
図18、および図19はこのような分散スロープの変化時における分散スロープ最適化方法の説明図である。図18は最適化の第1の方法を示し、まずシステムの初期設定時にいずれかのチャネルに対応する伝送品質モニタを用いて波長分散補償量の最適化を行った後に、1つ以上のチャネルに対応する伝送品質モニタを用いて分散スロープの最適化が行われる。この例ではチャネル1に対してまず最適化が行われ、その後分散スロープの最適化が行われている。
【0079】
図19は最適化の第2の方法の説明図である。同図においては、システムの初期設定時に複数のチャネルの波長分散補償量の最適化が行われる。ここではチャネル1とチャネル11に対する最適化として、図のWとΔDとを用いて、分散スロープの最適化が行われている。このような分散スロープ補償量の最適化の後に、各チャネルに相当するα に相当する分散の値が追加されることになる。
【0080】
次にこのような第2の実施形態における伝送路の波長分散の増加、または減少の判定についてのシミュレーション結果について、図20〜図22を用いて説明する。図20はそのシミュレーションにおける光通信システムの構成例であり、図50で説明した光通信システムと基本的に同じであるが、図21に示す傾斜を持つ分散値の追加分が各チャネルに対する波長分散補償において用いられる点が異なっている。
【0081】
図22、および図23はシミュレーションの結果を示す。1秒あたりの平均誤り数1を伝送品質劣化の許容数、すなわちペナルティとすると、図22では伝送路の波長分散増加量がαps/nmまではいずれのチャネルでも許容数を超えないが、α+1ps/nmになった時点で波長分散値の追加分の傾斜によって、+2ps/nmの値が追加されたチャネル40の側から、誤り数が許容値を越えることになる。
【0082】
図23は伝送路の波長分散値が減少した場合を示し、−αps/nmまでの減少値ではいずれのチャネルでも誤り数は許容値を越えないが、−α−1ps/nmになった時点で傾斜に対応して、−2ps/nmの値が追加されたチャネル1側から、誤り数が許容値を超えることになる。このように各チャネルの残留波長分散量に追加分としてチャネルによる差をつけることによって、伝送路の波長分散量の増加、または減少のいずれかがおこったかを判定することが可能となる。
【0083】
次に第2の実施形態において、波長分散の最適値にチャネルによって異なる差、すなわち追加分を付加して波長分散補償を行う場合について、その差をスロープでつけたり、ステップでつけたり、1部のチャネルに対してのみつけたりする例を、図24〜図34を用いて説明する。
【0084】
図24〜図26は、波長分散量の追加分を全てのチャネルに渡ってスロープ状に設定する場合の例である。伝送路の波長分散量が増加した場合、図24においては1チャネル側から伝送品質が劣化し、図25においては逆に40チャネル側から伝送品質が劣化する。また図26においては、中央の20チャネルにおいて最初に伝送品質が劣化する。
【0085】
図27〜図30は、波長分散量の追加分を全てのチャネルに渡ってステップ状に設定する場合の例である。これらの図においては、複数のチャネルに対して、同一の値の追加分の波長分散量が設定される。
【0086】
図31、および図32は光通信システムにおいて使用される全てのチャネルのうちの1部のチャネルにのみ、追加分がスロープ状に設定される例である。これらの図では、伝送線路の波長分散が増加した場合には、中央の20チャネル付近において最初に伝送品質が劣化し、伝送線路の波長分散が減少した場合には図31では30チャネル付近、図32では10チャネル付近において最初に伝送品質が劣化する。
【0087】
図33、および図34は、1部のチャネルにのみ追加分がステップ的に設定される例である。これらの図においても、どのチャネルに対する伝送品質が最初に劣化するかによって、伝送線路の波長分散が増加したか減少したかを判定することができる。
【0088】
図35は第2の実施形態における伝送路の波長分散量の増加、または減少の判定処理のフローチャートである。同図において処理が開始されると、まずステップS21でチャネル番号のnが1に設定され、ステップS22でそのチャネルに対する伝送品質情報が取得され、ステップS23でnの値がチャネル数の最大値N未満であるか否かが判定され、N未満の時にはステップS24でnの値がインクリメントされ、ステップS22以降の処理が繰り返される。
【0089】
ステップS23でnの値がN未満でないと判定されると、ステップS25で各チャネルのいずれかに対する伝送品質の変化が発生したか否かが判定され、発生していない場合にはステップS21以降の処理が繰り返される。
【0090】
伝送品質の変化が発生した場合には、ステップS26でその変化がチャネル1側で発生したか否かが判定され、チャネル1側で発生した場合にはステップS27で伝送路の波長分散値が減少したと判定され、チャネル1側で発生していない場合には、ステップS28で伝送品質変化がチャネルN側で発生したか否かが判定され、チャネルN側で発生した場合にはステップS29で伝送路の波長分散量は増加したと判定され、チャネルN側でも発生していない場合にはステップS21以降の処理が繰り返される。なおこれらの判定結果は、例えば図14において残留分散量に正の傾きを持たせた場合に対応するものである。
【0091】
次に本発明の第3の実施形態について説明する。第3の実施形態では、光通信システムを構成する各部分の状態をモニタし、例えば電源電圧の変動など、各構成要素自体の特性変動原因が発生している場合には、伝送品質モニタのモニタ結果によって伝送品質が劣化していると判定されるか否かに係わらず、伝送品質の変動にチャネル間の依存性がないと判定されれば、分散補償器による波長分散補償を行わないことにする制御が行われる。
【0092】
図36は第3の実施形態における光通信システムの構成例(その1)のブロック図である。同図においては、各送信機30の状態をモニタする状態モニタ55、合波器31に対する状態モニタ56、伝送線路32に対する状態モニタ57,59、中継器54に対する状態モニタ58、分波器に対する状態モニタ60、光電気変換部35に対する状態モニタ61、増幅器36、クロック抽出回路37および識別回路38に対する状態モニタ62などが備えられ、各状態モニタの出力は制御回路40に与えられて、分散補償器34に対する制御が行われる。
【0093】
図37は第3の実施形態における光通信システムの構成例(その2)のブロック図である。同図においては、光通信システムの各部分の特性に温度、または電源電圧が大きな影響を与えることから、状態モニタのモニタすべき状態として温度、および電源電圧、または温度のみを測定するモニタが備えられる。すなわち送信機30、および光電気変換部(O/E)35に対しては、温度・電源変動モニタ64が、また合波器31と分波器33に対しては温度モニタ65が備えられ、各モニタのモニタ結果は制御回路40に与えられる。
【0094】
図38は第3の実施形態における波長分散制御処理のフローチャートである。同図において処理が開始されると、まずステップS31でチャネル番号を示すnの値が1とされ、ステップS32でTX1、すなわち第1の送信機の特性変動がないか否かが判定され、ない場合にはステップS33でO/E、すなわち光電気変換部35の特性変動がないか否かが判定され、ない場合にはステップS34で合波器31の特性変動がないか否かが判定され、ない場合にはステップS35で分波器33の特性変動がないか否かが判定され、ない場合にはステップS36で伝送品質の測定が行われ、ステップS37の処理に移行する。ステップS32,S33,S34,S35のそれぞれにおいて特性変動があると判定された場合には、直ちにステップS37の処理に移行する。
【0095】
ステップS37でnが全てのチャネル数か否か、すなわち最後のチャネルまで達したか否かが判定され、まだ達していない場合にはステップS38でチャネル番号がインクリメントされ、ステップS32以降の処理が繰り返される。
【0096】
最後のチャネルまで達していると判定された場合には、ステップS39で伝送品質変動にチャネル間の依存性があるか否かが判定され、ない場合には分散補償器の制御を行うことなく、ステップS31以降の処理が繰り返され、チャネル間依存性があると判定された場合に限ってステップS40で分散補償器34の制御が行われた後、ステップS31以降の処理が繰り返される。
【0097】
図39は第3の実施形態における光通信システムの受信機側の構成例のブロック図である。例えば図36において、送信機30に対する状態モニタ55のモニタ結果は、受信機側にある制御回路40に与えられる必要があるが、伝送線路の距離が長い場合などには、受信機側での状態変動のモニタのみに限定する方が実用的である。
【0098】
図39において光受信機65は、受信光信号を電気信号に変換するフォトダイオード(PD)66、前置増幅器67、および増幅器68によって構成され、伝送路において減衰した信号を増幅し、波形整形を行う等化増幅器69、受信データ信号からクロック信号を抽出するクロック抽出回路37および受信信号の状態を識別する識別回路38を備えている。そして状態モニタ70によってPD66、等化増幅器69、および識別回路38に対する状態モニタが行われる。
【0099】
図40は、図39の状態モニタ70によってモニタされるべき特性項目の説明図である。同図において、PD66に対する特性項目としてはバイアス電流、入力光パワーなどがあり、等化増幅器69に対しては電源電圧、温度、出力振幅などがあり、また識別回路38に対しては電源電圧、温度、識別閾値(リファレンス電位)に加えて、その監視はかなり困難ではあるが、識別位相がある。
【0100】
最後に本発明の第4の実施形態について説明する。第4の実施形態では、第1〜第3の実施形態における伝送路の波長分散自動補償に加えて、偏波モード分散の補償も行われる点に特徴がある。ただし、この場合波長分散補償と偏波モード分散(PMD)補償とをどのように切り分けて制御するかが問題となる。
【0101】
前述のように、PMD補償の方法としていくつかの方法が提案されているが、ここでは波長分散補償と切り分けるためにPMDのモニタとして、DOP(ディグリー・オブ・ポラリゼーション)モニタを用いる場合について考える。このDOPを用いたPMDの検出については、次の文献がある。
【0102】
“POLARIZATION−MODE DISPERSION(PMD)DETECTION SENSITIVITY OF DEGREE OF POLARIZATION METHOD FOR PMD COMPENSATION” ECOC’99,26−30
伝送路の波長分散の値が変化した場合にもDOPを測定することにより、PMDの値を安定して測定できることを実験によって確認した。
【0103】
実験においては、分散補償ファイバ(DCF)を伝送路として用い、更にポラリゼーション・モード・ディスパーション・エミュレータ(PMDE)を用いてDCFのみの場合、PMDEのみの場合、およびPMDEとDCFとを併用した場合に、40Gb/sのNRZ送信機による送信信号の受信側でのDOPを測定した。
【0104】
DCFの波長分散値を−407、−700、および−807ps/nmに変化させた場合の、DCFのみを用いたDOPの測定結果、PMDEのみを用いた測定結果、およびPMDEとDCFを併用した場合の実験結果は、いずれもDCFの波長分散値の影響を受けないことが確認された。従ってDOPを検出するPMDモニタを用いることによって、伝送路の波長分散の値が変わってもPMDの補償を安定的に実行できることが明らかになった。
【0105】
図41はPMD補償器と分散補償器とを併用する場合の補償システムの例(その1)のブロック図である。同図においては、PMDモニタ76、すなわちDOPを検出するモニタのモニタ結果によってPMD補償器75を制御することによって、分散補償器77に入力される光受信信号に対してはPMD補償がなされており、光/電気変換器(O/E)78に対する分散モニタ79のモニタによって、分散補償器77の制御が正しく行われる。しかしながら、専用の分散モニタ79の代わりに本発明の実施形態では伝送品質モニタを用いており、伝送品質モニタはPMDの影響を受けて波長分散による伝送品質の変動のみを正しく検出することができないという問題点がある。
【0106】
図42はこのような問題点に対応する、図41における制御投入シーケンスの説明図である。同図においては、処理が開始されると、まずPMD補償器75側では直ちにステップS43でPMDコントローラ(PMDC)の制御が開始され、ステップS44で初期設定が完了し、ステップS45でPMDCはトラッキングモードに入る。
【0107】
これに対して分散補償器(VDC)77側では、PMD補償器75による補償が実質的に開始されるまでの待ち時間TをステップS46で設けた後に、ステップS47でVDCの制御が開始され、ステップS48でVDCの初期設定が完了し、ステップS49でVDCはトラッキングモードに入る。ステップS45、およびステップS49の後に、PMDCとVDCとを共に用いたトラッキングモードに入る。
【0108】
図43、および図44は、偏波モード分散と波長分散との両方の補償を行う光通信システムの受信側の構成例(その2)、および(その3)のブロック図である。このように両方の補償を行う場合には、基本的には前述のように波長分散モニタ79がPMD補償器の後段にある、すなわちPMD補償完了後に波長分散のモニタが行われることのみが必要であり、分散補償器とPMD補償器の配置の順序には問題はなく、図43および図44の構成が可能である。
【0109】
図45はPMD補償と波長分散補償とを併用する受信側のシステム構成の例(その4)のブロック図である。同図においては、複数のチャネルに対して分散補償器77による波長分散補償が一括して行われ、PMD補償器75による偏波モード分散補償は各チャネル毎に行われるが、PMD補償の後段で1つ以上のチャネルの誤り率を使用した分散モニタ79、すなわち伝送品質モニタを用いることによって、分散補償器77による波長分散補償が行われる。
【0110】
以上においては偏波モード分散をDOPによって検出するものとしたが、DOPを検出する以外の方法で動作するPMDモニタを用いる場合には、伝送品質への影響によってPMD補償と波長分散補償との切り分けを行うことができる。
【0111】
図46はその切り分けのための伝送品質への影響の説明図である。同図において、チャネル間依存性は、前述のように波長分散に対しては依存性があるのに対して、PMDに対しては依存性がなく、また伝送品質への影響の時間的変動速度の面では、温度変動に起因する場合には共に遅いが、ファイバタッチなどの圧力変化などの原因に対してはPMDによる影響の変動速度が速いため、このような影響の差を利用して、2つの補償の切り分けを行うことができる。
【0112】
図47〜図49は、偏波モード分散補償と波長分散補償とを併用する光通信システムの構成例のブロック図である。図47のその1では、図45と同様に波長分散補償は全てのチャネルに対して一括して行われるのに対して、偏波モード分散補償はチャネル毎に行われる。そして波長分散モニタの代わりに、伝送品質モニタが用いられる。
【0113】
図48のその2、および図49のその3では、共に波長分散補償と偏波モード分散補償とが各チャネル毎に行われるが、図49では制御器80によって分散補償器34に対する制御と、PMD補償器75に対する制御が切り分けられている。
【0114】
(付記1)複数のチャネルに対する光信号を送信する光送信機から、伝送路を介して入力される光信号に対する可変波長分散補償器を有する自動分散補償装置において、
前記複数の各チャネルに対する光受信信号の伝送品質を測定する伝送品質測定手段と、
該伝送品質測定手段の測定結果から前記伝送路における波長分散による伝送品質の劣化を、他の劣化原因による劣化と切り分けて検出し、該劣化を改善するように前記可変波長分散補償器を制御する波長分散補償量制御手段とを備えることを特徴とする自動分散補償装置。
【0115】
(付記2)前記可変波長分散補償器による補償結果としての残留波長分散量に対して、更に光信号波長に依存してチャネル間での分散補償量の差を増減させる残留波長分散量増減手段と、
該可変波長分散補償器と残留波長分散量増減手段とによる補償後の伝送品質の測定結果をチャネル間で比較し、前記伝送路による波長分散量の増加または減少を判定する波長分散量増減判定手段とを更に備えることを特徴とする付記1記載の自動分散補償装置。
【0116】
(付記3)前記残留波長分散量増減手段が、前記波長に依存するチャネルの番号の増加に対応して、前記チャネル間での分散補償量の差を全てのチャネルの範囲に渡ってスロープ状に変化させることを特徴とする付記2記載の自動分散補償装置。
【0117】
(付記4)前記残留波長分散量増減手段が、前記波長に依存するチャネルの番号の増加に対応して、前記チャネル間での分散補償量の差を全てのチャネルの範囲に渡ってステップ的に変化させることを特徴とする付記2記載の自動分散補償装置。
【0118】
(付記5)前記残留波長分散量増減手段が、前記波長に依存するチャネルの番号の増加に対応して、前記チャネル間での分散補償量の差を特定の一部のチャネルの範囲に渡ってスロープ状に変化させることを特徴とする付記2記載の自動分散補償装置。
【0119】
(付記6)前記残留波長分散量増減手段が、前記波長に依存するチャネルの番号の増加に対応して、前記チャネル間での分散補償量の差を特定の一部のチャネルの範囲に渡ってステップ的に変化させることを特徴とする付記2記載の自動分散補償装置。
【0120】
(付記7)前記伝送路を介して送信される光信号を受信する受信機の各部の状態を検出する受信機状態検出手段を更に備え、
該受信機状態の検出結果と前記伝送品質測定手段の測定結果とに対応して、前記波長分散補償量制御手段が可変波長分散補償器の制御を停止することを特徴とする付記1記載の自動分散補償装置。
【0121】
(付記8)前記可変波長分散補償器に加えて、伝送路から入力される1つ以上のチャネルの信号にそれぞれ対応する偏波モード分散補償器と、該偏波モード分散補償器による補償後の偏波モード分散量を検出する偏波モード分散モニタとを備え、
前記波長分散補償量制御手段が、該偏波モード分散モニタの検出結果と前記伝送品質測定手段の測定結果の時間的変化傾向とに対応して、該可変波長分散補償器と偏波モード分散補償器との制御を行うことを特徴とする付記1記載の自動分散補償装置。
【0122】
(付記9)複数のチャネルに対する光信号を送信する光送信機から伝送路を介して入力される光信号に対する可変波長分散補償を行う自動分散補償方法において、
前記複数の各チャネルに対する光受信信号の伝送品質を測定し、
該伝送品質の測定結果から、前記伝送路における波長分散による伝送品質の劣化を、他の劣化原因による劣化と切り分けて検出し、
該劣化を改善するように可変波長分散補償を行うことを特徴とする自動分散補償方法。
【0123】
(付記10)複数のチャネルに対する光信号を送信する光送信機から伝送路を介して入力される光信号に対する可変波長分散補償の制御を行う計算機によって使用されるプログラムにおいて、
前記複数の各チャネルに対する光受信信号の伝送品質の測定結果を受け取る手順と、
該伝送品質の測定結果から、前記伝送路における波長分散による伝送品質の劣化を、他の劣化原因による劣化と切り分けて検出する手順と、
該劣化を改善するように可変波長分散補償の制御を行う手順とを計算機に実行させるためのプログラム。
【0124】
【発明の効果】
以上詳細に説明したように、本発明によれば伝送路の波長分散による通信品質への影響を、例えば偏波モード分散による影響と切り分けることによって、専用の分散モニタを用いることなく、一般的な伝送品質モニタを用いて伝送路の波長分散の最適化制御を行い、システム性能の改善を図ることができる。また偏波モード分散補償の後段に伝送品質モニタを置いて、波長分散補償と偏波モード分散補償とを併用することが可能となり、超高速光通信システムの実現に寄与するところが大きい。
【図面の簡単な説明】
【図1】
本発明の自動分散補償装置の原理構成ブロック図である。
【図2】
本発明における波長分散補償方式の説明図である。
【図3】
SONET/SDHシステムにおける伝送品質監視方法の説明図である。
【図4】
誤り訂正符号を用いる伝送品質監視方法の説明図である。
【図5】
第1の実施形態における光通信システムの構成例(その1)のブロック図である。
【図6】
第1の実施形態における光通信システムの構成例(その2)のブロック図である。
【図7】
第1の実施形態における光通信システムの構成例(その3)のブロック図である。
【図8】
第1の実施形態における光通信システムの構成例(その4)のブロック図である。
【図9】
図7における分散補償制御処理のフローチャートである。
【図10】
温度変化に伴う伝送路分散の変動を説明する図である。
【図11】
伝送路の波長分散が増加した場合の誤り数の変動を説明する図である。
【図12】
波長分散が減少した場合の誤り数の変動を説明する図である。
【図13】
第2の実施形態における光通信システムの構成例(その1)のブロック図である。
【図14】
チャネル番号に対して傾きを持たせた残留分散量の説明図である。
【図15】
第2の実施形態における光通信システムの構成例(その2)のブロック図である。
【図16】
分散スロープ補償方法の説明図である。
【図17】
第2の実施形態における光通信システムの構成例(その3)のブロック図である。
【図18】
分散スロープ最適化の第1の方法の説明図である。
【図19】
分散スロープ最適化の第2の方法の説明図である。
【図20】
波長分散値に傾斜をつけた場合のシミュレーションにおける光通信システムの構成例である。
【図21】
図20における波長分散値の傾斜の説明図である。
【図22】
伝送路分散が増加した場合のシミュレーション結果を示す図である。
【図23】
伝送路分散が減少した場合のシミュレーション結果を示す図である。
【図24】
分散量のスロープの設定例(その1)である。
【図25】
分散量のスロープの設定例(その2)である。
【図26】
分散量のスロープの設定例(その3)である。
【図27】
分散量のステップ的変化の例(その1)である。
【図28】
分散量のステップ的変化の例(その2)である。
【図29】
分散量のステップ的変化の例(その3)である。
【図30】
分散量のステップ的変化の例(その4)である。
【図31】
1部のチャネルに対する分散量の傾斜の設定例(その1)である。
【図32】
1部のチャネルに対する分散量の傾斜の設定例(その2)である。
【図33】
1部のチャネルに対する分散量のステップ的変化の設定例(その1)である。
【図34】
1部のチャネルに対する分散量のステップ的変化の設定例(その2)である。
【図35】
伝送路波長分散値増減判定処理のフローチャートである。
【図36】
第3の実施形態における光通信システムの構成例(その1)のブロック図である。
【図37】
第3の実施形態における光通信システムの構成例(その2)のブロック図である。
【図38】
第3の実施形態における分散補償制御処理のフローチャートである。
【図39】
第3の実施形態における受信機側の状態モニタの説明図である。
【図40】
受信機側におけるモニタ項目例の説明図である。
【図41】
第4の実施形態における補償システムの基本構成例(その1)のブロック図である。
【図42】
図41のシステムにおける制御投入シーケンスである。
【図43】
第4の実施形態における補償システムの構成例(その2)のブロック図である。
【図44】
第4の実施形態における補償システムの構成例(その3)のブロック図である。
【図45】
第4の実施形態における補償システムの構成例(その4)のブロック図である。
【図46】
波長分散と偏波モード分散の伝送品質への影響を説明する図である。
【図47】
第4の実施形態における光通信システムの構成例(その1)である。
【図48】
第4の実施形態における光通信システムの構成例(その2)である。
【図49】
第4の実施形態における光通信システムの構成例(その3)である。
【図50】
光通信システムの従来例の全体構成を示すブロック図である。
【図51】
識別閾値などが最適化された場合の図50のシステムにおける伝送特性を示す図である。
【図52】
図50のシステムにおいて制御が発散した状態を示す図である。
【符号の説明】
1     自動分散補償装置
2     伝送品質測定手段
3     波長分散補償量制御手段
5     可変波長分散補償器
30    送信機
31    合波器
32    伝送線路
33    分波器
34    分散補償器(VDC)
35    光電気変換部
36    増幅器
37    クロック検出回路
38    識別回路
39    伝送品質モニタ
40    制御回路
50    分散スロープ付加器
51    可変分散スロープ補償器
55〜62 状態モニタ
64    温度・電源変動モニタ
65    温度モニタ
75    PMD補償器
76    PMDモニタ
77    分散補償器
79    分散モニタ

Claims (5)

  1. 複数のチャネルに対する光信号を送信する光送信機から、伝送路を介して入力される光信号に対する可変波長分散補償器を有する自動分散補償装置において、
    前記複数の各チャネルに対する光受信信号の伝送品質を測定する伝送品質測定手段と、
    該伝送品質測定手段の測定結果から前記伝送路における波長分散による伝送品質の劣化を、他の劣化原因による劣化と切り分けて検出し、該劣化を改善するように前記可変波長分散補償器を制御する波長分散補償量制御手段とを備えることを特徴とする自動分散補償装置。
  2. 前記可変波長分散補償器による補償結果としての残留波長分散量に対して、更に光信号波長に依存してチャネル間での分散補償量の差を増減させる残留波長分散量増減手段と、
    該可変波長分散補償器と残留波長分散量増減手段とによる補償後の伝送品質の測定結果をチャネル間で比較し、前記伝送路による波長分散量の増加または減少を判定する波長分散量増減判定手段とを更に備えることを特徴とする請求項1記載の自動分散補償装置。
  3. 前記伝送路を介して送信される光信号を受信する受信機の各部の状態を検出する受信機状態検出手段を更に備え、
    該受信機状態の検出結果と前記伝送品質測定手段の測定結果とに対応して、前記波長分散補償量制御手段が可変波長分散補償器の制御を停止することを特徴とする請求項1記載の自動分散補償装置。
  4. 前記可変波長分散補償器に加えて、伝送路から入力される1つ以上のチャネルの信号にそれぞれ対応する偏波モード分散補償器と、該偏波モード分散補償器による補償後の偏波モード分散量を検出する偏波モード分散モニタとを備え、
    前記波長分散補償量制御手段が、該偏波モード分散モニタの検出結果と前記伝送品質測定手段の測定結果の時間的変化傾向とに対応して、該可変波長分散補償器と偏波モード分散補償器との制御を行うことを特徴とする請求項1記載の自動分散補償装置。
  5. 複数のチャネルに対する光信号を送信する光送信機から伝送路を介して入力される光信号に対する可変波長分散補償を行う自動分散補償方法において、
    前記複数の各チャネルに対する光受信信号の伝送品質を測定し、
    該伝送品質の測定結果から、前記伝送路における波長分散による伝送品質の劣化を、他の劣化原因による劣化と切り分けて検出し、
    該劣化を改善するように可変波長分散補償を行うことを特徴とする自動分散補償方法。
JP2002159062A 2002-05-31 2002-05-31 自動分散補償装置および補償方法 Expired - Fee Related JP3923373B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002159062A JP3923373B2 (ja) 2002-05-31 2002-05-31 自動分散補償装置および補償方法
EP03011116A EP1367744A3 (en) 2002-05-31 2003-05-22 Automatic dispersion compensation device and compensation method
US10/446,694 US7433599B2 (en) 2002-05-31 2003-05-29 Automatic dispersion compensation device and compensation method
CNA031385710A CN1467935A (zh) 2002-05-31 2003-05-30 自动色散补偿装置和补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002159062A JP3923373B2 (ja) 2002-05-31 2002-05-31 自動分散補償装置および補償方法

Publications (2)

Publication Number Publication Date
JP2004007150A true JP2004007150A (ja) 2004-01-08
JP3923373B2 JP3923373B2 (ja) 2007-05-30

Family

ID=29417248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002159062A Expired - Fee Related JP3923373B2 (ja) 2002-05-31 2002-05-31 自動分散補償装置および補償方法

Country Status (4)

Country Link
US (1) US7433599B2 (ja)
EP (1) EP1367744A3 (ja)
JP (1) JP3923373B2 (ja)
CN (1) CN1467935A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081782A (ja) * 2005-09-14 2007-03-29 Nec Corp 光伝送装置、光伝送システム及び警報発出方法
JP2008098975A (ja) * 2006-10-12 2008-04-24 Fujitsu Ltd 受信装置、送信装置、受信方法および送信方法
JP2008541510A (ja) * 2005-04-28 2008-11-20 シオプティカル インコーポレーテッド 多重光通信チャンネルで使用する共通の電子分散補償アレンジメント
JP2009159384A (ja) * 2007-12-27 2009-07-16 Nec Corp 偏波分散モニタ方法および装置
JP2009177237A (ja) * 2008-01-21 2009-08-06 Mitsubishi Electric Corp 分散補償装置
JP2010148038A (ja) * 2008-12-22 2010-07-01 Fujitsu Ltd 伝送装置および分散値設定方法
JP2010206371A (ja) * 2009-03-02 2010-09-16 Nec Corp 波長多重光通信システム、波長多重光通信システムの光信号分散補償方法、及びプログラム
JP2012010249A (ja) * 2010-06-28 2012-01-12 Fujitsu Telecom Networks Ltd 波長分割多重化伝送装置及び分散補償制御方法
US8488961B2 (en) 2006-11-30 2013-07-16 Nec Corporation Dispersion determining apparatus and automatic dispersion compensating system using the same
US8971724B2 (en) 2012-03-16 2015-03-03 Fujitsu Limited Optical transmission apparatus and characteristic compensation method
US9037002B2 (en) 2010-11-12 2015-05-19 Fujitsu Limited Pre-emphasis control method and optical transmission system
JPWO2016157800A1 (ja) * 2015-03-27 2017-11-30 日本電気株式会社 光受信装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274879B1 (en) * 2003-10-23 2007-09-25 Nortel Networks Limited Compensation of temperature-induced dispersion drift in optical communication links
US7885541B2 (en) * 2004-02-23 2011-02-08 Dynamic Method Enterprises Limited Method and apparatus for optical performance monitoring
WO2006137138A1 (ja) * 2005-06-23 2006-12-28 Fujitsu Limited 波長分散補償制御方法及びその装置
US7606498B1 (en) * 2005-10-21 2009-10-20 Nortel Networks Limited Carrier recovery in a coherent optical receiver
US20080279563A1 (en) * 2005-12-20 2008-11-13 Huade Shu Apparatus and Method for Self-Adaptive Dispersion Compensating
CN100460902C (zh) * 2006-03-10 2009-02-11 中兴通讯股份有限公司 波分复用系统残余色散补偿的调节方法和装置
US20080025730A1 (en) * 2006-06-29 2008-01-31 Giovannini Thomas J Method and apparatus for autonomous adaptation of an optical dispersion compensation ("ODC") module
JP4648363B2 (ja) * 2007-06-13 2011-03-09 株式会社日立製作所 光伝送装置および光伝送装置制御方法
JP4900180B2 (ja) * 2007-10-12 2012-03-21 富士通株式会社 光受信装置および光伝送システム
EP2299577B1 (en) 2009-09-18 2012-08-01 DET International Holding Limited Digital slope compensation for current mode control
JP5495120B2 (ja) * 2010-05-24 2014-05-21 日本電気株式会社 光受信装置、光受信方法及び光受信装置の制御プログラム
US10038503B2 (en) * 2014-08-13 2018-07-31 Xilinx, Inc. Adaptive optical channel compensation
CN108106844B (zh) * 2017-11-22 2019-09-13 辽宁大学 一种自适应参数调节的自动编码机的轴承故障诊断方法
CN110346653B (zh) * 2019-06-19 2021-08-17 中国科学院国家天文台 太阳风色散量测量方法、装置、电子设备及介质
US11522332B2 (en) 2021-04-01 2022-12-06 Nguyen Tan Hung Optical receiver using a photonic integrated circuit with array of semiconductor optical amplifiers
US20230084066A1 (en) * 2021-09-14 2023-03-16 Huawei Technologies Co., Ltd. System and method for dispersion compensation in fibered optical communication paths

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262444B2 (ja) 1994-02-08 2002-03-04 日本電信電話株式会社 自動等化器
EP0684709B1 (en) * 1994-05-25 2002-10-02 AT&T Corp. Optical communications system with adjustable dispersion compensation
JP3326319B2 (ja) 1995-06-30 2002-09-24 古河電気工業株式会社 偏波モード分散の測定方法およびその装置
JP3464744B2 (ja) 1996-06-03 2003-11-10 日本電信電話株式会社 自動等化システム
JPH118590A (ja) 1997-04-25 1999-01-12 Oki Electric Ind Co Ltd 光伝送システム及びその監視制御方法
JPH1188260A (ja) * 1997-09-09 1999-03-30 Fujitsu Ltd 光伝送路の分散補償装置
US6307988B1 (en) 1999-02-18 2001-10-23 Lucent Technologies Inc. Optical fiber communication system incorporating automatic dispersion compensation modules to compensate for temperature induced variations
US6370300B1 (en) * 1999-02-18 2002-04-09 Lucent Technologies Inc. Optical communication system incorporating automatic dispersion compensation modules
JP4294153B2 (ja) * 1999-04-12 2009-07-08 富士通株式会社 波長多重光伝送システム
US6483958B2 (en) 2000-05-06 2002-11-19 Tektronix Munich PMD compensator
TW508920B (en) 2000-06-01 2002-11-01 Sumitomo Electric Industries Optical transmission system
JP4592887B2 (ja) * 2000-08-07 2010-12-08 富士通株式会社 波長分散を補償する方法及びシステム
US20020018267A1 (en) * 2000-08-09 2002-02-14 Yafo Networks, Inc. Methods and apparatus for adaptive optical distortion compensation using magneto-optic device
JP4011290B2 (ja) 2001-01-10 2007-11-21 富士通株式会社 分散補償方法、分散補償装置および光伝送システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541510A (ja) * 2005-04-28 2008-11-20 シオプティカル インコーポレーテッド 多重光通信チャンネルで使用する共通の電子分散補償アレンジメント
JP2007081782A (ja) * 2005-09-14 2007-03-29 Nec Corp 光伝送装置、光伝送システム及び警報発出方法
JP2008098975A (ja) * 2006-10-12 2008-04-24 Fujitsu Ltd 受信装置、送信装置、受信方法および送信方法
US8488961B2 (en) 2006-11-30 2013-07-16 Nec Corporation Dispersion determining apparatus and automatic dispersion compensating system using the same
JP2009159384A (ja) * 2007-12-27 2009-07-16 Nec Corp 偏波分散モニタ方法および装置
JP2009177237A (ja) * 2008-01-21 2009-08-06 Mitsubishi Electric Corp 分散補償装置
JP2010148038A (ja) * 2008-12-22 2010-07-01 Fujitsu Ltd 伝送装置および分散値設定方法
US8412045B2 (en) 2008-12-22 2013-04-02 Fujitsu Limited Propagation apparatus and dispersion value setting method
JP2010206371A (ja) * 2009-03-02 2010-09-16 Nec Corp 波長多重光通信システム、波長多重光通信システムの光信号分散補償方法、及びプログラム
JP2012010249A (ja) * 2010-06-28 2012-01-12 Fujitsu Telecom Networks Ltd 波長分割多重化伝送装置及び分散補償制御方法
US9037002B2 (en) 2010-11-12 2015-05-19 Fujitsu Limited Pre-emphasis control method and optical transmission system
US8971724B2 (en) 2012-03-16 2015-03-03 Fujitsu Limited Optical transmission apparatus and characteristic compensation method
JPWO2016157800A1 (ja) * 2015-03-27 2017-11-30 日本電気株式会社 光受信装置

Also Published As

Publication number Publication date
US7433599B2 (en) 2008-10-07
JP3923373B2 (ja) 2007-05-30
EP1367744A3 (en) 2005-08-17
CN1467935A (zh) 2004-01-14
EP1367744A2 (en) 2003-12-03
US20030223760A1 (en) 2003-12-04

Similar Documents

Publication Publication Date Title
JP3923373B2 (ja) 自動分散補償装置および補償方法
JP4011290B2 (ja) 分散補償方法、分散補償装置および光伝送システム
US7389049B2 (en) Chromatic dispersion compensation controlling system
US6925262B2 (en) Method and system for compensating chromatic dispersion
US8270843B2 (en) Optical transmission system
US7936993B2 (en) Chromatic dispersion compensating apparatus
JP5648436B2 (ja) プリエンファシス制御方法
JP5504759B2 (ja) 光伝送装置、光伝送装置用送受信モジュール及び光伝送システムならびに光伝送装置における波長分散補償方法
US20070047963A1 (en) Optical transceiver having parallel electronic dispersion compensation channels
JP2004282372A (ja) 光受信装置及び分散補償制御方法
JP4669103B2 (ja) 光伝送システムにおける偏波分散補償装置および方法
JP5025503B2 (ja) 分散補償装置
WO2010050124A1 (ja) 光受信機
JP5263289B2 (ja) 光ファイバの分散検出装置およびそれを用いた自動分散補償システム
JP3771830B2 (ja) 自動分散補償回路付き光波長多重伝送システム
JP2008311875A (ja) 光伝送装置および光伝送装置制御方法
JP2004096242A (ja) 非線形劣化を考慮したプリエンファシス制御方法
JP4056846B2 (ja) 分散モニタ装置、分散モニタ方法および自動分散補償システム
US20040179837A1 (en) Method and arrangement for the determination and separation of single-channel effects on the optical transmission of a wavelength division multiplex (WDM) signal
JP2006033213A (ja) 光伝送方法および光伝送システム
Edirisinghe et al. Subcarrier-Enabled Record Field Trial Demonstration in a Dispersion Uncompensated Ultra-Long Transpacific Cable
JP2003273804A (ja) 波長分散および分散スロープを補償可能な光伝送装置および分散補償方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees